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Abstract 

Saab Aeronautics has chosen Modelica and Dymola 
as part of the means for model based system engi-
neering (MBSE). This paper will point out why a 
considerable effort has been made to migrate models 
from other simulation tools to Dymola. The paper 
also shows how the models and tools are used, ex-
periences gained from usage in an industrial context 
as well as some remaining trouble spots. 
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1 Introduction 

Engineering aircraft systems is a complex task partly 
due to the factors; expensive equipment, expensive 
tests, long lead times, safety constraints, varying en-
vironmental conditions,  e. g., temperature, pressure, 
and g-loads but also weight and space constraints, 
which may lead to high interaction level between 
systems, interaction between engineering domains, 
and finally, sensitivity to shortage of technically 
broad and experienced staff. 

 

By using Model Based Systems Engineering 
(MBSE), much of the information regarding a sys-
tem can be collected into an executable description, a 
model. This helps information sharing between peo-
ple, encouraging cooperation over technical disci-
plines such as, fluid mechanics, electrical engineer-
ing and software engineering thereby helping the 
definitions of interfaces between systems and algo-
rithm development of embedded systems. Integrating 
models from different disciplines into the executable 
model forces focus on the system boundaries. Mod-
els are also good tools to increase the in-depth un-
derstanding of a complex system and for training 
new staff. The most likely pay off is that by using 

MBSE, problems can be detected earlier than by us-
ing document based systems engineering, where 
many problems may be detected when the first test 
aircraft has been built. 

 

At Saab Aeronautics, several projects for increasing 
the use of MBSE are ongoing. A few of these pro-
jects are partly EU financed and performed in coop-
eration with most of European aircraft industry 
(Crescendo [3], Clean Sky [4]). The ambition is to: 

• detect problems within a system or an engi-
neering domain early, 

• detect problems between systems and engi-
neering domains early, 

• increase the ability to optimize design for 
different purposes (such as total fuel con-
sumption), 

• detect ambiguous and/or conflicting re-
quirements early, 

• reduce the amount of implementation errors 
detected late, 

• reduce project risks, 
• gain better control of model variants, model 

fidelity and approved usage of models, 
• get more effective system engineering, 
• reduce testing time and cost, 
• effectively use data from tests, 
• get better secondary products, such as train-

ing simulators for pilots and technicians, 
• give more fun for systems engineers as hap-

py engineers perform better. 
 
The rest of the paper is outlined as follows. Sec-

tion 2 contains a description of the model based 
process and different aspects of models and Mode-
lica usage within this process. A deeper discussion 
on models and tools integration is presented in sec-
tion 3, section 4 reports the potential future needs 
and section 5 concludes the paper. 
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2 Model Based Development 

The model based development process can be de-
scribed from many different viewpoints, see e. g. [8]. 
Here, the viewpoint from a systems engineer special-
ized in systems modeling and simulation is taken. In 
Figure 1, an overview of the process is given. The 
basic idea is that as much as possible of system func-
tional and nonfunctional aspects should be tested as 
completely and cheap as possible to find system de-
sign and implementation errors as close to their ori-
gin as possible. Each engineer takes responsibility 
that his or her work is well done and checked. The 
practice follows typically ARP4754 [5], but the 
NASA Standard 7009 [7] give many useful ideas. 
Another driving factor is that MBSE supports mul-
tidisciplinary optimization, a fact utilized in research 
projects as CleanSky [4]. To make MBSE possible, a 
set of tools is needed. The applications for these 

tools cover many aspects of the engineering tasks; 
from requirement tracking, construction, configura-
tion management, specification, modeling, simula-
tion, report writing, archiving, project planning etc. 
There are many technical disciplines involved, most 
with specific specialist tools. This paper mostly fo-
cuses on the technical discipline of fluid dynamics 
with embedded hardware and software, but might be 
applicable to any mechatronic system.  

