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Abstract

Model-based and model-free reinforcement learning (RL) have been suggested as algorith-

mic realizations of goal-directed and habitual action strategies. Model-based RL is more

flexible than model-free but requires sophisticated calculations using a learnt model of the

world. This has led model-based RL to be identified with slow, deliberative processing, and

model-free RL with fast, automatic processing. In support of this distinction, it has recently

been shown that model-based reasoning is impaired by placing subjects under cognitive

load—a hallmark of non-automaticity. Here, using the same task, we show that cognitive

load does not impair model-based reasoning if subjects receive prior training on the task.

This finding is replicated across two studies and a variety of analysis methods. Thus, task

familiarity permits use of model-based reasoning in parallel with other cognitive demands.

The ability to deploy model-based reasoning in an automatic, parallelizable fashion has

widespread theoretical implications, particularly for the learning and execution of complex

behaviors. It also suggests a range of important failure modes in psychiatric disorders.

Author Summary

Automaticity develops with task familiarity. One possible explanation is that automaticity

arises when performance of the task becomes habitual, or model-free. Here we asked

whether goal-directed, or model-based, reasoning could also become automatic, or resis-

tant to distraction. We used a well-characterized task that differentiates model-based from

model-free action. We replicate previous findings that distraction strongly impairs model-

based reasoning in task-naive subjects. However, in subjects with prior exposure to the

task, distraction does not impair model-based reasoning. This suggests that humans can

deploy sophisticated and flexible reasoning more extensively than previously thought.
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Introduction

A wealth of experimental data indicates the brain uses at least two distinct decision making

strategies in value-guided choice. One involves prospective reasoning about action-outcome

contingencies, while the other retrospectively links rewards to actions [1–3]. The interplay

between these two choice strategies has substantial clinical implications. For example, over-

reliance on habits could lead to inflexible decision-making in addiction [4] and compulsion

[5].

A compelling computational account of these two control mechanisms draws on reinforce-

ment learning (RL) theory [1]. In Daw and colleagues' framework, retrospective learning is

accomplished withmodel-free strategies in which rewarded actions tend to be repeated, but the

underlying structure of the world that gives rise to these rewards is not learned [6] [7]. Prospec-

tive reasoning, on the other hand, relies on a learned model of the world to accurately predict

the outcomes of actions, even in the face of changing action-reward contingencies [1,7,8]. This

is suggested to rendermodel-based reasoning more flexible but at a heightened computational

cost [3].

Contemporary theories posit that model-based reasoning engages limited-resource execu-

tive functions [9] that involve the dorsolateral prefrontal, ventromedial prefrontal and anterior

cingulate cortices [10–15]. This is supported by observations that model-based reasoning is

impaired under cognitive load [16] or acute stress [17], and following disruption of dorsolateral

prefrontal cortex function via TMS [18], with the degree of impairment interacting with base-

line working memory capacity.

However, studies of model-based decision-making often utilize tasks in which the stimuli,

contingencies and other task parameters are novel to the subject. This raises the possibility that

reliance on limited-resource executive functions is not an intrinsic property of model-based

reasoning, but is instead a characteristic of reasoning with an unfamiliar model. In everyday

life, tasks become "second-nature" with experience and are subsequently more easily used as

building blocks for increasingly complex tasks. It remains untested whether this is entirely due

to the formation of efficient habits, or if what is "second-nature" can include sophisticated rea-

soning with a model of the world.

Here, we used a two-step decision-task that engages both model-free and model-based rea-

soning [16,19]. In brief, trials consist of two stages, where each stage involves a two-alternative

forced choice between a pair of adjacent fractals (Fig 1). Each first-stage fractal is predomi-

nantly associated (with a 70% probability) with one of two second-stage pairs. Transitions with

70% probability we call "common"; those with 30% probability we call "uncommon". The four

second-stage fractals are associated with different reward probabilities that fluctuate indepen-

dently across a session. Thus, subjects have to make trial-by-trial adjustments in choice so as to

maximize the probability of reward.

Model-free and model-based decision strategies make different predictions about choice

dependence on transitions and rewards from previous trials. We used computational modeling

and logistic regression to quantify the contribution of model-free and model-based strategies

when subjects performed the two-step task, either alone (single-task condition) or in combina-

tion with a demanding concurrent task (dual-task condition). The latter represents a high load

condition. We also wanted to test whether the effect of load changed with practice.

To this end we trained subjects on the two-step task for 3 consecutive days and introduced

intermittent periods of high load. An initial group of 22 healthy subjects, referred to as the

‘high load group’, experienced the dual-task condition on each day of training. This allowed us

to characterize choice under load across the entire training period. A second group of 23

healthy subjects, referred to as the ‘low load group’, experienced the dual-task condition on day

Model-Based Reasoning in Humans Becomes Automatic with Training

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004463 September 17, 2015 2 / 19

Competing Interests: The authors have declared

that no competing interests exist.



Fig 1. Task and experimental design. (A) Subjects chose between a pair of fractals at each of two stages,
where a choice at the first-stage lead to one of two second-stage pairs with a fixed probability. This transition
structure could be exploited by the player. The second-stage choice followed either a reward (gold coin) or no
reward (0), according to independently fluctuating reward contingencies. On dual-task trials (displayed in the
figure), two different numbers of physically different sizes were displayed above each fractal at the first-stage.
Following second-stage feedback, the word ‘SIZE’ or ‘VALUE’ was presented on the screen, requiring the
player to indicate whether the number that was larger in size, or value, respectively, had appeared on the left
or right side of the screen. Correct responses were incentivized via monetary gain; incorrect responses were
unrewarded. (B) On days 1 and 2 the ‘high load group’ played alternating blocks of single-task (128) and dual
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3 only. This allowed us to determine how training on the two-step task alone would impact

choice under load.

