
Model-Based Safety Assessment
Review of the Discipline and its Challenges

Oleg Lisagor, Tim Kelly
Department of Computer Science

The University of York
United Kingdom

{oleg.lisagor, tim.kelly}@cs.york.ac.uk

Ru Niu
State Key Laboratory of Rail Traffic Control & Safety

Beijing Jiaotong University
Beijing, China

rniu@bjtu.edu.cn

Abstract— Since its emergence in 1990s, Model-Based Safety
Assessment (MBSA) has enjoyed significant interest from both
academia and industry. The last decade has seen not only the
development of a number of methods, techniques and tools, but
also the gradual adoption of MBSA techniques by industry and
its acceptance by regulators. However, the field of MBSA
encompasses a large number of fundamentally dissimilar
techniques. This paper presents a simple classification schema for
MBSA techniques based on two criteria – provenance of the
model and engineering semantics of component dependencies
captured by the model. The classification organizes the existing
techniques into a number of coherent families. Applicability,
limitations and challenges of most prominent families of MBSA
techniques are presented, and some of the common challenges
faced by MBSA discipline are discussed.

Keywords- System Safety Engineering, Safety Assessment
Methodology, Model-Based Safety Assessment.

I. INTRODUCTION

Since its emergence in 1990s, Model-Based Safety
Assessment (MBSA) has enjoyed significant interest from both
academia and industry. In the last decade MBSA methods have
been gradually adopted by the industry and increasingly
accepted by the Regulators (especially in the aviation sector).
For example, Flight Control System of Dassault 7x aircraft has
been certified on the basis of models specified in a dataflow
dialect of AltaRica Language [2]; the forthcoming revision of
ARP4761 (“Guidelines and Methods for Conducting the Safety
Assessment Process on Civil Airborne Systems and
Equipment”) document – a de-facto safety engineering
standard of the aviation industry – is likely to include explicit
provisions for the use of MBSA.

Original MBSA techniques, such as Failure Propagation
and Transformation Notation (FPTN) [14], Hierarchically
Performed Hazard Origin and Propagation Studies (HiP-
HOPS) [23] and AltaRica language [3] have sought to unify
‘classical’ safety analysis methods such as Fault Tree Analysis
(FTA) and Failure Modes and Effects Analysis (FMEA) and to
provide a formalism for capturing a single authoritative ‘safety
model’ of the system. Classical analysis artifacts (fault trees,
minimal cut sets or FMEA tables) could be automatically
extracted from such a core model for any condition of interest
(such as a system-level failure condition).

In addition to the unification and at least partial automation
objectives above, virtually all MBSA techniques seek tighter
integration between safety assessment and design artifacts
(models). However the exact approach to such integration
ranges from improving traceability by introducing the notion of
components to performing safety analysis on the basis of
design models themselves.

Finally, many MBSA methods have declared objectives of
compositional and reusable safety assessment. Some have also
sought to expand on the combinatorial nature of the FTA and
to provide expressive power that is seen as more suitable for
complex and highly-reconfigurable safety critical systems.

Many of the MBSA methods share little technical
characteristics apart from the abstract objectives above. The
nature of the information captured in the safety assessment
models and the process of their construction differs
significantly. Challenges posed by different families of
techniques often remain hidden and unaddressed under the
umbrella term of “model-based safety assessment”. For
example, we have shown previously that for some MBSA
methods compositionality and reusability objectives are
fundamentally unattainable and argued that for others the
achievement comes at a cost of reducing the scope of the
assessment and/or introduction of a “common point of failure”
between design and safety assessment processes. [19].

In the remainder of this paper we organize MBSA methods
into coherent and internally consistent families that share key
technical features, strengths, limitations and challenges. We
use two criteria for such classification – model provenance and
engineering semantics of component interfaces – described in
sections 2 and 3 respectively. Section 4 presents classification
of some of the MBSA techniques according the two criteria
and Section 5 discusses the applicability and future challenges
of different families of methods. We conclude with the
summary and some remarks on challenges faced by the MBSA
research discipline as a whole.

II. MODEL PROVENANCE

The first criteria that distinguishes MBSA methods is
concerned with the process of definition of the safety models
and its relationship with the system design process. There are
currently two approaches to model construction:

Supported by the Key State Laboratory for Rail Traffic Control and
Safety (contract number RCS2010K003), Beijing Jiaotong University and by
the European Commission MISSA project (contract number ACP7-GA-2008-
212088)



a) Safety assessment models can be defined through
extension of the models used in the system
development process,

b) Safety assessment can be performed on the basis of
dedicated models defined by safety engineers and
obtained through ‘manual’ assessment of the system.

