
Model-Based Robust Control Design for

Magnetostrictive Transducers Operating

in Hysteretic and Nonlinear Regimes

James M. Nealis1 and Ralph C. Smith2

Department of Mathematics

Center for Research in Scientific Computation

North Carolina State University
Raleigh, NC 27695

Abstract

This paper addresses the development of robust control designs for high performance smart material trans-
ducers operating in nonlinear and hysteretic regimes. While developed in the context of a magnetostrictive
transducer used for high speed, high accuracy milling, the resulting model-based control techniques can be
directly extended to systems utilizing piezoceramic or shape memory alloy compounds due to the unified
nature of models used to quantify hysteresis and nonlinearities inherent to all of these materials. When
developing models and corresponding inverse filters or compensators, significant emphasis is placed on the
utilization of the material’s physics to provide the accuracy and efficiency required for real-time implementa-
tion of resulting model-based control designs. In the material models, this is achieved by combining energy
analysis with stochastic homogenization techniques whereas the efficiency of forward algorithms is combined
with monotonicity properties of the material behavior to provide highly efficient inverse algorithms. These
inverse filters are then incorporated in H2 and H∞ theory to provide robust control algorithms capable of
providing high accuracy tracking even though the actuators are operating in nonlinear and hysteretic regimes.
Through numerical examples, it is illustrated that the robust designs incorporating inverse compensators can
achieve the required tracking tolerance of 1-2 µm for the motivating milling application whereas robust designs
which treat the uncompensated hysteresis and nonlinearities as unmodeled disturbances cannot achieve design
specifications.
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1 Introduction

A growing emphasis in advanced control system designs focuses on the use of multifunctional materials, such
as piezoceramics, magnetostrictives, and shape memory alloys, in integrated transducers to improve control
authority and performance, reduce weight, and minimize power requirements. For example, piezoceramic
compounds have both actuator and sensor capabilities due to the direct and converse piezoelectric effects,
microscale set point accuracy, and high frequency (kHz) operating capabilities. This has led to their use in
applications ranging from nanopositioning mechanisms in an atomic force microscope (AFM) [23, 24, 25, 26]
to inertial sensors in an accelerometer [9]. Magnetostrictive materials also offer both actuator and sensor
capabilities as well as broadband transduction and large output forces. Recent applications and products
exploiting these properties include high accuracy, high speed milling devices [29, 38] and torque sensing for
steering systems [5, 22]. Shape memory alloys (SMA) operate at lower frequencies (< 100 Hz for bulk materials)
but offer the largest power densities of the three compounds. Hence they are being considered for applications
ranging from vibration dissipation in buildings and flexible aerospace structures to active shape configuration
of an airfoil to optimize flight characteristics while minimizing drag [19, 27].

Whereas all of these compounds offer significant and unique actuator and/or sensor capabilities, they also
exhibit varying degrees of hysteresis and constitutive nonlinearities throughout their operating range and
frequency, stress and temperature-dependencies in various drive regimes. In some cases, the hysteresis can
be mitigated through the drive electronics – e.g., charge or current control for piezoceramics is appropriate
in certain applications [15, 16, 17] – or feedback loops in the transducer. However, noise-to-signal ratios in
sensor data and diminishing characteristics of high pass filters precludes a sole reliance on feedback loops for
broadband and high frequency transduction. Furthermore, because damping properties of the materials are
proportional to the area of the hysteresis loop, it is often advantageous to maximize rather than minimize hys-
teresis in the transducer design. This necessitates the development of robust control designs which incorporate
the hysteresis in a manner which achieves specified tracking, damping and general performance criteria while
employing the transducer materials in the nonlinear regimes which provide them with their unique actuator
and/or sensor capabilities.

In this paper, we develop a model-based robust control design in the context of a magnetostrictive trans-
ducer operating in nonlinear and hysteretic regimes with high accuracy, high speed tracking specifications.
A motivating application entails the use of the magnetostrictive transducer to mill out-of-round automotive
parts at speeds of 3000 rpm and tracking tolerances of 1-2 µm as detailed in [29, 38] and depicted in Figure
1a. During the milling process, the cutting tip starts from a position of rest, is moved adjacent to the ma-
terial, and then must follow a prescribed periodic trajectory required to yield the final geometry. Hence the
trajectory to be tracked has the form depicted in Figure 1b. The forces required to drive the cutting head are
generated through the reorientation of magnetic moments in the Terfenol-D rod in response to a field H(t)
produced by a current I(t) to the surrounding solenoid. The surrounding magnet provides the bias necessary
to achieve bidirectional strains. As illustrated in Figure 2, the field-magnetization and field-strain relations
for the transducer exhibit significant hysteresis and constitutive nonlinearities which must be accommodated
in models and model-based control designs.

Both the material behavior and control issues associated with this application are representative of those
encounted when alternatively considering piezoceramic or shape memory alloy transducers and hence this
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Figure 1: (a) Prototypical magnetostrictive transducer used for high speed, high accuracy milling. (b) Tra-
jectory to be tracked by the cutting head.
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Figure 2: Hysteretic data measured in a Terfenol-D transducer as reported in [6]: (a) field-magnetization
relation, and (b) field-strain relation.

transducer provides a framework for addressing robust control design for a broad range of multifunctional
materials while clarifying the development by focusing on a specific application. It is detailed in [33, 35, 36]
that the common domain and ferroic nature of ferroelectric, ferromagnetic and ferroelastic materials can be
exploited to develop unified models for the compounds and we employ one such model in the robust control
design developed here. Hence the material behavior shown in Figure 2 is representative of that exhibited
by a broad range of compounds and is characterized by unified models appropriate for all of these materials.
Furthermore, the high accuracy specifications for the motivating milling application are representative of those
encountered in a range of smart material control applications.

From the perspective of control design, the hysteresis inherent to the compounds introduces phase delays
whereas saturation behavior introduces additional nonlinearities. These combined nonlinear effects produce
disturbances which, if left unattenuated, produce unacceptable degradation in tracking performance. Sensor
noise also produces disturbances which degrade the efficacy of state estimates and subsequent control inputs.
We address both effects when constructing robust control designs for magnetostrictive transducers.

One strategy for designing robust control laws for hysteretic actuators is to employ nonlinear constitutive
models to characterize the disturbances or perturbations d which must be accommodated by control designs.
This can reduce overly conservative robustness margins constructed solely through characterization experi-
ments. A second strategy is to employ the models to construct inverse representations or compensators which
can be employed as filters before the hysteretic actuator in the manner depicted in Figure 3. While such
compensation is never exact due to discretization and modeling errors, the mismatch between inverse and
hysteretic device can be designed to be small thus significantly reducing the disturbance d associated with the
transducer. It is this latter strategy that we consider here.

The use of model-based inverse representations for piezoceramic, magnetostrictive and shape memory com-
pounds is not new and has received substantial attention in the context of adaptive, classical, and optimal

u+du P

Figure 3: Approximate model inverse employed as a filter for robust control design in hysteretic and nonlinear
systems.
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(LQR) control designs [3, 4, 10, 11, 21, 28, 39, 40]. The primary emphasis has focused on Preisach represen-
tations (e.g., see [39, 40]), due to their rigorous mathematical foundation and invertibility, as well as domain
models [21, 28]. While both modeling frameworks can be unified to quantify hysteresis in general ferroic com-
pounds, both suffer disadvantages which degrade subsequent control performance in a number of applications.
The Preisach methodology must be extended to accommodate the noncongruency, temperature-dependent
and reversible behavior exhibited by magnetic (and most ferroic) materials whereas the domain-based theory
of [13, 18, 32, 34] requires extensive modifications to guarantee the closure of minor loops in state feedback
regimes. Furthermore, there is a growing emphasis on the design of control algorithms which accommodate
strongly transient and quickly changing dynamics and are robust with respect to a variety of disturbances.
This motivates the development of robust control designs utilizing inverse representations based on the mod-
eling framework developed in [30, 31] for ferromagnetic materials with analogous models for piezoceramic
compounds [37], shape memory alloys [19, 27], and unified ferroic compounds [35, 36].