The major reason to migrate from previous gen-
eration of simulation tools, which was made for 
simulation only, to Dymola is that Dymola supports 
all the mandatory aspects of tool integration, as de-
scribed below. The choice of Dymola in front of 
other Modelica tools that also fulfills the technical 
requirements depends mostly on two aspects. It is 
owned by a large tool vendor and can thereby be 
trusted to live long enough (10-30 years) and there 
are consultants available that speaks Swedish. 

 

 
Figure 1 Model based development process. The first loop is small and fast and involves desk top simulation of 
one model, either control software specification or the model of the physical part, with the other model run as 
hosted simulation.  The second loop demands more work to close the loop. Code should be made for the target 
computer, code for the physical part of the system might need to be exported to the simulator platform, and/or 
the physical parts of the rig or simulator prepared. To feed back results to the models good comparison and tun-
ing facilities are needed. The third loop involves the airplane, which means typically expensive tests. For success-
ful feedback, measurement, comparison and tuning facilities are needed. 

 

2.1 Typical Parts in an Aircraft System 

Aircraft systems typically involve three major 
types of parts; equipment, avionics with embed-
ded software and surrounding. Equipment is 
things like gear boxes, valves and pipes, batteries, 
sensors, heat exchangers, reservoirs, etc. Avionics 
is computer hardware and software which fulfills 
requirements for aviation use. The surrounding is 

everything from connected aircraft systems, am-
bient conditions to pilot commands. 

2.2 Modeling systems of physical equipment 

First, the physical part of the system is modeled, 
from first principles using supplier data, bench 
test data, previous experience, geometrical data, 
and sometimes also results from continuous fluid 
dynamics computations. To make the modeling 
effective, it is important to have a library of mod-
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eling components built for actual purpose and in 
an appropriate level of detail. For environmental 
control systems and fuel systems, Saab has to-
gether with Modelon AB developed libraries 
based on the stream construct in Modelica. These 
are commercially available [1]. It is also impor-
tant to have a good tool for tuning parameters of 
model components to fit well with available data. 
Identifiability, which means that there exists a 
unique parameterization of the model or solution 
to the optimization problem of fitting the model 
output to measurement data [2], is often an issue, 
since physically parameterized components often 
have several ways to affect the same property.  It 
can be hard to determine which parameters that 
are affected by identifiability problems for the 
identification problem at hand, so any means to 
support this task would be welcome. 

 
The model is (partly) reused in several differ-

ent environments on different platforms with and 
without real time requirements and with different 
interfaces. This requires special care in designing 
the model architecture and the libraries. The 
Modelica construct of replaceable classes is useful 
for making desktop simulations faster when parts 
of the model can be switched off before transla-
tion, which implies that whole sections of equa-
tions don’t turn up as compiled code. A typical 
example is the model of a fuel drop tank that can 
be either present and attached or not present. We 
miss the possibility to do the same type of switch 
in the generated code, so that the choice of variant 
can be done after translation, preferably in run 
time, but without the code related to those sec-
tions of equations always slowing down simula-
tion, see further discussion in Section 3.3.  

It is also useful to have model switches that 
can turn off a complete section of the model, as 
the slow temperature dynamics in the fuel system 
model, which makes it easier to reach real time 
performance for the model without rebuilding it 
using another component library.  

As the model is reused for many different pur-
poses, the concept of power ports inherent in 
Modelica is essential. The higher abstraction level 
used for implementing models with non-fixed 
causality compared to other languages means that 
modeling effort can be used elsewhere.  

 
It is important to build all components and the 

model such that an analytical Jacobian can be cre-
ated. The reason is that the models for aircraft 
fluid systems tend to be large with several hun-
dred time-continuous states, to include nonlinear 

equation systems, and tend also to be stiff. Our 
experience is that a completely analytical Jaco-
bian decreases simulation time compared to a par-
tly numerical Jacobian with at least a factor 5-10, 
but that still means a single typical simulation run 
takes between 5 and 30 minutes. We have also 
experienced a tendency that the solvers fail more 
easily if the analytical Jacobian is not available. 

