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Model-based vision has been predominantly concerned

with the recognition of single component, rigid objects.

This paper describes work attempting to recover the 3D

structure of a multi-component, highly articulated object -

the human body. A major goal of this research has been to

go beyond the level of basic object recognition, and

attempt to reach a semantic level of description regarding

the object's behaviour. Previous research on the

recognition of human figures has assumed that the

behaviour of the figure in the image is known a priori, for

example, "walking", or has made use of motion information

derived from image sequences. This research shows that

accurate 3D structure can be recovered without such

knowledge, and that descriptions of a human figure's

behaviour can be obtained in terms of static posture

descriptions such as; "sitting", "kneeling", "standing".

The problem of human figure recognition has received

attention from the vision community during the last

decade, [1,2,7,8,9,10,12,13,15]. The human body represents

a difficult object to recover since it has multiple

components and each linkage point possesses a high degree

of motility. Previous research has followed two themes:

• High performance at lower level vision tasks e.g.

segmentation/labelling is usually accompanied by

little or no attempt at solving higher

problems, such as recovery of 3D structure.
level

• Conversely, success at recovery of higher level

information is usually predicated upon simplifying

assumptions at lower levels.

The present research falls within the latter category; it

uses schematic synthetic image data, and seeks to recover

3D human posture descriptions.

Previous work on human figure recognition has required

motion information, prior to recovery of the correct

physical structure, either in the form of knowledge of the
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behaviour of the figure (e.g. walking), or as general

motion information derived from image sequences. Such

knowledge greatly reduces the difficulty of the recovery

problem since it allows a number of powerful constraints

to be imposed. Motion information has been used in

previous research, in at least one of the following ways:

• structure from motion, [12,15].

• using a priori knowledge of the complex motion of

the figure and/or its sub-parts to make predictions

about subsequent frames, [1,2,8,9,10].

• using rules of motion in single images, based on a

priori knowledge of the behaviour a person is

engaged in, i.e. walking, [7].

We report here a method which achieves detailed structure

recovery without using prior knowledge of a figure's

behaviour or motion information. Knowledge of human

anatomy and posture can provide sufficient information to

allow recovery of accurate 3D structure from static images

of human figures. The structure information obtained is

then used as the basis from which posture recognition is

achieved.

THE BODY MODEL

The basic model consists of a collection of 16 cylinders

(body segments) and 14 joints. The connectivity of body

parts is represented as a tree structure. Each segment and

joint possesses its own rigidly embedded right-handed

local coordinate system. All joints have three axes of

rotation, except the hinge joints (elbows and knees), which

are single axis. In a complete model one segment is

specified as a root segment (the root of the tree). This

segment is used as the starting coordinate system from

which the transformations for the rest of the model's

joints and segments are concatenated. The root segment

therefore forms the origin of a model-centred coordinate

system and, as such, can be used to position the model in 3-

space. The model possesses a flexibility comparable with a

fit adult human - anatomical limits for each axis of each

of the body model's joints were obtained from reference

texts which specify the possible degrees of limb movement
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for use in reconstructive surgery, [4-6].

The body model serves two major and quite distinct

functions:

* Graphical: As an instance generator to simulate

image data.

* Interpretation: As a parameterised representation,

which supports model-based interpretation of

image data.

The model makes use of several types of knowledge

ranging from physical to behavioral, including; mass,

length, volume, connectivity, anatomical limits on joint

movement, constraints due to postures, collision detection

and, in the case of a standing posture, balance testing.

SYNTHETIC IMAGE DATA

Previous research, which has concentrated on low level

processing of real images, has shown some success in

finding and labelling body parts, for example, by detecting

ribbons (c.f. [3]) in the image, [1,8,9]. It is reasonable to

assume that the positions of joints in an image could be

found using, for example, the intersection of 2D ribbon

axes. The present research makes the assumption that the

position in the image of the major joints can be identified,

and seeks to recover the full 3D position of the figure.

This joint position data represents the sole source of

information (with the exception of knowledge of the

position of the root segment, see below) used by the

structure recovery process.

DEFINING POSTURES

Postures are defined by specifying permissible joint angle

ranges. Within a single posture definition, the angle range

over which each axis of a joint may vary is expressed in the

form of a probability density function (pdf). Each pdf

describes the relationship between the angle of an axis of a

joint and its likelihood of occurrence relative to the range

of permissible angles. The pdfs are used in two different

forms in the graphical and interpretative phases

respectively:

To generate an angle with a probability as defined

by the pdf.

To return a likelihood value for a given angle.

Figure 1. illustrates the angle generator usage for the x-

axis of the right hip in a standing posture - angles near 0°

are most likely, but angles up to ±10° are possible. The

pdfs are defined as histogram functions of between 3 and 5

steps, these are then converted into lookup tables for each

of the two uses described above. Figure 2. shows

examples of the three major posture types as generated

using the pdfs.

