

Model Based Systems Engineering for Aircraft Systems – How does
Modelica Based Tools Fit?

Ingela Lind Henric Andersson
SAAB Aeronautics

SE-581 88 Linköping, Sweden
ingela.lind@saabgroup.com henric.andersson@saabgroup.com

Abstract

Saab Aeronautics has chosen Modelica and Dymola
as part of the means for model based system engi-
neering (MBSE). This paper will point out why a
considerable effort has been made to migrate models
from other simulation tools to Dymola. The paper
also shows how the models and tools are used, ex-
periences gained from usage in an industrial context
as well as some remaining trouble spots.

Keywords: MBSE; Dymola; Aircraft simulation;
Model integration; Modelica

1 Introduction

Engineering aircraft systems is a complex task partly
due to the factors; expensive equipment, expensive
tests, long lead times, safety constraints, varying en-
vironmental conditions, e. g., temperature, pressure,
and g-loads but also weight and space constraints,
which may lead to high interaction level between
systems, interaction between engineering domains,
and finally, sensitivity to shortage of technically
broad and experienced staff.

By using Model Based Systems Engineering
(MBSE), much of the information regarding a sys-
tem can be collected into an executable description, a
model. This helps information sharing between peo-
ple, encouraging cooperation over technical disci-
plines such as, fluid mechanics, electrical engineer-
ing and software engineering thereby helping the
definitions of interfaces between systems and algo-
rithm development of embedded systems. Integrating
models from different disciplines into the executable
model forces focus on the system boundaries. Mod-
els are also good tools to increase the in-depth un-
derstanding of a complex system and for training
new staff. The most likely pay off is that by using

MBSE, problems can be detected earlier than by us-
ing document based systems engineering, where
many problems may be detected when the first test
aircraft has been built.

At Saab Aeronautics, several projects for increasing
the use of MBSE are ongoing. A few of these pro-
jects are partly EU financed and performed in coop-
eration with most of European aircraft industry
(Crescendo [3], Clean Sky [4]). The ambition is to:

• detect problems within a system or an engi-
neering domain early,

• detect problems between systems and engi-
neering domains early,

• increase the ability to optimize design for
different purposes (such as total fuel con-
sumption),

• detect ambiguous and/or conflicting re-
quirements early,

• reduce the amount of implementation errors
detected late,

• reduce project risks,
• gain better control of model variants, model

fidelity and approved usage of models,
• get more effective system engineering,
• reduce testing time and cost,
• effectively use data from tests,
• get better secondary products, such as train-

ing simulators for pilots and technicians,
• give more fun for systems engineers as hap-

py engineers perform better.

The rest of the paper is outlined as follows. Sec-

tion 2 contains a description of the model based
process and different aspects of models and Mode-
lica usage within this process. A deeper discussion
on models and tools integration is presented in sec-
tion 3, section 4 reports the potential future needs
and section 5 concludes the paper.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

856

2 Model Based Development

The model based development process can be de-
scribed from many different viewpoints, see e. g. [8].
Here, the viewpoint from a systems engineer special-
ized in systems modeling and simulation is taken. In
Figure 1, an overview of the process is given. The
basic idea is that as much as possible of system func-
tional and nonfunctional aspects should be tested as
completely and cheap as possible to find system de-
sign and implementation errors as close to their ori-
gin as possible. Each engineer takes responsibility
that his or her work is well done and checked. The
practice follows typically ARP4754 [5], but the
NASA Standard 7009 [7] give many useful ideas.
Another driving factor is that MBSE supports mul-
tidisciplinary optimization, a fact utilized in research
projects as CleanSky [4]. To make MBSE possible, a
set of tools is needed. The applications for these

tools cover many aspects of the engineering tasks;
from requirement tracking, construction, configura-
tion management, specification, modeling, simula-
tion, report writing, archiving, project planning etc.
There are many technical disciplines involved, most
with specific specialist tools. This paper mostly fo-
cuses on the technical discipline of fluid dynamics
with embedded hardware and software, but might be
applicable to any mechatronic system.

The major reason to migrate from previous gen-
eration of simulation tools, which was made for
simulation only, to Dymola is that Dymola supports
all the mandatory aspects of tool integration, as de-
scribed below. The choice of Dymola in front of
other Modelica tools that also fulfills the technical
requirements depends mostly on two aspects. It is
owned by a large tool vendor and can thereby be
trusted to live long enough (10-30 years) and there
are consultants available that speaks Swedish.