We hypothesized that model-based calculations would become less reliant on executive

resources following training, independent of whether training included or excluded load, lead-

ing to a reduction in the detrimental effect of cognitive load on model-based choice.

Results

Computational modeling

We analyzed data using previously described reinforcement learning (RL) models [1,19],

including a hybrid model and reduced (nested) versions that captured pure model-free and

model-based choice. The hybrid model chose according to a combination of model-free and

model-based valuations, weighted by the parameter w, such that w = 0 corresponded to pure

model-free and w = 1 to pure model-based. Otto and colleagues [16] found that cognitive load

shifted w towards 0. Our central question was whether this shift would be reduced if subjects

had prior training on the two-step task. In other words, we asked whether the difference in w

between single and dual-task trials on day 3 in the ‘low load group’ was smaller than on day 1

in the ‘high load group’ (a between-group comparison). In this comparison, the groups were

matched in level of exposure to the Stroop task and the only manipulation was the amount of

prior exposure to the two-step task. A secondary question was whether we could track incre-

mental changes in w across days (a within-group comparison).

Between-group comparison. We first sought to validate that choice in the two-step task

reflected a mix of both model-free and model-based valuations [19]. We fit the RL models to

‘high load group’ data from day 1 of training, and to ‘low load group’ data from day 3 of train-

ing, separately for single-task (two-step alone) and dual-task trials. Using Bayesian model com-

parison, we found that the hybrid model provided a better fit to subject data in both groups

and both trial types, as indicated by a lower iBIC score (see S1 Table). Importantly, in the ‘high

load group’ on day 1 the weighting parameter w was significantly higher in the single-task com-

pared to the dual-task condition (paired t(21) = 2.85, p = 0.01, mean diff = 0.12, 95% CI = [0.03

0.21]), consistent with previous evidence that model-based reasoning is impaired under high

cognitive load in untrained subjects [16] (Fig 2A). Conversely, we found no difference in the

value of w between single-task and dual-task trials when fitting ‘low load group’ data from day

3 (paired t(22) = 0.29, p> 0.05) (Fig 2B). This suggests that prior training on the two-step task

permitted a strong degree of model-based reasoning under load, despite subjects having no

prior experience with performing a task under load.

Within-group comparison. Next, we fit the hybrid model to data from days 2 and 3 of

training in the ‘high load group’, separately for single-task and dual-task trials. We were inter-

ested in whether subjects abruptly switch their choice strategy at the start of a given training

day, or alternatively, whether a gradual shift in behavioral control emerges across days. We per-

formed paired t-tests on parameter estimates from Bayesian model inference. In the single-task

condition, we found evidence for a moderate shift towards more model-based choice, as

indexed by higher w values on days 2 (paired t(21) = 3.10, p = 0.005, mean diff = 0.11, 95% CI

= [0.04 0.18]) and 3 (paired t(21) = 3.66, p = 0.002, mean diff = 0.11, 95% CI = [0.05 0.17]) of

training compared to day 1 (Fig 3A). During dual-task trials, we found a more pronounced

task (64) trials (for a total of 4 blocks), while the ‘low load group’ played 2 consecutive blocks of single-task
(128) trials. On day 3 both groups played alternating blocks of single-task and dual task trials (as per the ‘high
load group’ on days 1–2).

doi:10.1371/journal.pcbi.1004463.g001
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shift towards model-based choice, with an approximately linear increase in the value of w

across days (Fig 3B). w was significantly greater on day 2 compared to day 1 (paired t(21) =

4.26, p< 0.001, mean diff = 0.18, 95% CI = [0.09 0.26]), and day 3 compared to day 2 (paired

t(21) = 4.08, p< 0.001, mean diff = 0.14, 95% CI = [0.07 0.21]) and 1 (paired t(21) = 9.19,

p< 0.001, mean diff = 0.32, 95% CI = [0.24 0.39]). Thus, training increased the relative contri-

bution of model-based reasoning during high load (dual-task) trials, suggesting that the addi-

tion of load is necessary to expose training-induced changes in behavior in the two-step task.

Multi-day model comparison. To corroborate the finding that w changes with training

within a fully Bayesian framework, we fit a full hybrid RL model (in addition to various nested

alternatives) to ‘high load group’ data across all 3 days (combined), separately for single-task

and dual-task trials. We tested model variants in which w could shift across days, governed by

a slope parameter σ. Bayesian model comparison revealed an influence of σ for the dual-task

condition but not the single-task condition, with the latter replicating in both cohorts (see S2

and S3 Tables). Thus, training influenced the balance between model-free and model-based

control across each day of training in dual-task trials but not in single-task trials (however, we

note w was higher on days 2 and 3 compared to day 1 of training during single-task blocks, a

subtlety not captured by a slope model that is only sensitive to linear effects). Importantly, the

value of σ was negative at the group-level, indicating a higher degree of model-based control on

day 3 compared to day 1 (see S3 Table). Thus, subjects’ ability to perform model-based

Fig 2. Computational modeling: Between-group comparison. The weighting parameterw represents a measure of model-based (w = 1) relative to
model-free (w = 0) control.w was lower in the dual-task (high load) condition compared to the single-task (low load) condition in naïve (‘high load group’, day
1) but not trained (‘low load group’, day 3) subjects. Vertical lines represent SEM. * denotes p < 0.05. α = learning rate, β = inverse temperature, ε = lapse

rate. (A) Mean best-fitting parameters for day 1 of training in the ‘high load group’. (B) Mean best-fitting parameters for day 3 of training in the ‘low load group’.

doi:10.1371/journal.pcbi.1004463.g002
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reasoning gradually became immune to cognitive load when training included both the single-

task and dual-task conditions, both within a fully Bayesian framework, and when fitting behav-

ior from each day individually.

