
Model-Based Reasoning Methods 
within an Ambient Intelligent Agent Model 

Tibor Bosse, Fiemke Both, Charlotte Gerritsen, Mark Hoogendoorn, and Jan Treur 

Vrije Universiteit Amsterdam, Department of Artificial Intelligence 
De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands 

{ tbosse, fboth, cg, mhoogen, treur} @few.vu.nl 
http://www.few.vu.nl/~{ tbosse, fboth, cg, mhoogen, treur}  

Abstract. Ambient agents react on humans on the basis of their information 
obtained by sensoring and their knowledge about human functioning. 
Appropriate types of reactions depend on in how far an ambient agent 
understands the human. On the one hand, such an understanding requires that 
the agent has knowledge to a certain depth about the human’s physiological and 
mental processes in the form of an explicitly represented model of the causal 
and dynamic relations describing these processes. On the other hand, given 
such a model representation, the agent needs reasoning methods to derive 
conclusions from the model and the information available by sensoring. This 
paper presents a number of such model-based reasoning methods. They have 
been formally specified in an executable temporal format, which allows for 
simulation of reasoning traces and automated verification in a dedicated 
software environment. A number of such simulation experiments and their 
formal analysis are described. 

1   Introduction 

Recent developments within Ambient Intelligence provide technological possibilities 
to contribute to personal care; cf. [1, 2, 18]. Such applications can be based on 
possibilities to acquire sensor information about humans and their functioning, but 
more substantial applications depend on the availability of adequate knowledge for 
analysis of information about human functioning. If knowledge about human 
functioning is explicitly represented in the form of computational models in ambient 
agents, these agents can show more understanding, and (re)act accordingly by 
undertaking actions in a knowledgeable manner that improve the human’s wellbeing 
and performance. In recent years, human-directed scientific areas such as cognitive 
science, psychology, neuroscience and biomedical sciences have made substantial 
progress in providing an increased insight in the various physical and mental aspects 
involved in human functioning. Although much work still remains to be done, 
dynamic models have been developed and formalised for a variety of such aspects and 
the way in which humans (try to) manage or regulate them. From a biomedical angle, 
examples of such aspects are (management of) heart functioning, diabetes, eating 
regulation disorders, and HIV-infection; e.g., [5, 15]. From a psychological and social 



angle, examples are emotion regulation, attention regulation, addiction management, 
trust management, stress management, and criminal behaviour management; e.g., [6, 
11, 16]. Such models can be the basis for dedicated model-based reasoning methods 
that allow an agent to derive relevant conclusions from these models and available 
sensor information. 

This paper addresses the design of ambient agents that have knowledge about 
human behaviours and states over time in the form of explicitly represented models of 
the causal and dynamical relations involved. First it is shown how such models can be 
formally represented in a logical format that also integrates numerical aspects; cf. [9].  
Next a number of logical reasoning methods are presented that are based on such 
models. These reasoning methods are represented in a temporal logical format 
according to the approach put forward in [14]. A number of simulation experiments to 
obtain reasoning traces are described. These traces have been formally analysed by a 
dedicated verification tool. The types of reasoning methods addressed cover a variety 
of phenomena such as causal and numerical simulation, qualitative reasoning and 
simulation, abductive reasoning [17], and explanation generation. The reasoning 
methods provide a conceptual and logical foundation for these phenomena. Moreover, 
they provide a solid basis for conceptual and detailed design of model-based ambient 
agents that need such capabilities. 

Section 2 describes the formal modelling approach that is used throughout this 
paper. Next, in Section 3 and 4 the reasoning methods themselves are presented. 
Section 3 addresses uncontrolled methods for belief generation, and Section 4 
addresses controlled methods for belief generation. Section 5 illustrates how these 
reasoning methods can be used, by performing simulation experiments in two 
example case studies. Section 6 provides a number of basic properties that may hold 
for model-based reasoning methods within ambient agents. Section 7 addresses 
verification of basic properties as introduced in Section 3 against simulation traces, 
and interlevel relations between properties at different aggregation levels. Section 8 
concludes the paper with a discussion. 

2   Modelling Approach 

This section introduces the formal modelling approach that is used throughout this 
paper. Section 2.1 briefly describes the Temporal Trace Language (TTL) for 
specification of dynamic properties (and its executable sublanguage LEADSTO), and 
Section 2.2 briefly explains how reasoning methods are formalised in this paper.  

2.1  The Temporal Trace Language TTL 

In order to execute and verify human-like ambience models, the expressive language 
TTL is used [7]. This predicate logical language supports formal specification and 
analysis of dynamic properties, covering both qualitative and quantitative aspects. 
TTL is built on atoms referring to states, time points and traces. A state of a process 
for (state) ontology Ont is an assignment of truth values to the set of ground atoms in 



 

the ontology. The set of all possible states for ontology Ont is denoted by STATES(Ont). 
To describe sequences of states, a fixed time frame T is assumed which is linearly 
ordered. A trace γ over state ontology Ont and time frame T is a mapping γ : T → 

STATES(Ont), i.e., a sequence of states γt (t ∈ T) in  STATES(Ont). The set of dynamic 
properties DYNPROP(Ont) is the set of temporal statements that can be formulated with 
respect to traces based on the state ontology Ont in the following manner. Given a 
trace γ over state ontology Ont, the state in γ at time point t is denoted by state(γ, t). 
These states can be related to state properties via the formally defined satisfaction 
relation |=, comparable to the Holds-predicate in the Situation Calculus: state(γ, t) |= p 
denotes that state property p holds in trace γ at time t. Based on these statements, 
dynamic properties can be formulated in a sorted first-order predicate logic, using 
quantifiers over time and traces and the usual first-order logical connectives such as ¬, 
∧, ∨, �, ∀, ∃. A special software environment has been developed for TTL, featuring 
both a Property Editor for building and editing TTL properties and a Checking Tool 
that enables formal verification of such properties against a set of (simulated or 
empirical) traces. 
Executable Format  To specify simulation models and to execute these models, the 
language LEADSTO [8], an executable sublanguage of TTL, is used. The basic 
building blocks of this language are causal relations of the format α →→e, f, g, h β, which 
means: 

 

        if  state property α holds for a certain time interval with duration g, 
        then  after some delay (between e and f) state property β will hold 

for a certain time interval of length h. 

where α and β are state properties of the form ‘conjunction of literals’  (where a literal 
is an atom or the negation of an atom), and e, f, g, h non-negative real numbers.  