 
Using the model for the system of physical 

equipment, tasks as first concept validation, 
equipment sizing, sensitivity analysis, and per-
formance estimation can be performed. But the 
involved systems are so complex that it is not suf-
ficient to base further design decisions on these 
results. The control software is needed to e.g. 
close the loop. 

2.3 Software specification 

The control software is used to make sure that the 
system reaches its control goal and to perform 
safety functions such as functional monitoring 
(FM), redundancy management (RM), and built-in 
test (BIT), see further [9]. Physical limitations 
often make it necessary to introduce new control 
actions. An executable model of the control soft-
ware is developed in a modeling and simulation 
tool. In vehicle systems design at Saab Aeronau-
tics, Mathworks Simulink and Stateflow is used 
together with UML tools to develop software. The 
tools are used to build an executable specification 
of the code.  
 

Depending on conditions such as criticality as-
sessments, target avionics, review process, tool 
integration, and license model, code for target is 
either auto generated from the tool or hand coded 
using the model as specification, as reported in 
[12]. As all information about requirements trac-
ing, purpose and descriptions are included in the 
model, it is possible to automatically generate 
parts of the software documentation from the 
software models. 

2.4 Close the loop 

By closing the loop by hosted simulation both in 
Dymola and in Simulink several tasks can be per-
formed, as further described in [10]. By using the 
FMI standard [6] when generating code for the 
hosted part an efficient handling of the connected 
models is achieved. It might seem as double work 
to make a closed loop environment in two tools, 
but this means that engineers can perform their 
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tasks respectively in the tool which they are most 
acquainted with and which is most suited to do the 
tests and changes their task depends on. The 
closed loop simulation is useful for rapid proto-
typing both for the physical part of the system and 
for the control software. It supports safety as-
sessment of the system and can be used to give 
input to computation of static and fatigue loads as 
well as for performance evaluation and detailed 
design of the system. 

2.5 Large scale simulators 

An aircraft consist of a large number of interact-
ing systems. There are needs ranging from early 
interaction tests between systems to training of 
pilots, technicians and maintenance staff that can 
be met using large scale simulators. The large 
scale simulators involve many of the aircraft sys-
tems to a varying level of detail. Some large scale 
simulators include target avionics (that is, are 
partly hardware rigs) with real time performance 
constraints while others are completely software 
based without real time constraints. Control soft-
ware can either be included as a model or as target 
code. Equipment models are needed, but often 
simplified models are sufficient for the use. The 
highest demands on accuracy on fluid mechanical 
system models in this context often comes from 
usage in training simulator for technicians and 
maintenance staff or from development tasks 
where the interaction between several complex 
systems is investigated. An interesting aspect of 
simulator models is that correct behavior when 
system faults occur is required. This means that 
all sensors and actuators need to have several dif-
ferent types of faulty behavior implemented [11]. 

2.6 System test rigs 

The aircraft systems for environmental control 
and fuel management are so complex that system 
test rigs are necessary. The system test rigs are 
used to test that avionics and equipment have cor-
rect electrical interfaces, that all equipment has 
correct mechanical interface and that pressure 
drops, and other functional characteristics live up 
to the given specifications and work well together. 
Depending on the flight criticality class of the sys-
tem and status of the system test rig, the system 
test rig can also be used for flight safety checks, 
often in combination with ground tests in the air-
craft. As the avionics is also used in large-scale 
simulators where the equipment is not available, 

the equipment model must have an interface com-
pliant with the real equipment.  

 
The closed loop simulation can be used to run 

test before they are run in the system test rig to 
make sure the test will give the information 
needed. The results from the system test rig 
should be fed back into the equipment and soft-
ware specification models, to improve confidence 
and quality.  

2.7 Ground and flight tests 

Ground and flight tests are used primarily to as-
certain flight worthiness and for validation of re-
quirements on aircraft level. As the use of MBSE 
increases we see an increased usage of ground and 
flight tests in order to get measurement data for 
model validation. At the same time, the need for 
ground and flight tests decreases, partly due to 
that more validation can be done using the model 
based techniques.  

