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Abstract

The ability to recognize three-dimensional (3-D) objects accurately from range 

images is a fundamental goal of vision in robotics. This facility is important in 

automated manufacturing environments in industry. In contrast to the extensive work 

done in computer-aided design and manufacturing (CAD/CAM), the robotic process is 

primitive and ad hoc.

This thesis defines and investigates a fundamental problem in robot vision sys­

tems: recognizing and localizing multiple free-form 3-D objects in range images. An 

effective and efficient approach is developed and implemented as a system Free-form 

Object Recognition and Localization (FORL). The technique used for surface charac­

terization is surface curvatures derived from geometric models of objects. It uniquely 

defines surface shapes in conjunction with a knowledge representation scheme which 

is used in the search for corresponding surfaces of an object. Model representation 

has a significant effect on model-based recognition. Without using surface properties, 

many important industrial vision tasks would remain beyond the competence of 

machine vision.

Knowledge about model surface shapes is automatically abstracted from CAD 

models, and the CAD models are also used directly in the vision process. The 

knowledge representation scheme eases the processes of acquisition, retrieval, 

modification and reasoning so that the recognition and localization process is effective 

and efficient.



Our approach is to recognize objects by hypothesizing and locating objects. The 

knowledge about the object surface shapes is used to infer the hypotheses and the 

CAD models are used to locate the objects. Therefore, localization becomes a by­

product of the recognition process, which is significant since localization of an object 

is necessary in robotic applications.

One of the most important problems in 3-D machine vision is the recognition of 

objects from their partial view due to occlusion. Our approach is surface-based, thus, 

sensitive to neither noise nor occlusion. For the same reason, surface-based recogni­

tion also makes the multiple object recognition easier. Our approach uses appropriate 

strategies for recognition and localization of 3-D solids by using the information from 

the CAD database, which makes the integration of robot vision systems with 

CAD/CAM systems a promising future.



Chapter 1: Introduction

In recent years, there has been a tremendous spurt in the recognition of three- 

dimensional (3-D) objects in range images in research activity among the computer 

vision and robotics communities. More importantly, 3-D geometrical calculations are 

central to computer graphics, computer-aided design and computer-aided manufactur­

ing (CAD/CAM), and other fields.

Fundamental to robot functions is the acquisition of relevant characteristics, task 

invariances, and relational object properties. Thus, an object recognition by a robot 

requires a good form of sensory perception in a 3-D structure. Yet recovering 3-D 

information from these visual (projected) images is a complex task and still remains 

the subject of fundamental research.

Visual data obtained from range sensors by a robot provides 3-D range informa­

tion about objects directly. Interpretation of range data by a vision system has been 

one of the major problems of vision research in the past five years. This is because 

the vision system must describe the dynamic scene in terms of 3-D structural primi­

tives of range images, such as edges, surfaces and volume, and finally recognize 

objects completely.

Therefore, one of the fundamental characteristics required by a robot vision sys­

tem is the ability to derive properties, such as extracting features and recognizing 

objects, from the range data, which is a fascinating area of research in computer sci­

ence. Towards this objective, we develop an efficient approach for the recognition
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and localization of 3-D free-form objects in range images using properties of algebraic 

surfaces which are widely used in geometric modeling. They include Bezier surfaces 

and splines of various kinds.

We (Wang and Iyengar, 89) have developed a robust and efficient approach to 

recognizing and localizing multiple 3-D free-form objects. The approach is imple­

mented as a robot vision system, Free-form Object Recognition and Localization 

(FORL). Our novel approach is able to recognize and localize real free-form objects, 

which has not been solved before. The approach uses boundary representation for 

object models, which is one of the most popular computer-aided design (CAD) model 

representation. Since CAD systems are popular and provide a user-friendly environ­

ment for design, they are natural sources for object models in robot vision.

We have developed a knowledge representation scheme for describing free-form 

surface shapes. A representation of knowledge is a combination of data structures and 

interpretive procedures which use the data structures. We have designed classes of 

data structures for storing information and procedures for intelligently manipulating 

these data structures to make inferences. The data structures and the procedures are 

well-designed so that the knowledge leads FORL to intelligent behavior, i.e., recog­

nizing and localizing multiple 3-D free-form objects.

Localization is a by-product of the recognition process in FORL. This is 

significant since robot vision needs object location and orientation information to 

enable the robot to handle the objects. FORL is capable of recognizing and localizing
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multiple free-form objects. Even when objects are partially occluded by one another, 

FORL is still able to recognize and localize objects from their partial view.

The remainder of this dissertation is organized as follows. We introduce some 

background information about machine vision in Chapter 2. Chapter 3 shows prior 

research in this area and compares it with our approach. In Chapter 4, we explain one 

of the most common CAD model representations - boundary representation of solids, 

which is the model representation for our system. The invariant properties of surfaces 

are shown in Chapter 5. We discuss the considerations for knowledge representation 

in intelligent systems and introduce our data structures in Chapter 6. The control stra­

tegy of the recognition and localization process is discussed in detail in Chapter 7. 

The experimentation of the approach is shown in Chapter 8. Finally, we give our con­

clusions in Chapter 9.



Chapter 2: Preliminary

Processing in a computer vision system is derived from three related fields:

a) image processing;

b) pattern recognition; and

c) scene analysis.

In image processing, the input and output are both images with the output image 

an improved version of the input image. Processing involves gray scale modifications 

to normalize scene brightness and contrast, sharpening to restore weakened high spa­

tial frequencies, and smoothening to remove the noise in the image. If two images 

have to be compared, they may have to be registered, i.e., geometrically transformed 

to make them congruent, before matching is performed. Many of the gray scale image 

processing techniques are applicable to range images.

Pattern recognition provides a description of the input image based on a priori 

knowledge of expected patterns. The computer generally starts with a list of bright­

ness values associated with the array of hundreds of thousands of points correspond­

ing to the image. Recognizing a pattern means replacing this mass of undigested data 

with a much simpler, more useful description. It is often more convenient to first 

search for examples of patterns like edges and regions, which are referred to as 

features. A simplified description of the image constructed from these features can 

then be used as the basis of recognition.

4
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Scene analysis is the transformation of simple features into abstract descriptions 

relating to objects that cannot be recognized based simply on pattern matching.

The functional performance of a vision system is judged according to the follow­

ing characteristics [96]:

(1) 3-D measurement of objects;

(2) transformation of these measured data into a representation (data structure); and

(3) interpretation and recognition of the representation.

2.1 Progress of Machine Vision

Historically speaking, computer vision began in the mid 1960s with Roberts [71]. 

