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Abstract. Model based testing is one of the promising technologies to
meet the challenges imposed on software testing. In model based test-
ing an implementation under test is tested for compliance with a model
that describes the required behaviour of the implementation. This tu-
torial chapter describes a model based testing theory where models are
expressed as labelled transition systems, and compliance is defined with
the ‘ioco’ implementation relation. The ioco-testing theory, on the one
hand, provides a sound and well-defined foundation for labelled transi-
tion system testing, having its roots in the theoretical area of testing
equivalences and refusal testing. On the other hand, it has proved to be
a practical basis for several model based test generation tools and appli-
cations. Definitions, underlying assumptions, an algorithm, properties,
and several examples of the ioco-testing theory are discussed, involving
specifications, implementations, tests, the ioco implementation relation
and some of its variants, a test generation algorithm, and the soundness
and exhaustiveness of this algorithm.

1 Introduction

Software testing. Systematic testing is one of the most important and widely used
techniques to check the quality of software. Testing, however, is often a manual
and laborious process without effective automation, which makes it error-prone,
time consuming, and very costly. Estimates are that testing consumes 30-50%
of the total software development costs. The tendency is that the effort spent
on testing is still increasing due to the continuing quest for better software
quality, and the ever growing size and complexity of systems. The situation is
aggravated by the fact that the complexity of testing tends to grow faster than
the complexity of the systems being tested, in the worst case even exponentially.
Whereas development and construction methods for software allow the building
of ever larger and more complex systems, there is a real danger that testing
methods cannot keep pace with construction. This may seriously hamper the
development of future generations of software systems.



Model based testing. One of the new technologies to meet the challenges imposed
on software testing is model based testing. In model based testing a model of
the desired behaviour of the implementation under test (IUT) is the starting
point for testing. Model based testing has recently gained attention with the
popularization of modelling itself both in academia and in industry. The main
virtue of model based testing is that it allows test automation that goes well
beyond the mere automatic execution of manually crafted test cases. It allows for
the algorithmic generation of large amounts of test cases, including test oracles,
completely automatically from the model of required behaviour. If this model
is valid, i.e., expresses precisely what the system under test should do, all these
tests are also provably valid.

From an industrial perspective, model based testing is a promising technique
to improve the quality and effectiveness of testing, and to reduce its cost. The
current state of practice is that test automation mainly concentrates on the
automatic execution of tests, but that the problem of test generation is not
addressed. Model based testing aims at automatically generating high-quality
test suites from models, thus complementing automatic test execution.

From an academic perspective, model based testing is a natural extension of
formal methods and verification techniques, where many of the formal techniques
can be reused. Formal verification and model based testing serve complementary
goals. Formal verification intends to show that a system has some desired prop-
erties by proving that a model of that system satisfies these properties. Thus,
any verification is only as good as the validity of the model on which it is based.
Model based testing starts with a (verified) model, and then intends to show that
the real, physical implementation of the system behaves in compliance with this
model. Due to the inherent limitations of testing, such as the limited number
of tests that can be performed, testing can never be complete: testing can only
show the presence of errors, not their absence.

Sorts of model based testing. There are different kinds of model based testing
depending on the kind of models being used, the quality aspects being tested,
the level of formality involved, and the degree of accessibility and observability
of the system being tested. In this contribution we consider model based testing
as formal, specification based, active, black-box, functionality testing.

It is testing, because it involves checking some properties of the IUT by
systematically performing experiments on the real, executing IUT, as opposed
to, e.g., formal verification, where properties are checked on the level of formal
descriptions of the system. The kind of properties being checked are concerned
with functionality, i.e., testing whether the system correctly does what it should
do in terms of correct responses to given stimuli, as opposed to, e.g., performance,
usability, reliability, or maintainability properties. Such classes of properties are
also referred to as quality characteristics. The testing is active, in the sense that
the tester controls and observes the IUT in an active way by giving stimuli and
triggers to the IUT, and observing its responses, as opposed to passive testing,
or monitoring.
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The basis and starting point for testing is the specification, which prescribes
what the IUT should, and should not do. The specification is given in the form of
some model of behaviour to which the behaviour of the IUT must conform. This
model is assumed to be correct and valid: it is not itself the subject of testing
or validation. Moreover, the testing is black-box. The IUT is seen as a black box
without internal detail, which can only be accessed and observed through its
external interfaces, as opposed to white-box testing, where the internal structure
of the IUT, i.e., the code, is the basis for testing.

Finally, we deal with formal testing: the model, or specification, prescribing
the desired behaviour is given in some formal language with precisely defined
syntax and semantics. But formal testing involves more than just a formal spec-
ification. It also involves a formal definition of what a conforming IUT is, a
well-defined algorithm for the generation of tests, and a correctness proof that
the generated tests are sound and exhaustive, i.e., that they exactly test what
they should test.

Goal. The aim of this contribution is to be a tutorial for a particular model based
testing theory, viz. the ioco-testing theory for labelled transition systems. This
theory uses labelled transition systems as models for specifications, implemen-
tations, and tests, and a formal implementation relation called ioco defines con-
formance between implementations (IUTs) and specifications. Moreover, there
is an algorithm to generate test cases, for which there is a completeness theorem
(soundness and exhaustiveness) expressing that the algorithmically generated
test cases exactly test for ioco-conformance. All of these aspects are elaborated
in the following sections.

There are a couple of test generation tools, which implement, more or less
directly, the ioco-testing theory, e.g., TVEDA [1], TGV [2], the Agedis Tool

Set [3], TestGen [4], and TorX [5]. As such, this contribution also aims at
giving the theory behind these tools.

The main source for this contribution is [6]. The most important technical
change with respect to [6] is the input enabledness of test cases, which was
inspired by [7]; see Section 3.5.

Overview. Section 2 starts with a framework for formal, model based testing
introducing the required concepts, artefacts, and relations between them. This
formalism independent framework should provide a structure for discussing for-
mal testing, and it should allow classification and comparison of different formal
testing approaches. Section 3 describes the models and languages used in this
contribution: labelled transition systems, and some variants of them to model
specifications, implementations, and test cases. Moreover, a process language for
representing them is introduced. Section 4 discusses, and formally defines the im-
plementation relation ioco, which expresses what a correct implementation of a
given specification should, and should not do. The algorithm for the generation
of test cases from a specification is presented in Section 5. That section also
considers test execution, and the correctness of the test generation algorithm.
Finally, in Section 6 a few concluding remarks are given.
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This contribution intends to be a tutorial accessible for anyone with some
basic formal, mathematical knowledge. This implies that some readers may want
to skip some of the introductory sections, in particular, the basic definitions
about transition systems in Sections 3.1 and 3.2. Also Section 4.2 can be skipped;
it only contains variations on the main theme which are not strictly necessary
for understanding the subsequent sections.

2 Formal Testing

When performing formal, specification based testing there are different concepts
and objects that we need. This section presents these concepts and objects, and
the relations between them. This constitutes a kind of framework for formal test-
ing of an implementation with respect to a formal specification of its functional
behaviour. This framework, which is at a high level of abstraction, and which
does not make any reference to a specific specification formalism, is depicted in
Figure 1, and is explained in this section. In Sections 3, 4, and 5 these concepts
will then be concretized and instantiated with the testing theory of labelled
transition systems.

i fails Ts

test

imp

generation

i ∈ MOD

execution

implementation

specification
s ∈ SPEC

test cases

Ts ⊆ TEST

test

i passes Ts

Fig. 1. The formal, specification based testing process.

Implementation. The first thing needed for testing is the Implementation Under
Test iut. The iut is the system being tested. An implementation can be a
real, physical object, such as a piece of hardware, a computer program with all
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its libraries running on a particular processor, an embedded system consisting
of software embedded in some physical device, or a process control system with
sensors and actuators. Since we deal with black-box testing, an implementation is
treated as a black-box exhibiting behaviour and interacting with its environment,
but without knowledge about its internal structure. The only way a tester can
control and observe an implementation is via its interfaces. The aim of testing
is to check the correctness of the behaviour of the iut on its interfaces.

Specification. Correctness of an iut is expressed as conformance to a specifica-
tion. The specification prescribes what the implementation should do, and what
it should not do. In formal testing the specification is expressed in some formal
language, i.e., a language with a formal syntax and semantics. Let this language,
i.e., the set of all valid expressions in this language, be denoted by SPEC , then
a specification s is an element of this language: s ∈ SPEC . By means of testing
we want to check whether the behaviour of the iut conforms to s.

Conformance. To check whether the iut conforms to a specification s we need to
know precisely what it means for an iut to conform to s, i.e., a formal definition
of conformance is required. Such a definition should relate implementations to
specifications. But, if we want to define such a relation between implementations
and specifications, we encounter a problem. Whereas a specification s is a formal
object taken from a formal domain SPEC , an implementation under test is
not amenable to formal reasoning. An iut is not a formal object: it is a real,
physical thing, which consists of software, hardware, physical components, or a
combination of these, on which only experiments and tests can be performed.

In order to formally reason about implementations we do a little trick: we
make the assumption that any real implementation under test iut can be mod-
elled by some formal object iIUT in a set of models MOD . The domain MOD
is a-priori chosen, and is referred to as the universe of implementation models.
This assumption is commonly referred to as the test assumption. Note that the
test assumption presupposes a particular domain of models MOD , and that it
is only assumed that a valid model iIUT of the iut exists in this domain, but not
that this model iIUT is a-priori known.

Thus, the test assumption allows reasoning about implementations under
test as if they were formal implementations in MOD . This is what we will do
from now on. Consequently, conformance can be expressed by a formal relation
between models of implementations and specifications. Such a relation is called
an implementation relation imp ⊆ MOD × SPEC . An implementation model i
is said to be correct with respect to s ∈ SPEC if i imp s.

Testing. The behaviour of an implementation is investigated by performing ex-
periments on it. An experiment consists of supplying stimuli to the implemen-
tation and observing its responses. The specification of such an experiment,
including both the stimuli and the expected responses, is called a test case, and
it is formally expressed as an element of some domain of test cases TEST . The
process of applying a test to an implementation is called test execution. Test
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execution may be successful, meaning that the observed responses correspond
to the expected responses, or it may be unsuccessful. The successful execution
of a test t to an implementation i is expressed as i passes t ; unsuccessful exe-
cution is denoted as i fails t ⇔ i /passes t. This is easily extended to a test suite
T ⊆ TEST : i passes T ⇔ ∀t ∈ T : i passes t.