2.2  Temporal Specification of Reasoning Methods 

In this paper a dynamic perspective on reasoning is taken, following, e.g.. [14]. In 
practical reasoning situations usually different lines of reasoning can be generated, 
each leading to a distinct set of conclusions. In logic semantics is usually expressed in 
terms of models that represent descriptions of conclusions about the world and in 
terms of entailment relations based on a specific class of this type of models. In the 
(sound) classical case each line (trace) of reasoning leads to a set of conclusions that 
are true in all of these models: each reasoning trace fits to each model. However, for 
non-classical reasoning methods the picture is different. For example, in default 
reasoning or abductive reasoning methods a variety of mutually contradictory 
conclusion sets may be possible. It depends on the chosen line of reasoning which one 
of these sets fits. 

The general idea underlying the approach followed here, and inspired by [14] is 
that a particular reasoning trace can be formalised by a sequence of information 
states  M0, M1,  ...... . Here any  Mt  is a description of the (partial) information that has 
been derived up to time point  t. From a dynamic perspective, an inference step, 
performed in time duration D is viewed as a transition  Mt  →  Mt+D  of a current 
information state  Mt  to a next information state  Mt+D. Such a transition is usually 
described by application of a deduction rule or proof rule, which in the dynamic 
perspective on reasoning gets a temporal aspect. A particular reasoning line is 



formalised by a sequence  (Mt) t∈T of subsequent information states labelled by 
elements of a flow of time T, which may be discrete, based on natural numbers, or 
continuous, based on real numbers.  

An information state can be formalised by a set of statements, or as a three-valued 
(false, true, undefined) truth assignment to ground atoms, i.e., a partial model. In the 
latter case, which is followed here (as in [14]), a sequence of such information states 
or reasoning trace can be interpreted as a partial temporal model. A transition relating 
a next information state to a current one can be formalised by temporal formulae the 
partial temporal model has to satisfy. For example, a modus ponens deduction rule 
can be specified in temporal format as: 

derived(I) ∧ derived(implies(I, J))  →→  derived(J) 

So, inference rules are translated into temporal rules thus obtaining a temporal theory 
describing the reasoning behaviour. Each possible reasoning trace can be described 
by a linear time model of this theory (in temporal partial logic).  

In this paper, this dynamic perspective on reasoning is applied in combination 
with facts that are labelled with temporal information, and models based on causal or 
temporal relationships that relate such facts. To express the information involved in 
an agent’s internal reasoning processes, the ontology shown in Table 1 is used. 

 
 

Predicate Description 
belief(I:INFO_EL) information I is believed 
world_fact(I:INFO_EL) I is a world fact 
has_effect(A:ACTION, I:INFO_EL) action A has effect I 
Function to INFO_EL Description 
leads_to_after(I:INFO_EL, J:INFO_EL, D:REAL) state property I leads to state property J after duration D  
at(I:INFO_EL, T:TIME) state property I holds at time T  

 

Table 1.  Generic Ontology used within the Ambient Agent Model 
 
As an example belief(leads_to_after(I:INFO_EL, J:INFO_EL, D:REAL))  is an expression based on 
this ontology which represents that the agent has the knowledge that state property I 
leads to state property J with a certain time delay specified by D. An example of a 
kind of dynamic modus ponens rule can be specified as 

belief(at(I, T)) ∧ belief(leads_to_after(I, J, D))  →→  belief(at(J, T+D)) 

This temporal rule states that if it is believed (by the agent) that I holds at T and that I 
leads to J after duration D, then it will be believed that J holds at T + D. This 
representation format will be used to formalise this and other types of model-based 
reasoning methods, as will be shown more extensively in Sections 3 and 4.  

3  Model-Based Reasoning Methods for Belief Generation 

Two types of reasoning methods to generate beliefs can be distinguished: 
- Forward reasoning methods for belief generation 



 

 These are reasoning methods that follow the direction of time and causality, 
deriving from beliefs about properties at certain time points, new beliefs about 
properties at later time points. 

- Backward reasoning methods for belief generation 
 These are reasoning methods that follow the opposite direction of time and 

causality, deriving from beliefs about properties at certain time points, new beliefs 
about properties at earlier time points. 

In Section 3.1 the forward reasoning methods for belief generation are discussed, in 
Section 3.2 the backward reasoning methods. 

3.1  Forward reasoning methods for belief generation 

Forward reasoning methods are often used to make predictions on future states, or on 
making an estimation of the current state based on information acquired in the past. 
The first reasoning method is one that occurs in the literature in many variants, in 
different contexts and under different names, varying from, for example, 
computational (numerical) simulation based on difference or differential equations, 
qualitative simulation, causal reasoning, execution of executable temporal logic 
formulae, and forward chaining in rule-based reasoning, to generation of traces by 
transition systems and finite automata. The basic specification of this reasoning 
method can be expressed as follows. 
 

Belief Generation based on Positive Forward Simulation 
If it is believed that I holds at T and that I leads to J after duration D, then it is believed that J holds after D. 
∀I,J:INFO_EL ∀D:REAL ∀T:TIME 
belief(at(I, T)) ∧ belief(leads_to_after(I, J, D))  →→   belief(at(J, T+D)) 
If it is believed that I1 holds at T and that I2 holds at T, then it is believed that I1 and I2 holds at T. 
belief(at(X1,T))  ∧  belief(at(X2, T)) →→  belief(at(and(X1, X2), T))  
 

Note that, if the initial beliefs are assumed correct, belief correctness holds for leads 
to beliefs, and positive forward correctness of leads to relationships holds, then all 
beliefs generated in this way are correct. A second way of belief generation by 
forward simulation addresses the propagation of negations. This is expressed as 
follows. 
 