We consider both H2 and H∞ designs since the disturbances can be interpreted in a variety of manners.
Since the H2 norm quantifies the maximum amplitude in the output due to bounded energy inputs, it pro-
vides a natural measure for sensor noise as well as disturbances due to both approximately compensated or
uncompensated hysteresis. The variability due to uncompensated or partially compensated hysteresis and con-
stitutive nonlinearities can also be viewed as a structural uncertainty in the actuator model which motivates
consideration of the H∞ norm.

The emphasis in this paper focuses on the incorporation of physics through energy-based techniques to
provide control designs capable of achieving stringent tracking and speed criteria using advanced transducer
designs rather than the analytical development of new control theories. Secondly, we emphasize the develop-
ment of model-based control designs having the capability for real-time implementation at the speeds dictated
by eventual applications. We rely on previous H2 and H∞ theory – e.g., see [1, 8, 20, 41, 42] – to provide
a baseline for comparison in the absence of inverse compensation and a starting point from which to initiate
robust control designs that incorporate the physical mechanisms which produce hysteresis through inverse
compensators.

In Section 2, we summarize the development of nonlinear constitutive relations which quantify the inherent
hysteresis, an algorithm for constructing inverse relations, and the system models used to characterize the
magnetostrictive transducer depicted in Figure 1. We provide a system representation in Section 3 along with
appropriate weighting filters and the H2 and H∞ theory used to construct robust control algorithms. We
illustrate the performance of these designs through numerical examples in Section 4. Specifically, we illustrate
that for physically reasonable disturbance levels, designs based solely on H2 or H∞ algorithms do not achieve
specified control criteria whereas inclusion of the model-based inverse filters improves performance to the point
where tracking criteria are achieved.

2 Transducer Model

The key to constructing an inverse compensator which accommodates hysteresis and constitutive nonlinearities
is the development of material models which can be efficiently inverted. In this section, we consider the con-
struction of models which quantify magnetostrictive transducer properties in two steps: (i) the construction of
constitutive models which incorporate inherent hysteresis and material nonlinearities, and (ii) the employment
of these constitutive models to quantify transducer outputs due to specified current inputs. This provides a
framework for developing the model inverses employed in the robust control design in Section 3.

2.1 Nonlinear Constitutive Relations

The magnetic and magnetomechanical constitutive models we employ are based on the theory developed
in [30, 31] and we summarize here those aspects relevant to the construction of magnetostrictive transducer
models. For this discussion, we make the assumptions that temperatures are fixed, that eddy current losses are
minimal and that prestress levels are sufficiently large that stress anisotropies dominate crystalline anisotropies.
The assumption of fixed temperature is valid for magnetostrictive transducers utilizing water cooling whereas
low frequency operating regimes or laminated rod designs reduce eddy current losses. Finally, the prestress
levels which optimize performance are typically sufficient to dominate crystalline anisotropies [2] so the final
assumption is valid for present transducer designs.
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To construct appropriate Helmholtz and Gibbs energy relations, we consider first the case in which applied
stresses are either absent or negligible. Under the assumption that dipoles orient either with the applied field
or diametrically opposite to it, which is valid for operating regimes in which stress anisotropies dominate
crystalline anisotropies, and fixed temperature regimes, it is illustrated in [31] that a reasonable form of the
Helmholtz energy is

ψ(M) =





1
2η(M + MR)2 , M ≤ −MI

1
2η(M − MR)2 , M ≥ MI

1
2η(MI − MR)

(
M2

MI
− MR

)
, |M | < MI .

(1)

As depicted in Figure 4, MR and MI respectively denote the point at which the minimum of ψ occurs and
the inflection point. The point MR is also the local remanence magnetization at the domain level. Finally,
the fact that η is the reciprocal of the slope in the H-M relation after switching can be utilized to determine
initial parameter values when establishing the model for a given piezoceramic compound and application.

In the absence of applied stresses σ, a suitable magnetic Gibbs energy relation, which incorporates the
work due to an applied field H, is

G = ψ − HM. (2)

Note that the magnetostatic energy is E = µ0HM where µ0 denotes the magnetic permeability. The Gibbs
relation (2) can thus be interpreted as incorporating µ0 into ψ for simplicity.

To incorporate magnetoelastic coupling, we employ the extended Helmholtz relation

ψe(M, ε) = ψ(M) +
1

2
Y Mε2 − Y MζεM2 (3)

and corresponding Gibbs energy

G(H,M, ε) = ψ(M) +
1

2
Y Mε2 − Y MζεM2 − HM − σε (4)

where ψ is specified by (1) and ε denotes longitudinal strains in the material. Here Y M denotes the Young’s
modulus at constant magnetization and ζ is a magnetoelastic coupling coefficient. We note that the second
term in (3) incorporates the elastic energy. The quadratic dependence on the magnetization is motivated
by characterization experiments [7] and can be theoretically justified in magnetostrictive transducers since
prestress levels are such that stress anisotropies dominate crystalline anisotropies so that strains are due
primarily to quadratic rotation processes.

G 2 (H ,M)1G (H
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Figure 4: (a) Helmholtz energy ψ and Gibbs energy G for σ = 0 and increasing fields H. (b) Dependence of
the local magnetization M on the field H at the lattice level in the presence of thermal activation.
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Local average relations for the mesoscale magnetization are derived for two operating regimes: (i) condi-
tions for which thermally activated relaxation processes are significant and, (ii) regimes for which relaxation
processes are negligible. To incorporate relaxation processes, the Gibbs energy G is balanced with the relative
thermal energy kT/V over a lattice volume V through the Boltzmann relation

µ(G) = Ce−GV/kT (5)

which quantifies the probability µ of achieving the energy level G. Here C denotes a constant of integration
which is constructed to have a value of unity when integrated over all admissible moment orientations, k
denotes Boltzmann’s constant, and T is the fixed temperature of operation. Under the assumption of two
moment orientations, the local average magnetization is given by

M = x+〈M+〉 + x−〈M−〉 (6)

where x+ and x− respectively denote the fraction of moments having positive and negative orientations and

〈M+〉 =

∫ ∞

MI
Me−G(H,M)V/kT dM

∫ ∞

MI
e−G(H,M)V/kT dM

, 〈M−〉 =

∫ −MI

−∞
Me−G(H,M)V/kT dM

∫ −MI

−∞
e−G(H,M)V/kT dM

are the expected magnetization values due to positively and negative oriented moments. The moment fractions
satisfy the evolution equations

ẋ+ = −p+−x+ + p−+x−

ẋ− = −p−+x− + p+−x+

where

p+− =

√
kT

2πm

e−G(H,MI)V/kT

∫ ∞

MI
e−G(H,M)V/kT dM

, p−+ =

√
kT

2πm

e−G(H,−MI)V/kT

∫ −MI

−∞
e−G(H,M)V/kT dM

are the likelihoods of switching from positive to negative orientations and conversely. Here m is the mass of
lattice volume V . As depicted in Figure 4, the relation between the applied field H and the local average
magnetization M exhibits both hysteresis and nonlinear transition because the local magnetization (6) is
probabilistic. The steepness of the transition depends on the ratio of G to kT/V .