All generated postures are tested for illegal collision

between body segments, before being used to provide

synthetic image data. In addition, standing model

instances have their feet fixed to the ground plane, and are

correctly balanced - that is, the projection of the model's

centre of gravity lies within the convex hull of the foot

area.

Right side view:
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Figure 1. The pdf definition for the x-axis of the right hip

in the posture of standing.

STRUCTURE RECOVERY

The position of joints in the image is the main input to the

system, and no use is made of other cues such as stereo,

motion, shape from shading, etc. The recovery of the

precise 3D structure of a human figure from our 2D image

data is grossly underdetermined. This problem (perspective

inversion) can only be solved by invoking extra knowledge

sources. One source of this extra knowledge is the object

model used. Information about limb length, the planar

relationship of certain joints, and anatomical limits on

joint movement, may be used. Other sources included; non-

collision between body parts, the laws of perspective, and

balance (in the case of a standing figure).

The input to the recovery algorithm was the (correctly

labelled) 2D image coordinates of the major joints, and the
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transformation linking the camera coordinate system with

the coordinate system of one body segment (the root

segment). Knowledge of the (2D) end-points of a body

segment of known (3D) length partially constrains the 3D

position of the segment. A method devised by Webb[14],

and adapted by Lee & Chen[7] was further modified in

order to exploit this fact. The position in depth of a single

joint embedded in the root segment was obtained and the

positions of connected segments were expanded from this

starting point. There are two possible solutions for each

body segment, corresponding to a foreshortening due either

to a forward or backward tilt of the segment. A complete

expansion of the problem space therefore forms a binary

tree of depth equal to the number of body segments.

The body model possesses 14 joints, giving 8,192 possible

body configurations using this information alone (2
 n

'
1
,

where n = no. of joints). This figure corresponds to the

search task when only the positions of joints in 3-space are

required. The true search space for the instantiated model

involves 262,144 (2
18

) possible body configurations, since

the position of the tips of body extremities (head, hands &

feet) must also be found, to allow recovery of the angles

of the extremal joints.

Constraints derived from the knowledge sources described

above, were used to prune the binary tree. Anatomical

limits provide the greatest pruning power. This requires

the recovery of precise joint angles at each level of the

binary tree's expansion. At each node expansion of the

binary tree the joint transformation matrix which links

connected segment pairs was recovered, using geometric

reasoning methods, partly in the form of a modification of

the "rotation about an arbitrary vector" technique [11].

Each matrix was then decomposed to recover the angles

between limb vectors, expressed as axis rotations in the

joint's local coordinate system. All angles were recovered

to an accuracy of better than 1 degree. A new method for

uniquely decomposing the transformation matrix was

developed. This method is applicable in cases where one

axis of rotation lies within ±7t/2 and the other two axes

within ±jt. The ±7c/2 limit, corresponds to the natural

anatomical limit for limb rotation along the major axis,

allowing the method to be applied to the three-axis (and

single-axis) joint decomposition problem (see appendix

A).

The end result of a fully expanded and pruned binary tree

is one or more leaf nodes each representing a separate

interpretation of the 3D structure of the figure in an

image.

POSTURE RECOGNITION

Three major postures have been defined (standing, sitting

and kneeling) together with two sub-postures - "reach-

left" and "reach-right". Posture recognition therefore

includes compound descriptions, such as, "sitting-reach-

left".

Posture recognition is achieved using the pdf lookup table

format which returns a likelihood for a given joint axis'

rotation value, as described earlier. The algorithm works

as follows:

For each anatomically correct Body Interpretation

For each Posture in the Database

For each Joint in a Posture

Obtain the angle for each axis of the current Joint.

Obtain Joint's Likelihood value for the current Posture.

If the likelihood value of a Joint axis = zero then

quit current Posture.

else

Accumulate the likelihood value for current Joint.

end

Next Joint

Store Posture as recognised (with average likelihood value).

Next Posture

Next Body Interpretation

Interpretations for which no posture description is found

are rejected. The output of the algorithm is a list of

surviving body interpretations each with a posture

description and associated average likelihood value.

Collision Detection and Balance Constraints

All surviving interpretations are also tested to check that

the structure interpretation does not involve illegal

collision between body segments. This test is performed

after posture recognition so that advantage may be taken of

the general relationship between body parts in a given

posture. For example, hands and feet only need be tested

for inter-collision, when a kneeling posture has been

recognised. Any body interpretation in which a collision is

detected can be rejected. When a standing posture is found,

any surviving interpretations are also tested for balance

and interpretations failing to balance are also rejected.

