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Abstract. The reliability of high-volume products, such as consumer
electronic devices, is threatened by the combination of increasing com-
plexity, decreasing time-to-market, and strong cost constraints. As an
approach to maintain a high level of reliability and to avoid customer
complaints, we present a run-time awareness concept. Part of this concept
is the use of models for run-time error detection. We have implemented a
general awareness framework in which an application and a model of its
desired behaviour can be inserted. It allows both time-based and event-
based error detection at run time. This method, coupled to local recovery
techniques, aims to minimize any user exposure to product-internal tech-
nical errors, thereby improving user-perceived reliability.
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Computer Science (LNCS), Vol. 5002, pp. 225-236, Springer-Verlag, 2008

1 Introduction

Modern consumer electronics devices, such as T'Vs or smart phones, contain vast
amounts of intelligence encoded in either software or dedicated hardware. Hun-
dreds of engineers develop and improve these “computers in disguise” for global
markets but facing plenty of local variations. Complexity and open connectiv-
ity make it exceedingly difficult to guarantee total product correctness under
all operating conditions. The final aim of our work is to improve user-perceived
reliability of these devices by run-time awareness, i.e., allow a device to correct
at run time important, user-noticeable, failure modes. This paper presents an
approach to provide run-time error detection as a first step towards awareness.

The work described here is part of the Trader project in which academic
and industrial partners collaborate to optimize the reliability of high-volume
products, such as consumer electronic devices. The main industrial partner of
this project is NXP Semiconductors (formerly Philips Semiconductors), with a
focus on audio/video equipment (e.g., TVs and DVD players). NXP provides
the problem statement and relevant case studies which are taken from the TV
domain. A current high-end TV is a very complex device which can receive
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analog and digital input from many possible sources and using many different
coding standards. It can be connected to various types of recording devices and
includes many features such a picture-in-picture, teletext, sleep timer, child lock,
TV ratings, emergency alerts, TV guide, and advanced image processing. Simi-
lar to other domains, we see a convergence to additional features such as photo
browsing, MP3 playing, USB, games, databases, and networking. Correspond-
ingly, the amount of software in TVs has seen an exponential increase from 1
KB in 1980 to 24 MB in current high-end TVs. Also the hardware complexity is
increasing rapidly to support, for instance, real-time decoding and processing of
high-definition (HD) images for large screens, large data streams, and multiple
tuners. Correspondingly, a TV is designed as a system-on-chip with multiple
processors and dedicated hardware accelerators, to meet stringent real-time re-
quirements of, for instance, HDTV-quality input at rates up to 120 Hz.

In addition, there is a strong pressure to decrease time-to-market, i.e., the in-
creasing complexity of products has to be addressed in shorter innovation cycles.
To realize many new features quickly, components developed by others have to be
incorporated. This includes so-called third-party components, typically realizing
audio and video standards, but also in-house developed components supplied by
other business units. Moreover, there is a clear trend towards the use of down-
loadable components, to increase product flexibility and to allow new business
opportunities (selling new features, games, etc.).

Given these trends, the complexity of hardware and software, and the large
number of possible user settings and types of input, exhaustive testing is im-
possible. Moreover, the product has to tolerate certain faults in the input (e.g.,
deviations from coding standards or bad image quality). Hence, it is extremely
difficult to continue producing products at the same reliability level. The cost
of non-quality, however, is high, because it leads to many returned products, it
damages brand image, and reduces market share.

The main goal of the Trader project is to prevent faults in high-volume
products from causing customer complaints. Hence, the focus is on run-time error
detection and correction, minimizing any disturbance of the user experience of
the product. The main challenge is to realize this without increasing development
time and, given the domain of high-volume products, with minimal additional
hardware costs and without degrading performance.

This paper is structured as follows. In Sect. 2 the main approach is described.
We list the main research questions in Sect. 3. Section 4 contains current results.
In Sect. 5 we discuss related work. Concluding remarks can be found in Sect. 6.