Other learning parameters. In addition to differences in the value of w between single-

task and dual-task trials, we found differences in a number of other learning parameters (see

Figs 2 and 3, S3 Table). When fitting data from the ‘high load group’ on day 1, and the ‘low

load group’ on day 3, we found subjects were less considerate of the most recent reward infor-

mation (as indexed by a lower learning rate) and chose more stochastically (as indicated by a

lower inverse temperature) during dual-task trials compared to single-task trials (high load

group α: paired t(21) = 4.33, p< 0.001; high load group β: paired t(21) = 2.94, p = 0.008; low

load group α: paired t(22) = 4.61, p< 0.001; low load group β: paired t(22) = 4.49. p< 0.001)

(see Fig 2). We identified similar differences when fitting data across all training days consecu-

tively (S3 Table). However, when subjects were able to practice the dual-task condition on each

day (‘high load group’), both the learning rate and inverse temperature under load increased

Fig 3. Computational modeling: Within-group comparison. The weighting parameterw represents a measure of model-based (w = 1) relative to model-
free (w = 0) control. At the group level, model parameters remained relatively stable across single-task trials, indicating that performance in the absence of
load was modestly influenced by training. By contrast, we observed higherw values and higher learning rates with increased task exposure during dual-task
trials. Vertical lines represent SEM. α = learning rate, β = inverse temperature, ε = lapse rate. (A) Mean best-fitting parameters when fitting data from the ‘high
load group’ and days 1–3 of training for single-task trials. (B) Mean best-fitting parameters when fitting data from the ‘high load group’ and days 1–3 of training
for dual-task trials.

doi:10.1371/journal.pcbi.1004463.g003
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across days (α day 2 vs. day 1: paired t(21) = 3.34, p = 0.003; day 3 vs. day 2: paired t(21) =

2.03, p = 0.06; day 3 vs. day 1: paired t(21) = 5.76, p< 0.001; β day 2 vs. day 1: paired t(21) =

-1.45, p> 0.05, day 3 vs. day 2: paired t(21) = 7.96, p< 0.001; day 3 vs. day 1: paired t(21) =

3.84, p< 0.001) (Fig 3B).

Logistic regression

Computational modeling relies on fitting several model parameters that can exhibit a degree of

shared variance, and this has a potential to complicate interpretation when the true value of

more than one parameter differs between two conditions. We therefore employed a logistic

regression to validate the main findings from our model. We quantified the degree to which

choice on the current trial reflected a model-free and model-based influence with respect to

events occurring on the preceding 3 trials (see Materials & Methods) [20]. For example, if a

player received a reward following an uncommon transition 3 trials in the past, a model-free

system would be more likely to repeat the first-stage choice on the current trial, whereas a

model-based system would endorse a switch in choice.

During single-task trials, we identified both a significant model-free and model-based influ-

ence on choice extending up to 3 trials in the past (all p< 0.05), consistent with subjects utiliz-

ing a hybrid of both systems (Fig 4A). However, we found a reduction in model-based control

in the dual-task condition compared to the single-task condition in the ‘high load group’ on

day 1, an effect that propagated up to 2 trials in the past (1-back: paired t(21) = 2.59, p = 0.017,

mean diff = 0.22, 95% CI = [0.04 0.40]; 2-back: paired t(21) = 2.78, p = 0.011, mean diff = 0.19,

95% CI = [0.05 0.34]). Importantly, this difference was reduced following task training (on day

3), independent of whether training included (‘high load group’, Fig 4A) or excluded (‘low load

group’, S1 Fig) the high load condition (high load 1-back: paired t(21) = 1.16, p> 0.05; high

load 2-back: paired t(21) = 0.62, p> 0.05). To visualize these effects, we derived single indices

of model-free and model-based learning by summing the coefficients that correspond to an

influence of events on 1, 2 or 3 trials in the past (see Fig 4B).

To our surprise, we were unable to identify a model-free influence in either group in the

high load (dual-task) condition (see Fig 4A and S1 Fig). However, model-free coefficients were

not significantly different when comparing the single-task and dual-task conditions (see Fig

4A). Thus, we do not draw strong inferences from this dissimilarity.

In keeping with other studies utilizing the two-step task [16,18,19,21], we repeated the

regression analysis but now only considering the influence of events occurring on the immedi-

ately preceding trial. Our findings were consistent with the computational modeling approach

and the 3-back regression, and are reported in the supplement for completeness (see S2 Fig and

S4 Table). In summary, these results replicate our computational modeling in a format with

more flexible parametric assumptions.

Numerical Stroop performance

Mean numerical Stroop accuracy during dual-task trials was 81.9% on day 1, 85.5% on day 2,

and 89.5% on day 3 for the ‘high load group’. Thus, performance on the secondary task demon-

strated an approximately linear improvement across training days (day 2 vs. day 1: paired t(21)

= 2.53, p = 0.019; day 3 vs. day 2: paired t(21) = 3.88, p< 0.001; day 3 vs. day 1: paired t(21) =

5.34, p< 0.001). Mean numerical Stroop accuracy for the ‘low load group’, in which subjects

only experienced the dual-task condition on day 3 of training, was 83.2%, and thus comparable

to the ‘high load group’.
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Discussion

Here we asked whether reliance on finite executive resources [13,14,18,22–24] is a universal

property of model-based reasoning, or whether, as task familiarity increases, model-based rea-

soning can depend less on these limited-resource functions. We found that reasoning was pre-

served under load in subjects who had acquired familiarity, through prior training, with the

structure of a two-stage Markov decision task [19]. This was replicated in two cohorts of sub-

jects (who received training either with or without load) using different methodological

approaches. Our results show that training can enable model-based reasoning even when exec-

utive resources are devoted to another task, thereby reflecting the emergence of resource

independence.