Belief Generation based on Single Source Negative Forward Simulation 
If it is believed that I does not hold at T and that I leads to J after duration D, then it is believed that J does 
not hold after D. 
∀I,J:INFO_EL ∀D:REAL ∀T:TIME 
belief(at(not(I), T)) ∧ belief(leads_to_after(I, J, D))  →→   belief(at(not(J), T+D))) 
If it is believed that I1 (resp. I2) does not hold at T, then it is believed that I1 and I2 does not hold at T. 
belief((at(not(I1),T)))  →→  belief(at(not(and(I1, I2)), T)) 
belief(at(not(I2),T))  →→  belief(at(not(and(I1, I2)), T))  
 

Note that this only provides correct beliefs when the initial beliefs are assumed 
correct, belief correctness holds for leads to beliefs, and single source negative 
forward correctness holds for the leads to relationships. 
 

Belief Generation based on Multiple Source Negative Forward Simulation 
If for any J and time T, for every I that is believed to lead to J after some duration D, it is believed that I 
does not hold before duration D, then it is believed that J does not hold. 
∀I,J:INFO_EL ∀D:REAL ∀T:TIME 

∀I, D [ belief(leads_to_after(I, J, D))  → belief(at(not(I), t-D) ]  →→   belief(at(not(J), T)) 



If it is believed that I1 (resp. I2) does not hold at T, then it is believed that I1 and I2 does not hold at T. 
belief(at(not(I1),T))  →→  belief(at(not(and(I1, I2)), T)) 
belief(at(not(I2),T))  →→  belief(at(not(and(I1, I2)), T)) 
 

This provides correct beliefs when the initial beliefs are assumed correct, belief 
correctness holds for leads to beliefs, and multiple source negative forward 
correctness holds for the leads to relationships. 

3.2  Backward reasoning methods for belief generation 

The basic specification of a backward reasoning method is specified as follows. 
 

Belief Generation based on Modus Tollens Inverse Simulation 
If it is believed that J does not hold at T and that I leads to J after duration D, then it is believed that I does 
not hold before duration D. 
∀I,J:INFO_EL ∀D:REAL ∀T:TIME 
belief(at(not(J), T)) ∧ belief(leads_to_after(I, J, D))  →→   belief(at(not(I), T-D)) 
If it is believed that not I1 and I2 holds at T and that I2 (resp. I1) holds at T, then it is believed that I1 (resp. 
I2) does not hold at T. 
belief(at(not(and(I1, I2), T))  ∧  belief(at(I2, T)) →→  belief(at(not(I1), T))  
belief(at(not(and(I1, I2), T))  ∧  belief(at(I1, T)) →→  belief(at(not(I2), T))  
 

Belief Generation based on  Simple Abduction 
If it is believed that J holds at T and that I leads to J after duration D, then it is believed that I holds before 
duration D. 
∀I,J:INFO_EL ∀D:REAL ∀T:TIME 
belief(at(J, T)) ∧ belief(leads_to_after(I, J, D))  →→   belief(at(I, T-D)) 
If it is believed that I1 and I2 holds at T, then it is believed that I1 holds at T and that I2 holds at T. 
belief(at(and(I1, I2), T)) →→  belief(at(I1,T))  ∧  belief(at(I2, T))  
 

As another option, an abductive causal reasoning method can be internally 
represented in a simplified form as follows. 
 

Belief Generation based on Multiple Effect Abduction 
If for any I and time T, for every J for which it is believed that I leads to J after some duration D, it is 
believed that J holds after duration D, then it is believed that I holds at T. 
∀I:INFO_EL ∀T:TIME 
∀J [belief(leads_to_after(I, J, D))  → belief(at(J, T+D)) ] →→   belief(at(I, T)) 
If it is believed that I1 and I2 holds at T, then it is believed that I1 holds at T and that I2 holds at T. 
belief(at(and(I1, I2), T)) →→  belief(at(I1,T))  ∧  belief(at(I2, T))  
 

Belief Generation based on  Context-Supported Abduction 
If it is believed that J holds at T and that I2 holds at T and that I1 and I2 leads to J after duration D, then it 
is believed that I1 holds before duration D. 
∀I,J:INFO_EL ∀D:REAL ∀T:TIME 
belief(at(J, T)) ∧  belief(at(I2, T-D)) ∧ belief(leads_to_after(and(I1, I2), J, D))  →→   belief(at(I1, T-D)) 
If it is believed that I1 and I2 holds at T, then it is believed that I1 holds at T and that I2 holds at T. 
belief(at(and(I1, I2), T)) →→  belief(at(I1,T))  ∧  belief(at(I2, T))  

4  Controlling Belief Generation 

An uncontrolled belief generation approach may easily lead to a combinatorial 
explosion of generated beliefs, for example, based on all conjunctions that can be 
formed. Therefore, controlled approaches where selection is done in some stage of the 
process are usually more effective. Often more specific knowledge is available based 



 

on which belief generation can leave out of consideration some (or most) of the 
possible beliefs that can be generated. To incorporate such selections, the following 
three approaches are possible: selection afterwards overall, selection afterwards step 
by step, selection before. Each of these options is discussed in more detail. 
Furthermore, it is discussed what selection criteria can be used to make such a 
selection. 

Belief Generation Selection 

Selection Afterwards Overall 
In this approach first (candidate) beliefs are generated in an uncontrolled manner, and 
after that a selection process is performed based on some selection criterion. Two 
examples, one for a forward belief generation form and one for a backward belief 
generation form are as follows. 
 