Conformance testing. Conformance testing involves assessing, by means of test-
ing, whether an implementation conforms, with respect to implementation rela-
tion imp, to its specification. Hence, the notions of conformance, expressed by
imp, and of test execution, expressed by passes, have to be linked in such a
way that from test execution an indication about conformance can be obtained.
So, for conformance testing we are looking for a test suite Ts such that

∀i ∈ MOD : i imp s ⇐⇒ i passes Ts (1)

A test suite with this property is said to be complete; it can distinguish exactly
between all conforming and non-conforming implementations, i.e., testing is a
complete decision procedure for imp-conformance to s. For practical testing this
is a very strong requirement: complete test suites are infinite, and consequently
not practically executable. Hence, usually a weaker requirement on test suites is
posed: they should be sound, which means that all correct implementations, and
possibly some incorrect implementations, will pass them; or, in other words, any
failing implementation is indeed non-conforming, but not the other way around.
Soundness corresponds to the left-to-right implication in (1). The right-to-left
implication is referred to as exhaustiveness ; it means that all non-conforming
implementations are detected.

It may seem that the meaning of these concepts is reversed with respect
to their usual meaning, where soundness means that no false deductions can
be made, and completeness means that all correct deductions can be made.
Testing, however, is about detecting errors, so that a deduction corresponds to
the detection of an error. Consequently, soundness in testing means that no
false deductions, i.e., no false detections of errors, can be made. Analogously,
exhaustiveness (completeness) in testing means that all correct deductions can
be made, i.e., that all errors can be detected.

Test generation. The systematic, algorithmic generation of test suites from a
specification for a given implementation relation is called test generation:
gen imp : SPEC → P(TEST ), (where P(TEST ) denotes the power set of TEST ,
i.e., the set of all subsets of TEST ). Such an algorithm is complete (sound,
exhaustive) if the generated test suites are complete (sound, exhaustive) for all
specifications.

Test generation is the most beneficial and visible aspect of model based test-
ing: it allows the automatic production of large and provably sound test suites.

Conclusion. For model based testing we need a formal specification language
SPEC , a domain of models of implementations MOD , an implementation rela-
tion imp ⊆ MOD × SPEC expressing correctness, a test execution procedure
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passes ⊆ MOD ×TEST expressing when a model of an implementation passes
a test case, a test generation algorithm gen imp : SPEC → P(TEST ), and a
proof that a model of an implementation passes a generated test suite if and
only if it is imp-correct. The process of formal, specification based testing is
schematically depicted in Figure 1.

The next sections will elaborate these concepts for the formalism of labelled
transition systems. This means that we will use (variants of) labelled transition
systems for SPEC (Section 3.3), MOD (Section 3.4), and TEST (Section 3.5),
that conformance is expressed as a relation on labelled transition systems (Sec-
tion 4), that test execution of a labelled transition system test with an im-
plementation is defined (Section 5.1), and that a test generation algorithm is
presented (Section 5.2), which is proved to generate sound and exhaustive la-
belled transition system test suites from a labelled transition system specification
(Section 5.3).

Bibliographic notes. This framework for model based testing comes from [8, 9],
with inspiration concerning test assumptions and test hypotheses from [10, 11].
There are also international standardization efforts in this direction [12]. The
next sections will consider this framework instantiated with labelled transition
systems, but also other formalisms may be used, e.g., Finite State Machines
(FSM, Mealy Machines) [13], Abstract Data Types [11], object oriented for-
malisms [14], or (mathematical) functions [15].

3 Models

Model based testing uses formal specifications, models of implementations, and
test case descriptions; see Figure 1. This section presents the modelling for-
malisms on which these specifications, models, and descriptions are built. The
basic model that we use in our formal testing theory is that of a labelled transition
system, which is defined in Section 3.1. Section 3.2 considers the representation
of labelled transition systems by a formal language. Subsequently, three variants
of labelled transition systems are presented: labelled transition systems with in-
puts and outputs (Section 3.3), input-output transition systems (Section 3.4),
and test transition systems (Section 3.5), which are used to model specifications,
implementations, and test cases, respectively.

3.1 Labelled Transition Systems

A labelled transition system is a structure consisting of states with transitions,
labelled with actions, between them. The states model the system states; the
labelled transitions model the actions that a system can perform.

Definition 1. A labelled transition system is a 4-tuple 〈Q, L, T, q0〉 where

– Q is a countable, non-empty set of states;
– L is a countable set of labels;
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– T ⊆ Q × (L ∪ {τ}) × Q, with τ /∈ L, is the transition relation;
– q0 ∈ Q is the initial state.

We write q µ−−→ q′ if there is a transition labelled µ from state q to state
q′, i.e., (q, µ, q′) ∈ T . The informal idea of such a transition is that when the
system is in state q it may perform action µ, and go to state q′ . Suppose that in

state q′ the system can perform action µ′, i.e., q′ µ′

−−→ q′′, then these transitions

can be composed: q µ−−→ q′ µ′

−−→ q′′, which is written as q µ·µ′

−−−→ q′′. In general, the
composition of transitions q1

µ1·µ2·...·µn−−−−−−−−→ q2 expresses that the system, when in
state q1, can perform the sequence of actions µ1·µ2· . . . ·µn, and may end in state
q2. The use of may is important here: because of nondeterminism, it may be the
case that the system can also perform the same sequence of actions, but end in
another state: q1

µ1·µ2·...·µn−−−−−−−−→ q3 with q2 6= q3.

Definition 2. Let A be a set. Then A∗ is the set of all finite sequences over
A, with ǫ denoting the empty sequence. If σ1, σ2 ∈ A∗ are finite sequences, then
σ1·σ2 is the concatenation of σ1 and σ2.

Definition 3. Let p = 〈Q, L, T, q0〉 be a labelled transition system with q, q′ ∈ Q,
and let µ, µi ∈ L ∪ {τ}.

q µ−−→ q′ ⇔def (q, µ, q′) ∈ T

q µ1·...·µn−−−−−−→ q′ ⇔def ∃q0, . . . , qn : q = q0
µ1−−→ q1

µ2−−→ . . . µn−−→ qn = q′

q µ1·...·µn−−−−−−→ ⇔def ∃q′ : q µ1·...·µn−−−−−−→ q′

q
µ1·...·µn−−−−−−−→/ ⇔def not ∃q′ : q µ1·...·µn−−−−−−→ q′

q0

q1

q2 q3

q

liq

but
p0

p1

p2

p

liq choc

u

but

u1

u0

v0

τbutliq

v v1

choc

liq

but

but

but

r0

r2

r3
r4

r5
r

r1
chocliq

but

Fig. 2. Labelled transition systems.

Example 1. Figure 2 presents five examples of labelled transition systems repre-
senting candy machines. There is a button interaction but , and labels for choco-
late choc and liquorice liq . The transition systems are represented as graphs,
where nodes represent states and labelled edges represent transitions. The dan-
gling arrow points to the initial state.

8



The tree q represents the labelled transition system
〈 {q0, q1, q2, q3}, {but, liq , choc}, { 〈q0, but , q1〉, 〈q1, liq , q2〉, 〈q1, choc, q3〉 }, q0 〉.

For r we have that r0
but−−−→ r1, and also r0

but−−−→ r2. Moreover, r0
but·liq−−−−−→ r3, so

also r0
but·liq−−−−−→ , but r0

but·choc
−−−−−−−→/ .

The labels in L represent the observable actions of a system; they model the
system’s interactions with its environment. Internal actions are denoted by the
special label τ (τ /∈ L), which is assumed to be unobservable for the system’s
environment. Also states are assumed to be unobservable for the environment.
Consequently, the observable behaviour of a system is captured by the system’s
ability to perform sequences of observable actions. Such a sequence of observable
actions is obtained from a sequence of actions under abstraction from the inter-
nal action τ . If q can perform the sequence of actions a·τ ·τ ·b·c·τ (a, b, c ∈ L),

i.e., q a·τ ·τ ·b·c·τ−−−−−−−→ q′, then we write q
a·b·c

===⇒ q′ for the τ -abstracted sequence of
observable actions. We say that q is able to perform the trace a·b·c ∈ L∗. These,
and some other notations and properties are formally given in Definition 4.

Definition 4. Let p = 〈Q, L, T, q0〉 be a labelled transition system with q, q′ ∈ Q,
a, ai ∈ L, and σ ∈ L∗.

q
ǫ

=⇒ q′ ⇔def q = q′ or q τ ·...·τ−−−−→ q′

q
a

=⇒ q′ ⇔def ∃q1, q2 : q
ǫ

=⇒ q1
a−→ q2

ǫ
=⇒ q′

q
a1·...·an======⇒ q′ ⇔def ∃q0 . . . qn : q = q0

a1==⇒ q1
a2==⇒ . . .

an==⇒ qn = q′

q
σ

=⇒ ⇔def ∃q′ : q
σ

=⇒ q′

q
σ

=6⇒ ⇔def not ∃q′ : q
σ

=⇒ q′

Example 2. In Figure 2:

u0
but·liq·but·choc

===========⇒u0, v0
but·but·but·liq

==========⇒ v0, and u0

but·but

=====6⇒ .

In our reasoning about labelled transition systems we will not always dis-
tinguish between a transition system and its initial state. If p = 〈Q, L, T, q0〉,

we will identify the process p with its initial state q0, and, e.g., we write p
σ

=⇒
instead of q0

σ
=⇒ . With this in mind, we give some additional definitions and

notations in Definition 5, which are exemplified in Example 3.

Definition 5. Let p be a (state of a) labelled transition system, and σ ∈ L∗.

1. init(p) =def { µ ∈ L ∪ {τ} | p µ−−→ }

2. traces(p) =def { σ ∈ L∗ | p
σ

=⇒ }

3. p after σ =def { p′ | p
σ

=⇒ p′ }
4. P after σ =def

⋃

{ p after σ | p ∈ P }, where P is a set of states.

5. P refuses A =def ∃p ∈ P, ∀µ ∈ A ∪ {τ} : p
µ

−−→/ ,
where P and A are sets of states and labels, respectively.

6. der (p) =def { p′ | ∃σ ∈ L∗ : p
σ

=⇒ p′ }
7. p has finite behaviour if there is a natural number n such that all traces in

traces(p) have length smaller than n.
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8. p is finite state if the number of reachable states der (p) is finite.
9. p is deterministic if, for all σ ∈ L∗, p after σ has at most one element.

If σ ∈ traces(p), then p after σ may be overloaded to denote this element.
10. p is image finite if, for all σ ∈ L∗, p after σ is finite.
11. p is strongly converging if there is no state of p that can perform an infinite

sequence of internal transitions.
12. LTS(L) is the class of all image finite and strongly converging labelled tran-

sition systems with labels in L.