For operating regimes in which thermally activated relaxation processes are negligible, the relative thermal
energy kT/V can be ignored and local average magnetization values M are computed directly from the
necessary condition ∂G

∂M = 0, or equivalently H = ∂ψe

∂M . This yields the linear relation

M =
H

η − 2Y Mζε
+ ∆

MRη

η − 2Y Mζε
(7)

which illustrates that η denotes the reciprocal slope after switching in the absence of strains, MR is a local
remanence value as depicted in Figure 4, and ∆ indicates the moment orientations. To specify ∆ and hence
M , we employ the Preisach notation

[M(H, ε;Hc, ξ)](t) =





[M(H, ε;Hc, ξ)](0) , τ(t) = ∅
H

η−2Y M ζε
− MRη

η−2Y M ζε
, τ(t) 6= ∅ and H(max τ(t)) = −Hc

H
η−2Y M ζε

+ MRη
η−2Y M ζε

, τ(t) 6= ∅ and H(max τ(t)) = Hc

(8)

where Hc = η(MR − MI), the transition times are specified by

τ(t) = {t ∈ (0, Tf ] | H(t) = −Hc or H(t) = Hc}

and the initial moment orientation is

[M(H, ε;Hc, ξ)](0) =





H
η−2Y M ζε

− MRη
η−2Y M ζε

, H(0) ≤ −Hc

ξ , −Hc < H(0) < Hc

H
η−2Y M ζε

+ MRη
η−2Y M ζε

, H(0) ≥ Hc .

Here ξ denotes the initial magnetization of the points with field levels between −Hc and Hc.
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Figure 5: Free energy variations for a nonhomogeneous domain structure and the resulting variations in the
local coercive field Hc of the hysteresis kernel.

The relations (6), (7) and (8) are derived under the assumption that the lattice structure is homoge-
neous and hence the domain structure is uniform. This implies that free energy profiles for different regions
of the Terfenol-D are identical. This assumption is not valid for general materials since it ignores material
defects, polycrystallinity, lattice nonhomogeneities and nonuniform effective fields. To accommodate these
properties, stochastic distributions are incorporated to develop a bulk magnetization model for nonhomoge-
neous Terfenol-D samples with nonconstant effective fields. Details regarding this development are provided
in [30, 31].

To incorporate lattice nonhomogeneities due to material defects and variations, as well as nonuniformities
due to polycrystallinity, we first consider the local coercive field Hc = η(MR − MI) to be manifestations of
an underlying distribution rather than constant (e.g., see Figure 5). Two a priori choices for densities are the
normal function

f(Hc) = C1e
−(Hc−Hc)

2/b, (9)

with Hc restricted to be positive, or the lognormal density

f(Hc) = C1e
−[ln(Hc/Hc)/2b]2 (10)

where b, C1 and Hc are positive parameters. For the examples which follow, we employ (9) and refer the
reader to [30] for details concerning (10).

Secondly, we incorporate variations in the effective field He at the lattice level. As detailed in [12, 13],
the applied field H is augmented by induced fields of the form Hc = αM to yield general effective fields
He = H + αM . We assume here that these effective fields are normally distributed about the applied field as
quantified by the density

f̃(He) = C2e
−(He−H)2/b̄. (11)

The bulk magnetization model is then

M(H) = C

∫ ∞

0

∫ ∞

−∞

M(He + H;Hc, ξ)e
−H2

e /b̄e−(Hc−Hc)
2/b dHedHc (12)

where the kernel M is specified by (6), (7) or (8) and C = C1C2 is a positive constant which must be estimated
through a least squares fit for a given transducer material.

The elastic constitutive relation is determined from the equilibrium condition

∂G

∂ε
= 0

where G is specified in (4). This yields the coupled nonlinear constitutive relations

σ = Y Mε − Y MζM2

M(H, ε) = C

∫ ∞

0

∫ ∞

−∞

M(He + H, ε;Hc, ξ)e
−H2

e /b̄e−(Hc−Hc)
2/bdHedHc

(13)
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for undamped magnetostrictive materials. These relations quantify the hysteresis and material nonlineari-
ties illustrated in Figure 2 but neglect eddy current losses – hence they should be employed for laminated
transducers or operation regimes in which eddy current losses are minimal. For the constant, high prestress
conditions typical for present transducer designs, very adequate characterization is obtained under the sim-
plifying assumption that ε = 0 in the magnetization relation (12) or (13). Finally, the manner through which
internal damping is incorporated is illustrated in Section 2.3.

For numerical and experimental implementation of the magnetization model, the integrals must be ap-
proximated in an efficient manner. This can be accomplished by exploiting the decay exhibited by the kernels
to truncate the domains followed by approximation using composite Gauss-Legendre quadrature formulae. If
we denote abscissas by Hej

and Hci
, and quadrature weights by vi, wj , this yields the discretized constitutive

relations
σ = Y Mε − Y MζM2

M(H) = C

Ni∑

i=1

Nj∑

j=1

M
(
Hej

+ H;Hci
, ξi

)
e
−H2

ej
/b

e−(Hci
−Hc)

2/bviwj .
(14)

In all subsequent examples, we employ the linear kernel (7) or (8) for M . Details regarding highly efficient al-
gorithms for numerically implementing the discretized magnetization model are provided in [30] and analogous
algorithms for piezoceramic compounds can be found in [37].

Example – Model Validation

To illustrate properties of the model, we summarize the manner through which it characterizes the qua-
sistatic data plotted in Figure 2. Due to the very low frequency (1 Hz) at which data was collected, adequate
approximations to measured strains are provided by the magnetostrictive component λ = Y MζM2 of (14).
We also employ ε = 0 in the magnetization relation.

As detailed in [31], a least squares fit to the high drive level data yielded the parameters Hc = 300 A/m,
MR = 3.7 × 104 A/m, η = 14, b = 1 × 108 A2/m2, b̄ = 8 × 108 A2/m2, C = 2.52 × 10−8 and ζ =
4.5 × 10−15 m2/A2. The resulting model was then used to predict the moderate drive relations yielding
the fits plotted in Figure 6. It is observed that both the fits and predictions are sufficiently accurate for
subsequent model-based control design. Details regarding the experimental conditions can be found in [6, 7]
whereas details regarding the model implementation as well as additional examples illustrating properties of
the model, including closure of biased minor loops under quasistatic conditions, are provided in [31].
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Figure 6: Experimental data (– – –) from [6] and model response (——): (a) field-magnetization relation, and
(b) field-strain relation.
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2.2 Model Inverse

The efficiency of the forward model (14) is combined with the monotonic relation between H and M to
construct inverse models which specify the field required to achieve a given magnetization. This inverse model
is subsequently employed in the robust control designs detailed in Section 3 to achieve the stringent tracking
criteria dictated by the application.

The construction of a model quantifying the inverse map between M and H is outlined in Algorithm 1.
For given values of Mprev and Mnew, the relation (14) is used to increment the field until the predicted
magnetization Mtmp has advanced beyond Mnew, and the final field value Enew is determined through linear
interpolation between the final two predicted field values. When implementing the algorithm, the stepsize ∆H
can be adaptively updated to ensure that the efficiency of the inverse algorithm is close to that of the forward
algorithm.

Algorithm 1.

Specify Hprev,Mprev,Mnew

Specify ∆H

dM = Mnew − Mprev

Htmp = Hprev , Mtmp = Mprev

while sgn(dM)(Mnew − Mtmp) ≥ 0

Htmp = Htmp + ∆HdM

Mtmp given by (14)

end

Hnew given by linear interpolation

Example – Inverse Compensation

To illustrate the performance of the model inverse as well as errors or disturbances d which must be
accommodated by robust control designs when inverse compensators are applied as filters in the manner
depicted in Figure 3, we applied a 1 Hz sinusoidal signal having a magnitude of 4 × 105 A/m to the inverse
model quantified by Algorithm 1. The output from the inverse model was subsequently applied to the forward
model (14) and the resulting magnetization was compared with the original input signal. For stepsizes of
∆H = 2, this yielded the absolute and relative errors d plotted in Figure 7. At this discretization level, it is
observed that the linearization is highly accurate yielding relative errors under 1%.