Figure 1 Model based development process. The first loop is small and fast and involves desk top simulation of
one model, either control software specification or the model of the physical part, with the other model run as
hosted simulation. The second loop demands more work to close the loop. Code should be made for the target
computer, code for the physical part of the system might need to be exported to the simulator platform, and/or
the physical parts of the rig or simulator prepared. To feed back results to the models good comparison and tun-
ing facilities are needed. The third loop involves the airplane, which means typically expensive tests. For success-
ful feedback, measurement, comparison and tuning facilities are needed.

2.1 Typical Parts in an Aircraft System

Aircraft systems typically involve three major
types of parts; equipment, avionics with embed-
ded software and surrounding. Equipment is
things like gear boxes, valves and pipes, batteries,
sensors, heat exchangers, reservoirs, etc. Avionics
is computer hardware and software which fulfills
requirements for aviation use. The surrounding is

everything from connected aircraft systems, am-
bient conditions to pilot commands.

2.2 Modeling systems of physical equipment

First, the physical part of the system is modeled,
from first principles using supplier data, bench
test data, previous experience, geometrical data,
and sometimes also results from continuous fluid
dynamics computations. To make the modeling
effective, it is important to have a library of mod-

M

u y

M

 y

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

857

eling components built for actual purpose and in
an appropriate level of detail. For environmental
control systems and fuel systems, Saab has to-
gether with Modelon AB developed libraries
based on the stream construct in Modelica. These
are commercially available [1]. It is also impor-
tant to have a good tool for tuning parameters of
model components to fit well with available data.
Identifiability, which means that there exists a
unique parameterization of the model or solution
to the optimization problem of fitting the model
output to measurement data [2], is often an issue,
since physically parameterized components often
have several ways to affect the same property. It
can be hard to determine which parameters that
are affected by identifiability problems for the
identification problem at hand, so any means to
support this task would be welcome.

The model is (partly) reused in several differ-

ent environments on different platforms with and
without real time requirements and with different
interfaces. This requires special care in designing
the model architecture and the libraries. The
Modelica construct of replaceable classes is useful
for making desktop simulations faster when parts
of the model can be switched off before transla-
tion, which implies that whole sections of equa-
tions don’t turn up as compiled code. A typical
example is the model of a fuel drop tank that can
be either present and attached or not present. We
miss the possibility to do the same type of switch
in the generated code, so that the choice of variant
can be done after translation, preferably in run
time, but without the code related to those sec-
tions of equations always slowing down simula-
tion, see further discussion in Section 3.3.

It is also useful to have model switches that
can turn off a complete section of the model, as
the slow temperature dynamics in the fuel system
model, which makes it easier to reach real time
performance for the model without rebuilding it
using another component library.

As the model is reused for many different pur-
poses, the concept of power ports inherent in
Modelica is essential. The higher abstraction level
used for implementing models with non-fixed
causality compared to other languages means that
modeling effort can be used elsewhere.

It is important to build all components and the

model such that an analytical Jacobian can be cre-
ated. The reason is that the models for aircraft
fluid systems tend to be large with several hun-
dred time-continuous states, to include nonlinear

equation systems, and tend also to be stiff. Our
experience is that a completely analytical Jaco-
bian decreases simulation time compared to a par-
tly numerical Jacobian with at least a factor 5-10,
but that still means a single typical simulation run
takes between 5 and 30 minutes. We have also
experienced a tendency that the solvers fail more
easily if the analytical Jacobian is not available.

Using the model for the system of physical

equipment, tasks as first concept validation,
equipment sizing, sensitivity analysis, and per-
formance estimation can be performed. But the
involved systems are so complex that it is not suf-
ficient to base further design decisions on these
results. The control software is needed to e.g.
close the loop.

2.3 Software specification

The control software is used to make sure that the
system reaches its control goal and to perform
safety functions such as functional monitoring
(FM), redundancy management (RM), and built-in
test (BIT), see further [9]. Physical limitations
often make it necessary to introduce new control
actions. An executable model of the control soft-
ware is developed in a modeling and simulation
tool. In vehicle systems design at Saab Aeronau-
tics, Mathworks Simulink and Stateflow is used
together with UML tools to develop software. The
tools are used to build an executable specification
of the code.