In the sequel LTS(L) will be our basic class of models. We restrict this class
to strongly converging and image finite transition systems to make it possible to
algorithmically compute an after-set. It will turn out that the computation of
these sets is crucial for the test generation algorithm; see Section 5.2. Most of the
results presented in the next sections are also valid without these restrictions,
but at the expense of some extra complexity.

bi

aaaa

wz

a3a2a1 a aaa4
aia0 a5

b0 b1 b2 b3 b4 b5 bi b0 b1 b2 b3 b4 b5

Fig. 3. An image-finite and an image-infinite transition system.

Example 3. All possible execution sequences of process r in Figure 2 are given
by traces(r) = {ǫ, but , but ·liq , but ·but , but ·but ·choc}. Process u has infinitely
many traces: traces(u) = {ǫ, but , but ·liq , but ·choc, but ·liq ·but , . . . }, but
although the set of traces has infinitely many elements, each trace, by definition,
has finite length.

Some states in which a system can be after a trace are: r after ǫ = {r0};
r after but = {r1, r2}; r after but ·choc = ∅; v after but ·liq ·but = {v0, v1}.

We have that q after but refuses {but} , but not q after but refuses {liq} ,
and not q after but refuses {but, liq} . Moreover, r after but refuses {but} and
r after but refuses {liq} , but not r after but refuses {but , liq} . For v we have

that v
but·liq

=====⇒ , but also v after but refuses {liq} .
The three processes p, q and r have finite behaviour and are finite state; u

and v are finite state, but have infinite behaviour. Transition systems p, q, and
u are deterministic, whereas r and v are nondeterministic. All five processes are
image finite.

The transition system z in Figure 3 is deterministic, has infinitely many
states, but has finite behaviour, and is image finite: for each i ∈ IN, z after ai is
a singleton. The system w in Figure 3 is not deterministic and not image finite:
w after a has infinitely many states.
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3.2 Representing Labelled Transition Systems

Labelled transition systems constitute a powerful semantic model to reason
about processes, such as specifications, implementations, and tests. However,
except for the most trivial processes, like the ones in Figure 2, an explicit repre-
sentation as 4-tuple, or a representation by means of a tree or a graph is usually
not feasible. Realistic systems easily have billions of states, so that drawing or
enumerating them is not an option. We need another way of representing a tran-
sition system, and the usual way is to define a language with labelled transition
systems as its operational semantics. Each expression in such a language defines,
through its semantics, a labelled transition system. Expressions can be combined
with language operators, so that complex transition systems can be composed
from simpler ones. We call such a language a process language.

There exist many process languages. We use a variant of the language Lotos,
for which we introduce some of the constructs that are used in the sequel to define
test cases, test execution, and the composition of systems. Since this text is not
intended as a tutorial in such languages, we refer to the standard literature for
a more detailed treatment.

The language expressions defining labelled transition systems are called be-
haviour expressions. We have the following syntax for behaviour expressions,
where a ∈ L is a label, B is a behaviour expression, B is a countable set of
behaviour expressions, G ⊆ L is a set of labels, and P is a process name.

B ::= a ; B | i ; B | Σ B | B |[ G ]| B | hide G in B | P

The action prefix expression a ; B defines the behaviour, which can perform
the action a and then behaves as B, i.e., a ; B defines the labelled transition
system which makes a transition labelled a to the transition system defined
by B. The expression i ; B is analogous to a ; B, the difference being that i
denotes the internal action τ in the transition system.

The choice expression Σ B denotes a choice of behaviour. It behaves as one
of the processes in the set B. This choice is determined by the first transition
which is made. We use B1 2B2 as an abbreviation for Σ {B1, B2} , i.e., B12B2

behaves either as B1 or as B2. The expression stop is an abbreviation for Σ ∅ ,
i.e., it is the behaviour which cannot perform any action, so it is the deadlocked
process.

The parallel expression B1 |[ G ]|B2 denotes the parallel execution of B1 and
B2. In this parallel execution all actions in G must synchronize, whereas all
actions not in G (including τ) can occur independently in both processes, i.e.,
interleaved. We use ‖ as an abbreviation for |[ L ]| , i.e., sychronization on all
observable actions, and ||| as an abbreviation for |[ ∅ ]| , i.e., full interleaving and
no synchronization.

The hiding expression hide G in B denotes the transition system of B where
all labels in G have been hidden, i.e., replaced by the internal action τ .

The last language constructs are process definitions and process instanti-
ations. A process definition links a process name to a behaviour expression:
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P := B . The name P can then be used as a process instantiation in behaviour
expressions to stand for the behaviour contained in its corresponding process
definition.

As usual, parentheses are used to disambiguate expressions. If no parentheses
are used ‘;’ binds stronger than ‘2’, which binds stronger than ‘|[G]|’, which in
turn binds stronger than hide . The parallel operators are read from left to
right, but note that they are not associative for different synchronization sets.
So, hide a, c in a; B1 || b ; B2 2 c; B3 ||| d; B4 is read as

(hide a, c in (((a; B1) || ((b ; B2) 2 (c; B3))) ||| (d; B4)))

a ;B
a−→ B i ;B

τ−→ B
B

µ−→ B′

Σ B
µ−→ B′

B ∈ B, µ ∈ L ∪ {τ}

B1
µ−→ B′

1

B1 |[ G ]|B2
µ−→B′

1 |[ G ]|B2

B2
µ−→ B′

2

B1 |[ G ]|B2
µ−→B1 |[ G ]|B′

2

µ∈(L∪{τ})\G

B1
a−→ B′

1, B2
a−→ B′

2

B1 |[ G ]|B2
a−→B′

1 |[ G ]|B′
2

a∈G
BP

µ−→ B′

P
µ−→ B′

P := BP , µ∈L∪{τ}

B
a−→ B′

hide G in B
τ−→hide G in B′

a∈G
B

µ−→ B′

hide G in B
µ−→hide G in B′

µ /∈G

Table 1. Structural operational semantics.

The formal semantics of a process language is usually formally defined in
the form of structural operational semantics. Such a semantic definition consists
of axioms and inference rules which define for each behaviour expression the
corresponding labelled transition system; see Table 1. Consider as an example
the axiom for a ; B . This axiom is to be read as: an expression of the form
a ; B can always make a transition a−→ to a state from where it behaves as B.
Consider as another example the inference rule for Σ B. Suppose that we can
satisfy the premiss, i.e., B can make a transition labelled µ to B′, and B ∈ B,
and µ is an observable or internal action, then we can conclude that Σ B can
make a transition labelled µ to B′. We give the remaining axioms and rules for
our language in Table 1 without further comments.
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Example 4. Behaviour expressions representing the processes of Figure 2 are:

p : but ; liq ; stop
q : but ; ( liq ; stop 2 choc; stop )
r : but ; liq ; stop 2 but ; but ; choc; stop
u : U where U := but ; ( liq ; U 2 choc; U )
v : V where V := but ; ( liq ; V 2 i; V )

These behaviour expressions are not unique, e.g., we could also choose

p : but ; liq ; liq ; stop || but ; liq ; choc; stop
q : but ; Σ{liq; stop, choc; stop}

The parallel operator in particular can be used to efficiently represent large
transition systems. Consider the process p of Figure 2 which has 3 states. The
interleaving of p with itself, p ||| p , has 3 × 3 = 9 states; and p ||| p ||| p has 27
states, and so forth.

Also infinite-state processes can be represented with finite expressions, e.g.,
Y with Y := a ; ( b ; stop ||| Y ) has infinitely many states; it can perform
actions a and b but it can never do more b’s than a’s. The infinite-state transition
system z in Figure 3 can be written as Σ { ai ; bi ; stop | i ∈ IN }.

Finally, note that not every behaviour expression represents a transition sys-
tem in LTS(L), e.g., the image-infinite transition system w of Figure 3 can be
expressed in our language: Σ{ a ; bi ; stop | i ∈ IN }. Also the transition system
defined by hide a in P0 , where Pi := a ; Pi+1 2 bi ; stop with i ∈ IN, is not
in LTS(L); it is neither image finite, nor strongly converging. In the rest of this
paper we will not bother about the semantics being only partially defined.

3.3 Inputs and Outputs

A labelled transition system defines the possible sequences of interactions that
a system may have with its environment. These interactions are abstract, in the
sense that they are only identified by a label; there is no notion of initiative or
direction of the interaction, nor of input or output. An interaction can occur
if both the process and its environment are able to perform that interaction,
implying that they can also both block the occurrence of the interaction. The
communication between a system and its environment is symmetric. When the
environment is also a labelled transition system this communication can be ex-
pressed in our language by the parallel synchronization operator |[ G ]|, where
the labels in G model the possible interactions.

Although this paradigm of abstract interaction is sufficient for analysing and
reasoning about many applications, there are also systems which communicate
in a different way, in particular those systems that we will consider for testing.
Those systems do not abstract from initiative and direction; they do distinguish
between actions initiated by the environment, and actions initiated by them-
selves. They communicate via inputs and outputs : outputs are actions initiated
by the system, and inputs are actions initiated by the environment.

13



We define labelled transition system with inputs and outputs to model systems
for which the set of actions is partitioned into input actions contained in an input
label set LI , and output actions in an output label set LU . (The ‘U’ refers to
‘uitvoer’, the Dutch word for ‘output’, which is preferred to avoid confusion
between LO (letter ‘O’) and L0 (digit zero)).

Definition 6. A labelled transition system with inputs and outputs is a 5-tuple
〈Q, LI , LU , T, q0〉 where

– 〈Q, LI ∪ LU , T, q0〉 is a labelled transition system in LTS(LI ∪ LU );
– LI and LU are countable sets of input labels and output labels, respectively,

which are disjoint: LI ∩ LU = ∅.

The class of labelled transition systems with inputs in LI and outputs in LU is
denoted by LTS(LI , LU ).

Inputs are usually decorated with ‘?’ and outputs with ‘!’. Labelled transi-
tion systems with inputs and outputs are used as formal specifications in our
testing theory, i.e., LTS(LI , LU ) instantiates the class of specifications SPEC ;
see Section 2. Of course, this does not mean that specifications have to be writ-
ten explicitly as labelled transition systems: any language with labelled tran-
sition system semantics suffices, for example, the process language defined in
Section 3.2.