EXPERIMENTAL RESULTS

Table 1. shows how anatomical pruning controls the

binary tree's growth at each joint expansion node. The

results for 36 synthetic images are presented in tables 2 -

4. The correct posture description was obtained in every

case. The number of interpretations remaining after all

forms of pruning had been applied ranged between 2 and 48

per image (mean = 7.03), and in all cases one interpretation

held the correct structure. Many of these multiple

solutions actually arise from very small ambiguities in

depth, for example, a hand tipped towards or away from

the camera. These ambiguities can combine such that, for

example, 3 trivial depth choices can give rise to 8

interpretations. There is an inherent ambiguity in the case

where an extremal segment has two non-colliding,

anatomically legal interpretations - this potential

indeterminacy is unavoidable unless additional feature
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Level

number

1

2

3

4

5

6

7

g

9

10

11

12

13

14

Number of interpretation tree paths.

Expand left hip

Expand left knee

Prune left hip

Prune left knee

Expand left ankle

Prune left ankle

Expand right hip

Expand right knee

Prune right hip

Prune right knee

Expand right ankle

Prune right ankle

Expand lumbar

Expand lower cervical (to L-shoulder)

Expand lower cervical (to R-shoulder)

Prune lumbar and L&R shoulders *

Expand lower cervical (to head tip)

Prune lower cervical

Expand left shoulder

Expand left elbow

Prune left shoulder

Prune left elbow

Expand left wrist

Prune left wrist

Expand right shoulder

Expand right elbow

Prune right shoulder

Prune right elbow

Expand right wrist

Prune right wrist

2

4

2

2

4

2

4

g

4

2

4

2

4

g

16

2

4

2

4

g

4

2

4

2

4

8

6

2

4

4

* a constraint based on distance between the shoulders is

used to prune both the shoulder positions and the lower

cervical position.

Figure 2. Examples of the pdf defined postures:

Standing (image no. 3.), Sitting (image no. 15) and

kneeling (image no. 34).

Table 1. Growth and pruning of the binary tree (image

no. 15).

points are identified on the segment Since none of the

ambiguities remaining prevent the correct posture

description being found, those which arise at extremal

joints or have average depth errors less than the equivalent

of 5cms are excluded. The final number of surviving

interpretations per image ranges between 1 and 3, (mean =

1.333).
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EXTENSIONS TO RESEARCH

An investigation of the sensitivity of the structure

recovery method to error is currently under way. The aim

is to emulate the kind of joint location error that low

level segmentation processes might produce. Early results

suggest that the technique will be viable using the quality

of data likely to be obtainable from real images.

Image

Number

After

Anatomical

Pruning

After

Posture

Recognition

After

Collision

Detection

After

Trivial

Ambiguity

Removed

1

12

C
T

v

4

1

2

16

8

4

1

3

48

48

48

1

4

12

6

.

1

5

3

3

3

2

6

5

5

5

1

7

4

4

4

1

8

16

4

4

2

9

6

3

3

1

10

16

8

8

1

11

4

4

4

1

12

32

8

8

2

Table 2. Standing • Cells contain the number of surviving

whole body interpretations.

Image

Number

After

Anatomical

Pruning

After

Posture

Recognition

After

Collision

Detection

After

Trivial

Ambiguity

Removed

13

4

4

4

1

14

8

8

8

1

15

4

2

2

1

16

4

4

2

1

17

24

24

12

1

18

3

3

3

1

19

C
T

v

6

C
T

v

1

20

24

12

12

2

21

-

6

C
T

v

1

22

2

2

2

1

23

32

16

16

1

24

8

8

6

1

Image

Number.

After

Anatomical

Pruning

After

Posture

Recognition

After

Collision

Detection

After

Trivial

ambiguity

removed

25

2

2

2

1

26

4

4

2

1

27

2

2

2

1

28

10

10

5

2

29

2

2

2

1

30

48

12

12

2

31

5

5

5

1

32

3

3

3

1

33

4

4

4

3

34

18

18

18

2

35

24

12

12

3

36

12

C
T

v

6

2

Table 3. Sitting - Cells contain the number of surviving

whole body interpretations.

Table 4. Kneeling - Cells contain the number of surviving

whole body interpretations.

CONCLUSION

A method has been described in which naive physics, and

knowledge about human anatomy and posture allow both

the full 3D structure of a figure to be recovered and a

semantic level of description of its behaviour to be

obtained. The fact that this is achieved without the use of

any form of motion information, should allow the system

to cope with the real world case where a human figure is

inactive, for example, sitting.

The pdf based definition of posture may have some

psychological validity. We have observed that the human

visual system often appears to interpret structure on the

basis of preconceptions about likely postures. For

example, in a silhouette image of a human figure with an

extended arm, the human observer "prefers" an

interpretation in which the arm is pointing towards the

viewer, rather than awkwardly bent backwards. This

tendency is reflected, by the probabilities selected for the

pdf functions, which are weighted towards "natural" or

relaxed stances. Thus, our system would also select the

"arm towards the viewer" case, as the best structure

interpretation.