An example of the first approach is Extended System
Model (ESM) / Failure Injection (FI) methods developed by
ESACS and ISAAC project over the past 10 years [2, 9].
Under this approach safety engineers receive design models of
the system, specified in languages such as SCADE or Matlab
Simulink, from the development process. The model is then
extended with Failure Mode (FM) models – simple model
components ‘injected’ into the flows of original model. Each
FM component (Fig.1) typically has two inputs and an output.
One of the inputs and the output are used to insert the FM into
a flow; their types are therefore the same as the type of that of
the original flow. The remaining input is Boolean as is called
‘activation’ of the FM. The component itself defines the effect
of the Failure Mode – such as value being stuck at zero or an
inversion of a Boolean value. When activation input is set to
true this deviation is applied to the flow, whereas inactive FM
components simply propagate original inputs to outputs, thus,
having no effect on the behavior (Fig. 1).

ESACS and ISAAC projects have developed a
comprehensive library of failure modes and adapted modeling
tools such as SCADE to provide graphical user interface to
support the model extension process and definition of bespoke
failure modes. The platform also ‘hides’ implementation of the
failure modes (i.e. FM components) from the user, thus,
avoiding excessive cluttering of the model and ensuring that,
even when extended, the model can still be used in the
development process. Finally, tools were also developed tools
to enable analysis of the extended system models with respect
to a system-level failure conditions specified over model
variables. Whilst often based on model checking technology,
the analysis performed by these tools is logically equivalent to
an exhaustive search through activation of all possible
permutations of failure modes. Permutations that lead to the
satisfaction of the failure condition expression are reported as
Minimal Cut Sets (MCSs).

The key advantage of the model extension approach is
consistency, by construction, of the safety analyses and the
‘real’ design model of the system. Furthermore, development
and safety processes are capable of sharing a common
modeling environment, languages and tools.

However, such ‘unquestioned’ utilization of the design
model may introduce new risks into the safety assessment
process. As any models, system design models are
“abstractions defined with an intended goal in mind” [30];
however, safety assessment is clearly not an intended goal
when design models are defined. Consequently, the use of
these models may impose undue constraints on the safety
assessment leading to incomplete analysis results with respect
to the real-world behavior of the system. For example, failure
of components may not only lead to the deviations of outputs,
but may also result in new, unintentional, interactions between
the components and, even possibly establish the unintended
dependencies paths between apparently unconnected
components. Short circuits of electrical power distribution
systems are an example of such behavior. Failure injection
approach is typically incapable of adequately uncovering these
scenarios.

Figure 1 - Two Simple Failure Mode Components in Matlab Simulink

Furthermore, assuming adequacy of the design models,
injection of an incomplete set of failure modes into the model
will potentially lead to incomplete safety analysis.
Completeness of the injection, however, is notoriously difficult
to guarantee since each failure mode must be defined in detail
and concrete terms. A “signal is provided with the delay”
failure mode, that can be often found in classical safety
analyses, for example, would have to be modeled differently at
least for constant delay (offset) and for every variable delay
profile (e.g. continuously increasing, continuously decreasing,
wave-form).

Finally, the approach does not permit model abstraction
from the level of detail set by system developers. This means
that the computational complexity of complete extended
system models of modern systems is often intractable with
current analysis tools.

The second approach to MBSA, based on dedicated ‘stand-
alone’ safety assessment models, alleviates many of the above
problems. As models are created specifically for the goal of
safety assessment, engineers can adjust the richness of
component interfaces and the overall level of detail, thus,
avoiding unnecessary complexity whilst ensuring that the
models are adequate and fit-for-purpose. This comes at the cost
of losing the provable validity of the safety analysis results
with respect to design, and replacing consistency by
construction with some form of traceability between models in
design and safety domains. The latter is typically achieved
through the notion of component (or module) and hierarchical
organization of the safety model architecture that reflects
structure and hierarchical organization of the system (and its
design models). Most of the pioneering MBSA techniques and
notations – such as HiP-HOPS [23], FPTN [13] and AltaRica
[3] – follow this approach. In such models component behavior
is characterized primarily as dependency of the outputs on
components inputs and internal malfunctions. (Note: the
engineering semantics of such input and outputs is considered
in the following section.) In an attempt to provide expressive
power capable of modeling dynamic and reconfigurable
systems some of the MBSA techniques have introduced the
notion of the state into component characterizations. For
example a characterization of a shut-off hydraulic valve can be
written as following:

 The valve is either closed or open and, orthogonally,
either failed or operational;



 The valve may become failed as a result of an internal
malfunction (failure);

 If the valve is operational and electronic control signal
is received the valve moves to an appropriate state
(closed or open); if the valve has failed then further
control signals are inconsequential;

 If the valve is open its hydraulic output (which models
provision of hydraulic pressure) takes the value of the
hydraulic input; otherwise – the output is false (no
pressure).