There are several possible accounts for these findings. First, subjects may change the way

they calculate the contingencies of the task following training. From a neural perspective,

model calculations may be implemented in new brain areas such that they no longer overlap

with those used in the concurrent task. Training has previously been shown to cause "off-

loading" in tasks requiring executive resources, including an implementational shift from pre-

frontal to parietal and striatal regions [25,26]. It is also possible that model calculations remain

Fig 4. Model-free andmodel-based influences on choice.Results of a logistic regression that considers model-free and model-based influences on
choice in the current trial with respect to events that occurred up to 3 trials in the past. (A) Each regressor describes whether events on trial t-1, t-2 and t-3
increase (coded as +1) or decrease (coded as -1) the probability of choosing fractal A according to a model-free or a model-based system (6 total
regressors). Model-free coefficients are plotted on the left-hand side of x-axis, and model-based coefficients on the right-hand side. Data from days 1 and day
3 are plotted in the top and bottom panels respectively. Coefficients corresponding to the single-task are shown in blue, and those corresponding to the dual-
task are shown in orange. Vertical lines represent SEM. * denotes p < 0.05, ‡ denotes p = 0.09. (B) For each condition (single-task in blue, dual-task in
orange), and separately for days 1 and 3, we summed (individually) the coefficients corresponding to trial t-1, t-2 and t-3, and derived single estimates of the
degree to which model-free (plotted on the y-axis) and model-based (plotted on the x-axis) control were dominant in choice. Vertical lines represent 95%
confidence intervals. A line through the origin represents points in which model-free and model-based valuations have an equal influence on choice.

doi:10.1371/journal.pcbi.1004463.g004
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in the same brain regions, but that coding within these areas becomes more efficient. For exam-

ple, only a fraction of the initial pool of neurons may be required to realize the same represen-

tational fidelity [27–29].

Second, resilience to load could emerge if auxiliary processes (other than reasoning with the

structure of the task itself) become more efficient. For example, some cognitive resources may

be required for identifying the various stimuli, for tracking events that occurred on previous

trials, and for recalling learned values at the second stage. There may also be resource require-

ments for maintaining belief distributions over meta-parameters, such as whether the task

structure changes or new fractals appear, what appropriate learning rates are, when model-

based reasoning should be deployed [1,30] and how attentional resources should be allocated

within a trial. Since all these depend on executive brain regions to some degree [31–35], a gain

in efficiency across any of these domains is likely to free resources.

Third, subjects might learn to perform model-based calculations at the end of each trial

("offline"), rather than at the beginning of the next trial. When used to update a cached or

habitual value accessed for the next choice, such offline calculation could relieve the need to

store the current reward in memory until the beginning of the next trial. In turn, this might

allow better allocation of executive resources to the concurrent task. Indeed, a recent experi-

ment has suggested that the model-based system can “train” the model-free system by replay-

ing and simulating experience offline, and that this in turn allows for choice under load that

appears model-based [36].

A final consideration is that choice under load after training may not be truly model-based.

Increasingly sophisticated choice heuristics (for example, applying Q-value updates to the

opposite first-stage transition following an uncommon transition), can permit behavior that is

increasingly difficult to distinguish from fully model-based in the two-step task [37]. Although

not realizing the full Markov model of the task, these strategies implicitly embody partial mod-

els of task structure. While our data do not adjudicate between these divergent mechanisms,

future experiments could aim to investigate their respective predictions using neuroimaging.

Further, although our study demonstrates that model-based reasoning can become resist to

load, it remains difficult to predict whether these findings would generalize to other task or

load manipulations. Indeed, future studies should aim to identify the various factors that might

promote or impede such resistance.

Our regression analysis suggests the possibility that the reduction in w (a parameter index-

ing the balance between model-based and model-free control) under load could reflect a mar-

ginal weakening of model-free reasoning, in addition to a more pronounced disruption of

model-based reasoning. This contrasts with previous studies showing that model-based, but

not model-free learning, is prone to interference in a range of contexts [5,16–18,38]. This subtle

difference may be a consequence of dissimilarities in task design. For example, while Otto and

colleagues utilized interleaved trials of low and high load [16], we employed alternating blocks

of either condition. If subjects make choices by integrating over the recent trial history, then

enforcing a high load over a longer period of trials could have more diffuse consequences on

choice.

In addition, we found higher w values on day 3 of training in the ‘high load group’ than the

‘low load group’ in both trial types. Because the 'high load group' had more prior exposure to

the Stroop task in this comparison, their higher w values could possibly reflect improved facil-

ity with the Stroop task itself, or indeed with the performance of any concurrent tasks [3], for

example via improved working memory. Thus, we do not draw any strong conclusions from

this observation.

In our computational model, load affected not just w but also prompted slower learning

rates and more stochastic choice, independent of training (in the ‘low load group’). The former
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implies subjects inferred lower environmental volatility under load (perhaps placing stronger

weight on priors) [33], or that load induced a tradeoff between working memory and more

incremental learning processes that exhibit longer time-constants. More stochastic choice

might reflect a reduction in decision confidence [39,40]. It is also possible that the underlying

choice strategy used by subjects was not fully captured by our models, leading to some other

form of variability to be absorbed by our parameters.