3.4 Input-Output Transition Systems

Labelled transition systems with inputs and outputs do not really differ from
normal labelled transition systems. We define input-output transition systems
to model systems with inputs and outputs, in which outputs are initiated by
the system and never refused by the environment, and inputs are initiated by
the system’s environment and never refused by the system. This means that
the system is always prepared to perform any input action, i.e., all inputs are
enabled in all states.

!liq

?but

k1

?but

k2 k3

!liq

?but

?but

?but

p1

p2

p0

!choc

?but
r0

r1

r3

r2

r4

r5

!liq
?but

?but ?but ?but

?but

?but

?but ?but

!choc

Fig. 4. Input-output transition systems.
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Definition 7. An input-output transition system is a labelled transition system
with inputs and outputs 〈Q, LI , LU , T, q0〉 where all input actions are enabled in
any reachable state:

∀q ∈ der(q0), ∀a ∈ LI : q
a

=⇒

The class of input-output transition systems with inputs in LI and outputs in
LU is denoted by IOTS(LI , LU ) ⊆ LTS(LI , LU ).

Example 5. In Figure 2 only v is an input-output transition system, when LI =
{?but} and LU ⊇ {!liq}. Some other input-output transition systems are given
in Figure 4. In k1 we can push the button ?but , which is an input for the candy
machine, and then the machine outputs liquorice !liq . After ?but has been pushed
once, and also after the machine has released !liq , any more pushing of ?but has
no effect: k1 makes a self-loop and does not change state. In fact, k1, k2, and k3

are almost the same transition systems as p, q, and r in Figure 2, interpreting
LI = {?but} as inputs and LU = {!liq, !choc} as outputs, and the difference
being that self-loop transition have been added to make them input enabled;
this adding of input self-loops is sometimes referred to as angelic completion.

Another way of making systems input-enabled is to add a special error state,
and to add transitions to this error state for all non-specified inputs. In Figure 5
yet another completion method, viz. demonic completion, is used to make u in
Figure 2 input enabled: all non-specified inputs lead to the chaos process χ.
Once in χ any behaviour is possible.

χ

χ

LI τ τ LI ∪ LU

LI τ τ LI ∪ LU

?but !choc

?but

!liq

uχ

Fig. 5. Demonic completion.

Since input-output transition systems are just a special kind of labelled tran-
sition systems, all definitions for them apply. In particular, the parallel syn-
chronization operator ‖ is used to model the communication between a sys-
tem s and its environment e. Naturally, the set LI of inputs of s should corre-
spond to the outputs of e, and the set LU of outputs of s are the inputs of e:
e ∈ IOTS(LU , LI). Since the inputs of s are always enabled, e can autonomously
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determine whether an action in LI will occur, or not. Conversely, since all ac-
tions in LU are always enabled in e, it is up to s to determine whether an action
in LU occurs, or not. If s cannot perform an output action, it can only wait
until e performs one of e’s outputs. Such a state without output actions, where
s cannot autonomously proceed, is called suspended, or quiescent. A quiescent
state q is denoted as δ(q). If, and only if, both s and e are quiescent then there
is no way to proceed: they are in deadlock.

A system s with environment e is in deadlock after trace σ if there is no pos-
sible action to proceed: (s ‖ e) after σ refuses L . For non-input-enabled tran-
sition systems this means

∃As, Ae ⊆ L : As ∪ Ae = L
and s after σ refuses As and e after σ refuses Ae

(2)

For input-output transition systems this is simplified, since s can never refuse
actions in LI : if s after σ refuses As then As ⊆ LU . Analogously, if e refuses
something it must be a subset of LI . Since LI ∩LU = ∅, the only sets satisfying
(2) are As = LU and Ae = LI , i.e., when both s and e are quiescent: δ(s) and
δ(e).

Although this rationale for introducing quiescence is based on input-output
transition systems, the definition applies equally well to non-input-output transi-
tion systems, and since in subsequent sections we will indeed consider quiescence
also for non-input-enabled transition systems, it is generally defined in Defini-
tions 8 and 9 for labelled transitions with inputs and outputs.

Definition 8. Let p ∈ LTS(LI , LU ).

1. A state q of p is quiescent, denoted by δ(q), if ∀µ ∈ LU ∪ {τ} : q
µ

−−→/
2. The quiescent traces of p are those traces that may lead to a quiescent state:

Qtraces(p) =def { σ ∈ L∗ | ∃p′ ∈ ( p after σ ) : δ(p′) }

An observer looking at a quiescent system does not see any outputs. This
particular observation of seeing nothing can itself be considered as an event. It
turns out to be convenient to express this ‘seeing nothing’, i.e., quiescence, as
a special ‘output action’; it is denoted by δ (δ 6∈ L ∪ {τ}). Once we have this

special action we can also consider transitions with δ. Such a transition p δ−→
expresses that p allows the observation of quiescence, i.e., p cannot perform any
output action. In this way the absence of outputs is made into an explicitly
observable event. Since quiescence implies that no real transition is performed,
the goal state after a δ-transition is always the same as the start state, so p δ−→ p
if δ(p).

With δ-transitions it is also possible to extend traces with δ. For example,

p
δ·?a·δ·?b·!x

========⇒ expresses that initially p is quiescent, i.e., does not produce out-
puts, but p does accept input action ?a, after which there are again no outputs;
when then input ?b is performed, the output !x is produced. Traces that may
contain the quiescence action δ, are called suspension traces.
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Definition 9. Let p = 〈Q, LI , LU , T, q0〉 ∈ LTS(LI , LU ).

1. Lδ =def L ∪ {δ}
2. pδ =def 〈 Q, LI , LU ∪ {δ}, T ∪ Tδ, q0 〉,

with Tδ =def { q δ−→ q | q ∈ Q, δ(q) }

3. The suspension traces of p are Straces(p) =def { σ ∈ L∗
δ | pδ

σ
=⇒ }

From now on we will usually include δ-transitions in the transition relations,
i.e., we consider pδ instead of p, unless otherwise indicated. Definitions 3, 4,
and 5 also apply to transition systems with label set Lδ.

In our testing theory it will be assumed that an implementation under test
can be modelled as an input-output transition system, i.e., IOTS(LI , LU ) in-
stantiates the class of models of implementations MOD , where LI and LU are
assumed to be the same as given for the specification; see Section 2. Since models
of implementations are only assumed to exist, the language representation issue
does not play a role for implementations. Whereas implementations are input-
enabled, specifications are not necessarily input-enabled. This difference allows
having partial specifications; this will be elaborated in Section 4, in particular
in Examples 9 and 10.

pδ

δ

δ

?but

!liq

p0

p2

p1
δ

δ

δ

δ

!choc

?but!liq

r0

r3
r4

r5rδ

r2
r1

?but ?but

δ

δ

!liq δ

δ

δ
?but

δ
!choc

?but

?but

!choc

determinized rδ

Fig. 6. Quiescence.

Example 6. For k1 in Figure 4 we have that δ(p0), δ(p2), but not δ(p1) because
state p1 can perform output !liq .

As explained above, the definition of quiescence is not restricted to input-
enabled systems. It can be applied to any transition system with inputs and
outputs. If in Figure 2 we take LI = {?but} and LU = {!liq, !choc}, then for
process p we have: δ(p0), δ(p2), but not δ(p1).

In Figure 6, quiescence has been made explicit by adding the δ-transitions

for p and r of Figure 2. So, we have, for example, pδ
δ·?but·!liq·δ·δ

=========⇒ , and the sus-
pension trace ?but ·δ·?but ·!choc ∈ Straces(r), but ?but ·δ·?but ·!liq 6∈ Straces(r).
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Since δ(r2) but not δ(r1) we know that we are in the right branch after having
observed ?but ·δ. In the determinization of rδ this is even more explicit: after
the sequence ?but ·δ the continuation is ?but ·!choc. This determinization of rδ,
which may serve as a kind of canonical representation of transition systems
modulo equality of suspension traces, is sometimes referred to as the suspen-
sion automaton of r. In such a determinization a δ-transition is not necessarily
a loop anymore, and an output- and δ-transition may be enabled in one state.
Determinizing a transition system to which δ-transitions have been added is not
the same as adding δ-transitions to a determinized transition system. Moreover,
there are deterministic transition systems over LI ∪ LU ∪ {δ} for which there is
no labelled transition system for which it is the suspension automaton.

3.5 Test Cases

A test case is a specification of the behaviour of a tester in an experiment car-
ried out on an implementation under test. In this experiment the tester serves
as a kind of artificial environment of the implementation. Following the discus-
sion in Section 3.4 about the communication between an implementation and
its environment, an implementation can do three different things: it can accept
any input in LI , it can produce an output in LU , or it can remain quiescent.
This implies that the tester, being this environment, must provide these inputs,
must be able to observe these outputs, and must be able to observe quiescence if
there is no output. Moreover, the tester should be input-enabled for all actions
in LU . The behaviour of such a tester is also modelled as an input-output tran-
sition system, but, naturally, with inputs and outputs exchanged. For observing
quiescence, we add a special label θ to the transition systems modelling tests
(θ 6∈ LI ∪ LU ∪ {τ, δ}). The occurrence of θ in a test indicates the detection
of quiescence δ, i.e., the observation that no output is produced by the imple-
mentation. Theoretically, this means that the tester has to wait for an infinite
amount of time in order to conclude that implementation does not, and will
never produce any output. More practically, one could think of θ as being im-
plemented as the expiration of a time-out. Of course, care should be taken when
choosing such a (finite) time-out value in order to have confidence that after an
output-less time-out period the system indeed is quiescent.

Combining the above, we have that test cases are in the first place processes in
IOTS(LU , LI ∪{θ}). But, based on the observation that the execution of a test
case is an experiment under control of the tester, a few restrictions are added.
First, there must be a mechanism in test cases to assign verdicts. This is ac-
complished by having two special verdict states called pass and fail, which are
sink states, i.e., once in pass (fail) the test case cannot leave that state any-
more. Second, in order to make it possible to assign a verdict within finite time,
test cases should always allow reaching a pass or fail state within finitely many
transitions. Third, in order to keep the tester in control, unnecessary nondeter-
minism should be avoided. In the first place, this implies that the test case itself
is deterministic. In the second place, this means that a tester should never offer
more than one input action (from the perspective of the implementation) at a
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time. Since the implementation is able to accept any input action, offering more
inputs would always lead to an unnecessarily nondeterministic continuation of
the test run. Having a deterministic test case does not imply that a test run has
a unique result: due to nondeterminism in the implementation under test, and
due to nondeterminism in the test run itself, the repetition of a test run may
lead to a different result; see also Section 5.1. Altogether, we come to the fol-
lowing definition of the class of test transition systems T TS, which instantiates
the domain of test cases TEST ; see Section 2.