Such a characterization can be trivially translated into an
AltaRica Dataflow [7, 27] node specification (Fig. 2).

node Valve

flow

Ctrl : {Open,Close} : in ;

HydIn : bool : in ;

HydOut : bool : out ;

state

FailureState : {Operational,Failed} ;

FunctionalSt : {Closed,Open} ;

event

Malfunction, Update ;

init

FailureState := Operational ;

FunctionalSt := Closed ;

trans

FailSt = Operational |- Malfunction -> FailState := Failed;

FailSt = Operational and FunctSt = Closed and Ctrl = Open

|- Update -> FunctSt := Open;

FailSt = Operational and FunctSt = Open and Ctrl = Close

|- Update -> FunctSt := Closed;

assert

(if FunctSt = Open

then HydOut = HydIn

else HydOut = false)

edon

Figure 2 - AltaRica Characterization of the Valve

Individual characterizations are then composed through
interfaces to produce an overall system model. Such models
can be analyzed to generate sets of malfunctions (i.e. Minimal
Cut Sets) for a particular unsafe system-level condition [29].
Alternatively, if the modeling language is restricted to
combinatorial logic, models can be trivially parsed to
synthesize results in a fault tree format [23, 24].

In essence, this approach to MBSA can be seen as
modularization and, optionally, expansion of the expressive
power of the fault trees. Kaiser’s State/Event Fault Trees
technique [16, 17] highlights this perspective most clearly.

Overall, the approach ensures consistency between various
safety analyses of the system – as these are based on a single
‘central’ model. However, it does not guarantee consistency
with the design models and safety engineers maintain
responsibility for the adequacy of MBSA results. Furthermore,
although the system assessment process (that is clearly at the

core of the model elicitation under this approach to MBSA) is
critical to the confidence in the model and, by extension,
analysis adequacy, there is little repeatable guidance on how
such assessment can be conducted and how safety models can
be constructed in a systematic and repeatable fashion.

Finally, it is important to note that a number of hybrid
techniques have been proposed. These utilize the architecture
of the design model whilst tasking safety engineers with
characterizing behavior of individual components for the
purpose of the safety assessment. Examples of such techniques
are the integration of HiP-HOPS with Matlab Simulink
proposed by Papadopoulos and Maruhn [25] and the Error
Modelling Annex of the Architecture Analysis and Design
Language (AADL) [12, 31]. Whilst such techniques strengthen
the traceability between development and safety processes and
partially automate model construction, they exhibit some
vulnerabilities of both extended and dedicated safety model
approaches. In particular models produced under hybrid
techniques typically limit safety assessment to considering only
intentional interactions between components (as in ESM
approach). Similarly, such models are not provably correct
with respect to the design (as under the dedicated safety model
approach).

III. ENGINEERING SEMANTICS OF COMPONENT INTERFACES

The process of model construction, discussed in the
previous section, is not the only important difference between
various MBSA techniques. Regardless of how the models are
produced, it is clearly important to ask such question as: What
do they represent? What safety engineering concepts are
captured by the theoretical constructs? It is therefore important
to establish the safety engineering semantics of these models.

System safety and reliability can be conceptualized in
different terminology and from different viewpoints. Different
standards, regulators and academic researchers promote
different ontologies of key safety engineering terms and
concepts [34]. Whilst some, such as that by Avizienis, Laprie
and Randell [4], are more prominent than others, no set of
safety engineering terms is universally accepted and, more
importantly, no single ontology is appropriate for use in all
contexts.

MBSA is no exception. The difference between the
conceptual viewpoints adopted by MBSA techniques is most
revealing on components interfaces. The original MBSA
methods, such as HiP-HOPS and FPTN, have modeled
dependencies between the components in terms of deviations
of their behavior from design intent. In the terminology of
these techniques, such models capture dependencies of
components on failure modes exhibited by other components of
the system. Failure modes are typically defined through
abstract categories (such as omission, commission, early, late
or value deviations) and represented in the models as either
individual Boolean flows or symbols of an enumerated type.
Assuming that a dedicated safety model is being created, we
call this general MBSA approach Failure Logic Modeling
(FLM).

To briefly illustrate, a failure logic specification of a shut-
off valve mentioned in the previous section would typically
state that omission of hydraulic output could be caused by
omission of hydraulic input or omission of the control input or
an internal malfunction (failure) of the valve itself. Assuming
that the valve is loaded to closed position and that its hydraulic
input is intended to be constantly pressurized (e.g. the valve is



connected directly to a pump), commission of the output could
be caused by either commission of the control input or an
internal failure.