His system operated in the polyhedral or "blockworld" domain. After Roberts, vision 

systems continued to be built, but their performance seemed weak compared to the 

amount of work that went into them.

Ballard and Brown’s [4] influential idea, favored by cognitive psychologists, 

was that "high-level" (cognitive) processes were at the heart of vision. This view has 

its points and happened to fit in with the economics of computing. However, sym­

bolic reasoning is very difficult in machine vision, since the input often does not 

correspond to expectation.

The next major idea, which can be seen in Horn [44], was to use physics and 

applied mathematics to determine the information available in an image. The idea is



to compute "intrinsic images" or invariant physical scene parameters from an image. 

One way is the use of extended Gaussian images. A map between an object and the 

unit Gaussian sphere is defined. Gaussian curvature is

_  dS
K  ' H o

where dS is on the Gaussian sphere and dO is on the object The extended Gaussian 

image is obtained by

G & n )  = — 1—K(u,v)

where (£,T|) is the point on the Gaussian sphere corresponding to the point (n,v) on 

the original surface. Under the assumption that all objects are convex, the map has 

the following properties: (a) the map is invertible; (b) a rotation of the object 

corresponds to an equal rotation of the Gaussian sphere; and (c) the map is unique.

Another important trend that started in the mid 1970s was to try to learn from 

biological systems [56]. Biological vision systems work very well compared to com­

puter vision systems. This cross-fertilization between the neurosciences and computer 

sciences has been increasingly productive and promises to be a major force in the 

future. The neural network approach is a current trend. A memory-based reasoning 

approach is proposed by Wang and Iyengar [92]. Powerful parallel computers accom­

modate more brain-like models of computation [92,93].

Recently, integration of vision systems with autonomous machines has been 

investigated in research institutes. At AT&T, Andersson [3] develops a robot ping- 

pong player which can recognize the ping-pong ball in real time and control the robot



manipulator holding a paddle to hit the ball. Turk et al. [87] are developing an auto­

nomous land vehicle called VITS, which is a multi-leg moving vehicle. At Camegie- 

Mellon University, Thoipe, et al. [84] are developing another autonomous vehicle 

called Navlab, which is an autonomous moving van.

The challenge of future vision systems is to recognize real-world objects in daily 

life and industrial objects with complex surface properties. The latter is the problem 

to be solved in this dissertation.

2 2  Vision System Input

The input to a vision system is an image of various kinds. Generally, an image 

function is a vector-valued function of a small number of arguments. An image func­

tion is usually the digital (discrete) image function where the arguments to and value 

of the function are all integers. The same image may be represented by different 

image functions. The kind of functions used to represent the image depends on what 

characteristics we want.

Most images are presented by functions of two spatial variables

/ ( x )  = f (x ,y )  (2.1)

where /  ( x y )  is the brightness of the gray level of the image at a spatial coordinate

(x,y ), where (Kx,y<2L- l ,  for some positive integer L , and 0^/(x)<2fl- l ,  for some

positive integer B . Each element of the image is called a pixel (picture element). The

ranges of x , y , and /  (x) are selected in this way for storage and computation on com­
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puters. An example of the letter "C" with 0<x,y<23- l  and 0</ (x )<24-1  is shown in 

Figure 2.1.

0 0 0 0 0 0 0 0
0 0 0 15 15 15 3 0
0 0 7 15 15 15 2 0
0 3 15 15 0 0 0 0
0 3 15 15 0 0 0 0
0 2 15 15 15 15 5 0
0 0 5 15 15 15 2 0
0 0 0 0 0 0 0 0

Figure 2.1: Image o f the Letter "C"

The above image is usually called the gray scale image. If function /  (x y ) in 

(2.1) is the distance from the object to the camera at a spatial coordinate (x,y), then 

the image which the function represents is called the range image. A range image is a 

dense range map which provides 3-D range information directly. Range image under­

standing has been a current trend of 3-D machine vision research.

Some special image functions are as follows. A multispectral image f  is a 

vector-valued function with components ( f  \ f  2> • • • »/„)• One example of a mul­

tispectral image is a color image in which the components measure the brightness 

values of each of three wavelengths, that is,

f  (x  ) = 'j f  red (x  )>f  blue (x  )>f green (x  ) '

Other examples are time-varying images f  (x ,t) which have an added temporal argu­

ment and special 3-D images where x = (x ,y,z). In most circumstances, both the



9

domain and range of f are bounded by certain values.

In robot vision situations, an image is usually viewed as a piecewise-smooth 

graph surface contaminated by noise. The geometric shape of the image data is 

emphasized. A 3-D smooth graph surface is a twice-differentiable function of two 

variables:

*=/C*oO

A piecewise-smooth surface g(x,y)  can be partitioned into smooth surface primitives 

f i  (* ) over support region :

N
g(*,y) = 'L f i  C* >y )x(* )

i=1

where x(* O' ) *s the characteristic function of the region defined as

fl (x,y)eRi  
X i x j J l i )  -  jo  otherwise

The vision task is to find the /?,• 's and the image features associated with each Rt , 

and then to match the features with the known features about objects in order to recog­

nize and localize objects.

2 3  Machine Vision Process

Current methods of image analysis involve three main levels: (1) low-level 

vision; (2) intermediate-level vision; and (3) high-level vision; each of which is shown 

in Figure 2.2.
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image

enhanced image

features

low-level vision

high-level vision

intermediate-level
vision

interpretation

Figure 2.2: Machine Vision System Structure

In low-level vision processing, images are suitably pre-processed to remove ran­

dom noise, enhance the image, compensate for sensor non-linearity, and so on. Also, 

edge pixels are identified by using various methods such as gradients or Laplacian 

transformations.

Intermediate-level vision processing involves segmentation and description of 

images. In the segmentation process, images are subdivided into their constituent 

parts. This stage is veiy important, for it is here that objects are extracted. Edge



11

linking (the process which follows edge detection) is essentially part of this phase. 

Another approach to image segmentation is splitting and merging. The description 

process involves extracting the features of objects in a scene.

Finally, in high-level vision, meaning is attached to the objects detected. These 

approaches to image analysis are best suited for the recognition of known objects, 

which is the primary application for them.