Depending on conditions such as criticality as-
sessments, target avionics, review process, tool
integration, and license model, code for target is
either auto generated from the tool or hand coded
using the model as specification, as reported in
[12]. As all information about requirements trac-
ing, purpose and descriptions are included in the
model, it is possible to automatically generate
parts of the software documentation from the
software models.

2.4 Close the loop

By closing the loop by hosted simulation both in
Dymola and in Simulink several tasks can be per-
formed, as further described in [10]. By using the
FMI standard [6] when generating code for the
hosted part an efficient handling of the connected
models is achieved. It might seem as double work
to make a closed loop environment in two tools,
but this means that engineers can perform their

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

858

tasks respectively in the tool which they are most
acquainted with and which is most suited to do the
tests and changes their task depends on. The
closed loop simulation is useful for rapid proto-
typing both for the physical part of the system and
for the control software. It supports safety as-
sessment of the system and can be used to give
input to computation of static and fatigue loads as
well as for performance evaluation and detailed
design of the system.

2.5 Large scale simulators

An aircraft consist of a large number of interact-
ing systems. There are needs ranging from early
interaction tests between systems to training of
pilots, technicians and maintenance staff that can
be met using large scale simulators. The large
scale simulators involve many of the aircraft sys-
tems to a varying level of detail. Some large scale
simulators include target avionics (that is, are
partly hardware rigs) with real time performance
constraints while others are completely software
based without real time constraints. Control soft-
ware can either be included as a model or as target
code. Equipment models are needed, but often
simplified models are sufficient for the use. The
highest demands on accuracy on fluid mechanical
system models in this context often comes from
usage in training simulator for technicians and
maintenance staff or from development tasks
where the interaction between several complex
systems is investigated. An interesting aspect of
simulator models is that correct behavior when
system faults occur is required. This means that
all sensors and actuators need to have several dif-
ferent types of faulty behavior implemented [11].

2.6 System test rigs

The aircraft systems for environmental control
and fuel management are so complex that system
test rigs are necessary. The system test rigs are
used to test that avionics and equipment have cor-
rect electrical interfaces, that all equipment has
correct mechanical interface and that pressure
drops, and other functional characteristics live up
to the given specifications and work well together.
Depending on the flight criticality class of the sys-
tem and status of the system test rig, the system
test rig can also be used for flight safety checks,
often in combination with ground tests in the air-
craft. As the avionics is also used in large-scale
simulators where the equipment is not available,

the equipment model must have an interface com-
pliant with the real equipment.

The closed loop simulation can be used to run

test before they are run in the system test rig to
make sure the test will give the information
needed. The results from the system test rig
should be fed back into the equipment and soft-
ware specification models, to improve confidence
and quality.

2.7 Ground and flight tests

Ground and flight tests are used primarily to as-
certain flight worthiness and for validation of re-
quirements on aircraft level. As the use of MBSE
increases we see an increased usage of ground and
flight tests in order to get measurement data for
model validation. At the same time, the need for
ground and flight tests decreases, partly due to
that more validation can be done using the model
based techniques.

To use model based techniques to support the

certification of an aircraft, that is, ascertain flight
worthiness and validate all requirements from au-
thorities such as EASA, is partly treated in the
ongoing research program Crescendo [3].

2.8 Feedback data to models

This task needs careful planning and considera-
tion of many aspects. First, the placements of sen-
sors in the aircraft need to be decided upon sev-
eral years to several months before use. Sensor
placement is expensive to change with long lead
times due to the mechanical, electrical and instal-
lation work needed, if the optimal placement is
not reached at the first try. Sensors are subject to a
constant revision and trade off between usability
versus weight and signal storage availability,
which means planned sensors are easily removed,
but not easily reinserted. This makes measurement
data scarce.

Most flights are non-informative from a model

validation perspective. The informative flights in
the outskirts of the normal envelop can be hard to
reach due to weather and climate conditions, safe-
ty constraints and complex conditions to be ful-
filled to reach a given state. One example is ice
build up in heat exchangers, which happens in
some weather and flight conditions but can be
close to impossible to achieve in a dedicated flight
test.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

859

To find informative data sets in the ground and

flight test measurement data base is a task that
requires experience and special care to make sure
that the data set is fit for use. It is often less com-
plicated to use data from a dedicated test since the
control of all conditions can be monitored with
the validation task in mind.