The computational speed of the inverse compensator depends on the size of the step taken when advancing
the forward model with larger steps increasing the speed while decreasing the accuracy. The speed requirements
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Figure 7: (a) Disturbance d in the approximate inversion process depicted in Figure 3, and (b) relative
disturbance d/(4 × 105).
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of real-time control implementation may necessitate relative large steps which increases the uncompensated
disturbance in the plant which must be accommodated by the robust control design. However, the disturbances
due to discretization errors accrued with small sample rates are still significantly less than those due to
uncompensated hysteresis and constitutive nonlinearities which can be on the order 105 A/m. As illustrated
in the examples of Section 4, this permits the design of robust control algorithms utilizing approximate inverse
filters which achieve specified tracking criteria whereas designs which treat the uncompensated hysteresis and
nonlinearities solely as disturbances fail to meet these criteria.

2.3 Transducer Model

The constitutive model (14) quantifies the linear relation between stresses and strains as well as the non-
linear and hysteretic dependence of the stress on input fields H through the magnetization model. Hence
it characterizes the local elastic behavior of the Terfenol-D rod in a magnetostrictive transducer but it does
not incorporate spatial dependence or internal damping. In this section, we employ the constitutive relation
(14) to develop system models which quantify the displacements and forces generated by the magnetostrictive
transducer in response to input currents I(t). We summarize first the PDE model developed in [7] as well as
the ODE system obtained through a finite element discretization. For transducer designs in which flux shap-
ing is utilized to minimize end effects, it is illustrated that the second-order ODE system can be adequately
approximated by a second order scalar differential equation to facilitate control design.

We assume that the left end of the Terfenol-D rod (x = 0) is fixed whereas the right end (x = L) is
constrained by a damped oscillator and has an attached point mass ML, as depicted in Figure 8, to model
general loads encountered in applications. Furthermore, we assume that operation is biased about the point
(H0,M0) through the permanent magnet to achieve bi-directional strains. The Young’s modulus, Kelvin-Voigt
damping coefficient, and density are respectively denoted Y M , cD and ρ. The constraining spring has stiffness
kL and damping coefficient cL. We let w denote the longitudinal rod displacements therefore the strains are
given by ε = ∂w

∂x .
The direct use of the constitutive relation (13) or (14) yields an undamped model for the Terfenol-D rod.

To incorporate Kelvin-Voigt damping, we posit that stress is actually proportional to a linear combination of
strain, strain rate and squared magnetization to obtain

σ(t, x) = Y M ∂w

∂x
(t, x) + cD

∂2w

∂x∂t
(t, x) − Y MζM2(t, x) (15)

for 0 ≤ x ≤ L. We note that the relation (15) is identical to the relation obtained in [7] if the magnetoelastic
coupling coefficient is defined as ζ = λs/Ms with λs and Ms denoting the saturation magnetostriction and
saturation magnetization, respectively.

As detailed in [7], the balancing of forces yields

ρA
∂2w

∂t2
=

∂Ntot

∂x
(16)

ρ
ρw

t

M

Rod
N

x=L

tot
L

+w KLw

CL

Figure 8: Spring, damped oscillator, and point mass used to model loads in applications.
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where A is the cross sectional area of the Terfenol-D rod and the force resultant is specified by

Ntot(t, x) = Y MA
∂w

∂w
(t, x) + cDA

∂2w

∂x∂t
(t, x) − Y MAζM(t, x)2. (17)

To obtain appropriate boundary conditions, we first note that w(t, 0) = 0. Balancing forces at x = L gives

Ntot(t, L) = −kLw(t, L) − cL
∂w

∂t
(t, L) − ML

∂2w

∂x∂t
(t, L).

Initial conditions are taken to be w(0, x) = 0 and ∂w
∂x (0, x) = 0.

As detailed in [7], formulation of the model (16) in weak form and spatial discretization utilizing linear
finite elements yields the vector ODE system

M~̈y(t) + C~̇y(t) + K~y(t) = ζB
[
M2(H)

]
(t)

~y(0) = ~y0, ~̇y(0) = ~y1

(18)

where ~y(t) ∈ RN is the state vector, M ∈ RN×N , C ∈ RN×N , K ∈ RN×N respectively denote the mass,
damping and stiffness matrices, and B ∈ RN contains integrated basis functions resulting from the inputs. For
general systems, large N (e.g., N = 32) may be required to achieve convergence. This may limit the speed at
which model-based control designs can be implemented which, for certain high speed applications, motivates
consideration of an approximating lumped parameter model.

For transducer design in which the permanent magnet is constructed to minimize end effects, measurements
with a Hall probe illustrate that nearly uniform fields

H(t, x) = nI(t) (19)

are achieved along the length of the rod. Here n denotes the number of coils per unit length in the solenoid
and I(t) is the current applied to the solenoid. In such a case, each finite element section of the rod reacts
identically to the uniform magnetic field which motivates the consideration of the lumped scalar model

mÿ(t) + cẏ(t) + ky(t) = ς
[
M2(H)

]
(t)

y(0) = y0 ẏ(0) = y1

(20)

where y is the tip displacement. The scalars k, c and ς are determined by a fit to the Galerkin approximation
(18) or data from the physical device. The convergence properties of the model (18) and the accuracy of the
scalar model (20) for transducers with uniform flux paths are illustrated in Figure 9.

Finally, experiments indicate that for moderate drive levels about a bias (H0,M0), stresses exhibit an
approximately linear dependence on the magnetization but a nonlinear and hysteretic dependence on the field
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Figure 9: (a) Comparison of the finite element model (18) with a bias and the scalar model (21) with (a) N = 2,
and (b) N = 256 basis elements.
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H or current I to the solenoid. This observation motivates us to linearize about the bias level M0 to obtain
the final model

ÿ(t) + ĉẏ(t) + k̂y(t) = ς̂ [M(H)] (t)

y(0) = y0 ẏ(0) = y1 .
(21)

A model fit to the Terfenol-D data plotted in Figure 2 yields the parameter values ĉ = 7.8899 × 103, k̂ =
6.4251 × 107 and ς̂ = 1.3724 × 10−2. We note that while the model (21) exhibits a linear dependence on M ,
it retains the fully hysteretic and nonlinear dependence on H and I through the relations (12) and (19).

3 Robust Control Design

The construction of an inverse representation for the hysteresis and constitutive nonlinearities inherent to
magnetostrictive transducers can significantly reduce unmodeled plant disturbances when applied as a filter
before the physical device as depicted in Figure 3. However, this strategy does not completely eliminate
the disturbance due to modeling and discretization errors thus yielding an input error d. Furthermore, the
presence of ubiquitous sensor noise will diminish the accuracy of state estimates and subsequent control inputs.
To provide a control framework which achieves the specified tracking tolerance of 1-2 µm in the presence of
these disturbances, we construct H2 and H∞ algorithms which incorporate the model inverse developed in
Section 2. This includes a detailed discussion of the weighting filters employed in the design since they play a
crucial role in achieving the desired accuracy. Numerical examples illustrating the performance of the H2 and
H∞ designs are provided in Section 4.

3.1 System Representation

The physical control system consists of the magnetostrictive transducer depicted in Figure 1a, and the control
objective is to track a reference trajectory r which prescribes the position of the cutting head throughout
the milling procedure. During this process, the cutting head starts at rest, is moved adjacent to the material
where it is held for a specified amount of time, and then is driven periodically to mill the out-of-round object.
This yields a reference signal r of the form depicted in Figure 1b. During the periodic cutting process, the
head must maintain a tolerance of 1-2 µm.