The vidicon camera is the conventional vision transducer for general purpose 

robotic tasks. Silicon detectors, called charge-coupled devices (CCD’s) and charge- 

injected devices (CID’s), were introduced in the early 1970’s [99]. Vidicons depend 

on an electron beam scanning across an image target to create a signal electrostati­

cally. The beam is deflected and experiences geometric distortion. Silicons generate 

an electronic signal proportional to incident light

Increasingly popular state-of-the-art machine vision systems use solid state cam­

eras because of their cost-effectiveness. Sampling intervals in the sense of a square 

picture of 512 x 512 dots are usually extracted. Such dots are called pixels and are 

usually composed of 8 bits for gray level images. That is, each pixel can be sensed in 

one of 256 levels of grayness. In many practical cases, images of 64 x 64 pixels and 

16 gray levels are sufficient and provide an inexpensive transducer [1,3,99].

The memory which stores the image while the processor operates on the image is 

as important as the transducer. These devices are called frame stores and are usually 

developed as standardized chips. Some image processing tasks can be executed in
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the frame store [99].

Image processing implies a transformation of an image. This step processes 

images and extracts image features for recognition. Much can be achieved on the 

image processing alone [1, 18, 19, 44, 65]. Edge detection is a typical task of image 

analysis. An example of edge detector is the approximation of the Laplacian operator

0  = 0  = p-({<E |-W + £ W-l + £/*W+ £ W -l)-Bu )

Region growing can be viewed as the complement of edge detection. Region 

growning groups the image pixels into different segments, usually each of which has a 

distinct feature. Texture analysis is very useful to remote sensing; however, it is of lit­

tle use to robot vision. Motion finding by analyzing optical flow is also very helpful 

for keeping track of moving rigid objects.

Finding range information from object geometry is another typical task for robot 

vision systems. Stereo vision and triangulation are the conventional way to find range 

information. Time of flight method is currently being developed; however it is cost 

prohibitive in applications. The structured light approach has been used in some 

environments where the light condition is easily controlled [85].

Recognition approaches can be categorized as adaptive or algorithmic methods. 

The adaptive system calculates the key differences between different objects and the 

similarities of objects within a particular class [1, 13, 92]. Conventional statistical 

pattern recognition approachs can fall into this category. This learning approach gives



13

a system much flexibility. The problem with this approach is that it is usually time- 

consuming to initialize the system.

The algorithmic approach is employed when the objects to be recognized are 

well-defined [3,14,16,28,48]. Traditional graph-theoretic algorithms are one way to 

match objects with a structure description. Symbolic logic is used to do inference. 

Production systems are typically used as symbolic inference systems. Scene labeling 

and constraint relaxation methods are used in some applications. Many Al techniques 

are used in recognition.

Localization is required in robot vision, but conventional computer vision does 

not tackle this problem. The information about the location and orientation of the 

object is needed for robot manipulator planning. Just recognizing an object is not 

enough in robotic applications. The robot system has to know the exact object location 

and orientation in order to control the robot actions on the object

From Figure 2.3, we can see that the robot control and action blocks need both 

recognition and localization information about the object.
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Object

Camera

Robot
control

Action
Other sensors

Vision processing

A priori 
knowledge

World model 
and

Central control

Sensory information 
processing

Figure 2.3: Structure o f a robot system with vision 

2.4 Characteristics of Robot Vision Systems

Some of the important performance characteristics that should be considered 

include the following [3,35, 66,73, 83],

The image resolution determines the ability of a vision system. The image reso­

lution is the number of pixels in the image array and the image sensor’s field of view. 

For a standard array of 256 x 256 pixels, the system can perceive pieces of the object 

as small as .0039" if the image is 1 x lm 2. For an array of 512x512 pixels,
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resolution would improve to .0020".

Resolution can be improved by using a higher magnification lens, but the field of 

view will then shrink. Vidicons have higher resolution than CCDs; however, vidicons 

are fragile and heavy.

A vision system should have a speed consistent with the speed at which parts are 

being presented. Typical vision systems can inspect and recognize simple parts at 

rates of 2-15 items per second, or higher. Slower rates will not be acceptable in appli­

cations since human workers can be more effective.

Silicon cameras can achieve higher speeds than vidicon cameras. However, sili­

con cameras do not have as high a resolution as vidicons. The speed of a vision sys­

tem depends on the complexity of images, number of pixels, and bits per pixel.

The ability of a vision system to discriminate among variations in light intensity 

is determined by the number of intensity thresholds, i.e., levels of gray scale. In range 

images, it is the levels of distance. The trade-off is that better discrimination means 

increased processing time along with a higher computer memory capacity.

A trade-off can be made between speed and the ability to interpret images 

correctly. A higher probability of correct interpretation can be achieved by processing 

more image features, which increases the processing time. An acceptable accuracy 

rate (90%, 95%, etc.) depends on the accuracy required by the application, as in any 

quality control situation.



16

The vision system must be flexible enough to accommodate variations of multi­

ple copies of a given part, as well as uncertainties in part placement due to individual 

workstation configurations. Furthermore, many robot vision tasks are distinguished 

by their performance in dirty and uncontrolled environments.

2.5 Scope of this Dissertation

Our approach is to recognize and localize multiple 3-D fiee-form objects in 

range images based on boundary description models, such as CAD models.

Recently, various programs and systems have been developed to derive accurate 

and dense range maps in times that may eventually become realistic [8, 24, 34, 46, 

54]. Recent techniques for actively obtaining range images can be seen in Besl’s [8] 

survey paper. Nitzan’s [62] survey paper also presents some range imaging tech­

niques. Range images explicitly contain depth information on the environment, which 

is needed in order to interpret 3-D objects in the scene.

Model representation has a significant effect on model-based recognition [9,21]. 

Recent research pays more attention to model surface features. Without using surface 

properties, many important industrial vision tasks would remain beyond the com­

petence of machine vision systems. Numerical features about lines and topological 

features about connectivity suffer from partial occlusion. Geometric features such as 

equations of curves and surfaces are much more stable and suitable for recovering 

object location.
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CAD models are very stable in representing geometric features of 3-D objects 

and reveal model structures in detail. They are perfect for producing images from 

models. CAD systems provide interactive design interface which is usually user 

friendly. These systems help create, modify, and analyze a design.

The most general CAD database description of a surface or part is in terms of 

discrete points, which will be introduced in more detail in Chapter 3. The surface 

patch is an approximation to the characteristic polyhedron.

A coordinate frame is associated with the CAD database; this is the frame in 

which the part is designed and viewed on the screen of a CAD station. The location 

of the CAD frame in the world frame is obtained by a transformation T / where

T , =

111 0 1 a  l * l

n 2 °2  a 2 *2
**3 O3 83  t 3

0 0 0 1

If x is some point on the part expressed in the CAD frame, then T ;x is the same point 

in the world frame.