On the other side of the semantics spectrum, lie approaches
where component dependencies are captured in terms of
abstracted flows of information, matter or energy and “real”
physical or logical characteristics of such flows (e.g. pressure,
volume, voltage, electrical current, items of data, etc.). Such
flows are sometimes referred to as “nominal flows”. If
dedicated safety models are created, mathematically
component outputs are still a function of component inputs and
any internal malfunction (or, optionally, the state of the
component). The example of the valve provided in the previous
section follows this approach. We call this approach Failure
Effects Modeling (FEM). Other examples can be found in
some AltaRica models [6] as well as techniques proposed
elsewhere (e.g. [22]).

FEMs can be captured using the same languages as FLMs.
What distinguishes the two approaches is the model semantics
and the engineering viewpoint adopted in their elicitation. This
distinction, however, has serious consequences in terms of the
qualities of the models and the overall safety assessment
model. In particular, FLM components are characterized with
respect to an implicit design intent. Such component models
are generally not reusable as the intent of the physically
identical components depends on their system context [19]. For
example, consider again the shut off valve. Assume further that
two identical valves are connected in series and controlled by
an identical signal. The hydraulic input of upstream valve is
connected to a pump (i.e. it is intended to be always
pressurized); the output of the downstream valve is connected
to the actuator assembly. Consider the commission failure
mode of the valve (i.e. provision of pressure when pressure is
unintended). The characterization of the upstream valve is as
previously presented, i.e. commission can be result of the
commission of control input or internal failure. For the
downstream valve, however, this propagation condition is too
pessimistic – in addition to either control commission or
internal failure this valve must be exposed to a commission of
the hydraulic input in order to exhibit this failure mode on the
output. Thus, whilst valves are physically identical, their failure
logic characterizations are different and, thus, not easily
reusable.

Furthermore, we have previously demonstrated that FLMs
of complex reconfigurable systems are not compositional [19]
– the model must contain more information than is contained in
all of its components and characterization of individual
components must refer to modes of operation (that, similarly to
global variables, can only be captured at higher levels of
decomposition). The resultant FLMs are complex both in terms
of the construction process and computational complexity of
model analyses.

In contrast, FEMs are mostly compositional and reusable.
Construction of such models is often more intuitive to
engineers and their analysis is less complex. However, in their
pure form and similarly to the FI/ESM approach described in
the previous section, FEMs are limited to intentional
interactions over intended path. To overcome this limitation
some researchers have adapted hybrid modeling techniques [5,
18] whereby intentional interactions are modeled using a FEM
approach whilst unintentional interactions – such as short
circuits of electrical systems or leaks in hydro-mechanical
systems – are characterized as Failure Modes dependencies and
utilize the FLM approach.

Despite apparent benefits of such hybrid approach, we have
discovered that the process of FLM construction requires a
higher level of intellectual engagement by safety engineers and
more thorough review of the system design than construction
of FEMs or Hybrid Models. During the FLM construction
system design proposal is reviewed from a perspective
fundamentally dissimilar to that of the development process.
Consequently, important limitations of the system architecture
are often identified as a direct result of such review and before
the model is even completed and analyzed. In contrast, safety
assessment based on FEMs or hybrid models adopts a similar
perspective to the development process and cannot fully satisfy
the objective of having conducted an analytically diverse
review of the design.

IV. CLASSIFICATION OF TECHNIQUES

Table 1 shows classification of existing MBSA techniques
according to the two criteria described in the previous sections.
It is important to reiterate that the criteria are orthogonal. For
example, whilst modeling of FM propagation between
components is typically associated with construction of
dedicated models we are aware of at least one technique –
Software Deviation Analysis [28] – that combines FM-focused
perspective with the full utilization of the design model. Also
worth noting is a technique developed by Joshi and Heimdahl
[15] that extends the “pure” Failure Injection approach by
allowing safety engineers to define new dependencies between
the components arising from unintentional interactions in
presence of failure. Such dependencies are characterized in
terms of failure mode propagation leading to an interesting
hybrid between the FI and FLM approaches.

TABLE I. CLASSIFICATION OF MBSA TECHNIQUES

Engineering Semantics of Component
Dependencies

Only Nominal
(Energy, Matter
& Information)

Flows

Both
Nominal &
FM Flows

Only FM
Flows

M
o

d
el

P
ro

ve
n

an
ce

Dedicated Safety
Model

Failure Effects
Modeling

e.g. some
AltaRica models
[6], Majdara &
Wakabayashi
technique [22]

FEM/FLM
Hybrid

Approach

e.g. some
AltaRica
Models

[5, 18]

Failure Logic
Modeling

e.g. FPTN
[13], FPTC
[37], HiP-
HOPS [23]

Partial Utilization
of Design Model
(e.g. architecture)

Hybrid
Approach

e.g.
ESACS/ISAAC
ESM approach
if underlying

system models
have to be
simplified
[10, 11]