At first glance our result might appear contrary to a standard view that increasing training

produces a shift from goal-directed (model-based) to habitual (model-free) control. For exam-

ple, it is well established that extended training reduces sensitivity to outcome devaluation

[13,41–44]. However, our experiment differs from these previous studies as subjects do not

receive extended training with a particular action-reward contingency. Instead, they received

training with a more sophisticated pattern of relationships between action and reward corre-

sponding to the task structure. This difference appears to be essential for determining whether

habits or model-based reasoning are strengthened with experience. Notably, although we con-

clude that there exist certain conditions where training can improve model reasoning under

load, an important remaining question concerns the precise sets of conditions—complexity of

model, type of training, and degree of load—whereby this training effect is enhanced or

diminished.

A central feature of human learning is the ability to acquire very complex task structures,

which often involve performing multiple subtasks in parallel. One way to achieve this parallel-

ism is to reduce the subtasks to habits, reflecting fixed and inflexible action patterns. Our work

suggests that even when subtasks are performed in parallel, each subtask can realize sophisti-

cated and flexible model-based reasoning. This lends richness to ideas on the range of behav-

ioral repertoires that humans can express. It is also consistent with the notion of "models"

throughout processing hierarchies in the brain, from low-level sensory processing to high-level

cognition [45,46].

The possibility that model-based reasoning can become automatic suggests new failure

modes (and treatment avenues) in psychiatric disorders. If maladaptive models become auto-

matic, they may lead to behavior that is both sophisticated and pernicious. Conversely, if adap-

tive models fail to become automatic when they should, they may fail to compete with

maladaptive habits, especially under stress or cognitive load. Yet another possible failure mode

is that experience calcifies models into true, inflexible habits rather than automatic models.

In summary, we present data that is a challenge to a widespread notion in decision-making

that "goal-directed" and "deliberative" are synonymous. We suggest that a dependence of goal-

directed reasoning on use of serial executive resources can lessen with task experience. This

could be important in the acquisition of progressively more complex behavior, with implica-

tions for therapies that aim to restore normal decision-making in psychiatric disorders.

Materials and Methods

Ethics statement

Written informed consent was obtained from all participants prior to the experiment and the

UCL Research Ethics Committee approved the study (project number 3450/002).

Subjects

Previous studies in our laboratory and others have shown that 20 to 25 participants provide

sufficient power to quantify the contribution of model-free and model-based strategies in the

two-step task [16,18,19,38]. We thus decided prior to data collection to include at least 20 par-

ticipants in the final analysis of each experimental group. 35 adult participants formed a group
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(referred to as the ‘high load group’) which received training both with and without cognitive

load, of which 22 were included in the final analysis (7 male and 15 female; age range 18–34;

mean 21.5, SD = 3.71 years). 30 adult participants formed a second independent group

(referred to as the ‘low load group’) for which cognitive load was omitted from training on

days one and two. 23 were included in the final analysis (9 male and 14 female; age range 18–

26; mean 21.2, SD = 3.61 years).

Subject inclusion/exclusion criteria. In line with [16] we excluded 11 subjects from the

‘high load group’ and 5 subjects from the ‘low load group’ whose accuracy on the Stroop task

during dual-task trials was< 70% on any given day so as to ensure participants were in fact

attempting to perform both tasks simultaneously. In addition we excluded 2 participants from

the ‘high load group’ and 1 participant from the ‘low load group’ who chose the same first-

stage fractal on> 90% of trials (on any given day), irrespective of events on the previous trial.

Finally we excluded 1 participant from the ‘low load group’ whose probability of repeating a

first-stage action following a common-rewarded transition on the previous trial was< 0.25 on

day one of training.

General design

In the ‘high load group’, subjects performed alternating blocks of single-task (two-step alone)

(128 trials) and dual-task (64 trials) trials until two blocks of each trial type were completed

(256 single-task trials, 128 dual-task trials in total). This protocol was repeated across three

consecutive days. Subjects received 20 practice trials of each trial type at the start of day one. In

the ‘low load group’, subjects performed 256 trials of the single-task (two-step alone) condition

for two consecutive days, while the protocol on day three was identical to the ‘high load group’.

Subjects in the ‘low load group’ received 20 practice trials of the single-task condition at the

start of day one, and 20 practice trials of the dual-task condition at the start of day 3.

Task

Subjects performed a two-step decision task based on [19] and equivalent to that used in [16].

At the first stage, subjects had 2000 ms to choose between a fractal-pair presented on a grey

background (the chosen fractal was highlighted with a yellow border for the remainder of the

choice period). Each first stage fractal led to one of two second stage fractal-pairs with a 70%

probability (common transition) and to the other with a 30% probability (uncommon transi-

tion). Second stage fractal-pairs were displayed on a green or blue background in accordance

with whether a common or uncommon transition had occurred. In addition, the chosen first-

stage fractal was minimized and moved to the top central portion of the screen. At the second

stage, subjects again had 2000 ms to choose between a fractal-pair (the chosen fractal was again

highlighted with a yellow border for the remainder of the choice period). An outcome was pre-

sented in the form of a golden coin (to indicate a monetary gain) or a ‘0’ (to indicate no mone-

tary gain), followed by an inter-trial interval (fixation cross). The position of each fractal (left

versus right) was counter-balanced across trials for both stages.