When appropriate data sets are found these

should be compared with model output. The easy
part of this is to simulate the model using the
same ambient conditions and the same inputs
from the surrounding systems. As the complete
signal interface between equipment and avionics
(up to 200 signals for a single system) is not sub-
ject to monitoring during ground or flight tests it
is not possible to fully provide the same condi-
tions for the equipment model as for the real
equipment. The output can be compared to the
measurements to give an idea of the model quality
with regard to the measured quantity. To general-
ize the estimate of the model quality to other
quantities of interest in the complex nonlinear
models is more difficult. We find the tool support
at the moment not sufficient for our needs. There
is ongoing research on what validation methods
are industrially useful for that purpose e. g. within
the Swedish National Aviation Engineering Pro-
gramme (NFFP), [13].

For tuning of model parameters to make the

model better fit the measurement data the Dymola
Model Calibration Tool has been useful to some
degree, even if a larger variety of system identifi-
cation methods and better control and possibility
to select optimization objectives and optimization
methods is desired. When using identification,
different methods sometimes give different results
and which method is preferred depends on the
application and the validation result.

3 Integration of models and tools

In simulation of an aircraft or any other complex
product, the total model is usually composed of
several sub models to be manageable. The aircraft
model architecture is created and maintained in
order to get explicit and clear model interfaces. It
is convenient to map the “model breakdown struc-
ture” onto the breakdown structure of the repre-
sented product so that e.g. system interface defini-
tions and responsibility allocation can be reused
more easily. An example of several simulation

models connected to form a larger integrated
model is shown in Figure 2.

Figure 2. This is a simplified view of an integrated
simulation model consisting of models for Engine,
Fuel system, Environmental control system, Avion-
ics and a Pilot model.

A smaller set of aircraft subsystem models may
today be integrated in Dymola, but for larger sets
of models some more specialized and powerful
integration framework is still needed.

3.1 Configuration handling

Several aspects regarding configuration of models
has to be handled. A simulation model is a repre-
sentation of a (specified or built) aircraft system
which itself is under configuration control in e.g.
a Product Data Management (PDM) system. A
PDM system is used for e.g. structuring, storage,
change and validity control of product data related
to delivery and maintenance of the products.
Equipment data such as specifications, change
requests of parts or documentation for certifica-
tion is mature in these systems. Simulation mod-
els that represent systems/parts of the product are
normally not kept within the PDM system. Infor-
mation such as specification of interfaces and eq-
uations, model change requests or status account-
ing of models is not part of the traditional PDM
scope.

Software Configuration Management (SCM)
systems are suited for code management and as
the simulation models are code in some format,
the support for model management on code level
(e.g. revision and release management) is best
supported by a SCM system. Dymola supports
version control of models using e.g. the SCM tool
subversion (SVN).

Needed cooling
capacity Thrust

Cooled air

Fuel

.

Bleed air

Fuel tank
pressurization

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

860

The division of data between the PDM and

SCM domains is unfortunate for many reasons,
not only storage and control of simulation models.
It is especially problematic in the vehicle systems
modeling domain though, because data about the
systems and equipment to be represented in the
models are basically handled in PDM, but the
model software “belongs” to SCM. So this is one
of the challenges for the future to solve.

3.2 Variability

Two concepts in variability and configuration
handling are variants and versions. A variant is
“an option of an item which customers can
choose”. Versions are sequential revisions replac-
ing each other. Variants exist in parallel, whiles
versions exist in a series. If an error occurs in an
item it needs to be revised, and a new version is
created.

As aircrafts are developed and maintained for a

long period of time, the systems usually exist in
several variants and versions. Also the models
exist in variants and versions, but there is usually
not a straight-on mapping between the PDM de-
velopment tree and the model development tree.
Rigor tracing has to be maintained for models
used for verification, certification, and training
purposes.

Models are often parameterized, meaning that

one model can be used to represent a set of air-
craft system variants/versions. This implies that
both the parametric model (interfaces, equations,
algorithms etc.) and all the parameter sets need to
be under configuration control.