Another reason for a CAD model based vision is the wide availability of 

CAD/CAM systems in industry. Most industrial parts are designed and manufactured 

using CAD/CAM systems. Therefore, a CAD database is a good candidate for the 

model base of machine vision systems.
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However, machine vision, as a reverse process, cannot easily use CAD models 

directly. Some research has been attempting to extract model features from CAD 

database for vision tasks. Bhanu and Ho [11] propose a CAD-based approach to 

building representations for 3-D object recognition. It is nontrivial to construct 3-D 

representations for vision tasks. Gunnarsson and Prinz [38] propose a method of 

locating an object using its CAD model. Their method assume a very limited rotation 

of the object

We have developed a robust and efficient paradigm for CAD-model based robot 

vision from range images. The CAD representation we use is boundary representa­

tions which are the commonly used scheme in computer graphics [25,29, 32,59,72]. 

A rigid body is represented by segmenting its boundary into a finite number of 

bounded subsets called surface patches. The boundary representation is unambiguous, 

but is not unique.

Many segmentation methods [23, 39] segment range images into surface patches 

in ad hoc representations. However, the surface patches derived by these segmenta­

tion procedures might be much different from those of the CAD surface patches 

although they may both refer to the same rigid body.

Our approach for recognition and localization is to build a knowledge base about 

object surface shapes from boundary representation models such as CAD models. 

Small segment regions in the input images are used to perform the heuristic search to 

form hypotheses, at which time CAD representations are used directly to match with
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the range data for verifications.



Chapter 3: Review of Literature

3.1 Introduction

Any robotic system capable of executing complex sequences of dexterous tasks 

in manufacturing environments must have good perception ability. Typically, percep­

tion involves the integration of sensoiy information derived from a large number of 

close proximity, loosely coupled sensors into a pre-conceived knowledge and control 

structure.

Intelligent robotic systems can be structured and programmed in a task directed 

manner. Philosophically, we imply that the usefulness of an intelligent robot is 

justified in examples of automatic part recognition and localization in flexible 

manufacturing environments. All of its planning, control, and sensing processes are 

task-directed. A perception process which provides knowledge to a system about rela­

tionship that exists between sensed events and tasks is a task-directed perception pro­

cess.

Planning and/or replanning a new task by a robot requires a vision system which 

can recover 3-D information from projected images of range sensors. The problem 

domain chosen in this dissertation is a model-based 3-D object recognition and locali­

zation using geometric modeling. Various approaches have been attempted to recog­

nize 3-D objects in a form which is suitable to vision systems. In the following sec­

tion, we review these methods and present a summary of these techniques in the form

20
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of a table.

Before introducing various methods, we will explain some terms used throughout 

this dissertation. Range images refer to images where each pixel has associated with 

it the distance between the camera and the corresponding point on the object Objects 

refer to rigid bodies or solids. Each object should have a model in the computer sys­

tem for model-based vision. CAD models refer to models in a CAD database, which 

are designed by various computer-aided design methods. Recognition means identify­

ing the objects in the input images according to the model database. Localization 

means determining the location and orientation of the objects.

3-D machine vision processes are composed of many components which perform 

particular functions in coordination with other components. First, images must be 

taken from a 3-D scene. Input images may be light intensity images, color images, 

infrared images, or range images. Range imagery is the current trend in 3-D vision 

research since a range image itself contains explicit 3-D information. A range image 

is a dense range map which is obtained directly by measuring point distances or is 

derived from multiple images. The rest of the processing sequence depends on tasks, 

objects, and a priori information, which basically consists of feature extraction, as an 

intermediate level process, and matching features with models, as a high level pro­

cess.

Use of range data in 3-D vision research has been a current research trend. Stu­

dies were scarce until range images recently became easily obtainable. Range images
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provide more reliable information on geometries of scenes than light intensity images. 

The information facilitates the solution of higher level problems, such as matching 3- 

D models to range data with multiple objects occluding one another.

3.2 Prior Approaches

Derivation of 3-D descriptions of objects from two-dimensional projected 

images is central to machine vision research. Towards this objective, Chien, et al. 

[20] present a scheme of generating volume/surface octrees from range images for 

representing the volume of 3-D objects. Flynn and Jain [31] describe a method for 

classifying a surface as planar or nonplanar through two hypothesis tests. Naik and 

Jain [60] propose spline-based descriptions of objects from range images by segment­

ing a range image and deriving spline-based descriptions for each segmented surface. 

Han and Volz [39] present a segmentation method of grouping range image regions 

and constructing a region boundary graph. Besl and Jain [7] present an algorithm of 

segmentation through variable-order surface fitting using an iterative region growing 

method. The segmentation method of Cohen and Rimey [23] segments a range image 

into three types of surfaces of planes, cylinders and spheres. Hoffman and Jain [43] 

present an approach to dividing and classifying a range image into planar, convex, and 

concave surfaces. Yokota and Levine [97] propose a region and edge-based hybrid 

method to partition images into segments with the same curvature properties. Vemuri, 

et al. [90] propose a curvature-based segmentation method which partitions images 

into segments with same curvature signs.
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Early stage image processing is useful only when its output is helpful to later 

stages of vision processes. Therefore, which early stage image processing method is 

better really depends on many factors. Our approach mainly concerns the intermedi­

ate level and high level vision processes. The fundamental issues of 3-D machine 

vision are recognition and localization of 3-D objects.

There are some applications where the object is known and the localization of 

the object is the only concern. Bolle and Cooper [13] propose a method for estimating 

3-D object position from range data. They introduce a Bayesian parameter estimation 

for data sets described by a combination of algebraic, geometric, and probabilistic 

models. One problem might be that the stored parameters in the reference models are 

often different from the parameters used in the data generation models.

Bolles and Horaud [14] present an approach to finding the configuration of 

objects from range data by matching preselected features. Their method starts with a 

distinctive feature, such as the edge at the end of a cylindrical part, and then grows a 

match by adding compatible features one at a time. The method is edge-based, thus, it 

is sensitive to occlusion and noise.

Gunnarsson and Prinz [38] propose a method for localization of industrial parts 

using CAD models. The method calculates the shortest distance between an object 

surface and a model surface and then the model iteratively approaches the object 

However, the method assumes a very limited rotation of the objects from the models.
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Vemuri and Aggarwal [91] propose a method for determination of the orientation 

of an object from a range image by searching for one corresponding point on the sur­

faces between the view of an object and the object model. Since real images are 

noisy, we suspect that the method can be useful in applications.