Controlled Belief Generation based on Positive Forward Simulation by Selection Afterwards Overall 
If it is believed that I holds at T and that I leads to J after duration D, then it is believed that J holds after D. 
∀I,J:INFO_EL ∀D:REAL ∀T:TIME 
belief(at(I, T)) ∧ belief(leads_to_after(I, J, D))  →→   belief(at(J, T+D)) 
If it is believed that I1 holds at T and that I2 holds at T, then it is believed that I1 and I2 holds at T. 
belief(at(I1,T))  ∧  belief(at(I2, T)) →→  belief(at(and(I1, I2), T))  
If  I is a belief and selection criterion s is fulfilled,  then I is a selected belief. 
belief(at(I, T)) ∧  s   →→  selected_belief(at(I, T)) 
 

Controlled Belief Generation based on Multiple Effect Abduction by Selection Afterwards Overall 
If for any I and time T, for every J for which it is believed that I leads to J after some duration D, it is 
believed that J holds after duration D, then it is believed that I holds at T. 
∀I:INFO_EL ∀T:TIME 
∀J [belief(leads_to_after(I, J, D))  → belief(at(J, T+D)) ] →→   belief(at(I, T)) 
If it is believed that I1 and I2 holds at T, then it is believed that I1 holds at T and that I2 holds at T. 
belief(at(and(I1, I2), T)) →→  belief(at(I1,T))  ∧  belief(at(I2, T))  
If  I is a belief and selection criterion s is fulfilled,  then I is a selected belief. 
belief(at(I, T)) ∧  s   →→  selected_belief(at(I, T)) 
 

This approach to control can only be applied when the number of beliefs that is 
generated in an uncontrolled manner is small. Otherwise more local approaches are 
better candidates to consider. 
 

Selection Afterwards Step by Step 
The step by step variant of selection afterwards performs the selection immediately 
after a belief has been generated. By such a local selection it is achieved that beliefs 
that are not selected can not be used in further belief generation processes, thus 
limiting these processes. The approach uses the temporal selection rule given above 
together with a slightly adapted form of specification to generate beliefs. Again two 
examples, one for a forward belief generation form and one for a backward belief 
generation form are as follows. 
 

Controlled Bel. Generation based on Positive Forward Simulation by Selection Aft. Step by Step 
If it is believed that I holds at T and that I leads to J after duration D, then it is believed that J holds after D. 
∀I,J:INFO_EL ∀D:REAL ∀T:TIME 
selected_belief(at(I, T)) ∧ belief(leads_to_after(I, J, D))  →→   belief(at(J, T+D)) 
If it is believed that I1 holds at T and that I2 holds at T, then it is believed that I1 and I2 holds at T. 
selected_belief(at(I1,T))  ∧  selected_belief(at(I2, T)) →→  belief(at(and(I1, I2), T))  
If  I is a belief and selection criterion s is fulfilled,  then I is a selected belief. 
belief(at(I, T)) ∧  s   →→  selected_belief(at(I, T)) 
 



Controlled Belief Generation based on Multiple Effect Abduction by Selection Aft. Step by Step 
If for any I and time T, for every J for which it is believed that I leads to J after some duration D, it is 
believed that J holds after duration D, then it is believed that I holds at T. 
∀I:INFO_EL ∀T:TIME 
∀J [belief(leads_to_after(I, J, D))  → selected_belief(at(J, T+D)) ] →→   belief(at(I, T)) 
If it is believed that I1 and I2 holds at T, then it is believed that I1 holds at T and that I2 holds at T. 
selected_belief(at(and(I1, I2), T)) →→  belief(at(I1,T))  ∧  belief(at(I2, T))  
If  I is a belief and selection criterion s is fulfilled,  then I is a selected belief. 
belief(at(I, T)) ∧  s   →→  selected_belief(at(I, T)) 
 

This selection approach may be much more efficient than the approach based on 
selection afterwards overall.  
 

Selection Before 
The approach of selection afterwards step by step can be slightly modified by not 
selecting the belief just after its generation, but just before. This allows fo 
r a still more economic process of focus generation. Again two examples, one for a 
forward belief generation form and one for a backward belief generation form are as 
follows. 
 

Controlled Belief Generation based on Positive Forward Simulation by Selection Before 
If it the belief that I holds at T was selected and it is believed that I leads to J after duration D, and selection 
criterion s1 holds, then the belief that J holds after D is selected. 
∀I,J:INFO_EL ∀D:REAL ∀T:TIME 
selected_belief(at(I, T)) ∧ belief(leads_to_after(I, J, D)) ∧ s1  →→   selected_belief(at(J, T+D)) 
If the beliefs that I1 holds at T and that I2 holds at T were selected, and selection criterion s2 holds, then the 
conjunction of I1 and I2 at T is a selected belief. 
selected_belief(at(I1,T))  ∧  selected_belief(at(I2, T)) ∧ s2 →→  selected_belief(at(and(I1, I2), T))  
 

Controlled Belief Generation based on Multiple Effect Abduction by Selection Before 
If for any I and time T, for every J for which it is believed that I leads to J after some duration D, the belief 
that J holds after duration D was selected, and selection criterion s1 holds, then it the belief that I holds at T 
is a selected belief. 
∀I:INFO_EL ∀T:TIME 
∀J [belief(leads_to_after(I, J, D))  → selected_belief(at(J, T+D)) ] ∧ s1 →→   selected_belief(at(I, T)) 
If the beliefs that I1 and I2 holds at T were selected, and selection criterion s2 holds then the belief that I1 
holds at T is a selected belief. 
selected_belief(at(and(I1, I2), T)) ∧ s2 →→  selected_belief(at(I1,T))   

If the beliefs that I1 and I2 holds at T were selected, and selection criterion s2 holds then the belief that I2 
holds at T is a selected belief  

selected_belief(at(and(I1, I2), T)) ∧ s3 →→  selected_belief(at(I2, T))  

4.2  Selection Criteria in Reasoning Methods for Belief Generation 

Selection criteria needed for controlled belief generation can be specified in different 
manners. A simple manner is by assuming that the agent has knowledge which beliefs 
are relevant, expressed by a predicate in_focus. If this assumption is made, then any 
selection criterion s can be expressed as  in_focus(I), where I is the property for which a 
belief is considered. The general idea is that if a belief can be generated, it is selected 
(only) when it is in focus. For example, for the two methods for selection afterwards, 
the temporal rule will be expressed as: 

belief(at(I, T)) ∧  in_focus(I)    →→  selected_belief(at(I, T)) 

For the method based on selection before, based on focus information the temporal 
rules will be expressed for the forward example by: 
 



 

∀I,J:INFO_EL ∀D:REAL ∀T:TIME 
selected_belief(at(I, T)) ∧ belief(leads_to_after(I, J, D))  ∧  in_focus(J)   →→   selected_belief(at(J, T+D)) 
selected_belief(at(I1,T)) ∧ selected_belief(at(I2, T)) ∧ in_focus(and(I1, I2)) →→ selected_belief(at(and(I1, I2), T))  
 

For the backward example of the method based on selection before, the temporal rules 
will be expressed by: 
 

∀I:INFO_EL ∀T:TIME 
∀J [belief(leads_to_after(I, J, D))  → selected_belief(at(J, T+D)) ] ∧  in_focus(I)  →→   selected_belief(at(I, T)) 
selected_belief(at(and(I1, I2), T)) ∧  in_focus(I1)  →→  selected_belief(at(I1,T))   

selected_belief(at(and(I1, I2), T)) ∧  in_focus(I2)  →→  selected_belief(at(I2, T))  
 

It is beyond the scope of this paper whether such foci may be static or dynamic and 
how they can be determined by an agent. For cases that such general focus 
information is not available, the selection criteria can be specified in different 
manners. 