Since the use of ‘input’ and ‘output’ in a test case is always confusing (and it
will be even more confusing once we start the discussion on test execution, where
implementations and tests come together), we try to use the convention that
‘input’ and ‘output’ always refer to the inputs and outputs of the specification
and implementation under test. Consequently, input-enabledness of a test case
means that all actions in LU are enabled. Also the decorations ‘?’ and ‘!’ refer
to the use of actions in the specification (or implementation). The special action
θ is indeed special: it is considered neither input, nor output.

Definition 10.

1. A test case t for an implementation with inputs in LI and outputs in LU is an
input-output transition system 〈Q, LU , LI∪{θ}, T, q0〉 ∈ IOTS(LU , LI∪{θ})
such that
– t is finite state and deterministic;
– Q contains two special states pass and fail, pass 6= fail, with

pass := Σ { x ; pass | x ∈ LU ∪ {θ} }
fail := Σ { x ; fail | x ∈ LU ∪ {θ} }

– t has no cycles except those in states pass and fail
(formally: for σ ∈ (L∪{θ})∗\{ǫ}: q

σ
=⇒ q implies q = pass or q = fail)

– for any state q ∈ Q of the test case
either init(q) = {a} ∪ LU for some a ∈ LI

or init(q) = LU ∪ {θ}.
2. The class of test cases for implementations with inputs LI and outputs LU

is denoted as T TS(LU , LI).
3. A test suite T is a set of test cases: T ⊆ T TS(LU , LI).

Example 7. Figure 7 gives two example test cases with LI = {?but} and LU =
{!liq , !choc}. Test case t1 provides input ?but to an implementation. If this is
successful t1 expects to receive !liq from the implementation followed by nothing,
i.e., quiescence. Any other reaction is considered erroneous and leads to fail.

In test case t2 the loops in the states pass and fail have been omitted. Since
they are only there to make the test case input enabled, we will omit them from
now on.

3.6 Some Bibliographic Notes

Labelled transition systems are a basic model in formal theories. Many languages
for processes, in particular process algebras, use transition systems for their
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Fig. 7. Test cases.

operational semantics, which is usually defined through structured operational
semantics; [16] may serve as a literature entry. The language presented here is
mainly inspired by Lotos [17, 18].

Input-output transition systems are analogous to Input/Output Automata
(IOA) [19], and to Input-Output State Machines [1], but they differ from classical
Finite State Machines or Mealy Machines. Input-output transition systems differ
marginally from Input/Output Automata in input enabling: instead of requiring
strong input enabling as in [19] (∀a ∈ LI : p′ a−→ ), input-output transition
systems allow input enabling via internal transitions (weak input enabling, ∀a ∈

LI : p′
a

=⇒ ). Moreover, as is usual for labelled transition systems, all internal
actions are denoted by the same label τ , which is possible, since we do not
consider fairness explicitly, so we do not need to express a partitioning of output
and internal actions to pose fairness requirements as in Input/Output Automata.
Testing is only about finite behaviours.

4 The Implementation Relation

The purpose of this section is to define precisely when an implementation in
IOTS(LI , LU ) is correct with respect to a specification in LTS(LI , LU ), i.e., to
define an implementation relation; see Section 2. There are many ways of defining
an implementation relation. In principle, any relation between IOTS(LI , LU )
and LTS(LI , LU ) could serve as an implementation relation, but, of course,
some relations appear more natural and intuitive than others. The main relation
that we consider is called ioco, and it is defined in Section 4.1. Subsequently,
Section 4.2 discusses some variants and properties of ioco.
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4.1 The Implementation Relation ioco

The implementation relation on which we build our test theory is ioco, which
is abbreviated from input-output conformance. Informally, an implementation
i ∈ IOTS(LI , LU ) is ioco-conforming to specification s ∈ LTS(LI , LU ) if any
experiment derived from s and executed on i leads to an output from i that is
foreseen by s. A special output of i is the absence of outputs as modelled by
quiescence δ; see Section 3.4. This means that if i is quiescent then s should
have the possibility to be quiescent, too. A formal definition of ioco starts with
defining the set out of possible outputs. This set can contain the special label
δ. It is defined for a single state, and then generalized to a set of states. The
latter is used in combination with after (Definition 5.3): out( p after σ ) gives
all possible outputs occurring after having performed the trace σ ∈ L∗

δ .

Definition 11. Let q be a state in a transition system, and let Q be a set of
states, then

1. out(q) =def { x ∈ LU | q x−−→ } ∪ { δ | δ(q) }
2. out(Q) =def

⋃

{ out(q) | q ∈ Q }

Example 8. Some examples for k3 in Figure 4:

out( k3 after ǫ ) = out(r0) = {δ}
out( k3 after δ ) = out(r0) = {δ}
out( k3 after !liq ) = out(∅) = ∅
out( k3 after ?but ) = out(r1) ∪ out(r2) = {!liq , δ}
out( k3 after ?but ·?but ) = out(r1) ∪ out(r4) = {!liq , !choc}
out( k3 after ?but ·δ·?but ) = out(r4) = {!choc}
out( k3 after ?but ·?but ·!liq ) = out(r3) = {δ}
out( k3 after ?but ·δ·?but ·!liq ) = out(∅) = ∅

The informal idea that ‘any output produced by i has been foreseen in s’
is formally expressed by requiring that the out -set of the implementation is a
subset of the out-set of the specification. This should hold for any state, but due
to nondeterminism we do not exactly know in which state we are during testing.
What can be observed is the suspension trace σ ∈ L∗

δ executed so far, which
may lead to different states. The set p after σ collects all these possible current
states, so out( p after σ ) contains all possible outputs, possibly including δ, after
σ. This set, when obtained from the implementation, must be included in the
analogous set obtained from the specification, but only if σ is a suspension trace
of the specification. Altogether, these considerations lead to Definition 12.

Definition 12. Given a set of input labels LI and a set of output labels LU , the
relation ioco ⊆ IOTS(LI , LU ) × LTS(LI , LU ) is defined as follows:

i ioco s ⇔def ∀σ ∈ Straces(s) : out( i after σ ) ⊆ out( s after σ )
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The fact that ioco only requires inclusion of out-sets for the suspension traces
of the specification, together with the fact that specifications can be non-input
enabled, makes it possible to have partial specifications. For suspension traces
which are not in Straces(s) there is no requirement whatsoever on the imple-
mentation, which implies that an implementation is free to implement anything
it likes after such a trace. Such a trace is said to be underspecified. In many
situations it can be beneficial to a have a partial specification, whereas in other
situations a complete specification is preferred: a complete specification speci-
fies after every trace what should happen. Completeness can always be achieved
with ioco by having an input enabled specification: if s ∈ IOTS(LI , LU ) then
there are no underspecified traces.
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Fig. 8. Implementations and specifications with ioco.

Example 9. Figure 8 gives some implementations and specifications with LI =
{?a, ?b} and LU = {!x, !y}:

im ioco sn s1 s2 s3 s4

i1 ioco ioco /ioco ioco
i2 /ioco ioco /ioco /ioco
i3 ioco ioco ioco ioco
i4 /ioco /ioco /ioco ioco

Specification s1 specifies that after input ?a output !x must occur, which is
expressed as: out( s1 after ?a ) = {x}. Implementation i1 satisfies this require-
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ment, but i2 and i4 do not: out( i2 after ?a ) = {x, y} 6⊆ {x}, out( i4 after ?a ) =
{x, δ} 6⊆ {x}. For i3, out( i3 after ?a ) = {x} ⊆ out( s1 after ?a ). Moreover,
out( i3 after ?b ) = {y} 6⊆ out( s1 after ?b ) = ∅, but since ?b 6∈ Straces(s1) this
does not matter, and hence i3 ioco s1.

We see from i2 /ioco s1 that an implementation should not produce more
outputs than allowed by the specification, and from i4 /ioco s1 that the imple-
mentation should not be quiescent, when the specification expects an output.
But from i3 ioco s1 we see that an implementation may have additional features,
in this case the behaviour ?b·!y ; the specification is partial, or underspecified for
?b: s1 does not prescribe any requirements for behaviour that follows ?b, and an
implementation is completely free to do anything it likes after ?b.

Specification s2 requires that after input ?a either output !x or !y is per-
formed. This means that i1, i2, i3 ioco s2, but not i4 ioco s2, since i4 may not
produce any output at all: out( i4 after ?a ) = {x, δ} 6⊆ {x, y}.

We see from i1 ioco s2 that an implementation may have less outputs than
the specification allows, but having no output at all is not allowed.

Specification s3 specifies that output !x must be performed after ?a, and !y
after ?b. Implementations i1, i2, and i4 are quiescent after ?b, so they are not
ioco-correct; i3 does satisfy this requirement.

Specification s4 specifies that after ?a either output !x should be produced,
or the implementation may be quiescent: out( s4 after ?a ) = {x, δ}. Only i2 may
produce output !y and is not ioco-correct.

The implementations can also be mutually compared. Of course, ik ioco ik
for k = 1, 2, 3, 4, since ioco is reflexive on IOTS(LI , LU ). Furthermore, only
i1 ioco i2, i4. Mutually comparing the specifications does not make sense, since
the specifications are not input enabled, so ioco is not defined.

Example 10. Consider Figure 4. We have that k1 ioco k2: an implementation
capable of only producing !liq conforms to a specification that prescribes to
produce either !liq or !choc. Although k2 is deterministic according to Defini-
tion 5.9, in fact, it specifies in an input-output context that after ?but there is a
nondeterministic choice between supplying !liq or !choc.

If we want to specify a machine that produces both liquorice and chocolate,
then two buttons are needed to select the respective candies, cf. s3 in Example 9:

?liq-button ; !liq ; stop 2 ?choc-button ; !choc ; stop

On the other hand, k2 /ioco k1 and k2 /ioco k3: if the specification prescribes
to produce only !liq then an implementation shall not have the possibility to
produce !choc.

We have k1 ioco k3, but k3 /ioco k1 and k3 /ioco k2, since k3 may refuse
to produce anything after the button has been pushed once, whereas both k1

and k2 will always output something; formally: δ ∈ out( k3 after ?but ), whereas
δ 6∈ out( k1 after ?but ) and δ 6∈ out( k2 after ?but ).