Hybrid
Approach

e.g. Joshi &
Heimdahl

[15]

Hybrid
Approach

e.g.
HiP-HOPS
integration

with Simulink
[25]

Automated
Construction /
Utilization of
Design Model

FI/ESM
approach

[1, 8, 26]

Hybrid
Approach

e.g. Software
Deviation

Analysis [28]



Finally, it is important to note that we have intentionally
excluded the Error Modeling Annex of AADL (previously
mentioned in section 2) from the classification. In terms of
model provenance criteria the annex clearly belongs to the
middle, ‘hybrid’, row of the table since characterizations of the
components have to be manually constructed whilst the
structure, connectors and bindings of the ‘core’ AADL model
are also utilized. Classification in terms of the engineering
semantics of component dependencies is however less clear.
The Error Modeling Annex terminology and documentation
[31] suggests that that the authors intent was to support Failure
Logic Modeling. However, constructs such as Guard_Event
and Guard_Transition allow integration of the Error Modelling
Annex with the behavior of the ‘core’ model thereby enabling a
hybrid approach (that would be placed in the middle cell of
Table 1). Overall, in our view, the annex constructs can be
equally used for construction of Failure Effects Models even
though it is unlikely that this was the original intent of the
developers. Therefore we believe that the place of the AADL
in our classification depends on the usage of the language by
the safety engineers.

These observations about AADL also highlight an
important confusion in MBSA research – that between
modeling language and methodology. Original MBSA
techniques (e.g. FPTN and HiP-HOPS) have been based on
their own idiosyncratic modeling languages. In this context
modeling constructs were inherently linked to safety
engineering concepts they represented. Extension or revision of
the methodology required changes to the modeling language
(and vice versa). However, usage of idiosyncratic languages,
whilst being a useful tool for research, impedes industrial
adoption of MBSA techniques: such languages are unfamiliar
to even specialist engineers, they are often not fully validated
in use and usually not supported by sufficiently mature tools.
The pragmatic approach to industrial application of MBSA is
likely to require use of third-party, commercial and
industrially-mature languages and modeling environments such
as Matlab Simulink or SCADE. Such languages can be shared
by a number of engineering disciplines making continuous
improvement of modeling environments economically feasible
as well as facilitating more thorough review and validation of
the language and software by a larger community of
professional engineers and researchers.

V. APPLICABILITY & CHALLENGES OF MBSA TECHNIQUES

Different MBSA approaches presented in this paper do not
necessarily conflict and, instead, are often applicable at
different stages of the safety lifecycle. Whilst different models
of safety lifecycles exist in different domains and regulatory
jurisdictions these are based on similar concepts. For example
in aviation domain ARP4754 and 4761 documents [32, 33]
define the following three primary stages of the safety process:

Functional Hazard Assessment (FHA): a hazard
identification stage described by the standard as “a systematic,
comprehensive examination of aircraft functions to identify
and classify Failure Conditions of those functions according to
their severity” [32]. FHA is conducted at both aircraft and
system levels.

Preliminary System Safety Assessment (PSSA): “a
systematic evaluation of a proposed system architecture and its
implementation, based on the Functional Hazard Assessment
and failure condition classification, to determine safety
requirements for all items in the architecture” [32]. PSSA is

intended to be a design-driving and, thus, iterative process that
starts at the earliest stages of system design.

System Safety Assessment (SSA): “a systematic,
comprehensive evaluation of the implemented system to show
that the relevant safety requirements are met” [32]. Unlike
PSSA, SSA is performed on the finished design feeding into a
V&V rather than design function. In other words, it lies on the
right hand side of the standard “V Model” of the development
process.

These three stages are supported by a Common Cause
Analysis (CCA). Furthermore, the recently published revision
of the standard – ARP4754a – also defines Preliminary Aircraft
System Safety Assessment (PASA) that can be broadly seen as
multi-system PSSA. However, FHA, CCA and PASA lie
outside the scope of this paper and we focus our discussion
exclusively on PSSA and SSA.

Similarly, we constrain our discussion to the most
prominent families of MBSA techniques – ESM/FI, FLM and
FEM/FLM Hybrid. Although historically used in industry, the
“pure” FEM approach, in our view, is too constrained and
provides no advantages over the FEM/FLM hybrid. The
maturity of other MBSA techniques (except for those
considered below) does not yet permit discussion about their
applicability.

A. FLM and Hybrid Techniques

In our view both FLM and the hybrid approach can support
exploratory safety assessment of system architecture (e.g.
fulfilling the objectives of the PSSA). Both approaches can be
applied early in the development process and in the context of
iterative and incremental safety assessment [20]. However, the
significant additional effort of constructing FLMs is not
necessarily justified for every system in the context of product
lines with a relatively stable architecture (such as an aircraft
family). In such contexts it may be sufficient to use a less time
consuming hybrid approach.