APPENDIX A

During the process of structure recovery an homogeneous

matrix is derived for each joint, which describes that

joint's rotation, i.e. the transformation linking the local

coordinate systems of the body segments connected by the

joint. To achieve posture recognition it is necessary to

recover from this matrix the precise rotation parameter (0)

for each of the joint's axes of rotation.

Firstly we arbitrarily assume that joint axes rotations (R)

are concatenated to form the matrix (M), in the fixed

order:
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M = Rz(92)

This expands to :

M =

CzCySzSxSy SzCx

-SzQCzSxSy CzCx

CxSy -Sx

0 0

where :

S = sine, e.g. Sx = sinO

Cz-SySzSxCy 0

-Sz-SyCzSxCy 0

CxCy °

0 1.

and

C = cosine, e.g. Cx = cosG .

If we assume

-71/2 < Rz(0z) < 7C/2

-71

-7C

< 7t

(1.1)

(1.2)

(1.3)

then the three rotation parameters of M, (6 , 6 . 6 J can
x y r

be obtained in the following way:

sin0.

COS0.

-M(3,2)

± \ 1 - sin
2*

Assumption (1.1) defines the cosine of z as positive. It

follows that the sign of cos0 must equal the sign of

CzCx, which can be obtained from M(2,2). Knowing the

correct value for cos0 the following values can now be

obtained:

sin0

COS0.

sin0

COS0

M(3,3)

M(U) / cos8T

M(2,2)

Knowing the sine and cosine values for each axis of
rotation, a trigonometric function utilising quadrant
information, can be applied to obtain the correctly signed
rotation angles.

REFERENCES

1. Akita, K. "Image Sequence Analysis of Real World
Human Motion" Pattern Recognition, Vol. 17, No.l,
(1984) pp. 73-83.

2. Hogg, D.C. "Model Based Vision: A Program to See
a Walking Person" Image and Vision Computing, Vol.
No.l, (1983) pp. 1-20.

3. Binford, T. O. "Visual Perception by a Computer"

I.E.E.E Conference on systems and controls, Miami,
Florida, December (1971).

4. Kapandji, LA. The Physiology of the Joints, Vol.1
Upper Limb, Churchill Livingstone, London (1974a).

5. Kapandji, LA. The Physiology of the Joints, Vol.2

Lower Limb, Churchill Livingstone, London (1974b).

6. Kapandji, LA. The Physiology of the Joints, Vol.3
The Trunk and the Vertebral Column, Churchill
Livingstone, London (1974c).

7. Lee, H J . & Chen, Z. "Determination of 3D Human
Body Postures from a Single View" Computer Vision,
Graphics and Image Processing, Vol. 30, (1985) pp.
148-168.

8. Leung, M.K. & Yang, Y.H. "Human Body Motion
Segmentation in a Complex Scene" Pattern
Recognition, Vol. 20, No.l, (1987a) pp. 55-64.

9. Leung, M.K. & Yang, Y.H. "A Region Based
Approach for Human Body Analysis" Pattern
Recognition, Vol. 20, No. 1, (1987b) pp. 321-339.

10. O'Rourke, J. & Badler, NJ. "Model-Based Image
Analysis of Human Motion Using Constraint
Propagation" I.EE.E Transactions on Pattern Analysis
and Machine Intelligence, Vol. PAMI-2, No.6,
(1980) pp. 522-536. November.

11. Paul, R.P. Robot Manipulators: Mathematics,
Programming, and Control. The M.I.T Press,
Cambridge, MA.

12. Rashid, R.F. "Towards a System for the
Interpretation of Moving Light Displays" IEEE
Transactions on Pattern Analysis and Machine
Intelligence, Vol. PAMI-2, No.6, (1980) pp. 574-
581. November.

13. Tsukiyama, T. & Shirai, Y. "Detection of the
Movements of Persons from a Sparse Sequence of TV
images" Pattern Recognition, Vol.18, No's. 3/4,
(1985) pp. 207-213.

14. Webb, J. A. "Static Analysis of Moving Jointed
Objects" Proc. Amer. Assoc. Artif. Intelligence
(AAAI), Vol. 1, (1980) pp. 35-37.

15. Webb, J.A. & Aggarwal, J.K. "Visually Interpreting
the Motion of Objects in Space" Computer, Vol. 14,
No. 8, (1981) pp. 40-46.

16. Webb, J.A. & Aggarwal, J.K. "Structure from
Motion of Rigid and Jointed Objects" Artificial
Intelligence, Vol.19, (1982) pp. 107-130.

30