2 Approach

In observing failures of current products, it is often the case that a user can
immediately observe that something is wrong, whereas the system itself is com-
pletely unaware of the problem. Inspired by other application domains, such as
the success of helicopter health and usage monitoring [1], the main approach in
Trader is to give the system a notion of run-time awareness that its customer-



perceived behavior is (or is likely to become) erroneous. In addition, the aim
is to provide the system with a strategy to correct itself in line with customer
expectations. The concept of run-time awareness and correction as pursued by
the Trader project is depicted in Fig. 1.
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Fig. 1. Adding awareness at run time

We list the main ingredients of our run-time awareness approach, giving examples
from the TV-domain:

— Observation: observe relevant inputs, outputs and internal system states. For
instance, for a TV we may want to observe keys presses from the remote con-
trol, internal modes of components (dual/single screen, menu, mute/unmute,
etc), load of processors and busses, buffers, function calls to audio/video out-
put, sound level, etc.

— FError detection: detect errors, based on observations of the system and a
model of the desired system behaviour. For a TV, this could be done using
a state machine which describes mode changes in response to remote control
commands. An alternative is to use a model of expected load and memory
usage and compare this with the actual system behaviour.

— Diagnosis: in case of an error, find the most likely cause of the error, e.g.
using architectural models of the system. Examples are diagnosis techniques
that record data about executed parts of the system and the (non)occurrence
of errors or techniques that use architectural models that include faulty
behaviour. These techniques can be applied at various levels of granularity,
from fine-grained fault-localization in blocks of C-code to course-grained
diagnoses of large components.



— Recovery: correct erroneous behaviour, based on the diagnosis results and
information about the expected impact on the user. Possible corrections
include restarting particular components, resetting internal modes/variables,
rescheduling software components, etc.

The approach depicted in Fig. 1 can be applied to the complete system, but
run-time awareness can also be added hierarchically and incrementally to parts
of the system, e.g., to third-party components.

An important part of our approach is the use of models at run time. These
models need not be complete descriptions of the full system behaviour; they
could concentrate on a high-level abstract view of part of the system behaviour,
depending on what is most useful in view of user-perceived reliability. To be able
to detect and correct errors before the user notifies them, models will usually
also describe certain aspects of internal system behaviour, such as the maximum
load or memory usage in certain modes or crucial internal variables.

We briefly mention the current status of a number of research activities under
the umbrella of the Trader project that contribute to run-time awareness:

Observation: To observe relevant aspects of the system, hardware-related
work in Trader currently aims at exploiting mechanisms already available
in hardware, such as the on-chip debug and trace infrastructure. Software
behaviour is observed by code instrumentation using aspect-oriented tech-
niques, partly based on results from the ESI-project Ideals [2]. A specialized
aspect-oriented framework called AspectKoala [3] has been developed on top
of the component model Koala which is used at NXP to modularize the TV
software.

— FError detection: Various techniques for error detection are investigated such
as hardware-based deadlock detection and range checking. An approach
which checks the consistency of internal modes of components turned out
to be successful to detect teletext problems due to a loss of synchronization
between components [4].

— Diagnosis: The diagnoses techniques developed within Trader are based on
so-called program spectra [5]. The first applications in the TV domain are
encouraging and the technique is currently refined by using it for debugging.

— Recovery: To allow independent recovery of parts of the system, a frame-

work for local recovery has been developed [6]. A few first experiments in

the multimedia domain show that, after some refactoring of the system, in-
dependent recovery of parts of the system is possible without large overhead.

Another part of the recovery research concentrates on task migration. This

includes, for instance, the migration of tasks from one processor to another

to improve image quality in case of overload situations (e.g., due to intensive
error correction on a bad input signal).

In addition, there are controlled experiments with TV users to capture user-
perceived failure severity, that is, to get an indication of the level of user-irritation
caused by a product failure. In the remainder of this paper we focus on model-
based error detection, and refer to [7] for more information on other research
within Trader.



3 Research Questions

We list a number of research questions concerning the embedding of error de-
tection in concrete industrial products. In Sect. 3.1 we address the problem of
getting suitable models. Section 3.2 discusses the use of these models for run-time
error detection.