In contrast, when a proposed system design is based on a
significantly new architecture (such as a typical design of
systems for a new family of aircraft or design of a new
railways control concept) the significantly higher effort
necessary for constructing FLMs may be justified by the value
added by a thorough review of the architecture under this
approach. This scenario, of course, includes establishing of a
new product line.

However, both approaches rely on construction of the new
safety model that captures the safety engineers’ hypotheses
about behavior of the system. The adequacy of these models
would determine the adequacy of the model-based PSSA just
as the adequacy of fault trees today determines the adequacy of
the ‘classical’ PSSA. We have previously demonstrated that
construction of adequate safety models relies on existence of
systematic and repeatable modeling methods and
comprehensive guidance [21]. Whilst we have developed such
guidance for the FLM approach and performed partial
evaluation, further independent evaluation is necessary in order
to establish whether our “FLM Handbook” provides sufficient
support to the construction of FLM models comparable with
the support Fault Tree Analysis Handbook [35, 36] provides
for construction of fault trees.

Furthermore, we have argued that whilst usage of modeling
languages with well-defined semantics contributes to
confidence in model adequacy it is not sufficient for such
confidence. We are advocating implementation of the FLM and



FEM/FLM hybrid approaches on the basis of well-defined (and
relatively limited) subsets of standard languages such as
SCADE or Matlab Simulink which, in our view, will facilitate
industrial adoption of the MBSA techniques as well as
ensuring that MBSA discipline benefits from the extensive
validation of these languages by large and cross-disciplinary
community of professional engineers and researchers. We are
currently conducting further research into implementation of
the FLM methodology in the context of Matlab Simulink and
Stateflow.

B. FI/ESM Techniques

In contrast to the FLM and hybrid FEM/FLM techniques,
in our view the FI/ESM approach is incapable of fulfilling
objectives of the PSSA in most cases. Safety analysis
conducted on the basis of the FI/ESM is, in our view, too
constrained by the design model of the system – a model that is
typically constructed with no consideration for the needs of
safety assessment. It is difficult to justify confidence in such
models and subsequent analysis. Furthermore, FI/ESM
techniques cannot be applied before an executable design
model of the system emerges. This typically happens at the
later stages of the development process when design of the
system can no longer be easily influenced and the cost of
design change is high.

Nevertheless, the guarantee of consistency between design
models and safety analysis results makes FI/ESM an attractive
approach to (partial) validation of the FLMs and FEM/FLM
hybrids (or even ‘classical’ fault trees) and, therefore,
applicable at the SSA stage of the ARP safety lifecycle.

We believe that use of FI/ESM techniques as the main or
sole basis for safety assessment can only be justified when the
system is being modified and only when extent of the
modifications is small and does not affect the system
architecture. Note that this scenario of application is fully
consistent with the position above given that, in such
circumstances, PSSA may be deemed as unnecessary and re-
assessment may be bound to the confirmatory SSA.

Most research challenges associated with the FI/ESM
approach lie in the Computer Science domain and are
concerned with improvement of the power and time-
complexity of analysis tools (such as model checkers) in the
context of large-scale and complex system models. Indeed
today many models of complete systems (e.g. individual
aircraft systems) are not tractable by the analysis tools
available. At the same time there are residual methodological
issues to be addressed. In particular, as was previously
mentioned, methods for systematic identification of failure
modes that are to be injected into design models need to be
developed. This is likely to include establishing coverage
metrics of the extension (i.e. the set of all injected FMs) as well
as developing comprehensive guidance for model extension
process.

VI. CONCLUSIONS

This paper has presented a review of most prominent
Model Based Safety assessment techniques. We have shown
that a MBSA encompasses a large number of fundamentally
dissimilar techniques that vary significantly in terms of
applicability, limitations and challenges. We have presented a
simple classification schema for MBSA approaches based on
two criteria – provenance of the model and engineering
semantics of component dependencies captured by the model.
Whilst different classifications can be developed, our schema

allows to rationalize most of the existing techniques into
coherent families that share key features. To our knowledge no
such classification has been previously proposed and we hope
that this paper will contribute to principled and organized
discussions of future MBSA research.

We conclude with two further observations on the state of
MBSA research. Firstly, the cross-disciplinary nature of
MBSA research should be stressed. The topic combines
elements of System Safety Engineering and Computer Science
disciplines. Issues such as the system assessment and model
elicitation methods and guidance, ontologies of safety
engineering terms (that form the abstract language of the
model) and of the formulation of analyses that can be
performed on the basis of the models lie in the System Safety
Engineering domain. Issues such as the definition of the
semantics of concrete modeling languages as well as
development and improvement of the analysis algorithms and
tools lie in the Computer Science (and applied software
engineering) domain. Without a clear mapping between
Computer Science and System Safety Engineering domains,
the MBSA advances in the former remain infeasible whilst the
Computer Science advances remain unjustified and
unmotivated by real-world problems.