Figure 2 contains three non-input-enabled transition systems, which may
serve as specifications. We have k1 ioco p, and k2 /ioco p. Also p is underspecified:
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p does not specify what should happen after the button has been pushed twice,
since ?but ·?but 6∈ Straces(p).

Moreover, k1 ioco q and k2 ioco q, but k3 /ioco p and k3 /ioco q. As before,
this is the case because δ ∈ out( k3 after ?but ), whereas δ 6∈ out( p after ?but )
and δ 6∈ out( q after ?but ).

4.2 Some Variations and Properties of ioco

Generalization. The implementation relation ioco (Definition 12) requires that
the out-set of the implementation be a subset of the specification’s out-set for
all traces in the set of suspension traces of the specification. By making this
set of suspension traces a parameter of the relation a family of implementation
relations is defined.

Definition 13. Let F ⊆ (LI ∪ LU ∪ {δ})∗ be a set of suspension traces,
i ∈ IOTS(LI , LU ), and s ∈ LTS(LI, LU ).

i iocoF s ⇔def ∀σ ∈ F : out( i after σ ) ⊆ out( s after σ )

Typically, the set F ⊆ L∗
δ depends on the specification s. Clearly, i ioco s iff

i iocoStraces(s) s, but also some other relations for specific F have been given
names, and, based on sub-setting of the respective sets F these relations can be
easily compared.

Definition 14. Let i ∈ IOTS(LI , LU ), s ∈ LTS(LI, LU ).

1. i ≤ior s =def i iocoL∗

δ
s

iff ∀σ ∈ L∗
δ : out( i after σ ) ⊆ out( s after σ )

2. i ioconf s =def i iocotraces(s) s
iff ∀σ ∈ traces(s) : out( i after σ ) ⊆ out( s after σ )

3. i ≤iot s =def i iocoL∗ s
iff ∀σ ∈ L∗ : out( i after σ ) ⊆ out( s after σ )

Proposition 1.

1. ≤ior and ≤iot are preorders on IOTS(LI , LU ), i.e., they are reflexive and
transitive when restricted to input-enabled transition systems.

2. F1 ⊆ F2 implies iocoF1
⊇ iocoF2

3. ≤ior ⊂

{

≤iot

ioco

}

⊂ ioconf

4. i ≤ior s iff Straces(i) ⊆ Straces(s).
5. i ≤iot s iff traces(i) ⊆ traces(s) and Qtraces(i) ⊆ Qtraces(s)

Example 11. The difference between ≤iot and ≤ior , and between ioconf and
ioco is illustrated with the processes r1 and r2 in Figure 9: r1 ioconf r2, but
r1 /ioco r2; in terms of out-sets: out( r1 after ?but ·δ·?but ) = {!liq , !choc} and
out( r2 after ?but ·δ·?but ) = {!choc}.
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Fig. 9. The difference between ≤iot and ≤ior

Intuitively, after pushing the button, we observe that nothing is produced by
the machine, so we push the button again. Machine r1 may then produce either
liquorice or chocolate, while machine r2 will always produce chocolate. When we
use the relation ioconf , the observation always terminates after observing that
nothing is produced; quiescence can only be an element of the out -set, but it
cannot occur in the trace leading to the state where the out -set is calculated.
Hence, there is no way to distinguish between entering the left or the right branch
of r1 or r2; after the button is pushed twice, both machines may produce either
liquorice or chocolate: out( r1,2 after ?but ·?but ) = {!liq , !choc}.

Partial specifications. In Section 4.1 it was mentioned that two conditions make
it possible to have partial specifications, viz. first, that ioco only requires inclu-
sion of out-sets for the suspension traces of the specification, and, second, that
specifications are non-input enabled.

If the first condition is changed to inclusion of out -sets for all possible suspen-
sion traces in L∗

δ , the relation ≤ior is obtained; see Definition 14.1. From Propo-
sition 1.4 it follows that ≤ior indeed does not allow partiality: all behaviours of a
≤ior -correct implementation, as expressed by its suspension traces, are contained
in those of the specification. This is also valid for underspecified specifications
in LTS(LI , LU )\IOTS(LI , LU ), which implies that it does not make sense to
have an underspecified specification in combination with ≤ior .

With respect to the second condition, if specifications are input enabled, i.e.,
ioco is restricted to a relation on IOTS(LI , LU ), and there are no underspecified
traces anymore, then what remains turns out to be exactly the relation ≤ior .

Proposition 2.

1. σ ∈ Straces(p) iff out( p after σ ) 6= ∅
2. If i, s ∈ IOTS(LI , LU ) then i ioco s iff i ≤ior s

3. If p, q ∈ IOTS(LI , LU ), and s ∈ LTS(LI , LU ) then
p ioco q and q ioco s imply p ioco s.

4. ioco is a preorder on IOTS(LI , LU ).
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Underspecified traces and uioco. Another relation in the family iocoF is uioco.
For the rationale for uioco consider r in Figure 2 as a specification with LI =
{?but} and LU = {!liq , !choc}. Since r is not input enabled, it is a partial specifi-
cation. For example, ?but ·?but ·?but is an underspecified trace, and any behaviour
is allowed after it. On the other hand, ?but is clearly specified; the allowed out-
puts after it are !liq and δ. For the trace ?but ·?but the situation is less clear. Ac-
cording to ioco the expected output after ?but ·?but is out( r after ?but ·?but ) =
{!choc}. But suppose that in the first ?but -transition r moves nondeterministi-
cally to state r1 (the left branch) then one might argue that the second ?but-
transition is underspecified, and that, consequently, any possible behaviour is
allowed in an implementation. This is exactly where ioco and uioco differ: ioco
postulates that ?but ·?but is not an underspecified trace, because there exists a
state where it is specified, whereas uioco states that ?but ·?but is underspecified,
because there exists a state where it is underspecified.

Formally, ioco quantifies over F = Straces(s), which are all possible sus-
pension traces of the specification s. The relation uioco quantifies over F =
Utraces(s) ⊆ Straces(s), which are the suspension traces without the possibly
underspecified traces, i.e., see Definition 15.1, all suspension traces σ of s for
which it is not possible that a prefix σ1 of σ (σ = σ1·a·σ2) leads to a state of s
where the remainder a·σ2 of σ is underspecified, that is, a is refused.

An alternative characterization of uioco can be given by transforming a
partial specification into an input enabled one with demonic completion using
the chaos process χ, as explained in Example 5. In this way the specification
makes explicit that after an underspecified trace anything is allowed.

Definition 15. Let i ∈ IOTS(LI , LU ), and s ∈ LTS(LI , LU ).

1. Utraces(s) =def { σ ∈ Straces(s) | ∀σ1, σ2 ∈ L∗
δ , a ∈ LI :

σ = σ1·a·σ2 implies not s after σ1 refuses {a} }
2. i uioco s ⇔def i iocoUtraces(s) s

Example 12. Because Utraces(s) ⊆ Straces(s) it is clear (proposition 1.2) that
uioco is not stronger than ioco. That it is strictly weaker follows from the
following example. Take r in Figure 2 as (partial) specification, and consider
r1 and r2 from Figure 9 as potential implementations. Then r2 /ioco r because
!liq ∈ out( r2 after ?but ·?but ) and !liq 6∈ out( r after ?but ·?but ), but r2 uioco r
because ?but ·?but 6∈ Utraces(r). Also r1 /ioco r, but in this case also r1 /uioco r
because ?but ·δ·?but ∈ Utraces(r), !liq ∈ out( r1 after ?but ·δ·?but ) and !liq 6∈
out( r after ?but ·δ·?but ).

Variants. A couple of other variations on ioco have been defined:

TGV-ioco TGV is a tool for the automatic synthesis of test cases for nondeter-
ministic systems [2]. Its underlying theory is analogous to the ioco theory
with a small extension. TGV deals with divergencies or livelocks consisting
of τ -loops. Such a livelock is given an unfair semantics, which means that
the system can loop for ever. This implies that an external observer will not
see any progress in the system, i.e., the observer will see quiescence.
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mioco The relation multi-ioco extends ioco with multiple channels [20]. Each
action belongs to exactly one input channel or output channel. Each output
channel can be quiescent, and moreover each input channel can be blocked
meaning that the channel (temporarily) does not accept any inputs. Anal-
ogous to ioco, mioco requires that the outputs, output quiescences, and
input blockings occurring in an implementation, are included in those of the
specification.

(r)tioco Different(real)-timed-ioco relations have been defined: [21–23]. The
difficulty, and the difference between the different versions of timed-ioco is
the treatment of quiescence. Quiescence in ioco means that no outputs are
produced, not now and not in the future. If time is an explicit parameter
in the models, it is also possible to require and observe that no outputs are
produced for a specified period of time, whereas ‘in the future’ should be
defined more precisely with explicit mentioning of time.

iocor Sometimes, the level of granularity of the actions in the implementation
is different from that of the specification, i.e., the label sets LI and LU of
specification and implementation cannot be assumed to be the same. Usually,
this means that one abstract action of the specification is implemented by a
sequence of actions in the implementation. This is called action refinement,
and leads to a relation iocor [24].

sioco Actions are sometimes parameterized with data. In order to avoid state
explosion during test generation, this data is treated in a symbolic way,
leading to a symbolic-ioco [25]. Whereas the other variants above exend or
alter ioco, sioco does not change it; it only gives another representation of
the relation in case data variables and parameters are involved.

hioco Hybrid systems are systems in which discrete actions and continuous vari-
ables play a role. Ongoing research aims at defining a relation hybrid-ioco
to formalize the relation between a hybrid transition system implementation
and its specification.

Compositional testing. With the popularization of component based develop-
ment it is desirable that also testing and integration can be based on components,
i.e., that successfully tested components can be integrated into correctly func-
tioning systems. Unfortunately, this is not directly the case for ioco-correctness:
the composition of two ioco-correct implementations i1 and i2, communicating
through actions in V , and modelled as hide V in i1 |[ V ]| i2, is not necessar-
ily ioco-correct to the composition of their specifications; see Proposition 3.1.
Technically, this means that ioco is not a precongruence for the hiding and par-
allel operators. Intuitively, it can be understood by seeing that a component’s
specification may have underspecified traces after which the component’s im-
plementation may show any possible behaviour. In a composition with another
component this behaviour may lead to undesired behaviour which is not allowed
by the composition of the specifications. This problem can be avoided by having
no underspecified traces: the precongruence property does hold for input enabled
specifications; see Proposition 3.2.
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Proposition 3. Let ik ∈ IOTS(LIk, LU k) and sk ∈ LTS(LIk, LU k) for k =
1, 2, be two componenents, such that they have disjoint inputs and disjoint out-
puts: LI1 ∩LI2 = LU1 ∩LU2 = ∅. Let V = (LI1 ∩LU2)∪ (LU1 ∩LI2) be the set
of their common interactions.