For control design, we employ the model (21) which specifies the displacement of the Terfenol-D rod tip in
response to an applied field H(t) or current I(t) – see (19). We designate the ODE model as the plant P in the
system representation depicted in Figure 10a and let d denote errors in the plant input due either to unmodeled

W

K

d

n

r Wr

We

e

Wu

u

u

d

P

sW

s

nW
−

+
u+d ye

(a)

u+du P
u+du P

(b) (c)

Figure 10: (a) System representation including input disturbances d and sensor noise n and s in the transducer.
(b) Disturbance d due to inverse filtering errors. (c) Disturbance d due to scaled but unmodeled hysteresis
and constitutive nonlinearities.
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hysteresis and constitutive nonlinearities or approximation errors accrued when applying the inverse filters,
as depicted respectively in Figure 10b and Figure 10c. Noise in the measurement of y is separated into two
signals, s and n. We assume a 60 Hz noise signal, due to the sensing apparatus, which is represented by s.
The signal n represents higher frequency noise which may be attributed to the sensing device or other external
disturbances. These two signals are separated since we wish to weight them independently. The output signals
ê and û denote the weighted tracking error and weighted output of the controller K, respectively. Finally, Wu,
Wd, We, Wr, Ws and Wn are weighting functions chosen to maximize the performance of the controller utilizing
a priori knowledge of the characteristics of the corresponding signals in the manner detailed in Section 3.2.

We first represent the open loop system. The maps from the inputs r, d, s and n to the outputs e, ê and
û are respectively given by

e = Wr[r] − (P [Wd[d] + u] + Wn[n] + Ws[s])

= Wr[r] − P [Wd[d]] − Wn[n] − Ws[s] − P [u]

ê = We[e]

û = Wu[u].

The transfer function matrix G from the inputs r, d, n, s and u to the outputs ê, û, and e is then specified by

G =




WeWr −WePWd −WeWn −WeWs −WeP

0 0 0 0 Wu

Wr −PWd −Wn −Ws −P


 . (22)

To formulate the system representation in a manner which fulfills the assumptions of theorems guaranteeing
the existence of optimal or sub-optimal controllers, we chose a class of weighting functions Wu which have a
nonzero D matrix in the corresponding state space representation. Furthermore, the state space representation
of either Wn or Ws is required to have a nonzero D matrix and We should satisfy D = 0. For the weighting
functions constructed in Section 3.2, the open loop system can be partitioned as

G(s) =




A B1 B2

C1 0 D12

C2 D21 0


 =

[
G11 G12

G21 G22

]
, (23)

where

G11 =

[
A B1

C1 0

]
, G12 =

[
A B2

C1 D12

]

G21 =

[
A B1

C2 D21

]
, G22 =

[
A B2

C2 0

] (24)

respectively represent the transfer functions from w to z, u to z, w to e, and u to e in the linear fractional
transformation (LTF) system representation depicted in Figure 11. Details regarding the construction of
component matrices in state space realizations for transfer functions can be found in Section 3.5 of [41].

−−−z
−−−G

K

e
u

r
d

s
n

w

e u

Figure 11: Linear fractional transformation (LFT) representation of the transducer model.
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3.1.1 System Assumptions

To guarantee the existence of unique control inputs for the H2 and H∞ algorithms from [41] which are
summarized in Section 3.3, we make the following assumptions regarding the system representation (23).

A1. (A,B1) is controllable and (C1, A) is observable

A2. (A,B2) is stabilizable and (C2, A) is detectable

A3. D12 =

[
0

I

]
and D21 = [ 0 I ]

A4.

[
A − jωI B2

C1 D12

]
has full column rank for all ω

A5.

[
A − jωI B1

C2 D21

]
has full row rank for all ω

Assumption A1 is necessary to guarantee the existence of a stabilizing controller. Assumptions A4 and A5
along with A2 guarantee the existence of solutions to corresponding Riccati equations. Assumption A3 ensures
the H2 and H∞ problems are nonsingular. We note that if D12 has full column rank and D21 has full row
rank but they do not satisfy Assumption A3, a normalizing procedure can be performed as described in [41].

While there are only two internal states in the transducer model (21), the inclusion of weighting filters
can substantially increase the dimension of the plant thus motivating the removal of uncontrollable and
unobservable states through the techniques detailed in [41] to obtain a minimal realization for the system.
For the weighting filters described in Section 3.2, this leads to a reduction from 70 states to 31 states for the
numerical examples presented in Section 4.

For the system under consideration, Assumptions A1 and A2 are automatically guaranteed for the minimal
realization employed for control design. Since D∗

12C1 = 0 for the considered system, Assumption A4 is
equivalent to the condition that the open loop matrix A has no purely imaginary eigenvalues which can be
directly verified for the considered filter designs. If we let R2 = D21D

∗
21, then Assumption A5 is achieved if

A∗−C∗
2R−1

2 D21B
∗
1 has no purely imaginary eigenvalues. This too has been validated for the filters constructed

in Section 3.2 thus verifying that all of the assumptions are met for the transducer control system.

3.2 Weighting Functions

An important facet of robust control design focuses on the construction of the weighting functions Wu, Wd,
We, Wr, Ws and Wn. We summarize here techniques for constructing these filters for the motivating system
having hysteretic and nonlinear inputs, and we refer the reader to [14, 41] for a more general discussion
concerning the choice of weights.

As noted in Section 3.1, we consider sensor noise having a narrowband component s at 60 Hz and a high
frequency, broadband component n. To construct a narrowband filter which minimally weights frequencies
above and below a specified bandwidth, one typically employs an nth-order Chebyshev filter which is simply
a system whose frequency response function satisfies

|Hcb(ω)| =
1

1 + ǫpC2
n (ω/ωs)

where ωs is the sampling frequency, ǫp is a parameter that controls the speed of the rolloff, and the polynomials
Cn are the nth-order Chebyshev polynomials defined by the recursion

C0(ω) = 1, C1(ω) = ωC0(ω) Cn+1(ω) = 2ωCn(ω) − Cn−1(ω).

To weight the 60 Hz noise s, we employ a sixth-order, bandpass Chebyshev filter Ws having a bandwidth of
10 Hz centered at 60 Hz. From the frequency response plotted in Figure 12a, it is observed that Ws heavily
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Figure 12: Frequency responses of (a) the narrowband Chebyshev filter Ws, (b) the high pass Butterworth
filter Wn, and (c) the Chebyshev filter Wr.

weights frequencies in the neighborhood of 60 Hz with a sharp rolloff outside the specified bandwidth. We
recall that either Ws or Wn is required to have a nonzero D matrix in the state space realization and the filter
Ws is appended to force a nonzero D to satisfy this requirement.

An nth-order Butterworth filter having the frequency response

|Hbw(ω)| =
1√

1 + (ω/ωs)
2n

provides a commonly employed highpass filter, where ωs again denotes the sampling frequency. To weight
the simulated high frequency noise n, we employed a fourth-order Butterworth filter having the frequency
response plotted in Figure 12b.

The weight Wr targets components of the reference signal which should be emphasized during tracking.
For example, the accuracy of the initial ramp in the signal depicted in Figure 1b, which serves the purpose
of bringing the cutting head adjacent to the material, is less crucial than maintaining a tolerance of 1-2 µm
during the milling phase of the process. As detailed in Section 4, the properties of the control design can be
illustrated by considering a 1 Hz periodic signal following the ramping up phase. The weight Wr was specified
to be the sixth-order passband Chebyshev filter plotted in Figure 12c having a bandwidth of 1 Hz and centered
at 1 Hz. If additional accuracy is desired during the ramping phase of the process, this weight can be modified
to additionally emphasize lower frequency signals. Finally, one would simply change the center point when
experimentally implementing the control law at the specified rate of 3000 rpm.