 
To use model based techniques to support the 

certification of an aircraft, that is, ascertain flight 
worthiness and validate all requirements from au-
thorities such as EASA, is partly treated in the 
ongoing research program Crescendo [3]. 

2.8 Feedback data to models 

This task needs careful planning and considera-
tion of many aspects. First, the placements of sen-
sors in the aircraft need to be decided upon sev-
eral years to several months before use. Sensor 
placement is expensive to change with long lead 
times due to the mechanical, electrical and instal-
lation work needed, if the optimal placement is 
not reached at the first try. Sensors are subject to a 
constant revision and trade off between usability 
versus weight and signal storage availability, 
which means planned sensors are easily removed, 
but not easily reinserted. This makes measurement 
data scarce.  

 
Most flights are non-informative from a model 

validation perspective. The informative flights in 
the outskirts of the normal envelop can be hard to 
reach due to weather and climate conditions, safe-
ty constraints and complex conditions to be ful-
filled to reach a given state. One example is ice 
build up in heat exchangers, which happens in 
some weather and flight conditions but can be 
close to impossible to achieve in a dedicated flight 
test.  
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To find informative data sets in the ground and 

flight test measurement data base is a task that 
requires experience and special care to make sure 
that the data set is fit for use. It is often less com-
plicated to use data from a dedicated test since the 
control of all conditions can be monitored with 
the validation task in mind. 

 
When appropriate data sets are found these 

should be compared with model output. The easy 
part of this is to simulate the model using the 
same ambient conditions and the same inputs 
from the surrounding systems. As the complete 
signal interface between equipment and avionics 
(up to 200 signals for a single system) is not sub-
ject to monitoring during ground or flight tests it 
is not possible to fully provide the same condi-
tions for the equipment model as for the real 
equipment. The output can be compared to the 
measurements to give an idea of the model quality 
with regard to the measured quantity. To general-
ize the estimate of the model quality to other 
quantities of interest in the complex nonlinear 
models is more difficult. We find the tool support 
at the moment not sufficient for our needs. There 
is ongoing research on what validation methods 
are industrially useful for that purpose e. g. within 
the Swedish National Aviation Engineering Pro-
gramme (NFFP), [13]. 

 
For tuning of model parameters to make the 

model better fit the measurement data the Dymola 
Model Calibration Tool has been useful to some 
degree, even if a larger variety of system identifi-
cation methods and better control and possibility 
to select optimization objectives and optimization 
methods is desired. When using identification, 
different methods sometimes give different results 
and which method is preferred depends on the 
application and the validation result. 

3 Integration of models and tools 

In simulation of an aircraft or any other complex 
product, the total model is usually composed of 
several sub models to be manageable. The aircraft 
model architecture is created and maintained in 
order to get explicit and clear model interfaces. It 
is convenient to map the “model breakdown struc-
ture” onto the breakdown structure of the repre-
sented product so that e.g. system interface defini-
tions and responsibility allocation can be reused 
more easily. An example of several simulation 

models connected to form a larger integrated 
model is shown in Figure 2. 

 

 
Figure 2. This is a simplified view of an integrated 
simulation model consisting of models for Engine, 
Fuel system, Environmental control system, Avion-
ics and a Pilot model.  

 
A smaller set of aircraft subsystem models may 
today be integrated in Dymola, but for larger sets 
of models some more specialized and powerful 
integration framework is still needed.  

3.1 Configuration handling 

Several aspects regarding configuration of models 
has to be handled. A simulation model is a repre-
sentation of a (specified or built) aircraft system 
which itself is under configuration control in e.g. 
a Product Data Management (PDM) system. A 
PDM system is used for e.g. structuring, storage, 
change and validity control of product data related 
to delivery and maintenance of the products. 
Equipment data such as specifications, change 
requests of parts or documentation for certifica-
tion is mature in these systems. Simulation mod-
els that represent systems/parts of the product are 
normally not kept within the PDM system. Infor-
mation such as specification of interfaces and eq-
uations, model change requests or status account-
ing of models is not part of the traditional PDM 
scope.  
 