1. i1 ioco s1 and i2 ioco s2 does not imply
(hide V in i1 |[ V ]| i2) ioco (hide V in s1 |[ V ]| s2)

2. If s1, s2 are input-enabled, i.e., sk ∈ IOTS(LIk, LU k) for k = 1, 2; then
i1 ioco s1 and i2 ioco s2 implies that
(hide V in i1 |[ V ]| i2) ioco (hide V in s1 |[ V ]| s2)

!x !y

i2i1

!err

?a
?err

?ok ?a

τ

!y

hide ok , err in i1 |[ ok , err ]| i2

?a

?a

?ok , ?err

?ok , ?err

?a

?a

?a?ok , ?err

s1

!err

?a ?a

τ

!x

hide ok , err in s1 |[ ok , err ]| s2

!ok

?ok , ?err

s2

!x

?ok

Fig. 10. Compositional testing.

Example 13. Consider specifications s1 and s2 and implementations i1 and i2 in
Figure 10. The input set for s1 and i1 is LI1 = {a}; the outputs of s1 and i1 are
equal to the inputs of s2 and i2: LU 1 = LI2 = {ok , err}; the outputs of s2 and
i2 are LU2 = {x, y}.

Specification s1 specifies that upon input ?a an output !ok or !err shall be
produced, which is ioco-correctly implemented in i1. The partial specification s2

specifies that on input ?ok the output !x shall be provided, which i2 correctly im-
plements; hence, i1 ioco s1 and i2 ioco s2. But upon composing i1 and i2 the ad-
ditional behaviour of i2, viz. providing output !y for input ?err that is underspeci-

28



fied in s2, causes incorrect behaviour with respect to the composition of the speci-
fications: (hide ok , err in i1|[ ok , err ]|i2) /ioco (hide ok , err in s1|[ ok , err ]|s2).

4.3 Some Bibliographic Notes

The relation ioco inherits many ideas from other relations on transition systems
defined in the literature. Its roots are in the theory of testing equivalence and
preorders [26, 27], where the relation testing preorder on transitions systems is
defined by explicitly introducing the environment, or tester, and the observa-
tions that a tester can make of a system. Some developments, which build on
these testing preorders, are of importance for ioco. In the first place, there were
the introduction of more powerful testers, which can detect not only the occur-
rence of actions but also the absence of actions, i.e., refusals, in [28], and the
addition of a special label θ to observe refusals in [29]. A second development
was a testing theory based on testing preorders, where a conformance relation
conf , and test generation algorithms were defined by restricting all observations
of testing preorder testers to those traces that are explicitly contained in the
specification [30]. A third development was the application of the principles of
testing preorder to Input/Output Automata (IOA) in [31], where it was shown
that testing preorder coincides with quiescent trace preorder [32] when requiring
that inputs are always enabled. The relation ioco inherits from all these devel-
opments. The definition of ioco follows the principles of testing preorder with
tests that can also detect the refusal of actions. Outputs and always enabled
inputs are distinguished analogous to IOA, and, moreover, a restriction is made
to only the traces of the specification as in conf .

Whereas this section first presented ioco and then introduced iocoF , ≤ior ,
≤iot , and ioconf as variants, the historical development, and the way they were
presented in [6], were the other way around: it started with ≤iot , and then
ioconf , ≤ior , ioco, and iocoF followed. Moreover, the original definitions are
given as testing relations as in [26, 27], and the definitions in this text were
propositions in [6].

Another interesting historical event was the development of the testing theory
for the tool TVEDA [1], which occurred independently and without reference to
an underlying theory of testing equivalence or refusal testing, but only based on
intuition and formalization of existing protocol testing practice and experience.
This resulted in a relation called R1 which strongly resembles ioco. This may be
another indication, apart from all case studies done since then, of the practical
relevance of ioco.

The relation uioco, also called iocoU , was the result of studying congruence
and compositionality properties for ioco in [33]. The anomaly of nondetermin-
istic underspecified traces was also remarked in [7, 34].

Most of the complete proofs for ioco can be found in [6, technical report
version].
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5 Testing with Labelled Transition Systems

Now that we have formal specifications, implementations, test cases, and the im-
plementation relation ioco expressing correctness, we can start the discussion on
testing. We are looking for a test generation algorithm that derives a set of tests
from a specification, so that by executing these tests we know, or at least can get
an indication, whether an implementation ioco-conforms to that specification.
For that, we first have to discuss what test execution is, and what it means to
pass a test. This is done in Section 5.1. Then the test generation algorithm is
given in Section 5.2. Subsequently, Section 5.3 shows that this algorithm has the
required correctness properties, that is, the generated test suites detect all and
only non-conforming implementations. This means that such a generated test
suite can serve as a decision procedure for ioco-conformance.

5.1 Test Execution

A test run of a test case t ∈ T TS(LU , LI) with an implementation under test
i ∈ IOTS(LI , LU ) is an experiment where the test case supplies inputs to the
implementation, while observing the outputs, and the absence of outputs (qui-
escence) of the implementation. This might be described as the parallel synchro-
nization t ‖ i (Section 3.2), but this does not take into account the peculiarities
of the special labels δ and θ. Hence, we extend ‖ to ⌉| to take into account that
θ is used to observe quiescence δ; see Definition 16.1.

A test run t ⌉| i can always continue, i.e., it has no deadlocks. This follows
from the construction of a test case; see Definition 10.1: for each state t′ of a test
case either init(t′) = {a} ∪ {LU} for some a ∈ LI , or init(t′) = LU ∪ {θ}. In the
former case the action a can always be performed on the implementation since i
is input enabled. In the latter case either i produces some output x ∈ LU , or i is
quiescent. In both cases the test run can continue, be it with an infinite sequence
of θ actions. Since pass and fail are sink states a test run can be stopped if one
of these is reached. The trace of t⌉| i to that point identifies the test run; it can
be seen as the test log of the test run.

Since an implementation can behave nondeterministically, different test runs
of the same test case with the same implementation may lead to different termi-
nal states, and hence to different verdicts. An implementation passes a test case
if and only if all possible test runs lead to the verdict pass. This means that each
test case must be executed several times in order to explore all possible nonde-
terministic behaviours of the implementation, and, moreover, that a particular
fairness must be assumed on implementations, i.e., it is assumed that an imple-
mentation by re-execution of a test case shows all its possible nondeterministic
behaviours with that test case.

Definition 16. Let t ∈ T TS(LU , LI) and i ∈ IOTS(LI , LU ).

1. Running a test case t with an implementation i is expressed by the parallel

operator ⌉| : T TS(LU , LI) × IOTS(LI , LU ) → LTS(LI ∪ LU ∪ {θ}) which
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is defined by the following inference rules:

i
τ−→ i′

t⌉| i
τ−→ t⌉| i′

t
a−→ t′, i

a−→ i′

t⌉| i
a−→ t′⌉| i′

a ∈ LI ∪ LU

t
θ−→ t′, i

δ−→
t⌉| i θ−→ t′⌉| i

2. A test run of t with i is a trace of t⌉| i leading to one of the states pass or
fail of t:

σ is a test run of t and i ⇔def ∃i′ : t⌉| i
σ

=⇒pass⌉| i′ or t⌉| i
σ

=⇒ fail⌉| i′

3. Implementation i passes test case t if all test runs go to the pass-state of t:

i passes t ⇔def ∀σ ∈ L∗
θ, ∀i′ : t⌉| i

σ

=6⇒ fail⌉| i′

4. An implementation i passes a test suite T if it passes all test cases in T :

i passes T ⇔def ∀t ∈ T : i passes t

If i does not pass the test suite, it fails: i fails T ⇔def ∃t ∈ T : i /passes t.

Example 14. Consider the test cases in Figure 7 and the implementations in

Figure 4. The only test run of t1 with k1 is t1⌉| k1
?but·!liq·θ

=======⇒pass⌉| k′
1, so

k1 passes t1.
For t1 with k2 there are two test runs:

t1⌉| k2
?but·!liq·θ

=======⇒pass⌉| k′
2, and t1⌉| k2

?but·!choc
=======⇒ fail⌉| k′′

2 , so k2 fails t1.

Also k3 fails t1: t1⌉| k3
?but·!liq·θ

=======⇒pass⌉| k′
3, but also t1⌉| k3

?but·θ
====⇒ fail⌉| k′′

3 .
When t2 is applied to k3 we get:

t2⌉| k3
?but·!liq·?but·θ

==========⇒pass⌉| k′
3, t2⌉| k3

?but·θ·?but·!choc
===========⇒ fail⌉| k′′

3 , so k3 fails t2.

5.2 Test Generation

Now all ingredients are there to present an algorithm to generate test cases
from a labelled transition system specification, which test implementations for
ioco-correctness. To see how such test cases may be constructed, we consider the
definition of ioco; see Definition 12. We see that to test for ioco we have to check
whether out( i after σ ) ⊆ out( s after σ ) for each σ ∈ traces(s). Basically, this

can be done by having a test case t that executes σ: t⌉| i
σ

=⇒ t′⌉| i′ . After this the
test case should check whether the produced outputs by i′ are allowed by s. This
can be done by having transitions from t′ to pass-states for all allowed outputs –
those in out( s after σ ) – and transitions to fail-states for all erroneous outputs
– those not in out( s after σ ). Special care should be taken for the special output
δ: δ models the absence of any output, which matches with the θ-transition in
the test case. Consequently, the θ-transition will go the pass-state if quiescence
is allowed – δ ∈ out( s after σ ) – and to the fail-state if the specification does
not allow quiescence at that point.
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All this is reflected in the following test generation algorithm. The algorithm
is recursive: the first transition of the test case is derived from the states in
which the specification can initially be, after which the remaining part of test
case is recursively derived from the specification states reachable from the inital
states via this first test case transition. The algorithm is nondeterministic in the
sense that in each recursive step it can be continued in many different ways: the
test case can be terminated with the test case pass (choice 1); the test case can
continue with any input allowed by the specification, which can be interrupted
by an arriving output (choice 2); or the test case can wait for an output and
check it, or conclude that the implementation is quiescent (choice 3). Each choice
for continuation results in another, valid test case. Also here the set LU , i.e., the
specification’s outputs, contains the inputs of the generated test case, and LI its
outputs.

Algorithm 1. Let s ∈ LTS(LI , LU ) be a specification, and let S initially be
S = s after ǫ .