5  Simulation 

 

This section illustrates for a number of the reasoning methods provided in the 
previous sections how they can be used within ambient agents that perform model-
based reasoning. This is done by means of two example case studies, each involving 
an ambient system that uses a causal dynamic model to represent the behaviour of a 
human, and uses the reasoning methods to determine the state of the human in a 
particular situation. Section 5.1 focuses on a system that monitors the state of car 
drivers in order to avoid unsafe driving. Section 5.2 addresses an ergonomic system 
that monitors the stress level of office employees. Both case studies have been 
formalised and, using the LEADSTO simulation software [8], have been used to 
generate a number of simulation traces. In this section, for each model one example 
simulation trace is shown. More simulation traces can be found in the Appendix on1. 

5.1  Ambient Driver Model 

The example model used as an illustration in this section is inspired by a system 
designed by Toyota which monitors drivers in order to avoid unsafe driving. The 
system can basically measure drug level in the sweat of a driver (e.g., via a sensor at 
the steering wheel, or at an ankle belt), and monitor steering operations and the gaze 
of the driver. Note that the system is still in the experimental phase. The model used 
in this paper describes how a high drug intake leads to a high drug level in the blood 
and this leads to physiological and behavioural consequences: (1) physiological: a 
high drug level (or a substance relating to the drug) in the sweat, (2) behavioural: 
abnormal steering operation and an unfocused gaze. The dynamic model is 
represented within the ambient agent by the following beliefs (where D is an arbitrary 
time delay): 
 

   belief(leads_to_after(drug_intake_high, drug_in_blood_high, D) 
   belief(leads_to_after(drug_in_blood_high, drug_in_sweat_high, D) 

                                                           
1 http://www.cs.vu.nl/~mhoogen/reasoning/appendix-rm-ami.pdf 



   belief(leads_to_after(drug_in_blood_high, abnormal_steering_operation, D) 
   belief(leads_to_after(drug_in_blood_high, unfocused_gaze, D) 
 

Figure 1 shows this dynamical model in a graphical form. 

 

Fig. 1. Graphical representation of the dynamical model 

By applying the different reasoning methods specified in Section 3 and 4, the state of 
the driver and the expected consequences can be derived. In the simulations below the 
controlled belief generation method has been used based on selection before beliefs 
are generated; every temporal rule requires that certain selection criteria are met and 
that the belief to be derived is in focus. In the following simulations, for the sake of 
simplicity all information is desired, therefore all derivable beliefs are in focus. The 
selection criteria involve knowledge about the number of effects and sources that are 
required to draw conclusions. The knowledge used in this model is the following. 
 

sufficient_evidence_for(and(abnormal_steering_operation, unfocused_gaze), drug_in_blood_high)  
sufficient_evidence_for(drug_in_sweat_high, drug_in_blood_high) 
sufficient_evidence_for(drug_in_blood_high, drug_intake_high) 
in_focus(drug_intake_high); in_focus(drug_in_blood_high); in_focus(drug_in_sweat_high); 
in_focus(abnormal_steering_operation); in_focus(unfocused_gaze) 

 

Here, the predicate sufficient_evidence_for(P, Q) represents the belief that expression P is 
sufficient evidence for the system to derive Q. An example simulation trace is shown 
in Figure 2. In the Figure, the left side shows the atoms that occur during the 
simulation, whereas the right side represents a time line where a grey box indicates an 
atom is true at that time point, and a light box indicates false. In this trace, it is known 
(by observation) that the driver is steering abnormally and that the driver’s gaze is 
unfocused. Since these two beliefs are sufficient evidence for a high drug level in the 
blood, using the reasoning method Belief Generation based on Multiple Effect 
Abduction, at(drug_in_blood_high, 1) becomes a selected belief at time point 3. Given this 
derived belief, the belief can be deduced that the drug level in the sweat of the driver 
is high, using Positive Forward Simulation. At the same time (time point 4), the 
reasoning method Simple Abduction determines the belief that the drug intake of the 
driver must have been high. 

 
Fig. 2. Simulation Trace: abnormal steering and unfocused gaze detected 
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5.2  Ambient Stress Model 

The example model used in this section is inspired by ergonomic systems that monitor 
the activities of office employees in their workspace, e.g., in order to avoid RSI (for 
example, WorkPace, see http://workpace.com/). Such systems may measure various 
types of information. In this section, three types of measurable (sensor) information 
are taken into account, namely actions (e.g., mouse clicks or key strokes), biological 
aspects (e.g., heart beat, temperature, or skin conductivity), and activities (e.g., 
incoming e-mails, telephone calls, or electronic agenda items). The model considered 
here describes how (the observation of) a certain activity can lead to a high level of 
stress and this leads to biological/physiological and behavioural consequences: (1) 
biological: called here ‘high biological aspect’  (e.g., increased heart rate) (2) 
behavioural: changed action (e.g., high number of keystrokes per second). The 
dynamical model is represented within the ambient agent by the following beliefs: 
 

belief(leads_to_after(activity, observes(activity), D)) 
belief(leads_to_after(observes(activity), preparedness_to_act, D)) 
belief(leads_to_after(observes(activity), stress(high), D)) 
belief(leads_to_after(preparedness_to_act, stress(high), D)) 
belief(leads_to_after(stress(high), preparedness_to_act, D)) 
belief(leads_to_after(preparedness_to_act, action, D)) 
belief(leads_to_after(stress(high), biological_aspect, D)) 

 

Figure 3 shows this dynamical model in a graphical form. 