In more realistic situations, there are objects to be recognized and localized. The 

approach proposed by Oshima and Shirai [63] for recognition of objects from range 

images uses models built by the system itself during a learning phase. A description 

of each scene is built in terms of properties of regions and relations between them, 

which is stored as an object model. The recognition matching process is a combina­

tion of data-driven and model-driven search process, which selects a kernel region in 

the image and develops a hyperthesis of probable models, and then performs a match­

ing process between the object and the model. Multiple models built for one object 

during the learning phase might cause problems in recognition since different view 

angles may generate structurally different models. Occluded surfaces can also cause 

the recognition to fail.

Faugeras and Hebert [28] present an approach to 3-D object recognition and 

localization. Their approach uses linear primitives such as points, lines and planes to 

approximately represent object models. The approach finds some pairings between 

object primitives and model primitives such that the pairings satisfy constraints on 

rigidity. Then, a hyperthesis is formed and verified against the model. Occlusion 

might be a problem to this approach. Hyperthesis formation is another major issue 

which is not solved satisfactorily in the paper.
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Silberberg, et al. [73] present an algorithm for recognition of 3-D objects in 

two-dimensional intensity images. The objects to be recognized are polygons. The 

algorithm uses a generalized Hough transform to match image junctions to model ver­

tices to estimate the transformation. The initial hypothesis of probable models to be 

matched may be the major problem in addition to the occlusion problem.

Horn [44] describes using Gaussian sphere called the extended Gaussian image 

(EGI) to represent objects for 3-D recognition. In the case of convex objects, the EGI 

representation of the object is unique. Iterative algorithms have been used to recover 

a convex solid from its extended Gaussian Image. One problem could be that inten­

sive computation is required.

Grimson and Lozano-Perez [35] discuss using sparse local measurements of 

positions and surface normals to recognize and locate objects. Objects are modeled as 

polyhedra (or polygons). Their approach examines all hypotheses about pairings 

between sensed data and object surfaces and discards certain ones by using local con­

straints on distances between faces, angles between face normals, and angles of vec­

tors between sensed points. The method depends on finding the local constraints to 

perform the search efficiently.

Wong et al. [96] propose an approach to 3-D object recognition based on attri­

buted hypergraphs. The approach recognizes objects by finding the graph monomor­

phism between the attributed hypergraph representations for object models and the 

complete attributed hypergraph representation of an object A problem might arise if
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the attributed hypergraph of objects is different from attributed hypergraph of models 

due to noise in images. Furthermore, the method is computationally intensive.

Bhanu and Nuttal [10] present a method for recognition of 3-D objects. The 

method characterizes surface curvatures on curvature graphs to recognize objects. 

The method is effective for simple surface type objects, such as spheres, cylinders, 

and cubes, as their experiment showed. However, the method might fail for complex 

surface objects since a curvature graph is a two-dimensional plane with the principal 

curvatures being the coordinate axes. Thus, some information about the objects are 

lost after the mapping, and complex surface objects might be mapped all over the cur­

vature graph.

The following table summarizes this review of prior research and comparison 

with our work.
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Summary

Researcher Image Model Features for 
Search

Object Type Output

Bolle and 
Cooper, 86

Range Parameter
Vectors

Planes,
Cylinder, and 
Spheres with 
boundary 
edges to form 
parameter vec­
tors (experi­
ment was only 
on objects 
formed by 
planar patches)

Single Solid Localization

Bolles and 
Horaud, 87

Range Extended CAD
models,
feature
classification
networks,
planar patch
models, and
wire-frame
models

Edges Multiple solids 
of same model 
(industrial 
part)

Localization

Gunnarsson 
and Prinz, 87

Range CAD models Surfaces Single free­
form solid with 
limited rota­
tion

Localization

Vemuri and 
Aggarwal, 88

Range Boundary
representation

One point cur­
vature on a 
surface patch 
(noise- 
sensitive)

Single free­
form solid with 
limited
transformation

Localization

Oshima and 
Shirai, 83

Range Description of 
properties 
(planes and 
quadrics) of 
regions and 
relations 
between them 
in a scene

Surfaces 
(planes and 
quadrics) with 
boundary 
edges

Multiple
Solids

Recognition 
and localiza­
tion

Faugeras and 
Hebert, 86

Range Planar and 
quadric sur­
face patches 
with boundary 
edges to 
approximate 
free-form 
solids

Surfaces 
(planes and 
quadrics) with 
boundary 
edges

Single free­
form solid

Recognition 
and localiza­
tion



28

Researcher Image Model Features for 
Search

Object Type Output

Silberberg et 
al., 86

Intensity Vertex points Edge junctions Multiple
Polyhedra

Recognition

Horn, 86 Intensity Extended
Gaussian
images

Surfaces Multiple con­
vex free-form 
solids

Recognition 
and localiza­
tion

Grimson and
Lozano-Perez,
87

Range Constraint 
descriptions 
between planar 
surfaces, 
edges, and 
points

Planar surfaces 
and edges 
together

Multiple
polyhedra

Recognition 
and localiza­
tion

Wong et al., 89 Range Attributed
Hypergraph

Surfaces with
boundary
edges

Single Solid 
(surfaces are 
isolated by 
edges and each 
surface has an 
explicit attri­
bute)

Recognition

Bhanu and 
Nuttal, 89

Range Curvature 
graphs (2D 
plane with 
principal cur­
vatures as 
coordinate 
axes)

Surfaces Simple Solid, 
such as sphere, 
cylinder, etc., 
whose curva­
tures should be 
clusters on 
curvature 
graphs

Recognition

Wang and 
Iyengar, 89

Range Boundary 
representation, 
such as CAD 
models

Surfaces Multiple free- 
form solids

Recognition 
and localiza­
tion



Chapter 4: Three-Dimensional Object Models

Geometric modeling is the technique used to describe the shape of an object Much of 

the power of current geometric modeling resides in its techniques for synthesizing and 

assisting us in easily describing complex shapes. Geometric modeling provides a 

description or model which is analytical, mathematical, and abstract The importance 

of geometric modeling is rapidly increasing in many fields. It is a primary ingredient 

in CAD/CAM systems, computer graphics, computer art, animation, simulation, com­

puter vision, and robotics.

An automated manufacturing system must have at least three components: a 

CAD/CAM system, a perception system, and a robot system. Figure 4.1 shows the 

structure of such an automated manufacturing system and the connections among the 

components.