Software Configuration Management (SCM) 
systems are suited for code management and as 
the simulation models are code in some format, 
the support for model management on code level 
(e.g. revision and release management) is best 
supported by a SCM system. Dymola supports 
version control of models using e.g. the SCM tool 
subversion (SVN).   

Needed cooling 
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Cooled air 
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Bleed air 

Fuel tank 
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The division of data between the PDM and 

SCM domains is unfortunate for many reasons, 
not only storage and control of simulation models. 
It is especially problematic in the vehicle systems 
modeling domain though, because data about the 
systems and equipment to be represented in the 
models are basically handled in PDM, but the 
model software “belongs” to SCM. So this is one 
of the challenges for the future to solve.  

3.2 Variability 

Two concepts in variability and configuration 
handling are variants and versions. A variant is 
“an option of an item which customers can 
choose”. Versions are sequential revisions replac-
ing each other. Variants exist in parallel, whiles 
versions exist in a series. If an error occurs in an 
item it needs to be revised, and a new version is 
created.  

 
As aircrafts are developed and maintained for a 

long period of time, the systems usually exist in 
several variants and versions. Also the models 
exist in variants and versions, but there is usually 
not a straight-on mapping between the PDM de-
velopment tree and the model development tree. 
Rigor tracing has to be maintained for models 
used for verification, certification, and training 
purposes. 

 
Models are often parameterized, meaning that 

one model can be used to represent a set of air-
craft system variants/versions. This implies that 
both the parametric model (interfaces, equations, 
algorithms etc.) and all the parameter sets need to 
be under configuration control. 

 
One driving force for parametric models or 

other kinds of variability is to enable reuse. In 
aircraft simulation it is of major importance to 
reuse existing models (if possible) because the 
verification effort for each single model drives 
time and cost. The number of variants should 
therefore be minimized, but there are situations 
where the requirements are incompatible and 
model variants are unavoidable, such as: 

• different level of fidelity 
• customer specific equipment models 
• security (e.g. IPR) 
 

3.3 Binding time 

Binding time describes when a variable model 
part or function is to be bound, i.e. selected to be-
come a mandatory part of a simulation model in-
stance. Possible binding times include model time 
(also referred to as “design time”), translation 
time, compile time, link time, load time, and run 
time. 
 

Choosing different binding time for elements 
affects their properties. For example, deciding to 
bind two model components during translation 
time will yield different system properties than 
deciding to bind these two components at run time 
[14].  

 
Example of a setting is whether the simulation 

is to represent a single seater or a dual seater air-
craft. Another example was given in Section 2.2. 
It is however not sure that all models with this 
feature as a possible choice use the same binding 
time as mechanism for this setting. One model 
may have a translation time alternatives whiles 
another uses run time switch for the same varia-
tion.  

 
Run time binding provides in general shorter 

turnaround time when shifting feature. There are 
situations when run time binding not is sufficient, 
for example when propriety models are integrated 
in a training simulator and delivered to a cus-
tomer. In this case only functionality relevant for 
that customer is allowed to be present in that 
model variant. Specific customer oriented model 
variants are maintained and binding is done in e.g. 
model time. 

3.4 Integration methods 

There are different kinds of integration. One is 
integration of software- and hardware models to 
form closed loop simulation. This can be per-
formed using the hosted simulation method with 
Dymola or Simulink as hosting environment as 
mentioned above.  

To integrate models into a complete aircraft 
simulation require models from different domains 
often including legacy models developed with 
older methods and with different software genera-
tions. A large portion of the software used for 
simulation in the aircraft industry is for example 
still implemented in different versions of FOR-
TRAN. Some suppliers of equipment also provide 
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their existing models to the aircraft integrator for 
functional- and integration verification.  