 
Fig. 3. Graphical representation of the dynamical model 

 
Similar to Section 5.1, by applying the different reasoning methods specified earlier, 
the expected consequences for the state of the human and can be derived. Below, a 
number of simulation traces are shown, each with different settings for the selection 
criteria: 
 

sufficient_evidence_for(biological_aspect(high), stress(high)) 
sufficient_evidence_for(observes(activity), activity) 
sufficient_evidence_for(preparedness_to_act, stress(high)) 
sufficient_evidence_for(preparedness_to_act, observes(activity)) 
sufficient_evidence_for(stress(high), preparedness_to_act) 
sufficient_evidence_for(stress(high), observes(activity)) 
sufficient_evidence_for(action, preparedness_to_act) 

 

in_focus(action); in_focus(biological_aspect(high); in_focus(stress(high)); 
in_focus(observes(activity)); in_focus(activity) 

 

In other words, by selecting different combinations of these criteria, different 
reasoning steps will be performed. Notice that the model considered here contains a 
cycle (see Figure 3). Therefore it is possible to derive  an infinite number of beliefs 
for different time points. For example, if at(preparedness_to_act, 8) is believed, then by 
simple Positive Forward Simulation also at(stress(high), 9) would be derived, after which 

activity observes(activity) stress(high) 

preparedness_to_act 

action 

biological_aspect(high) 



at(preparedness_to_act, 10) would be derived, and so on. However, it is not conceptually 
realistic, nor desirable that an agent attempts to derive beliefs about time points very 
far in the future. Therefore, by means of the in_focus predicate, an indication of a focus 
time interval has been specified, for example by statements like 
in_focus(at(preparedness_to_act, 8)). 

An example simulation trace is shown in Figure 4. This trace uses as foci all 
possible information between time point 0 and 10. These foci have been derived using 
the following rule: 

in_focus(I) ∧  0 ≤ T ≤ 10     →→  in_focus(at(I, T)) 

The only initially available knowledge that is present in this trace is at(action, 5). As 
shown in the figure, both Positive Forward Simulation and Simple Abduction are 
performed several times, eventually leading to all possible derivable information 
between time point 0 and 10. 

 

Fig. 4. Simulation Trace: Employee performs active behaviour (to be continued on next page) 



 

 

Fig. 4. Simulation Trace: Employee performs active behaviour  
(continued from previous page) 

6  Basic Properties of World Facts, Beliefs and Leads To Relations 

This section provides a number of basic properties that may hold for model-based 
reasoning methods within ambient agents. Section 6.1 addresses properties of world 
facts and beliefs; Section 6.2 addresses properties of LEADSTO relations. 

6.1  Properties of world facts and beliefs  

The following basic assumptions concerning two-valued world facts may hold: 
 

Consistency of world facts  In any state, it never happens that a world fact and its negation both hold. 
not [ state(γ, t) |= world_fact(I)  &  state(γ, t) |= world_fact(not(I)) ] 
Completeness of world facts  In any state, for any world fact it holds or its negation holds. 
state(γ, t) |= world_fact(I)  |  state(γ, t) |= world_fact(not(I))   
Consistency and completeness of world facts  In any state, for any world fact it holds if and only if its 
negation does not hold 
state(γ, t) |= world_fact(I)  ⇔  not  state(γ, t) |= world_fact(not(I))   
Belief consistency  In any state, it never happens that a fact and its negation are both believed. 
not [ state(γ, t) |= belief(I)  &  state(γ, t) |= belief(not(I)) ] 
Belief correctness  In any state, when a fact is believed it holds as a world fact. 
state(γ, t) |= belief(at(I, t'))  �  state(γ, t') |= world_fact(I) 
Belief persistence  In any state, if a fact is believed, it will be believed at any later time point, unless its 
negation is believed at that time point. 
∀t, t'≥t [ state(γ, t) |= belief(I)  & not state(γ, t') |= belief(not(I)) �  state(γ, t') |= belief(I) ] 
∀t, t'≥t  [ state(γ, t) |= belief(not(I))  & not state(γ, t') |= belief(I) �  state(γ, t') |= belief(not(I)) ] 
Belief completeness  For any state, any fact is believed or its negation is believed. 
state(γ, t) |= belief(I)  |  state(γ, t) |= belief(not(I)) 
Belief coverage  In any state, any true world fact is believed. 
state(γ, t) |= world_fact(I) �  state(γ, t) |= belief(I)   
 
In the general form, where a universal quantifier is assumed over I, belief 
completeness and belief coverage will usually not hold. However, it may hold for a 
specific class of information I. For example, sometimes it is assumed that the agent 
has complete beliefs about leads to relationships. 



6.2  Properties of leads to relationships  

The leads_to_after relationship expresses the conceptual core of a wide class of dynamic 
modelling concepts that occur in the literature in different contexts and under 
different names; see also [10]. Examples of such dynamical modelling concepts are, 
computational numerical modelling by difference or differential equations, qualitative 
dynamic modelling, causal relationships, temporal logic specifications, rule-based 
representations, Petri net representations, transition systems and finite automata. 
Often, either explicitly or implicitly the general assumption is made that when facts 
are true in the world, the facts to which they lead are also true in the world. This 
property is expressed as follows, also formulated by contraposition into a logically 
equivalent one: 
 

Positive forward correctness If a world fact I holds in a state and it leads to another world fact J after 
duration D, then in the state after duration D this J will hold 
state(γ, t) |= world_fact(I)  &  state(γ, t) |= world_fact(leads_to_after(I, J, D))  �  state(γ, t+D) |= world_fact(J)  
Negative backward correctness If a world fact J does not hold in a state and another world fact I leads to 
J after duration D, then in the state before duration D this I will not hold 
state(γ, t) |= world_fact(not(J)) & state(γ, t) |= world_fact(leads_to_after(I, J, D))  � 
     state(γ, t-D) |= world_fact(not(I))   
 

Sometimes, also the more specific assumption is made that a world fact can be true 
only when a world fact preceding it via a leads to relation is true. This assumption can 
be seen as a temporal variant of a Closed World Assumption. 
 