29
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humans

CAD CAM

Perception Robot

other
sensorstactile planning actionvision

Figure 4.1: Components o f an Automated Manufacturing System

The CAD/CAM system supports the design, analysis, simulation, and manufac­

turing of products and parts. The perception system integrates information from vari­

ous sensors, such as visual, tactile, and ultrasonic sensors. The perception system pro­

vides the robot system with information concerning the environment and the identity, 

location, and orientation of the parts to be handled by the robot The robot system 

plans the actions of its manipulators using the 3-D information provided by the per­

ception system and then performs the actions. The robot system planning is task- 

directed, which is also controlled by the CAM system.

Many vision systems use models generated in an ad hoc manner, which have no 

relation to the CAD/CAM system, where the industrial objects are originally designed 

and manufactured. A unified system which allows vision models to be automatically 

generated from existing CAD databases or to use CAD models directly is desired.
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4.1 Models for Machine Vision

Computer graphics is a process of generating images from object models. Com­

puter vision can be viewed as a reverse process, which abstracts objects from images 

according to object models. Computer graphics has been a very successful field. 

Computer vision, however, is still in its infancy.

To recognize and localize rigid objects at close distance is one of the most appli­

cable subfields of computer vision, which is also called robot vision. Industrial robots 

need visual ability to handle complex environments. Most industrial robots nowadays 

can only perform routine actions because of their lack of visual ability.

Our task is to design a robot vision system which can recognize and localize 

machine parts. In industrial environments, parts to be recognized are often predefined 

in CAD systems since CAD tools are available in most plants. Therefore, CAD 

models of solid objects are natural candidates for models for robot vision.

Model representation has a significant effect on model-based object recognition. 

Historically, many modeling methods have been proposed and used in computer 

vision systems. We will just introduce some approaches seen frequently.

Wireframe models which are used to describe solid object edges are commonly 

used in blockworld vision [71]. Wireframe models can almost be considered the earli­

est machine vision models. However, these models cannot handle more complex 

objects, since one description can correspond to several objects.
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One way of building models is to take several images of one part and use hand 

measurements to find features. The features found are to be stored in the system [4]. 

Though this approach is cumbersome and crude, it is still used in many machine 

vision systems.

Another approach often seen is to use surface primitives to construct 3-D object 

models [48]. A heuristic algorithm is usually applied to place partially overlapping 

surface segments into one coordinate space. This approach is also troublesome and 

cannot obtain many useful features for recognition and localization.

Herman [40] tried to develop an automatic approach to generating object models. 

The approach combines solid object points from a sequence of range images 

corresponding to various views of the object and then applies some transformations to 

obtain the surface points of the complete object. This method may not be able to 

obtain all the necessary surface points, as compared to a CAD system which may 

easily describe an object by its surface points.

However, automatic model construction from multiple views of an object is a 

good approach for robot vision models, in addition to the CAD model approach. 

Especially in a situation where CAD models do not exist for some objects, the 

system’s being able to obtain models by observing objects is absolutely a plus for the 

machine vision system. In other words, the system has learning ability.

The approach we introduce is suitable for using either CAD models or automati­

cally generated models to recognize and localize objects. We will introduce the
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similarity of these two kinds of models. In fact, automatic models are the same as 

CAD models in the sense of their data structures. Certainly the processes of building 

them are different. Therefore, we do not distinguish between these two kinds of 

models when we discuss using the models to build the knowledge base and to recog­

nize objects. We first introduce the CAD models and then the automatic models in the 

last section.

4.2 Computer-Aided Design Models

CAD models contain details about solid objects. A CAD system is generally 

used to design new shapes for automatic manufacture. It provides an interactive 

design interface, which is usually user friendly, and helps create, modify, and analyze 

a design. CAD models are very stable in representing geometric features of 3-D 

objects and revealing model structures in detail. Another reason for CAD model- 

based vision is the wide availability of CAD/CAM systems in industry.

CAD models are perfect for producing images from models. However, machine 

vision, as a reverse process, does not easily use CAD models directly. We have 

developed an approach to use CAD models to generate hyperthesis images for 

verification. Our approach uses the knowledge about surface shapes of objects to per­

form recognization reasoning. The knowledge about the surface shapes of objects are 

abstracted from CAD models automatically. How to abstract knowledge about sur­

face shapes from CAD models and store it in the system for later use will be discussed 

in the next two chapters.
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There exist many schemes for representing solids. Among them, the most popu­

lar schemes are boundary representations (B-rep), constructive solid geometry (CSG), 

sweep representations, cell decompositions, spatial occupancy enumeration, primitive 

instances, and analytic solid modeling (ASM) [25,32,55].

B-rep represents a solid by its enclosing surface, which is defined by a finite 

number of faces or patches, which are represented in terms of bounding edges and 

vertices. Sweep representations are defined as the volume swept by a finite set of 

cross sections along some axes under some sweeping rules. Primitive instances are 

individual objects within a family, called generic primitives. Spatial occupancy 

enumeration represents a solid by a list of voxels (volume elements), which are cubes 

of fixed size and located in a fixed spatial grid. Cell decomposition is a generalization 

of spatial occupancy enumeration. Cell decomposition is a breakdown of a solid into 

arbitrary cells with a representation of each cell in the decomposition. CSG may be 

considered a generalization as a super-set of primitive instances, spatial occupancy 

enumeration, and cell decomposition. ASM is an extension to B-rep with the addition 

of mathematically described solids.

In robot vision, B-rep has many advantages. Though B-rep does not provide 

information about the interior of the model, it describes sculptured, free-form shapes 

precisely. Furthermore, B-rep does represent details about the object surfaces which 

are the only visible portion of the object On the other hand, the finite nature of avail­

able primitives makes modeling of arbitrarily sculptured objects difficult with CSG.
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Since only object surfaces are visible in robot vision, surface information is 

important. The surface evaluation of CSG models is computationally intensive, and 

an evaluated model requires a great deal more storage than an unevaluated one. B-rep 

gives surface information naturally. Thus, B-rep is a good candidate for model 

representation of robot vision.

Also, there exist exact conversion algorithms to B-rep from other aforemen­

tioned representations [55]. Hence, we chose B-rep CAD models to develop vision 

models for robot vision. Another reason for choosing B-rep is that we believe that 

intrinsic properties of a surface are more robust in robot vision, while edge-based 

recognition is subject to occlusion and noise. However, surface-based recognition is 

more computationally intensive. Our approach is surface-based in order to recognize 

free-form, sculptured solids. We dramatically reduce a great deal amount of computa­

tion using techniques introduced in the following chapters.