We consider two constructs for Wd corresponding to the two techniques depicted in Figure 10 for accommo-
dating the effects of hysteresis and constitutive nonlinearities. To determine Wd when d consists of the error
accrued when approximating the inverse filter as depicted in Figure 10b, a signal having the same frequency as
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Figure 13: (a) Power spectrum of d, and (b) frequency response of Wd for the disturbance d due to inverse
filtering error.
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Figure 14: (a) Power spectrum of d, and (b) frequency response of Wd for the disturbance d due to scaled but
uncompensated hysteresis and nonlinearities.

the reference signal was applied to the approximate inverse filter and the result was fed into the energy-based
hysteresis model. The power spectrum of the output d from the hysteresis model was subsequently analyzed
to determine Wd. From the power spectrum plotted in Figure 13a, it can be concluded that in this case Wd

should weight the strong low frequency component as well as measured frequencies around 350 Hz so it was
specified as a lowpass Butterworth filter having a cutoff frequency of 400 Hz as illustrated in Figure 13b.
Higher order filters can be used if a steeper rolloff outside the frequency band is desired but the price paid for
increased order is an increased number of states in the open loop state space system representation.

In the second case, a linear filter was employed to eliminate scaling differences between field and mag-
netization values, but no inverse filter was employed so the disturbance d includes the scaled hysteresis and
constitutive nonlinearities. The power spectrum of a signal fed through the resulting system is plotted in
Figure 14 along with the frequency response of a fourth-order lowpass Butterworth filter having a cutoff fre-
quency of 10 Hz. A comparison between this power spectrum and that in Figure 13 for the approximate
inverse reveals two items: the energy content is significantly higher and the frequency spectrum lower when
the disturbance consists of uncompensated hysteresis and nonlinearities than when it is comprised of inversion
errors. As will be illustrated in the examples of Section 4, this significantly impacts the tracking authority
of robust control designs employing the two strategies and limits the accuracy of designs which accommodate
the uncompensated hysteresis and constitutive nonlinearities solely as disturbances.

The weighting function on the error signal is specified as We = γe

s+ǫe
with γe = 1.8×106 and ǫe = 1×10−8.

An integrator is chosen to prevent the error from achieving steady state at a nonzero value and the pole
was shifted slightly off zero to ensure that the controller is realizable. Finally, the weighting function on the
controller output was taken to be Wu = 5×10−6. Since we do not experience problems with saturation or overly
large currents to the solenoid, we minimally weight û to focus the control effort on tracking and disturbance
rejection. Note that the functions We and Wu satisfy the requirement placed on them in Section 3.1, that is,
D = 0 in the state space realization of We and D = 5 × 10−6 in the realization of Wu.

3.3 Robust Control Theory

The transfer function matrix (22) provides a representation for the transducer system, including weighting
filters, whereas the formulation (23) quantifies the state space representation associated with the transfer
functions from inputs to outputs. We now specify control laws used to compute the gains K by minimizing
specific norms of the closed loop system representation T . We consider two measures of robust performance,
namely, the H2 norm

‖T‖2
2 =

1

2π

∫ ∞

−∞

trace [T ∗(iω)T (iω)] dω (25)

and the H∞ norm
‖T‖∞ = sup

ω∈R

σ[T (jω)] (26)
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where σ[T (jω)] denotes the maximal singular values of the closed loop map T . Since the sensor noise and
disturbances due to approximation errors in the inverse filters or uncompensated hysteresis are included as
inputs to the system depicted in Figure 11, the robust control laws will be designed to minimize the norms of
the maps from these inputs to the system outputs; that is, from w to ê and w to û.

3.3.1 H2 Optimal Control Design

Employing the notation defined in (23) and (24), the optimal H2 control formulation incorporates two Hamil-
tonian matrices

H2 =




A − B2R
−1
1 D∗

12C1 −B2R
−1
1 B∗

2

−C∗
1 (I − D12R

−1
1 D∗

12)C1 −(A − B2R
−1
1 D∗

12C1)
∗


 (27)

and

J2 =




(A − B2R
−1
1 D∗

12C1)
∗ −C∗

2R−1
2 C2

−B1(I − D∗
21R

−1
2 D21)B

∗
1 −(A − B2R

−1
1 D∗

12C1)


 , (28)

where R1 ≡ D∗
12D12 > 0 and R2 ≡ D21D

∗
21 > 0, along with the Riccati equations

(A − B2R
−1
1 D∗

12C1)
∗X2 + X2(A − B2R

−1
1 D∗

12C1) + X2(−B2R
−1
1 B∗

2)X2 − C∗
1 (I − D12R

−1
1 D∗

12)C1 = 0

(A − B2R
−1
1 D∗

12C1)Y2 + Y2(A − B2R
−1
1 D∗

12C1)
∗ + Y2(−C∗

2R−1
2 C2)Y2 − B1(I − D∗

21R
−1
2 D21)B

∗
1 = 0 .

The following theorem from [41] provides conditions guaranteeing the existence of a unique H2 feedback gain.

Theorem 1: There exists a unique controller which minimizes the H2 norm of the closed loop system if

1. H2 ∈ dom(Ric) and X2 ≡ Ric(H2) > 0

2. J2 ∈ dom(Ric) and Y2 ≡ Ric(J2) > 0.

The optimal H2 control gain is given by

K ≡

[
A2 −L2

F2 0

]
(29)

where

A2 = A + B2F2 + L2C2 , F2 = −R−1
1 (B∗

2X2 + D∗
12C1) , L2 = −(Y2C

∗
2 + B1D

∗
21)R

−1
2 .

We note that Assumptions A2, A3 and A4 from Section 3.1.1 guarantee that H2 ∈ dom(Ric) whereas As-
sumptions A1, A3 and A5 guarantee that J2 ∈ dom(Ric).

3.3.2 H∞ Sub-optimal Control Design

Secondly, we consider robust control design utilizing the H∞ norm defined in (26). As detailed in [41], the
formulation of a suboptimal H∞ control law which guarantees ‖T‖∞ < γ, γ > 0, yields the Hamiltonian
matrices

H∞ =




A γ−2B1B
∗
1 − B2B

∗
2

−C∗
1C1 −A∗


 (30)

and

J∞ =




A∗ γ−2C∗
1C1 − C∗

2C2

−B1B
∗
1 −A


 (31)

along with the Riccati equations

A∗X∞ + X∞A + X∞

(
γ−2B1B

∗
1 − B2B

∗
2

)
X∞ + C∗

1C1 = 0

AY∞ + Y∞A∗ + Y∞

(
γ−2C∗

1C1 − C∗
2C2

)
Y∞ + B1B

∗
1 = 0 .
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The primary difference between the Hamiltonian matrices arising in the H∞ formulation and the Hamiltonian
matrices for the H2 formulation is that the (1,2) blocks of H∞ and J∞ are not sign-definite. Therefore, a
solution to the Riccati equations can not be guaranteed for all γ. We note that in the limit γ → ∞, the H∞

Hamiltonians (30) and (31) converge to the H2 Hamiltonians (27) and (28).
The following theorem from [41] guarantees the existence of an H∞ sub-optimal control law.

Theorem 2: There exists an admissible controller such that ‖T‖∞ < γ if and only if

1. H∞ ∈ dom(Ric) and X∞ ≡ Ric(H∞) > 0

2. J∞ ∈ dom(Ric) and Y∞ ≡ Ric(J∞) > 0

3. ρ(X∞Y∞) < γ2.

The H∞ suboptimal control law is given by

K ≡

[
A∞ −Z∞L∞

F∞ 0

]
(32)

where
A∞ = A + γ−2B1B

∗
1X∞ + B2F∞ + Z∞L∞C2 , F∞ = −B∗

2X∞ , L∞ = −Y∞C∗
2 .

While the control input provided by the system (32) is suboptimal in the sense that it provides a closed
loop system with an H∞ norm less than γ, the Matlab routine hinfsyn can be utilized to decrease γ until an
assumption of Theorem 2 is violated. This provides control inputs which are nearly optimal.