Negative forward correctness (single source) If a world fact I doers not hold in a state and it leads to 
another world fact J after duration D, then in the state after duration D this J will not hold 
state(γ, t) |= world_fact(not(I)) & state(γ, t) |= world_fact(leads_to_after(I, J, D)) � 
     state(γ, t+D) |= world_fact(not(J))  
Positive backward correctness (single source) If a world fact J holds in a state and another world fact I 
leads to J after duration D, then in the state before duration D this I will hold 
state(γ, t) |= world_fact(J) &  state(γ, t) |= world_fact(leads_to_after(I, J, D))  �  state(γ, t-D) |= world_fact(I)   
 

The latter property can be formulated by contraposition into a logically equivalent 
property of the former one. These properties play a role in abductive reasoning 
methods, and automated explanation generation (in particular for why-explanations: 
answers on questions such as ‘Why does J hold?’). The latter two properties may not 
be fulfilled in cases that two (or multiple) non-equivalent world facts I1 and I2 exist 
that each lead to a world fact J. If I1 holds, and it leads to the truth of J, then it may 
well be the case that I2 never was true. A more complete property to cover such cases 
is the following. 
 

Negative forward correctness (multiple sources) If for a world fact J, for every world fact I which leads 
to J after a duration D it does not hold in the state before duration D, then in the state after duration D this J 
will not hold 
∀I, D [ state(γ, t-D) |= world_fact(leads_to_after(I, J, D))  � state(γ, t-D) |= world_fact(not(I)) ]  
     �  state(γ, t) |= world_fact(not(J))  
Positive backward correctness (multiple sources) If a world fact J holds in a state, then there exists a 
world fact I which leads to J after a duration D which holds in the state before duration D. 
state(γ, t) |= world_fact(J) 
     �  ∃I, D [ state(γ, t-D) |= world_fact(leads_to_after(I, J, D))  &  state(γ, t-D) |= world_fact(I) ] 
 

To obtain a logical foundation for a temporal variant of the Closed World Assumption 
in such situations in the context of executable temporal logic, in [13] the notion of 
temporal completion was introduced, as a temporal variant of Clark’s completion in 
logic programming. 



 

7   Formal Analysis of Dynamic Properties  

This section shows how it can be verified that the reasoning methods introduced in 
Section 3 and 4 (and simulation traces generated on the basis of these methods) 
satisfy certain basic properties as introduced in Section 6. This is done by establishing 
logical (inter-level) relationships between a global property (GP) of reasoning 
methods on the one hand, and the basic reasoning steps (or local properties, LP’s) on 
the other hand, in such a way that the combination of reasoning steps (logically) 
entails the global property. In order to establish such inter-level relationships, also 
certain intermediate properties (IP’s) are constructed, which can be used as 
intermediate steps in the proof. Here, the focus is on one particular property from 
Section 6, namely the Belief Correctness property. This global property for belief 
generation is expressed below in GP1 and states that all beliefs should be correct. This 
should hold for all reasoning intervals within the trace (i.e. starting at an observation 
interval, and the reasoning period thereafter without new observation input). Note that 
all variables γ that are not explicitly declared are assumed to be universally quantified. 
Moreover, E is assumed to be the duration of a reasoning step. 
 

GP1 (Belief Correctness) 
For all time points t1 and t2 later than t1 whereby at t1 a observations are observed, and between t1 and t2 no new 
observations are received, GP1(t1, t2) holds. 
GP1 

�
 

∀t1, t2 ≥ t1 
[state(γ, t1) |= observation_interval & 
 ¬state(γ, t2) |= observation_interval & 
 ∀t’ < t2 & t’ > t1 [state(γ, t2) |= ¬observation_interval] ] 
� GP1(t1, t2)  
 

The specification of the global property for an interval is expressed below. 
 

GP1(t1, t2) (Belief Correctness from t1 to t2) 
Everything that is believed to hold at T at time point t’ between t1 and t2, indeed holds at that time point T.  
GP1(t1, t2) 

�
 

∀I, T, t’ ≥ t1 & t’  ≤ t state(γ, t’) |= belief(at(I, T))  �  state(γ, T) |= world_fact(I) 
 

In order to prove that property GP1 indeed holds, a proof by means of induction is 
used. The basis step of this proof is specified in property LP1, whereby the beliefs 
during the observation interval need to be correct.  
 

LP1(t) (Belief Correctness Induction Basis) 
If time point t is part of the observation interval, then everything that at time point t is believed to hold at time point T, 
indeed holds at time point T.  
LP1(t) 

�
 

state(γ, t) |= observation_interval � 
 [ ∀I,T state(γ, t) |= belief(at(I, T))  �  state(γ, T) |= world_fact(I) ] 
 

Furthermore, the induction step includes that if the global property holds from a time 
point t to the same time point, then the property should also hold between t and t + E. 
 

IP1 (Belief Correctness Induction Step) 
For all time points t, if GP1(t, t) holds, then also GP1(t, t+E) holds.  
IP1 

�
 

∀t GP1(t, t)  �  GP1(t, t+E) 
 

In order to prove that this induction step indeed holds, the following three properties 
are specified: IP2, LP2, and LP3. First of all, the grounding of the belief generation 
(IP2) which states that for all beliefs that have not been generated since the last 



observation interval, they should either have been derived by means of forward 
reasoning, or by means of abduction. 
 

IP2 (Belief Generation Grounding) 
For all time points t+E, if information element J is believed to hold at time point T and J was not believed during the last 
observation interval, then either this was derived by applying a forward leadsto rule, or by means of abduction. 
IP2 �  
∀t,t0,J,T 
[ state(γ, t) |= belief(at(J, T)) & last_observation_interval(t, t0) & ¬state(γ, t0) |= belief(at(J, T)) 
  �  ∃I,t2, D 
[ state(γ, t2) |= belief(at(I, T-D))  &  state(γ, t2) |= belief(leads_to_after(I, J, D)) | 
  state(γ, t2) |= belief(at(I, T+D))  &  state(γ, t2) |= belief(leads_to_after(J, I, D)) ] 
 

Property LP2 expresses the correctness of the model believed, that should correspond 
with the model present in the world. 
 