4.3 Boundary Representation of Solids

A boundary representation of a solid object m can be defined as a set

m  = (4.1)

where /,-, 1<j <pm, is a surface patch which can be defined in various ways. There are 

many conventional functions to describe surface patches in computer graphics, though 

there is no unique B-rep for a solid.
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Fortunately, we are mainly concerned with the intrinsic properties of the surfaces 

of solids in our approach, although topological information on solids is also needed 

for recognition and localization. In fact, (4.1) represents the topological information 

implicitly since each /,• has a fixed spatial position and orientation. If more informa­

tion is necessary, it can be derived from (4.1). The advantage of our approach is that 

the topological information about objects does not need to be abstracted from models, 

i.e., our approach uses these models directly. In addition to the models, our approach 

builds a knowledge base about the surface shapes of solids. The knowledge base helps 

the recognition and localization reasoning increase efficiency dramatically.

Methods of designing surface patches in CAD systems often use a set of discrete 

points, called control points, to help define surface patches. Since detailed discussion 

regarding defining functions is beyond the scope of this dissertation, we only intro­

duce some commonly used functions, such as B-spline surfaces or a Bezier surface.

The B-spline surface is defined in terms of a characteristic polyhedron. The 

shape of the surface approximates the polyhedron. The surface is defined by a blend­

ing function

where p ^ s  are the vertices of the defining polyhedron. Boldfaced letters represent

m n
P ( « , v ) = I 2 p  i jH i jc iu y N j ' t i y )  k ,v e  [0,1]

i=0j=0

vectors in x , y , z , e.g. p y  = (x^ , y y , zfy-). Ni<k (u ) and Njj  (v) are B-spline blending 

functions defined recursively by the following:

1 if U[<u<ui+l 

0 otherwise
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and

U  s  \    (“ ~ U i ) N i , k - l ( U )  . ( U i + k ~ U ) N M , k - 1(«)
Ni* \u > = ----------------------- + ----------------------------

u i +1 u i  u i + k  u i +1

where k  and / denote the parameters that control the continuity of the surface and the 

degree of the blending function polynomials.

A biquadratic B-spline patch can be defined by

Pi j ( u , v )  =  N ( u ) [ P 2\ N ( v ) t

where

N(u)  = (1 - iQ 2 -2 u z + 2u + l 
2 2

u
2

and N (y ) is similarly defined as

N(y)  = ( 1 - v ) 2 -2v2 + 2v + 1 v
2

and

0<w£l

0<v<l

pi j PiJ+1 PiJ+2

Pi+lJ Pi+lj+1 Pf+lj+2

Pi+2J P/+2j+l P/+2J+2

[ p j  =

A biquadratic B-spline patch is described by nine control points, which can be seen in 

Figure 4.2.
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Figure 4.2: Biquadratic B-spline surface 

A bicubic B-spline function can be

PijO*,v) = N(u)  [p3]lV(v)r

where

N(u)  = (1 — u)  3u — 6u2+ 4 -3n +3n +3n + 1 m;
6 6

N ( v ) is similarly defined as

N(y)  = 

and

( 1 - v ) 3 3v3 - 6 v2 + 4
6 6

-3 v 3 + 3v2 + 3v + 1 v3
6 6

0£u£l

0£v£l



Pi-lJ-1 P i - lJ P i-lJ+1 P i- lJ + 2

P iJ -1 P iJ PiJ+1 P iJ +2

P i+ lJ -1 Pi+lJ Pi+lJ+1 Pi+lJ+2

P i+ 2 J -l Pi+2J Pi+2J+1 Pi+2J+2

A bicubic B-spline patch is described by sixteen control points, as shown in Figure 

4.3.

Figure 43 : Bicubic B-spline surface

A Bezier surface is also defined in terms of a characteristic polyhedron. The sur­

face is defined by a blending function

P («,v) =  2 I ^ > ( « ^ t)l(v)Q.; u ,v e [0 ,l]
» '= 0/=0

where Q iy- are the vertices of the defining polyhedron, and
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A bicubic Bezier surface patch is defined as

p(w,v) = B(u)  [Q ]B (v)r  

B(u)  = [ (1 —«)3 3m (1 - « ) 2 3m2( 1 - m) m 3] ,  m e [0,1]

B(v)  = |(1 — v )3 3v (1 -  v )2 3v2(1 — v ) v 3] ,  v e [0 ,l]

and

Q /- 1 J - 1 Q i - l J Q i- l j+ 1 Q M J + 2
Q i J - 1 Q i j Q*»y+i Q i J + 2
Q i + l J - 1 Q i + l J Q j+ l j+ l Q i+ l j+ 2
Qi +2J-1 Q i+2J Q i+ 2 j+ l Qi+2,y+2

A bicubic Bezier surface patch is shown in Figure 4.4. Notice that the four 

comer points are on the surface itself, as compared with the B-spline surface patch, 

where the control points do not lie on the surface.
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Figure 4.4: Bicubic Bezier Surface Described by Sixteen Control Points 

4.4 Models Generated Automatically

The fundamental principle of automatically building object models is as follows. 

Multiple views of a solid object are first taken. Segmentation on each image is per­

formed. Each image is then divided into a set of smooth surface segments, each of 

which is represented in certain mathematical function. Since the angles between dif­

ferent views can be predetermined, the surface segments in one view can be per­

formed a transformation and then connected with surface segments in another view.

Segmentation has been a very active research field. Therefore, there are many 

different ways of representing surface segments. Most automatic model generation
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research concentrates on creating models in parametric function representation as was 

shown in the last section. The reason is that compatibility with CAD models is 

emphasized. If automatic models are described in the same way as CAD models, our 

approach can certainly use them to build knowledge base and to recognize objects.

There are segmentation methods [7] which describe surface segment regions by 

an explicit bivariate function, z = f (x , y ) .  For instance, an image can be partitioned 

into smooth surface segments described by variable-order explicit bivariate functions. 

A first order function

z ■= a.Q +a iX + a^y 

describes a planar surface. Second order functions

z = a 0 + a lJC + a £y + a^x2 + a^xy + a$y2 
describe biquadratic surfaces. Third order functions

z = aQ + a^x + a^y + a$c2 + a£cy + a 5y2 + a 6x3 + a 7x^y + agxy2 + agy3 

describe bicubic surfaces. Fourth order functions

z = a 0 + aix +ajy  + ajpc2 + a^xy + a 5y2 + a ex3 + a 7x^y

+ a^xy2 + agy3 + a 10x4 + a n ;t3y + a 12x2y2 + a 13xy3 + a 14y4 

describe biquartic surfaces. Functions more than order four are not often used in seg­

mentation since they will be confused with the noise or edges in the images.