4 Numerical Examples

We illustrate here the performance of the H2 and H∞ control designs in the context of the motivating milling
application. As illustrated in Figure 1, a magnetostrictive transducer is used to position a cutting head
adjacent to the unmilled object. During the subsequent periodic milling process, it is required that the
transducer maintain tolerances of 1-2 µm while operating in hysteretic and nonlinear regimes to achieve
the required stroke and force inputs. The ODE model (21) is used to quantify the cutting head position
with hysteresis and constitutive nonlinearities characterized by the discrete magnetization model (14). The
inverse filter is constructed via Algorithm 1 in Section 2.2 with ∆H chosen to be sufficiently large to permit
eventual real-time implementation which also serves to illustrate the performance of the control algorithms
with nontrivial disturbances due to inversion errors. For all simulations, we employed the parameters specified
in the validation example of Section 2.1 which yielded the model fits to experimental data plotted in Figure 6.
Finally, as noted in Section 3.1.1, a minimal realization having 31 states was employed in the simulations.

The physical milling device is designed to operate at 3000 rpm which will introduce eddy current losses in
general transducer designs. To focus the discussion on control issues associated with the inherently nonlinear
and hysteretic transducers, we neglect this source of losses which is appropriate for magnetostrictive trans-
ducers utilizing laminated Terfenol rods and casings to minimize currents. In this case, it is appropriate to
normalize the reference frequency to 1 Hz. The extensions required to accommodate eddy current losses for
general transducer designs will entail the incorporation of additional physical mechanisms in the magnetization
models but no changes in the robust control designs employed here.

For the H2 and H∞ designs, we consider three cases. In all three cases, a 60 Hz signal s having a magnitude
of 5×10−6 m was added to the simulated tip displacement y to illustrate the effects of narrowband sensor noise.
The same noise signal was added in all simulations and because the magnitude of the reference trajectory is
1 × 10−4, this represents a 5% noise to data ratio. Similar results were obtained when low magnitude, high
frequency noise n was added but to simplify the discussion, we omit this source of noise in the examples.
To provide a baseline for comparison, we employed a linear input relation in the first case to illustrate the
performance of the control laws in the absence of a disturbance d. This can also be interpreted as the case
when the inverse filter perfectly compensates for the hysteresis and constitutive nonlinearities. Secondly, we
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employ the approximate inverse filter so that the disturbance d consists of discretization errors accrued when
employing a large stepsize ∆H. In the final case, we consider robust control design when a linear filter is used
to provide the same scale in the field and magnetization, as illustrated in Figure 10c, but no inverse filter is
employed. This illustrates the authority provided by the robust control designs which treat the uncompensated
hysteresis and nonlinearities as the disturbance d. We emphasize that in each case, we optimized both the
filter design and choice of control weights to achieve optimal performance for the respective disturbances.

4.1 H2 Control Design

We consider first the tracking authority achieved using the H2 design summarized in Section 3.3.1 for the
three disturbance cases. The same 5% sensor noise signal is applied in all three examples.

Case i: Sensor Noise s but No Disturbance

The tracking authority obtained in the presence of 60 Hz sensor noise with a noise-to-data ratio of 5% is
illustrated in Figure 15a with the corresponding tracking error e = r − y plotted in Figure 15b. The presence
of the sensor noise can be observed in the two flat portions of the reference signal r which corresponds to the
times when the cutting head is held fixed. Following a slight spike when the milling commences, the error is
maintained well within the tolerance of 2 µm and has a magnitude of 1 µm after 2.5 seconds. We note that
because the accuracy during the milling process was deemed more important than the accuracy during the
positioning and holding periods, the filter Wr described in Section 3.2 was chosen to weight the 1 Hz signal at
the slight expense of quasistatic regimes. This can of course be modified if tolerances during other phases of
the milling process are considered more crucial. These results represent the baseline tracking achievable for a
linear transducer or when inverse filtering has no error.

Case ii: Sensor Noise s and Disturbance d Due to Inversion Error

Secondly, we consider the H2 design obtained using the approximate inverse filter specified by Algorithm 1.
The disturbance d in this case consists of discretization error for the filter which has the frequency profile
depicted in Figure 13a. The weight Wd was taken to be the lowpass Butterworth filter depicted in Figure 13b.

The computed tip position y and reference trajectory r, along with the tracking error e, are plotted in
Figure 16. The H-M and H-y relations are plotted in Figure 17 to illustrate the nonlinear and hysteretic
relationship between the applied field H, magnetization M and tip displacement – these relations also illustrate
the necessity of employing hysteresis models which guarantee the closure of biased minor loops. We note that
the H-M and H-y relations are qualitatively similar due to the assumption of a linear relation between M
and y made when constructing the transducer model (21) for biased operating regimes. The effect of the bias
is readily noted if one compares Figure 17 with the unbiased validation results in Figure 6.
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Figure 15: H2 design incorporating sensor noise s but no disturbance d. (a) Reference trajectory and simulated
cutting head position. (b) Error in cutting head position.
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Figure 16: H2 design incorporating sensor noise s and the disturbance d due to discretization errors in the
inverse filter. (a) Reference trajectory and simulated cutting head position. (b) Error in cutting head position.

The transducer starts at a position of y = 0 for H = 0, and following slightly negative excursions due to
sensor noise, a field of 2× 104 A/m is applied to position the head adjacent to the ingot. It is observed that a
decrease in field is required to counter the slight overshoot and sensor noise before the periodic milling process
commences. During the milling process, the error is maintained within the tolerance level of 2 µm with the
largest errors occurring at field reversal.

To further illustrate robustness properties of the H2 design, we formulate the tracking error

e = r − y

= r − (n + s + P [d + K[e]])

= S[r] − S[n] − S[s] − Sd[d]

(33)

in terms of the sensitivity function
S = (I + PK)−1, (34)

which is the transfer matrix from r, n and s to e, and the disturbance sensitivity function

Sd = (I + PK)−1P, (35)

which maps d to e. The frequency responses of S and Sd illustrate the robustness of the design to certain
frequency inputs.
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Figure 17: (a) Hysteretic relation between the field H and magnetization M , and (b) relation between H and
the displacement y.
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Figure 18: Frequency response of (a) the H2 sensitivity function S, and (b) disturbance sensitivity function
Sd for the disturbance d due to discretization errors in the inverse filter.

For the disturbance d consisting of inversion error, the frequency responses of S and Sd are plotted in
Figure 18. Both functions exhibit a strong dip in magnitude in the neighborhood of 1 Hz dictated by the
tracking filter Wr which provides the method with robust tracking authority for the reference signal. The
dip below a magnitude of 1 at 60 Hz reflects the rejection of sensor noise s using the filter Ws. Finally, the
disturbance function Sd exhibits strong attenuation throughout the interval [0, 350 Hz] thus illustrating that
the high frequency disturbance due to inversion error is being adequately accommodated. Hence the H2 design
utilizing the approximate inverse filter achieves the specified tracking criteria.

Case iii: Sensor Noise s and Disturbance d Due to Uncompensated Hysteresis and Nonlinearities

Finally, we consider the effectiveness of the H2 design obtained using a linear filter to provide the same scale
between field and magnetization values but no compensation for hysteresis or constitutive nonlinearities. The
resulting disturbance has the frequency profile plotted in Figure 14a and the filter Wd depicted in Figure 14b
was employed in the H2 design.

The tracking performance and error e, while operating in hysteretic regimes qualitatively similar to those
depicted in Figure 17, are plotted in Figure 19. It is observed that in this case, significant phase delays are
present at the nonlinear high drive levels which produces errors of between 6 and 7 µm. The errors of 3 to
4 µm as fields are cycled to zero also exceed the 2 µm tolerance. Hence the optimal H2 design in this case
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Figure 19: H2 design incorporating sensor noise s and the disturbance d due to uncompensated hysteresis and
constitutive nonlinearities. (a) Reference trajectory and simulated cutting head position. (b) Error in cutting
head position.
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does not achieve the control criteria since it cannot fully accommodate the uncompensated hysteresis and
constitutive nonlinearities. This illustrates the necessity of employing the approximate inverse filter to achieve
the stringent tracking tolerances dictated by the application.