3.1 Modeling
There are several questions related to the models to be used at run time:

— Which part of the system has to be modeled? For a complex price-sensitive
device such as a TV, it is cost-inhibitive to check the complete system be-
haviour at run time. Hence, a choice has to be made based on the likelihood
of errors and the impact on the user. Moreover, it is relevant to take into
account which errors can be treated by the diagnosis and the recovery parts
of the awareness framework.

— Which models are most suitable for run-time error detection? For instance,
which type of models is convenient and what is the right level of abstraction?
Although we focus on user-perceived behaviour, some architectural modeling
will be relevant to enable early detection of errors, i.e., before a user observes
a failure.

— How to obtain suitable models? Typically, in the area of embedded sys-
tems, the number of models available in industry is limited. The required
overall system behaviour is usually not modeled and models have to be re-
constructed using a lot of implicit domain knowledge (comparable to the
experiences described Sect. 4 of [8]).

— How to increase the confidence in the model; how to evaluate model quality
and fidelity?

3.2 Using Models at Run Time
The use of models at run time for error detection raises a number of questions:

— How to obtain the relevant observations from the system? Note that this
involves both hardware and software parts of the system. Typically, there
are several processors and state information is often distributed. Hence, a
question is how to get a consistent snapshot of the global state of the system.

— How to avoid detecting non-existing errors? The concept is to compare sys-
tem observations (e.g., output, states, load) with the values specified in the
model of desired system behaviour, henceforth also called the specification
model. False errors might occur due to a number of reasons such as i) the
use of an incorrect model, ii) an incorrect implementation of the model, iii) a
comparison at a wrong moment in time when the system is not stable. This
leads to the questions mentioned in the following points.

— How to preserve model semantics in the implementation at run time?



— When to compare system observations with the model? When the system is
unstable, e.g., it is performing an action which takes some time, comparison
may lead to wrong results. How to decide when the system is in a stable
state? Is it possible to get notifications from the system or should stabil-
ity be deduced indirectly, e.g., by observing return values or changing data
structures? Should comparison be done time-driven, event-driven, or by a
combination?

— When to report an error exactly? Should system and specification match
exactly, or is a certain tolerance allowed? How much difference is allowed?
Should a single deviation lead to an error or are a few consecutive deviations
needed before an error is generated?

Observe that many of these questions are related. For instance, the decision
what to model depends on the type of errors one wants to detect, which errors
are recoverable, and what can be observed about the system in an effective way
(without too much costs or performance loss). In our context, an important
factor is also the user perception of which failures are irritating and which type
of recovery is acceptable for users.

4 Results on Model-Based Error Detection

We present the current results of the Trader project on model-based error detec-
tion. First, in Sect. 4.1, we discuss work on obtaining a model of desired system
behaviour, related to the questions in Sect. 3.1. Next, in Sect. 4.2, we present
a framework for run-time model-based error detection to obtain more insight in
the issues mentioned in Sect. 3.2.

4.1 Experiences with Modeling Desired System Behaviour

Since the TV domain is our source of inspiration and the focus is on user-
perceived reliability, the first aim was to make a model that captures the user
view of a particular type of TV in development. The model should capture the
relation between user input, via the remote control, and output, via images on
the screen and sound. Such a model did not exist. Neither could it be derived
easily from the TV requirements, which, in common industrial practice, were
distributed over many documents and databases.

Concerning the control behaviour of the TV, a few first experiments indicated
that the use of state machines leads to suitable models. But it also revealed that
it was very easy to make modeling errors. Constructing a correct model was
more difficult than expected. Getting all the information was not easy, and many
interactions were possible between features. Examples are relations between dual
screen, teletext and various types of on-screen displays that remove or suppress
each other. Hence, we aim at executable models to allow quick feedback on the
user-perceived behaviour and to increase the confidence in the fidelity of the
model. In addition, we exploit the possibilities of formal model-checking and
test scripts to improve model quality.