Dual-task trials followed the same procedure, except that subjects had to simultaneously

perform a numerical Stroop task [47]. At the beginning of the first stage, two digits were pre-

sented, one above each choice fractal, for 200 ms, and then covered by a white mask for a fur-

ther 200 ms. After second-stage choice feedback, either the word ‘SIZE’ or ‘VALUE’ appeared

alone in the center of the screen on a grey background. The player had 1000 ms to indicate

which first-stage number was larger in size or value respectively. In accordance with [16] and

[47], the numerically larger number was physically smaller on 85% of trials. Thus, subjects had

to hold incidental information in working memory whilst performing the two-step task.
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Following their response, feedback in the form of the word ‘CORRECT’ or ‘INCORRECT’ was

presented a further 1000 ms. If participants failed to respond during the Stroop task probe, a

red “X” appeared for 1000 ms. Trial lengths were equated across two-step and dual task trials

(7200 ms per trial).

The reward probabilities associated with second-stage fractals were governed by indepen-

dently drifting Gaussian random walks (SD = 0.025). We generated a pool of fifteen random

walks for which reward probabilities did not exceed ~0.75 or fall below ~0.25. For each subject,

three walks were selected at random from the pool for use on each successive day of training.

Thus, walks were continuous between blocks of single-task and dual task trials.

Computational modeling

Based on [19], the task was modelled as consisting of three states (sA for the first-stage fractal

pair; sB and sC for the second-stage fractal pairs) where two possible actions (aA,aB) can be

taken from each state. The goal of each RL algorithm is to learn a state-action value function Q

(s,a) that maps each state-action pair to its expected future value. In each trial t, the first and

second-stage states are indicated as s1,t and s2,t respectively, while first and second-stage choices

(actions) are indicated as a1,t and a2,t Since there is no reward at the first stage, r1,t is always

zero, while r1,t can be zero or one.

Model-free. The model-free algorithm was temporal difference Q-learning [6] in which

the value of a given state is assumed to be equivalent to the expected reward from taking the

best available action from that state. At each stage i of each trial t, the value of the chosen state-

action pair was updated according to:

QTDðsi;t; ai;tÞ ¼ QTDðsi;t; ai;tÞ þ adi;t

where δ, the reward prediction error (RPE), is defined as

di;t ¼ ri;t þ g max
a

½QTDðsiþ1;t; aÞ� � QTDðsi;t; ai;tÞ

where α is a learning rate fit for each subject and γ is a discount factor that trades off the impor-

tance of sooner versus later rewards (fixed at 1).

Note that for the first stage choice, ri,t is always zero and δ is instead driven by the second-

stage value.

After outcome delivery, the second stage RPE is used to update the first-stage action QTD(s1,

t,a1,t) according to the eligibility trace λ, which assigns credit to the first-stage action without

the need for an additional step.

QTDðs1;t; a1;tÞ ¼ QTDðs1;t; a1;tÞ þ ald
2;t

Thus, in the event that λ = 0, choice is driven by the estimated value of the second-stage

state on the previous trial. Consistent with previous studies [16,19], this model assumes that

eligibility traces are cleared between trials.

Model-based. Amodel-based RL algorithm involves learning a set of contingencies

between actions and states (a state-transition function), estimating a reward value for each

state, and then combining the two by iterative expectation. Here, since first-stage transitions

are probabilistic, a player must map action-state pairs to a probability distribution over subse-

quent states.

One can approximate subjects’ estimate of the transition probabilities by assuming they

believe one of two alternatives:

PðsBj sA ; aAÞ ¼ 0:7; PðsCj sA ; aAÞ ¼ 0:3; PðsCj sA ; aBÞ ¼ 0:7; PðsBj sA ; aBÞ ¼ 0:3
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or

PðsBj sA ; aAÞ ¼ 0:3; PðsCj sA ; aAÞ ¼ 0:7; PðsCj sA ; aBÞ ¼ 0:3; PðsBj sA ; aBÞ ¼ 0:7

based on the number of previous transitions from sA to sB given aA and from sA to sC given aB
(or vice versa). A previous study has shown this scheme settles on the true transition matrix

after the first few trials and fits subjects’ choices better than implementing a traditional trial-

by-trial learning algorithm [19]. Therefore, we assume the true transition probabilities are

learnt during practice trials and are known by the start of the first experimental block.

Since the second-stage action is the only choice associated with immediate reward, and is

the final step in a trial, an agent can learn the value of the second-stage state in a manner equiv-

alent to temporal difference Q-learning (as above). Thus, QTD(s2,t,a2,t) is simply an estimate of

the immediate reward r2,t, and the model-based algorithm converges with model-free learning

at this stage.

By combining the transition function with the second-stage values we can define the values

of the two first-level actions (using Bellman’s equation) as follows:

QMBðsA; ajÞ ¼ PðsBjsA; ajÞmax
a

½QTDðsB; aÞ� þ PðsCjsA; ajÞmax
a

½QTDðsC; aÞ�

where these are computed on every trial based on the updated second-stage Q-values.

Hybrid model. For the hybrid model we consider contributions from both model-free and

model-based RL. First-stage action values were defined as the weighted sum of values from the

algorithms described above as follows:

QHMðsA; ajÞ ¼ wQMBðsA; ajÞ þ ð1� wÞQTDðsA; ajÞ

where w is a weighting parameter.

When fitting data across all sessions, we included a slope parameter sigma (σ) that allowed

w to shift across days:

wD ¼ w½expðsðDay � 2ÞÞ�

and used wD as the new weighting parameter.

At the second-stage, all three models (model-free, model-based, hybrid) converge.