LP2 (Model Representation Correctness) 
For all time points t, if it is believed that I leads to J after duration D, then I indeed leads to J after duration D. 
LP2 �  
∀t,I,J,D 
state(γ, t) |= belief(leads_to_after(I, J, D))  �  state(γ, t) |= world_fact(leads_to_after(I, J, D)) 
 

The correctness of the derivations within the world is expressed in LP3. 
 

LP3 (Positive Forward Correctness) 
For all time points t, if information element I holds and I leads to J after duration D, then at time point t+D information 
element J holds. 
LP3 �  
∀t,I,J,T,D 
state(γ, t) |= world_fact(I)  &  state(γ, t) |= world_fact(leads_to_after(I, J, D))  �  state(γ, t+D) |= world_fact(J)  
 

The final properties specified (LP4 and LP5) are used to ground property IP2. LP4 
expresses that if a certain belief concerning an information element holds, and from 
this belief another belief concerning an information element can be derived, then this 
is the case at some time point t2. 
 

LP4 (Belief Generation based on Positive Forward Simulation) 
For all time points t, if information element I is believed to hold at time point T and it is believed that I leads to J after 
duration D, then there exists a time point t2 information element J is believed to hold at time point T+D. 
LP4 �  
∀t1,t2,I,J,T,D 
state(γ, t1) |= belief(at(I, T))  &  state(γ, t1) |= belief(leads_to_after(I, J, D))  �  state(γ, t2) |= belief(at(J, T+D))  
 

Property LP5 specifies how beliefs can be generated based on abduction. 
 

LP5 (Belief Generation based on Abduction) 
For all time points t, if information element J is believed to hold at time point T and it is believed that I leads to J after 
duration D, then there exists a time point t2 information element I is believed to hold at time point T-D. 
LP4 �  
∀t1,t2,I,J,T,D 
state(γ, t1) |= belief(at(J, T))  &  state(γ, t1) |= belief(leads_to_after(I, J, D))  �  state(γ, t2) |= belief(at(I, T-D)) 
 

Figure 5 depicts the relations between the various properties by means of an AND 
tree. Here, if a certain property is connected to properties at a lower level, this 
indicates that the properties at the lower level together logically imply the higher level 
property. Note: LP4G and LP5G are the grounding2 variant of LP4 and LP5 
respectively, which is why they are depicted in grey. 

                                                           
2 The grounding variant of an executable property states that there is no other property with the 

same consequent. For example, the grounding variant of A � B states that there is no other 
property with B in its consequent, thus B � A can be derived. 



 

Figure 5 shows that global property GP1 can be related (by logical relations, as often 
used in mathematical proof) to a set of local properties (LPs) of the reasoning 
methods put forward in Section 3 and 4. Note that it is not claimed here that GP1 
holds for all reasoning methods, but that it holds for those methods that satisfy the 
lower level properties (LP1, LP4G, LP5G, LP2, and LP3). Such inter-level relations 
can be useful for diagnosis of dysfunctioning of a reasoning process. For example, 
suppose for a given reasoning trace (obtained either by simulation, such as in Section 
5, or by other means, e.g. based on empirical material of an existing ambient system) 
that the dynamic property GP1 does not hold, i.e., not all beliefs are correct. Given the 
AND-tree structure in Figure 5, at least one of the children nodes of GP1 will not 
hold, which means that either LP1 or IP1 will not hold. Suppose by further checking it 
is found that IP1 does not hold. Then the diagnostic process can be continued by 
focusing on this property. It follows that either IP2, LP2, or LP3 does not hold. This 
process can be continued until the cause of the error is localised.  

 

 
 

Fig. 5. Proof of GP1 depicted by means of an AND tree 
 

The process mentioned above is based on the assumption that it is possible to 
(automatically) check any property against a trace. To this end, the TTL Checker Tool 
[5] can be used (and has indeed been used). For the traces presented in Section 5 all 
properties shown in Figure 5 were checked, and turned out to hold.  

8   Discussion  

When ambient agents need to have knowledge about human behaviours and states 
over time, it is useful when they possess explicitly represented causal and dynamical 
models about the human’s processes. Once an ambient agent has such a model, a 
number of logical reasoning methods can be based on such a model, and formally 
specified as part of the agent design, as shown in this paper. The reasoning methods 
included cover, for example, causal and numerical simulation, qualitative reasoning 
and simulation, and abductive reasoning. In a number of simulation experiments 
example reasoning patterns were shown based on this, thus showing reusability of the 

GP1 

IP1 LP1 

IP2 LP2 LP3 

LP4G LP5G 



ambient agent design obtained. These simulation traces have been formally analysed 
and verified. 

In the general abductive reasoning framework, integrity constraints can be 
specified (see e.g.  [3, 12]). Such constraints can also be specified using the approach 
specified in this paper, namely by incorporating these by means of the focus 
mechanism specified in Section 4.2. Note that the notion of a focus is not only meant 
to avoid integrity constraints not being satisfied, but is also meant as a way to direct 
the reasoning process in an appropriate and efficient way.  

In [4] temporal reasoning is combined with an Active Database (ADB) for the 
detection of complex events in Smart Homes. The focus of that research is the 
combination of ADB and temporal reasoning. There is no selection mechanism in that 
paper as in the current work: the focus mechanism. Another example of temporal 
reasoning in Ambient Intelligence [19] developed a multi-agent system based on a 
knowledge-goal-plan (KGP) agent for transparent communication between users and 
an Ambient Intelligence device. They have based their reasoning model on well-
known reasoning techniques such as Abductive Logic Programming and Logic 
Programming with Priorities. In the current work however, the focus is at developing 
the underlying reasoning methods that are useful in Ambient Intelligence applications. 

Although the proposed reasoning methods have been applied successfully in two 
case studies, the examples addressed were modelled at an abstract, conceptual level. 
In future work, more complex and realistic case studies will be performed. In these 
case studies, the possibilities to incorporate the proposed reasoning methods in real 
artefacts in the environment will be explored. A specific question that will be 
addressed is to what extent the reasoning methods are able to deal with dynamic 
learning of new knowledge. 
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