One driving force for parametric models or

other kinds of variability is to enable reuse. In
aircraft simulation it is of major importance to
reuse existing models (if possible) because the
verification effort for each single model drives
time and cost. The number of variants should
therefore be minimized, but there are situations
where the requirements are incompatible and
model variants are unavoidable, such as:

• different level of fidelity
• customer specific equipment models
• security (e.g. IPR)

3.3 Binding time

Binding time describes when a variable model
part or function is to be bound, i.e. selected to be-
come a mandatory part of a simulation model in-
stance. Possible binding times include model time
(also referred to as “design time”), translation
time, compile time, link time, load time, and run
time.

Choosing different binding time for elements
affects their properties. For example, deciding to
bind two model components during translation
time will yield different system properties than
deciding to bind these two components at run time
[14].

Example of a setting is whether the simulation

is to represent a single seater or a dual seater air-
craft. Another example was given in Section 2.2.
It is however not sure that all models with this
feature as a possible choice use the same binding
time as mechanism for this setting. One model
may have a translation time alternatives whiles
another uses run time switch for the same varia-
tion.

Run time binding provides in general shorter

turnaround time when shifting feature. There are
situations when run time binding not is sufficient,
for example when propriety models are integrated
in a training simulator and delivered to a cus-
tomer. In this case only functionality relevant for
that customer is allowed to be present in that
model variant. Specific customer oriented model
variants are maintained and binding is done in e.g.
model time.

3.4 Integration methods

There are different kinds of integration. One is
integration of software- and hardware models to
form closed loop simulation. This can be per-
formed using the hosted simulation method with
Dymola or Simulink as hosting environment as
mentioned above.

To integrate models into a complete aircraft
simulation require models from different domains
often including legacy models developed with
older methods and with different software genera-
tions. A large portion of the software used for
simulation in the aircraft industry is for example
still implemented in different versions of FOR-
TRAN. Some suppliers of equipment also provide

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

861

their existing models to the aircraft integrator for
functional- and integration verification.

To enable integration of a wider variety of

model formats, an integration framework is
needed. At Saab Aeronautics there are different
simulation integration frameworks based on the
ADA and FORTRAN languages respectively. To
be able to connect models implemented in differ-
ent languages one used method is to use adaptors
(or wrappers). Figure 3 shows an example of ar-
chitecture for model integration.

Figure 3. Example of an architecture for model in-
tegration with defined layers. The model layer is the
actual simulation code in some for the framework
accepted language (e.g. FORTRAN, C and/or
ADA). Purpose of the connector layer is to connect
models with each other and with the simulation
kernel, and the adaption layer is responsible for the
software language adaption (e.g. to connect C with
ADA).

The emerging FMI standard [6] for model in-

tegration has the C language as a basis for soft-
ware integration, which fits well with simulation
code generated from Dymola. The standard also
provides interface specifications in XML, which
gives a powerful tool to support integration in
other frameworks as it is fairly easy to map one
XML scheme to another. A Modelica model cre-
ated with Dymola is thereby easily integrated in a
simulator with respect to the signal interface defi-
nition.

4 Future needs

Apart from the needs expressed in Section 2, the
following issues are things we would like to do
but have not yet found solutions to or the time to
learn existing solutions.

There is a need to simulate several large sys-

tem models together in a desktop environment.
Each of the system models is close in size to what
Dymola today handles with ease and result files
get close to Windows limitations on file sizes if
important signals are chosen to be stored. We do
have possibility to use clusters for computation,
but we lack tool support for distributing computa-
tions and results.

A related issue is support for effective code

generation for multi-thread and multi-processor
platforms with real-time operating systems to
make complex models run able in real time.

Simple set up of batch simulations as compli-

cated parameter sweeps or running the same simu-
lation with several different models with good
control of result files and connected with report
generation is missing. Parts of it is possible to
script in Modelica but especially support for de-
tailed plot layouts and generation to reports has
not yet been solved to our knowledge.

We are not yet satisfied with the auto genera-

tion of model descriptions, but this is partly due to
too small amount of invested time. We would like
to include more information than seem possible to
do at the moment, but that might depend on that
we have not yet understood how to do it.

As references for the scripting and generating

capabilities related to batch simulation, plot- and
document generation we have the tools MA-
TRIXx and Matlab. These tools are according to
our experience more mature in the respect of e.g.
pre- and post-processing of data. There are also
usable alternatives such as the python program-
ming language [15] for data processing and
spreadsheet applications for plotting.