In particular, given the relative maturity of MBSA research
and some of the techniques, we believe that development of
further MBSA languages and notations is unlikely to have
significant safety engineering impact. At the very least such
development should be justified by a comprehensive review of
the existing languages (within and outside of the immediate
MBSA application domain) and motivated by inability to
formalize certain safety engineering concepts or their
relationship in any existing language.

Secondly, MBSA research publications are often
adversarial in nature. Authors typically justify a technique they
(or their close collaborators) have developed and report on
successful case studies. Whilst such publications are important
for newly developed techniques, we observe that impartial
evaluation of techniques, their comparison, and negative results
of evaluation activities are currently underreported. Instead to
establish MBSA as a mature research discipline requires
impartial, principled and comprehensive evaluation with
detailed comparison of different techniques.

REFERENCES

1. Abdulla, P.A., J. Deneux, G. Stålmarck, H. Ågren, and O. Åkerlund.
Designing Safe, Reliable Systems Using Scade. in 1st International
Symposium on Leveraging Applications of Formal Methods (ISoLA).
2004. Paphos, Cyprus: Springer-Verlag.

2. Åkerlund, O., P. Bieber, et al., ISAAC, a Framework for Integrated
Safety Analysis of Functional, Geometrical and Human Aspects, in 3rd
European Congress on Embedded Real Time Systems (ERTS). 2006:
Toulouse, France.

3. Arnold, A., G. Point, A. Griffault, and A. Rauzy, The AltaRica
Formalism for Describing Concurrent Systems. Fundamenta
Informaticae, 2000. 34: p. 109-124.

4. Avizienis, A., J.-C. Laprie, B. Randell, and C. Landwehr, Basic
Concepts and Taxonomy of Dependable and Secure Computing. IEEE
Transactions on Dependable and Secure Computing, 2004. 1(1): p. 11-
33.

5. Bernard, R., J.-J. Aubert, P. Bieber, C. Merlini, and S. Metge,
Experiments in Model-Based Safety Analysis: Flight Controls, in IFAC
Workshop on Dependable Control of Discrete Systems. 2007, The
International Federation of Automatic Control: Paris, France.

6. Bieber, P., C. Castel, and C. Seguin. Combination of Fault Tree
Analysis and Model Checking for Safety Assessment of Complex
System. in 4th European Dependable Computing Conference. 2002.
Toulouse: Springer Verlag.



7. Boiteau, M., Y. Dutuit, A. Rauzy, and J.-P. Signoret, The AltaRica
Data-Flow Language in Use: Modelling of Production Availability of a
Multi-State System. Reliability Engineering and System Safety, 2006.
91(7): p. 747-755.

8. Bozzano, M. and A. Villafiorita. Improving System Reliability via
Model Checking: The FSAP/NuSMV-SA Safety Analysis Platform. in
22nd International Conference on Computer Safety, Reliability and
Security (SAFECOMP). 2003. Edinburgh, UK: Springer-Verlag.

9. Bozzano, M., A. Villafiorita, et al. ESACS: an Integrated Methodology
for Design and Safety Analysis of Complex Systems. in European
Safety and Reliability Conference (ESREL). 2003. Maastricht:
Balkema Publishers.

10. Bretschneider, M., Lessons Learnt About System Safety Assessment
Based on Scade Models (Presentation), in Model-based Safety
Assessment (Journées MISSA), C. Seguin, Editor. 2010, CISEC /
MISSA Project Consortium: Toulouse, France.

11. Cavallo, A., System Safety Assessment Based on Formal Models:
Lessons Learnt by Alenia Aeronautica (Presentation), in Model-based
Safety Assessment (Journées MISSA), C. Seguin, Editor. 2010, CISEC
/ MISSA Project Consortium: Toulouse, France.

12. Feiler, P. and A. Rugina, Dependability Modeling with the Architecture
Analysis & Design Language (AADL), in Performance-Critical
Systems Initiative. 2007, Software Engineering Institute, Carnegie
Mellon University (SEI/CMU): Pittsburgh, PA.

13. Fenelon, P. and J.A. McDermid, An Integrated Toolset for Software
Safety Analysis. The Journal of Systems and Software, 1993. 21(3): p.
279-290.

14. Fenelon, P., J.A. McDermid, M. Nicholson, and D.J. Pumfrey, Towards
Integrated Safety Analysis and Design. ACM Computing Reviews,
1994. 2(1): p. 21-32.