A test case t ∈ T TS(LU , LI) is obtained from a non-empty set of states S by
a finite number of recursive applications of one of the following three nondeter-
ministic choices:

1.

LU ∪ θ

pass

t := pass

2.

fail

xj 6∈ out(S)

fail

xi ∈ out(S)

txita

xj

tx1

xi

a

t := a ; ta
2 Σ { xj ; fail | xj ∈ LU , xj 6∈ out(S) }
2 Σ { xi ; txi

| xi ∈ LU , xi ∈ out(S) }

where a ∈ LI such that S after a 6= ∅, ta is obtained by recursively
applying the algorithm for the set of states S after a , and for each xi ∈
out(S), txi

is obtained by recursively applying the algorithm for the set of
states S after xi .
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3.

xi ∈ out(S)

θ

fail fail

xj 6∈ out(S)

tx1
txi tθ

xjxi

t := Σ { xj ; fail | xj ∈ LU , xj 6∈ out(S) }
2 Σ { θ ; fail | δ 6∈ out(S) }
2 Σ { xi ; txi

| xi ∈ LU , xi ∈ out(S) }
2 Σ { θ ; tθ | δ ∈ out(S) }

where for each xi ∈ out(S), txi
is obtained by recursively applying the al-

gorithm for the set of states S after xi , and tθ is obtained by recursively
applying the algorithm for the set of states S after δ .

Algorithm 1 generates a test case from a set of states S. This set represents
the set of all possible states in which the specification can be at the given stage
of the test case generation. Initially, this is the set s after ǫ = q0 after ǫ , where
q0 is the initial state of s. Then the test case is built step by step. In each step
there are three ways to make a test case:

1. The first choice is the single-state test case pass, which is always a sound
test case. It stops the recursion in the algorithm, and thus terminates the
test case.

2. In the second choice test case t attempts to supply input a to the imple-
mentation, and subsequently behaves as test case ta. Test case ta is obtained
by recursive application of the algorithm with the set S after a , which is
the set of specification states that can be reached via an a-transition from
some current state in S. Moreover, t is prepared to accept any output of
the implementation (not quiescence) that might occur before a is supplied.
Analogous to ta, each txi

is obtained from S after xi .
3. The third choice consists of checking the next output of the implementation.

In this case the test case does not attempt to supply an input; it waits
until an output arrives, and if no output arrives it observes quiescence. If
the response, whether a real output or quiescence, is not allowed, i.e., xj 6∈
out(S), the test case terminates with fail. If the response is allowed the
algorithm continues with recursively generating a test case from the set of
states S after xi .

Example 15. Test case t1 of Figure 7 can be obtained from specification p in
Figure 2 using Algorithm 1:

1. Initially, S = p after ǫ = {p0}.
2. Choice 2 is made, i.e., we try to give an input to the implementation. The only

input with S after a 6= ∅ is ?but , so t1 := ?but ; t21 2 !liq ; fail 2 !choc; fail.
3. To obtain t21, the next output of the implementation is checked (choice 3):

t21 := !liq ; t31 2 !choc; fail 2 θ; fail.
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4. For t31 the output is checked again (choice 3), where now the only allowed
response is quiescence: t31 := !liq ; fail 2 !choc; fail 2 θ; t41.

5. For t41 we stop (choice 1): t41 := pass.

After putting all pieces together, we obtain t1 of Figure 7 as a test case for p.

Example 16. Test case t2 of Figure 7 can be generated from v in Figure 2:

1. Initially, S = v after ǫ = {v0}.
2. In the first step input ?but is tried: t2 := ?but ; t22 2 !liq ; fail 2 !choc; fail,

after which S = {v0} after ?but = {v0, v1}.
3. The allowed outputs are checked: out(S) = out({v0, v1}) = {!liq , δ}.

This leads to the test case t22 := !liq ; t32 2 !choc; fail 2 θ; t42.
4. For t32 we continue with S = {v0, v1} after !liq = {v0}. Another input ?but

is tried: t32 := ?but ; t52 2 !liq ; fail 2 !choc; fail.
5. Then the output is checked again, which may be !liq or δ:

t52 := !liq ; t62 2 !choc; fail 2 θ; t72.
6. The test case is stopped: t62 := pass and t72 := pass.
7. Further with t42: this is the test case after quiescence has been observed; t42 is

generated from S = {v0, v1} after δ = {v0}. From {v0} another input ?but
can be supplied: t42 := ?but ; t82 2 !liq ; fail 2 !choc; fail.

8. Analogous to t52 the output is checked: t82 := !liq ; t92 2 !choc; fail 2 θ; t102 .
9. After this the test case is stopped: t92 := pass and t102 := pass.

When concatenating these pieces the test case t2 of Figure 7 is obtained. It is
clear that this is only one test case which can be generated. Infinitely many
different test cases can be generated from specification v by considering longer
and longer test cases.

5.3 Completeness of Test Generation

Now all ingredients are there to present the main result of the ioco test theory,
viz. that the test cases generated with Algorithm 1 can detect all, and only
all, non-ioco correct implementations. Before giving this completeness result
we first formally define what completeness is in the context of ioco testing.
Moreover, a complete test suite is usually infinitely large, and not executable in
a practical situation, as is shown, for instance, for the system v in Example 16.
Consequently, a distinction is made between test suites which detect only errors
– but possibly not all of them – and test suites which detect all errors – and
possibly more. The former are called sound, and the latter exhaustive; see also
Section 2.

Definition 17. Let s be a specification and T a test suite; then for ioco:

T is complete ⇔def ∀i ∈ IOTS(LI , LU ) : i ioco s iff i passes T
T is sound ⇔def ∀i ∈ IOTS(LI , LU ) : i ioco s implies i passes T
T is exhaustive ⇔def ∀i ∈ IOTS(LI , LU ) : i ioco s if i passes T
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Theorem 2.1 expresses that all tests generated with the algorithm are sound,
i.e., give the result fail only if the implementation is not ioco-correct. Theo-
rem 2.2 states that all possible test cases together form an exhaustive (and thus
complete) test suite, which means that for any ioco-incorrect implementation
there is, in principle, a test case generated with Algorithm 1, that can detect
that incorrect implementation.

Theorem 2. Let s ∈ LTS(LI , LU ) be a specification, and let Ts be the set of all
test cases that can be generated from s with algorithm 1; let gen : LTS(LI , LU ) →
P(T TS(LU , LI)) be a test derivation function satisfying gen(s) ⊆ Ts; then:

1. gen(s) is sound for s with respect to ioco;

2. Ts is exhaustive for s with respect to ioco.

Exhaustiveness is more a theoretical result than a practical one. Theoreti-
cally, it implies that any non-conforming implementation can be detected, i.e.,
that there are no errors that can never be detected. From a practical perspec-
tive, an exhaustive test suite, except for the most trivial systems such as p in
Figure 2, will contain infinitely many test cases, and thus can never be executed
in finite time. The question of which test cases to generate and execute from the
infinitely large exhaustive test suite is referred to as test selection. Such a selec-
tion of test cases should minimize the test costs, e.g., in terms of the necessary
test execution time, while maximizing the probability of detecting errors. Test
selection is an important yet difficult topic, but it is not further discussed here.

Example 17. In Example 15 test case t1 of Figure 7 was generated from specifi-
cation p in Figure 2. Indeed, we had in Example 10: k1 ioco p, k2 /ioco p, and
k3 /ioco p, which is consistent with the test execution results from Example 14:
k1 passes t1, k2 fails t1, and k3 fails t1.

5.4 Bibliographic Notes

In the original definition of test cases, and in the original test generation algo-
rithm, test cases were not input enabled [6]. This resulted in a paradox where
environments are assumed to be input enabled for the outputs of the system,
but test cases, being particular environments, are not. It also meant that test
cases could prevent the system from performing an output. Inspired by timed
test generation algorithms [23], and by [7], test cases were redefined to be input
enabled.

The issue of test selection is studied in many papers, e.g., by using test
purposes [2, 35], by using metrics [36, 37], by defining an integral over the space
of implementations [38], by approximate analysis [39], by coverage analysis [40],
and many others.

An annotated bibliography of testing transition systems can be found in [41].
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6 Concluding Remarks

This contribution has presented a model based testing theory for labelled tran-
sition systems. Labelled transition systems were introduced as models for spec-
ifications, implementations, and tests, and a process language for representing
complex transition systems was given. An important point of the theory is the
definition of formal correctness between a specification and an implementation.
This was done with the implementation relation ioco. Some variants of ioco
were briefly discussed, and in particular the notion of partial specification has
been elaborated. A test generation algorithm was given, and it was proved to
be complete, i.e., to generate test suites which can exactly test for ioco confor-
mance.

Although the emphasis in this contribution was on the theory of model based
testing, such theory is only useful if it is supported by model based test tools,
in particular test generation tools. Although the principles of the test genera-
tion algorithm are not very complex, the application to any realistically sized
transition system specification is far beyond what is manually feasible. And, of
course, by trying to do it manually, one of the great benefits of model based
testing, viz. the automatic generation of large quantities of large tests, would
be lost. Prototype tools implementing this test theory exist, e.g., TVEDA [1],
TGV [2], the Agedis Tool Set [3], TestGen [4], and TorX [5], and also
quite a number of case studies have been performed with these tools, see, e.g.,
[42–45].

One of the most important open issues in this model based testing theory
is the question of test selection. Since exhaustive testing of any realistic system
is not an option, an important question is which test cases should be generated
and executed, and why one test suite is better than another one. The tools men-
tioned above use different approaches, from completely random as in TorX, to
a manual approach where a user has to provide test purposes to steer the se-
lection process. Other approaches are defining some measures of coverage, e.g.,
using heuristics for coverage of transition systems such as traversing every state
at least once, heuristic measures from classical software testing such as equiv-
alence partitioning or boundary value analysis, explicitly defining fault models,
or assuming some test hypothesis for the implementation under test. Related
to the question of test selection is the issue of how the completeness, coverage,
or quality of an automatically generated test suite can be expressed, measured,
and, ultimately, controlled. Even more intriguing is the question how a measure
of test suite quality can be related to a measure of product quality. After all,
product quality is the ultimate reason to make efforts to do testing.
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45. Vries, R.d., Belinfante, A., Feenstra, J.: Automated Testing in Practice: The High-
way Tolling System. In Schieferdecker, I., König, H., Wolisz, A., eds.: Testing of
Communicating Systems XIV, Kluwer Academic Publishers (2002) 219–234

39