4.2 H∞ Control Design

We illustrate here the performance of the H∞ design summarized in Section 3.3.2 in the absence of a distur-
bance d, and for disturbances comprised of inversion errors and uncompensated hysteresis and constitutive
nonlinearities. In all cases, we incorporate 60 Hz sensor noise s having a noise-to-data ratio of 5%.

Case i: Sensor Noise s but No Disturbance

To provide a baseline for comparison, we consider first the tracking accuracy obtained in the presence of
sensor noise s but no disturbance d. The tracking capability provided by the H∞ design under these conditions
is illustrated in Figure 20. It is observed that during the holding period, the control maintains a tolerance of
1-2 µm and then tracks to within 1 µm during the periodic milling process. Hence the H∞ design achieves the
control specifications in the absence of a disturbance d which represents either perfect inverse compensation
or linear transducer behavior. A comparison between Figures 20 and 15 indicates nearly identical tracking
performance for the H∞ and H2 designs in this control regime.

Case ii: Sensor Noise s and Disturbance d Due to Inversion Error

We next employ Algorithm 1 to construct an approximate inverse filter so that d consists of inversion
errors having the frequency profile depicted in Figure 13a. The simulated tip position and tracking error
for the H∞ control designed for this disturbance are plotted in Figure 21 and the frequency responses of the
sensitivity function S and disturbance sensitivity function Sd, respectively defined in (34) and (35), are plotted
in Figure 22. The hysteretic relationship between the applied field H and tip displacement y is sufficiently
similar to the H2 phase plot depicted in Figure 17 that we reference that figure when discussing the H∞

tracking performance.
Like the H2 design, the H∞ maintains a tolerance of under 2 µm during the periodic milling phase thus

achieving the control objectives. The frequency responses of S and Sd also reflect diminished magnitudes at
1 Hz and 60 Hz due to the lowpass and narrowband filters, and the magnitude of S is maintained below 1 at
higher frequencies so that high frequency disturbances are not being amplified.

A comparison of Figure 21 with Figure 16 and Figure 22 with Figure 18 illustrates that while the H∞

and H2 designs exhibit minor differences in tracking authority and robustness, both yield similar qualitative
results. Because the H2 design is more efficient to implement, it is somewhat advantageous in this regime
from a technological perspective.
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Figure 20: H∞ design incorporating sensor noise s but no disturbance d. (a) Reference trajectory and
simulated cutting head position. (b) Error in cutting head position.
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Figure 21: H∞ design incorporating sensor noise s and the disturbance d due to discretization errors in the
inverse filter. (a) Reference trajectory and simulated cutting head position. (b) Error in cutting head position.

Case iii: Sensor Noise s and Disturbance d Due to Uncompensated Hysteresis and Nonlinearities

In the final case, the disturbance consists of scaled but uncompensated hysteresis and constitutive non-
linearities having the frequency profile plotted in Figure 14a. The H∞ design using the filter Wd depicted
in Figure 14b yielded the tip displacements and tracking errors plotted in Figure 23. These results exhibit
the same tendency observed in Figure 19 for the H2 design in the sense that hysteresis-induced phase delays
produce tracking errors on the order of 6-7 µm in the nonlinear, high drive regimes required to complete
the strokes at the apogee of the cycle. For these disturbances, neither the H∞ nor H2 designs provided the
authority required to fully compensate for the hysteresis and achieve the specified tolerances of 1-2 µm.

5 Concluding Remarks

This paper addresses issues associated with robust control design for high performance actuators operating
in nonlinear and hysteretic regimes and illustrates that in some cases, the incorporation of inverse filters
to reduce the severity of unmodeled disturbances is required to achieve stringent tracking tolerances. A
fundamental component in these robust control designs is the development of nonlinear hysteresis models which
accurately characterize transducer behavior and permit the construction of approximate model inverses which
are sufficiently efficient to permit eventual real-time implementation. The construction of such a modeling
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Figure 22: (a) H∞ sensitivity function, and (b) disturbance sensitivity function for the disturbance d due to
discretization errors in the inverse filter.
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Figure 23: H∞ design incorporating sensor noise s and the disturbance d due to uncompensated hysteresis
and constitutive nonlinearities. (a) Reference trajectory and simulated cutting head position. (b) Error in
cutting head position.

framework is illustrated in the context of a magnetostrictive transducer employed for high accuracy milling.
Furthermore, it is illustrated in [35, 36] that this framework can also be employed to quantify the hysteretic
and nonlinear behavior of ferroelectric and ferroelastic compounds, including piezoceramic and shape memory
alloys, so it provides a unified framework for constructing inverse-based robust control designs for a broad
range of presently employed smart material transducers.

To accommodate a variety of disturbances, we considered both H2 and H∞ designs. To provide a baseline
for comparison, we first considered the tracking accuracy obtained in the presence of 60 Hz sensor noise having
a noise-to-data ratio of 5% but no disturbances due to actuator nonlinearities. In this regime, we illustrated
through numerical examples that both the H2 and H∞ designs easily maintain the specified tolerances of
1-2 µm during the motivating periodic milling process. Secondly, we considered the performance of robust
designs utilizing an approximate model-based inverse filter with highpass filters constructed to accommodate
the disturbance due to inversion errors. While the tracking accuracy in this case was slightly diminished from
that obtained with no disturbance, both the H2 and H∞ designs maintained tracking tolerances under 2 µm
during the milling process and hence achieved the control objectives. The third design utilized a linear factor
to provide the same scales between field and magnetization but treated the scaled hysteresis and constitutive
nonlinearities as disturbances to be accommodated by the robust control laws. In this case, both the H2

and H∞ designs exhibited tracking errors on the order of 6-7 µm due to hysteresis-induced phase delays and
unaccommodated nonlinearities – hence neither design is able to achieve the stringent tracking tolerance when
the entire impetus for attenuating hysteresis and nonlinearities is placed on the control law.

We note that the use of the scale factor is advantageous for ferromagnetic transducer but is not crucial
when employing SI (Sommerfield) units since field and magnetization levels often differ by only 1-2 orders of
magnitude. It will be much more crucial when designing robust control algorithms for piezoceramic materials
in the absence of inverse compensation since electric fields often have magnitudes on the order of 106 V/m
whereas corresponding polarization levels have values on the order of 0.1 - 0.3 C/m2.

A crucial component of the control design involves the construction of filters which weight the reference
signal, errors, sensor noise, and disturbances. For the milling example considered here, the choice of appropriate
weighting filters had more impact on the final tracking authority than did the specification of H2 versus H∞

control designs.
The necessity of considering inverse filter-based designs will be augmented as operating frequencies are

increased due to increasing noise-to-data ratios, larger measured hysteresis loops, and diminishing author-
ity of highpass filters. The incorporation of the physical mechanisms necessary to accommodate frequency-
dependence in the unified hysteresis models used to construct the inverse filters for magnetostrictive, piezoce-
ramic and shape memory alloy compounds is under present investigation and will be incorporated in future
robust control designs.
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Finally, a guiding factor throughout this analysis is the development of robust control designs which are
feasible for eventual experimental implementation. This requirement is increasingly stringent for a number
of high frequency applications under consideration which target the broadband capabilities of piezoceramic,
relaxor ferroelectric and magnetostrictive transducers – e.g., PZT-based, high speed nanopositioning for real-
time tracking of biological processes or magnetostrictive transducer design for high speed industrial processes.
The control framework developed here was constructed with these implementation requirements in mind and
present investigations are focused on the initial experimental implementation of the methods.
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