Action selection. For each model, values were converted to action probabilities using a

sigmoid (softmax) function:

PðaA;tÞ ¼ εþ ð1� 2εÞ
expðb � Qðsi;t; aA;tÞÞ

expðb � Qðsi;t; aA;tÞÞ þ expðb � Qðsi;t; aB;tÞÞ

Where ε is a lapse rate, and β is an inverse temperature parameter that governs the stochasti-

city of choice options. When ε> 0 the boundaries of the sigmoid function are compressed and

deviations from the model are less harshly punished (see S3A Fig). Including a lapse rate in the

softmax may reduce the impact of choices unrelated to the value function of our model (for

example choices that result from lapses in concentration, or pressing the wrong button) on the

estimation of the remaining parameters (see S1 Text and S3B Fig for further explanation).

Model sets. When fitting data from individual days, we considered a hybrid RL model that

included a single learning rate (α) and softmax temperature (β), a weighting parameter that

governs the balance between model-free/model-based control (w), and a lapse rate (ε). The eli-

gibility trace (λ) was fixed at 1. Model-free and model-based algorithms were nested versions

of the hybrid model where w was set to 0 and 1 respectively.
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When fitting data across all days, we considered a family of (nested) hybrid RL models in

which specific parameters were omitted or included as fixed versus free parameters. More com-

plex models included separate RL parameters for first and second stage choices, an eligibility

trace, and a slope parameter that permitted the weighting between model-free and model-

based control to shift across days. See S2 Table for the full model set.

Model fitting and comparison. The model fitting routine follows that previously

described by Huys and colleagues [48]. Each model yielded a parameter vector, θi, for each sub-

ject, i. Before inference, all parameters were suitably transformed to enforce constraints (log

and inverse sigmoid transforms). Model fitting at the individual level aimed to find the maxi-

mum a posteriori estimate of θi, given a vector of each subject’s choices,Ci:

yi ¼ argmaxy pðCijyiÞpðyijWÞ

We used a hierarchical (random effects) model-fitting approach, with the assumption that

parameter estimates were normally distributed at the group level, where ϑ are the parameters

of the empirical normal prior distribution (hyperparameters) on θ. The hierarchical approach

allows the population-level distribution of data to constrain unreliable parameter estimates at

the individual level. We estimated the maximum-likelihood hyperparameters, given the data

from all N subjects:

ŴML ¼ argmaxW pðC
1
. . . CN jWÞ ¼ argmaxW

Y

i

pðCijWÞ

where:

pðCijWÞ ¼

Z

dyi pðCijyiÞpðyijWÞ

The intractable integral above was estimated by Expectation-Maximization (EM). The E-

step at the kth iteration sought the maximum a posteriori parameter estimates for each subject

(given an estimate of the empirical prior from the preceding iteration, achieved by uncon-

strained nonlinear optimization in Matlab, Mathworks, MA, USA):

yi
ðkÞ ¼ argmaxy pðCijyiÞpðyijW

ðk�1ÞÞ

We used a Laplace approximation, which assumes that the likelihood surface is normally

distributed around the maximum a posteriori parameter estimate:

pðyijCiÞ � N yi
ðkÞ
;

X ðkÞ

i

� �

Where

X ðkÞ

i
is the second moment around yi

ðkÞ, which approximates the variance. In the M-

step, the estimated hyperparameters ϑ(k) of the normal prior distribution, mean μ, and
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factorized variance, σ2, were updated as follows:

mðkÞ ¼
1

N

X

i

yi
ðkÞ

ðsðkÞÞ
2
¼

1

N

X

i

ðyi
ðkÞÞ

2
þ

X ðkÞ

i

� �

� ðmðkÞÞ
2

We compared models by Bayesian model evidence, p(C1 . . . CN|M), approximated as BICint:

�
1

2
BICint ¼ logpðC

1
. . . CN jŴ

MLÞ �
1

2
jMjlogðjC

1
. . . CN jÞ

Where |C1 . . . CN| is the total number of choices made by all subjects, and |M| is number of

hyperparameters fitted. Notably here, by distinction from conventional BIC,

logpðC
1
. . . CN jŴ

MLÞ is a sum over the model evidence at the subject level by integrating over

subject-level parameters:

log pðC
1
. . . CN jŴ

MLÞ ¼
X

i

log

Z

dy pðCijyÞ pðyjŴMLÞ �
X

i

log
1

K

X

K

k¼1

pðCijy
kÞ

The right hand expression approximates the integral by summing over K samples, drawn from

the empirical prior, pðyjŴMLÞ. Thus the individual-level parameters intervene between the data

and the group-level inference, but are averaged out when comparing models.

3-back logistic regression

In line with recent studies using the two-step task, we considered model-free and model-based

influences on choice in the current trial, with respect to events that occurred up to 3 trials in

the past [20]. Here, the dependent variable on trial t was 1 when stimulus A was chosen and 0

when stimulus B was chosen at the first-stage. Each regressor then described whether events on

trial t-1, t-2 and t-3 would increase (coded as +1) or decrease (coded as -1) the probability of

choosing A according to a model-free or a model-based system (6 regressors in total). Impor-

tantly, if a trial involved a common transition, both systems make identical predictions. How-

ever, opposing predictions emerge following uncommon transitions. We implemented a

random-effects logistic regression in Matlab (MathWorks) and performed one-sample t-tests

on the resulting coefficient estimates for the 6 regressors, separately for trained (day 3) versus

untrained (day 1), and dual-task (high load) versus single-task (low load) conditions (see Fig 4

and S2 Fig).