15. Joshi, A. and M.P.E. Heimdahl. Behavioral Fault Modelling for Model-
based Safety Analysis. in 10th IEEE High Assurance Systems
Engineering Symposium (HASE). 2007. Dallas, TX: IEEE Computer
Society.

16. Kaiser, B. and C. Gramlich. State-Event-Fault-Trees – A Safety
Analysis Model for Software Controlled Systems. in 23rd International
Conference on Computer Safety, Reliability, and Security
(SAFECOMP). 2004. Potsdam, Germany: Springer Berlin / Heidelberg.

17. Kaiser, B., P. Liggesmeyer, and O. Mäckel. A New Component
Concept for Fault Trees. in 8th Australian workshop on Safety critical
systems and software. 2003. Canberra, Australia: Australian Computer
Society.

18. Kehren, C., C. Seguin, et al., Advanced Simulation Capabilities for
Multi-Systems with AltaRica, in 24th International System Safety
Conference (ISSC). 2004, System Safety Society: Providence, RI.

19. Lisagor, O., Failure Logic Modelling: A Pragmatic Approach, in Dep't
Computer Science. 2010, The University of York: York.

20. Lisagor, O., M. Bozzano, M. Bretschneider, and T. Kelly, Incremental
Safety Assessment: Enabling the Comparison of Safety Analysis
Results, in 28th International System Safety Conference (ISSC). 2010,
System Safety Society: Minneapolis, MN.

21. Lisagor, O., L. Sun, and T. Kelly, The Illusion of Method: Challenges
of Model-Based Safety Assessment, in 28th International System

Safety Conference (ISSC). 2010, System Safety Society: Minneapolis,
MN.

22. Majdara, A. and T. Wakabayashi, Component-Based Modelling of
Systems for Automated Fault Tree Generation. Reliability Engineering
and System Safety, 2009. 94(6): p. 1076-1086.

23. Papadopoulos, Y. Hierarchically Performed Hazard Origin and
Propagation Studies. in 18th International Conference on Computer
Safety, Reliability, and Security (SAFECOMP). 1999. Toulouse,
France: Springer-Verlag.

24. Papadopoulos, Y., Safety-Directed System Monitoring Using Safety
Cases, in Dep't Computer Science. 2000, The University of York:
York.

25. Papadopoulos, Y. and M. Maruhn, Model-Based Synthesis of Fault
Trees from Matlab-Simulink Models, in International Conference on
Dependable Systems and Networks (DSN). 2001, IEEE Computer
Society: Goteborg (Sweden). p. 77-82.

26. Peikenkamp, T., A. Cavallo, et al. Towards a Unified Model-Based
Safety Assessment. in 25th International Conference on Computer
Safety, Reliability and Security (SAFECOMP). 2006. Gdansk, Poland:
Springer-Verlag.

27. Rauzy, A., Mode Automata and Their Compilation into Fault Trees.
Reliability Engineering and System Safety, 2002. 78(1): p. 1-12.

28. Reese, J.D. and N.G. Leveson. Software Deviation Analysis. in 19th
International Conference on Software Engineering. 1997. Boston, MA:
ACM.

29. Seguin, C., P. Bieber, C. Castel, and C. Kehren, Formal Assessment
Techniques for Embedded Safety Critical Systems, in 2nd National
Workshop on Control Architectures of Robots (CAR’2007). 2007:
Paris, France.

30. Selic, B., The Pragmatics of Model-Driven Development. IEEE
Software, 2003. 20(5): p. 19-25.

31. Society of Automotive Engineers, Architecture Analysis and Design
Language (AADL), Annex E: Error Model Annex (Annex Volume 1).
2006, SAE Aerospace: Warrendale, PA.

32. Society of Automotive Engineers (SAE), Certification Considerations
for Highly-Integrated or Complex Aircraft Systems. 1996, SAE
International / EUROCAE: Warrendale, PA.

33. Society of Automotive Engineers (SAE), Guidelines and Methods for
Conducting the Safety Assessment Process on Civil Airborne Systems
and Equipment. 1996, SAE International: Warrendale, PA.

34. van der Meulen, M., Definitions for Hardware and Software Safety
Engineers. 2000, London: Springer-Verlag.

35. Vesely, W.E., J. Dugan, J. Fragola, J. Minarick, and J. Railsback, Fault
Tree Handbook with Aerospace Applications. 2002, NASA Office of
Safety and Mission Assurance.

36. Vesely, W.E., F.F. Goldberg, N.H. Roberts, and D.F. Haasl, Fault Tree
Handbook. 1981, US Nuclear Regulatory Commission,.

37. Wallace, M. Modular Architectural Representation and Analysis of
Fault Propagation and Transformation. in 2nd International Workshop
on Formal Foundations of Embedded Software and Component-Based
Software Architectures (FESCA 2005). 2005. Amsterdam: Elsevier.