 
To enable integration of a wider variety of 

model formats, an integration framework is 
needed. At Saab Aeronautics there are different 
simulation integration frameworks based on the 
ADA and FORTRAN languages respectively. To 
be able to connect models implemented in differ-
ent languages one used method is to use adaptors 
(or wrappers). Figure 3 shows an example of ar-
chitecture for model integration.  

 

 
 

Figure 3. Example of an architecture for model in-
tegration with defined layers. The model layer is the 
actual simulation code in some for the framework 
accepted language (e.g. FORTRAN, C and/or 
ADA). Purpose of the connector layer is to connect 
models with each other and with the simulation 
kernel, and the adaption layer is responsible for the 
software language adaption (e.g. to connect C with 
ADA). 

 
The emerging FMI standard [6] for model in-

tegration has the C language as a basis for soft-
ware integration, which fits well with simulation 
code generated from Dymola. The standard also 
provides interface specifications in XML, which 
gives a powerful tool to support integration in 
other frameworks as it is fairly easy to map one 
XML scheme to another. A Modelica model cre-
ated with Dymola is thereby easily integrated in a 
simulator with respect to the signal interface defi-
nition. 

4 Future needs 

Apart from the needs expressed in Section 2, the 
following issues are things we would like to do 
but have not yet found solutions to or the time to 
learn existing solutions. 

 
There is a need to simulate several large sys-

tem models together in a desktop environment. 
Each of the system models is close in size to what 
Dymola today handles with ease and result files 
get close to Windows limitations on file sizes if 
important signals are chosen to be stored. We do 
have possibility to use clusters for computation, 
but we lack tool support for distributing computa-
tions and results. 

 
A related issue is support for effective code 

generation for multi-thread and multi-processor 
platforms with real-time operating systems to 
make complex models run able in real time. 

 
Simple set up of batch simulations as compli-

cated parameter sweeps or running the same simu-
lation with several different models with good 
control of result files and connected with report 
generation is missing. Parts of it is possible to 
script in Modelica but especially support for de-
tailed plot layouts and generation to reports has 
not yet been solved to our knowledge.  

 
We are not yet satisfied with the auto genera-

tion of model descriptions, but this is partly due to 
too small amount of invested time. We would like 
to include more information than seem possible to 
do at the moment, but that might depend on that 
we have not yet understood how to do it. 

 
As references for the scripting and generating 

capabilities related to batch simulation, plot- and 
document generation we have the tools MA-
TRIXx and Matlab. These tools are according to 
our experience more mature in the respect of e.g. 
pre- and post-processing of data. There are also 
usable alternatives such as the python program-
ming language [15] for data processing and 
spreadsheet applications for plotting. 

5 Conclusions 

In this paper the driver for and experiences made 
when shifting to Modelica as a modeling language 
for vehicle systems simulation at Saab Aeronau-
tics are presented. The benefits of model based 
engineering are e.g. deeper insight of the systems 
behavior and performance as well as earlier detec-
tion of errors as compared to document based sys-
tems engineering. 
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For vehicle systems simulation the introduc-
tion of Modelica has largely been positive. This 
said there are several areas where method and tool 
support must be improved before MBSE and 
Modelica/Dymola will be the natural method to 
apply in all projects developing complex vehicle 
systems.  

 
Areas of needed improvements are to our ex-

perience:  
• better support for large size models 
• support for model uncertainty and quality 

tracking 
• support for validation of complex models 

using measurement data 
• scripting language features for set-up, 

execution and post-processing of batch 
simulations 

• better performance of code generated for 
real-time simulation 

• code generation support for multi-thread 
and multi-processor targets 

• generation of model documentation 
adapted to industry/aerospace standard 
 

As with all methods/tools/processes there are 
potential for improvement, but for one of the most 
important ambitions we believe we have come 
closer to the goal; to gain happier engineers with 
insight and a feeling of control of their problem 
solving efforts. 
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