Supporting Information

S1 Fig. Model-free and model-based influences on choice: ‘Low load group’.We performed

a logistic regression on data from the ‘low load group ‘ on day 3 of training to estimate the rela-

tionship between choice on trial t and events occurring on trial t-1 up to t-3. Here, regression coef-

ficients can be interpreted as reflecting a model-free or model-based influence on choice, where

larger coefficients indicate a stronger influence. In the single-task condition (blue bars), model-

free and model-based coefficients were significantly different from 0 (up to 3 trials in the past),

suggesting that subjects used a hybrid of both strategies. In the dual-task (high load) condition

(orange bars), we observed a significant influence of a model-based system, that did not differ

from the single-task condition, up to 3 trials in the past. In contrast, we found no significant

influence of a model-free system. These results are consistent with data from the ‘high load
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group’ (see Fig 4). Vertical lines represent SEM. � denotes p =< 0.05, ‡ denotes p = 0.08.

(TIF)

S2 Fig. Switch-stay choice pairs. Bar plots show the average probability with which subjects

chose to repeat their first-stage action on the subsequent trial as a function of the transition

(common vs. uncommon) and outcome (rewarded vs. unrewarded) on the previous trial. Blue

bars correspond to common transitions and red bars correspond to uncommon transitions.

Vertical lines represent SEM. (A) Data from the ‘high load group’. The upper panel corre-

sponds to the single-task condition and the lower panel to the dual-task condition. Choice is

plotted separately for all 3 days. (B) Data from the ‘low load group’. Behavior is plotted across

all 3 days for the single-task condition, and for day 3 alone in the dual-task condition.

(TIF)

S3 Fig. The effect of utilizing a softmax lapse rate. (A) The left-hand side shows an empirical

softmax function generated using data from the ‘high load group’ on day 1 and the single-task

condition. For each subject, we grouped the values generated from the winning hybrid model

(see S1 Table) into 10 bins, and calculated the mean probability with which the best action was

chosen in each bin, including both first and second-stage choices. The plot is averaged over all

22 subjects in the ‘high load group’. Vertical bars represent SEM. The right-hand side shows a

simulated softmax function with an inverse temperature (β) of 1, with and without including a

lapse rate (ε) set to 0.1. The lapse rate compresses the boundaries of the softmax such that the

probability of choosing a given action is forced to lie between the range of 1-2ε. (B)Here we

show slices through the likelihood surface of a single subject when the lapse rate (ε) is set to 0

(left-hand side), or fit as a free parameter (right-hand side), respectively. The red crosses repre-

sent the peak of the likelihood surface. On the right-hand side, the black arrow represents the

shift in the peak of the surface (and the equivalent shift in the best-fitting values of our model

parameters) when ε is fit as a free parameter compared to when it is fixed at 0.

(TIF)

S1 Table. Bayesian model comparison: Single days. Results of a Bayesian model comparison

that accounted for differences in model complexity. The hybrid model, which incorporated influ-

ences from both model-free and model-based control, fit subject data better than pure model-

free and model-based RL algorithms across both trial types (single-task versus dual-task) and

both groups (‘high load group’ day 1, ‘low load group’ day 3). Bold-face denotes the winning

model (lowest iBIC score) for each condition. α = learning rate; β = softmax inverse temperature;

ε = lapse rate; w = model-free/model-based weight. The eligibility trace, λ (not shown), was set

to 1 in all cases. w was set to 0 and 1 for pure model-free and pure model-based RL respectively.

(DOCX)

S2 Table. Bayesian model comparison: Multiple days. Results of a Bayesian model compari-

son that accounts for differences in model complexity. More complex model variants include

those that have separate parameters for first and second stage choices, an eligibility trace, and a

parameter for capturing shifts in model-free versus model-based control across days (σ). In

simpler models, RL parameters were fixed between first and second stage choices, the eligibility

trace was fixed at 1, and σ was set to 0. Bold-face denotes the winning model (lowest iBIC

score) for each condition. Parameters followed by a superscript of 1 or 2 correspond to first-

stage or second-stage choices respectively. α = learning rate; β = softmax inverse temperature;

ε = lapse rate; w = model-free/model-based weight; λ = eligibility trace; σ = slope governing a

shift in model-free/model-based weight (w) across days.

(DOCX)
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S3 Table. Inferred group-level parameters. Best-fitting parameter estimates shown separately

for each group and condition (single-task versus dual-task), using data concatenated across all

3 days of training. Values represent mean parameter fits across all subjects. � represents fixed

parameter values. Parameters followed by a superscript of 1 or 2 correspond to first-stage or

second-stage choices respectively. In simpler models, λ was fixed at 1 and σ was set to 0. α =

learning rate; β = softmax inverse temperature; ε = lapse rate; w = model-free/model-based

weight; λ = eligibility trace; σ = slope governing a shift in model-free/model-based weight (w)

across days.

(DOCX)

S4 Table. Results of a logistic regression across days. Table shows the group-level output of a

logistic regression on first-stage switch-stay behavior, separately for single-task (‘high load

group’ and ‘low load group’) and dual-task trials, from data concatenated across all 3 training

sessions. We note that ‘reward x day’ was orthogonalized with respect to reward, and in turn

‘reward x transition x day’ was orthogonalized with respect to ‘reward x transition’. These

regressors thus account for variance unexplained by the simpler main effect or 2-way interac-

tion respectively (see Materials & Methods). Bold-face denotes p< 0.05 uncorrected for multi-

ple comparisons. rew = reward; trans = transition.

(DOCX)

S1 Text. Supporting Information.

(DOCX)
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