5 Conclusions

In this paper the driver for and experiences made
when shifting to Modelica as a modeling language
for vehicle systems simulation at Saab Aeronau-
tics are presented. The benefits of model based
engineering are e.g. deeper insight of the systems
behavior and performance as well as earlier detec-
tion of errors as compared to document based sys-
tems engineering.

Simulation kernel

C1

A1

M1

C2

A2

M2

C3

A3

M3

Connection
layer

Adaption
layer

Model layer

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

862

For vehicle systems simulation the introduc-
tion of Modelica has largely been positive. This
said there are several areas where method and tool
support must be improved before MBSE and
Modelica/Dymola will be the natural method to
apply in all projects developing complex vehicle
systems.

Areas of needed improvements are to our ex-

perience:
• better support for large size models
• support for model uncertainty and quality

tracking
• support for validation of complex models

using measurement data
• scripting language features for set-up,

execution and post-processing of batch
simulations

• better performance of code generated for
real-time simulation

• code generation support for multi-thread
and multi-processor targets

• generation of model documentation
adapted to industry/aerospace standard

As with all methods/tools/processes there are
potential for improvement, but for one of the most
important ambitions we believe we have come
closer to the goal; to gain happier engineers with
insight and a feeling of control of their problem
solving efforts.

Acknowledgments

The development methods reported in this paper
has been partly inspired by and based on research
funded by the research projects The Swedish
Governments Agency VINNOVA’s NFFP 2006-
02705, 2009-01359 and 2010-01262; VIN-
NOVA’s 2007-010019 and The European Com-
munity’s Seventh Framework Programmes
(FP7/2007-2013) CRESCENDO (grant agreement
n˚234344) and JTI CleanSky.

References

[1] Modelon AB website: www.modelon.se

[2] Ljung, L.: System Identification, Theory
for the User, 2nd edition, Prentice Hall,
1999

[3] Crescendo website to appear at:
http://www.crescendo-fp7.eu

[4] CleanSky website:
http://www.cleansky.eu/index.php?arbo_i
d=83&set_language=en

[5] SAE Aerospace: Aerospace Recom-
mended Practice ARP4754a, Guidance for
Development, Validation and Verification
of Aircraft Systems, 2008

[6] FMI website http://functional-mockup-
interface.org

[7] NASA-STD-7009: Standard for Models
and Simulations, National Aeronautics
and Space Administration, Washington,
DC 20546-0001, 2008.
http://www.everyspec.com/NASA/NASA
+-+NASA-STD/NASA-STD-
7009_16145/

[8] Steinkellner, S., Andersson, H., Gavel, H.,
Krus, P.: Modeling and Simulation of
Saab Gripen’s vehicle systems, AIAA
Modeling and Simulation Technologies
Conference, Chicago, Illinois, 2009

[9] Lantto, B., Jareland, M.: Model-Based Di-
agnosis Studies of Complex Fluid Me-
chanical Aircraft Systems, In proceedings
of the 25th International Congress of the
Aeronautical Sciences, Hamburg, 2006

[10] Steinkellner, S., Andersson, H., Krus, P.,
Lind, I.: Hosted Simulation for Heteroge-
neous Aircraft System Development, In
proceedings of the 26th International
Congress of the Aeronautical Sciences,
Anchorage, Alaska, 2008

[11] Andersson, H.: Aircraft systems modeling
- model based systems engineering in avi-
onics design and aircraft simulation.
Linköping Studies in Science and Tech-
nology, Licentiate Thesis No. 1394, ISBN
978-91-7393-692-7, Liu-Tryck Linköping
2009.

[12] Andersson, H., Weitman, A., Ölvander, J.:
Simulink as a Core Tool in Development
of Next Generation Gripen, In proceedings
of Nordic Matlab User Conference,
Stockholm, Sweden, 2008.

[13] National Aviation Engineering Pro-
gramme at Vinnova website:
http://www.vinnova.se/en/Activities/Natio
nal-Aviation-Engineering-Research-
Programme

[14] Vrani
�
, V., Šípka, M,: Binding Time

Based Concept Instantiation in Feature
Modeling. In proceedings of the 9th Inter-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

863

national Conference on Software Reuse
(ICSR 2006), LNCS 4039, Turin, Italy,
June 2006.

[15] Python official website
http://wiki.python.org

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

864