Besides the control behaviour, a TV also has a complex streaming part with
a lot of audio and video processing. Typically, this gets most attention in the
requirements documentation. We would like to model this on a more abstract
level, with emphasis on the relation with the control part.

These considerations led to the use of Matlab/Simulink [9]. The Stateflow
toolbox of Simulink is used for the control part and the Image and Video Pro-
cessing toolbox for the streaming part. A snapshot of a simulation is depicted in
Fig. 2. The Simulink model is shown in the middle, at the top, with on the left
a (blue) Stateflow block called “T'Vbehaviour” and on the right, an image pro-
cessing block called “Video”. The Stateflow block is a hierarchical and parallel
state diagram. It is partly shown on the bottom, where the active states are dark
(blue). External events are obtained by clicking on a picture of a remote control,
shown on the left. Output is visualized by means of Matlab’s video player and
a scope for the volume level, shown on the bottom right side in Fig. 2.
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Fig. 2. Simulation of model of TV behaviour

The visualization of the user view on input and output of the model turned
out to be very useful to detect modeling errors and undesired feature interac-
tions. Since the model was changed frequently, we experimented with the tool
Reactis [10] to generate test scripts to check conformance after model changes.
This tool can also be used to validate model properties. Related functionality is
provided by the Simulink Design Verifier.



4.2 A Framework for Run-Time Model-Based Error Detection

To foster quick experimentation with the use of models at run time inside real
industrial products, e.g. a TV where the control software is implemented on top
of Linux, we have developed a Linux-based framework for run-time awareness.
A particular System Under Observation (SUO) can be inserted, needing only
minimal adaptations to provide certain observations concerning input, output,
and internal states to the awareness monitor. The specification model of the
desired system behaviour is included by using the code generation possibilities
of Stateflow. Hence, it is easy to experiment with different specification models.
The awareness part also contains a comparator that can be adapted to include
different comparison and detection strategies.

Before implementing the framework, it has been modeled in Matlab/Simulink
to investigate the main concepts. A high-level view is depicted in Figure 3,
illustrating the comparison of the volume level. To simulate the comparison
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Fig. 3. Model of model-based error detection

strategy, we also made a second model for the SUQO, this time a more detailed
architectural model which also includes timing delays to simulate the execution
time of internal actions. A few observations based on simulations are listed below:

— Our initial specification models had to be adapted to include best-case
and worst-case execution times. To capture uncertainties in the system be-
haviour, we added intermediate states to represent that the system might
be in transition from one mode to another.

— Part of the comparison strategy is included in the specification model, to
be able to use domain knowledge about processing delays and intermediate
states. To this end, the specification generates events to start and to stop
the comparison (modeled by the ”compare” signal in Fig. 3).



— The comparator should not be too eager to report errors; small delays in
system-internal communication might easily lead to differences during a
short amount of time. Hence, current comparators only report an error if
differences persist during a certain amount of time or occur a consecutive
number of times. A trade-off has to be made between taking more time to
avoid false errors and reporting errors fast to allow quick repair. This also
influences the frequency with which comparisons take place (modeled by the
”ComparePulse” in Fig. 3).
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Fig. 4. Design of awareness framework in Linux

The design of the awareness framework is shown in Fig. 4. The SUO and the
awareness monitor are separate processes communicating via Unix domain sock-
ets. The SUO has to be adapted slightly, to send messages with relevant input
and output (which may also include internal states) to Input and Output Ob-
servers. The Stateflow Coder of Simulink is used to generate C-code from a
Stateflow model of the desired behaviour. This code is included in the Stateflow
Model Implementation component and executed by the Model Executor. Based
on event notifications from the Input Observer, the Model Executor provides in-



put to the code of the model. It also receives output from the model. Information
about relevant input and output is stored in the Configuration component.

The Comparator compares model output with system output which is ob-
tained from the Output Observer. For each observable value, the user of the
framework can specify (1) a threshold for the allowed maximal deviation be-
tween specification model and system, and (2) a limit for the number of con-
secutive deviations that are allowed before an error will be reported. Another
parameter is the frequency with which time-based comparison takes place. This
can be combined with event-based comparison by specifying in the specification
model when comparison should take place and when not (e.g., when the system
is in an unstable state between certain modes). The Model Executor obtains
this information from executing the implementation of the model and uses it to
start and stop the Comparator. The Controller initiates and controls all compo-
nents, except for the Configuration component which is controlled by the Model
Executor.

5 Related Work

Traditional fault-tolerance techniques such as Triple Modular Redundancy and
N-version programming are not applicable in our application domain of high-
volume products, because of the cost of the required redundancy. Related work
that also takes cost limitations into account can be found in the research on fault-
tolerance of large-scale embedded systems [11]. They apply the autonomic com-
puting paradigm to systems with many processors to obtain a healing network.
Similar to our approach is the use of a kind of controller-plant feedback loop,
state machines, and simulation in Simulink/Stateflow. Related work on adding a
control loop to an existing system is described in the middleware approach of [12]
where components are coupled via a publish-subscribe mechanism. A method to
wrap COTS components and monitor them using specifications expressed as a
UML state diagrams is presented in [13]. The analogy between self-controlling
software and control theory has already been observed in [14]. Garlan et al [15]
have developed an adaptation framework where system monitoring might invoke
architectural changes. Using performance monitoring, this framework has been
applied to the self-repair of web-based client-server systems.

Other related work consists of assertion-based approaches such as run-time
verification [16]. For instance, monitor-oriented programming [17] supports run-
time monitoring by integrating specifications in the program via logical anno-
tations. In our approach, we aim at minimal adaptation of the software of the
system, to be able to deal with third-party software and legacy code. More-
over, we also monitor timing properties which are not addressed by most tech-
niques described in the literature. Closely related in this respect is the MaC-RT
system [18] which also detects timeliness violations. Main difference with our
approach is the use of a timed version of Linear Temporal Logic to express re-
quirements specifications, whereas we use executable timed state machines to
promote industrial acceptance and validation.
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Our approach to model-based error detection is also related to on-the-fly
testing techniques which combine test generation and test execution [8,19]. The
main difference is that these testing techniques generate input to the system
based on the model, whereas we consider normal input during system operation
and forward this input to the awareness component. Hence, our approach is
more related to so-called passive testing. An additional difference is that testing
methods concentrate on testing the input/output interface, whereas our focus is
on fast error detection (preferably before output failures occur) which often leads
to the monitoring of internal implementation details such as internal variables
or load.

6 Concluding Remarks

Clearly, we have not yet answered all research questions mentioned in Sect. 3.
Concerning the modeling questions of Sect. 3.1 we have mainly followed the
well-known state machine approach to model the control behaviour of embed-
ded systems. To increase both the industrial acceptance and the confidence in
the correctness of the models, model execution and an intuitive visualization of
input/output behaviour turned out to be essential. Convenient tool support has
been obtained by using Matlab/Simulink/Stateflow which allows efficient code
generation from models.

To investigate the questions in Sect. 3.2 about the use of models at run time,
we developed a framework which allows quick experiments with run-time aware-
ness. Currently, the framework is used for awareness experiments with the open
source media player MPlayer [20]. It was easy to insert both the MPlayer and an
abstract high-level Stateflow model of its desired behaviour in the framework,
without degrading the performance of the MPlayer. Although some injected er-
rors could be detected, more work is needed to investigate which types of errors
can be detected, how false errors can be avoided, and how the approach scales
to larger models. Moreover, we also intend to investigate the use of more archi-
tectural information in the model to detect errors earlier, before they affect the
user-perceived behaviour.

Current work also includes connections with diagnosis and recovery tech-
niques. The first results indicate that more research is needed to clarify the
relation between the types of errors that can be detected and those that can
be corrected by the local recovery techniques developed within Trader. More-
over, future work will address issues concerning the synchronization between
the techniques, e.g., to avoid error detection during recovery and to ensure a
re-synchronization between system and model after recovery.
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