Explicit functions are not often used in automatic model generation research 

since they are not compatible with CAD models. However, these models can also be 

used in our approach. Our approach only requires models given in the form of (4.1). 

The f i  in (4.1) can be either represented in parametric functions, as CAD models, or
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in explicit functions as shown above.

Therefore, our approach allows an automatic way of generating models for 

recognition and localization, which makes a vision system self-contained. On the 

other hand, if the same segmentation procedure is used to partition images in 

automatic model generation and to segment the input image in recognition, the recog­

nition and localization process will be more accurate and more efficient



Chapter 5: Invariant Properties of Surfaces

If surfaces can be recognized by their characteristics, object recognition can thus be 

decomposed into a surface recognition problem, which is the so-called surface-based 

recognition. This is in contrast to the conventional edge-based recognition that recog­

nizes objects by using edge characteristics and their relations. In order to recognize 

surfaces, we must have well-defined features, or mathematical entities, which can be 

used to distinguish between different entities of the same type.

It is well known that curvature, torsion, and speed uniquely define the shape of 

3-D curves [37,45,52]. In the surface case, there are two basic mathematical entities 

which are considered in the analysis of smooth surfaces. They are referred to as the 

first and second fundamental forms of a surface. We will show how these forms 

uniquely characterize and quantify a general, smooth surface shape.

Based on these fundamental forms, invariant surface characteristics, such as the 

Gaussian curvature and the mean curvature, are derived. These characteristics are 

invariant to changes in surface parameterization and to translation and rotations of 

object surfaces. A robust 3-D object recognition system should be view-independent 

Therefore, the use of invariant surface characteristics in 3-D vision systems is 

significant Furthermore, the Gaussian curvature and the mean curvature are local sur­

face properties, which allow surface curvature to be used in occlusion situations.

44
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5.1 Surfaces

A curved surface can be defined as a polynomial in terms of two parameters u

and v . The surface S is a set of points in 3-D space. The representation

p = p(M,v) = [x(K,v),y(M,v),z(K,v)] (5.1)

is a mapping of an open set U in the mv plane onto S. If for all (u ,v  ) in U

J ? + J 2 + J 2 *  0 (5.2)

where J 2, Jy and J 2 are Jacobians defined as

j  _ d(y,z) 
x d(u,v)

r _ d(x,z) 
y 9(«,v)

(5.3)

(5.4)

(5.5)d(u,v)

and all derivatives of p(u ,v) of up to order m exist, and all such derivatives are con­

tinuous, then the curved surface defined by (5.1) is said to be of class Cm.

Condition (5.2) guarantees that the curved surface will not degenerate to a point 

or a curve, and that it does not contain any singular points. This condition requires 

constraints on both the curve itself and the parameters. We will assume that the con­

dition holds, since all our geometric models are generated by piecewise-smooth sur­

faces, and the images are segmented into piecewise-smooth surfaces.

A parametric representation will be denoted by p = p(w ,v) and its partial deriva­

tives by
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If p is class mS> 2, then

=  i E
dv

=  <%L
du2Puu -  2

p = ^ ~
Pw 9v2

p  = j 3 e l
Puv ava«

P«v — Pm

Though strictly speaking, a parametric representation (5.1) is a mapping, we will 

speak rather loosely and identify it with its image, a set of points S. Therefore, we 

say that P is a point on p = p(u ,v) when P is a point on the image of p = p(n ,v ), or 

we might even say that the parametric representation p = p(u,v) is contained in S 

when the image of p = p(n ,v) is a subset of S .

5.2 First Fundamental Form

A surface in 3-D space is uniquely determined by certain local invariant quanti­

ties called the first and second fundamental forms [37,45,52, 89]. Let p = p(«,v) be 

a parametric surface patch of class ^  1, then the first fundamental form is
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I  = d p  d p
-  (Pu du + pv dv )(pu du + pvdv)

=  (Pu Pu )du2 + 2(p„ pv )dudv + (pv pv )dv2 

= Edu2 + 2Fdudv + Gdv2

(5.6)

where

E  =  P«P«

F  = pu pv (5.7)

G = pv pv

E, F, and G are known as the coefficients of the first fundamental form. It is a homo­

geneous function of second degree in du and dv. Therefore the first fundamental 

form /  is the quadratic form defined on (du ,dv) in the uv plane by

Note that I  = |d p |2 ^  0 and /  = |d p |2 = |p Udu + pvdv | 2 = 0 if and only if 

du = 0 and dv = 0. Also, E = pw p„ = | pM | 2 > 0, G = pv -pv = | pv | 2 > 0, and

E G - F 2 =  (pu ’Pu )(Py 'Pv) — (P« ‘Pv )(P« 'Pw)

=  (P«XPvHPaXPv) (5.9)

=  IP«><Pv I2 >  0  

since pu and pv are independent, and p„ ^  0 , pv *  0 , p„ xpv *  0 .

In some sense I  depends only on the surface and not on the particular representa­

tion. Suppose that p = p*(s,f) is another coordinate patch containing a neighborhood 

of p(u ,v). The transformation s =s(u,v), t = t(u ,v)  has a differential at (u,v) that 

maps the vector (du ,dv) into the vector (ds ,dt) and is given by

I  (du ,dv ) = Edu 2 + IFdudv + Gdv 2 (5.8)
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ds =sudu +svdv

dt =tudu +tvdv

Then

l \ d s , d t )  = | V l 2

= \p*ds+ p*dt\2

=  I P s ( s u d u  +svdv) +  p *{tudu +tvdv) | 2

= I(P*su + P**uW  + (p*sv + p,*tv)dv | 2 (5.10)

= \pud u + p vd.v\2

= |d p |2 
= I(du,dv)

Thus, the first fundamental form /  is independent of the representation in the 

sense that I(du,dv)=I*(ds,dt). However, the first fundamental coefficients are not 

invariant under a parameter transformation. They transform as follows:

E  = P«P«

=  (P*SU +  P t *U )<PsSU +  P**u )
* * 2 . * * * 2  (5.11)

=  Ps-ps S u + 2 p s -p ,su tu + p r p t tu

and similarly,

= E*s? + 2F’ sutu + G 't-

F = E*susv +F*(sutv + svtu) + G* tutv 

G = E*s? + 2F*s„tu + G * t2
(5.12)

5.3 Second Fundamental Form

Suppose p = p(u ,v) is a surface patch of class I> 2. The unit normal to a surface
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at a point p(u ,v ) is

P«XPvn(w,v) =
|P«xpv |

which is a function with differential dn = nudu +nvdv. Note that dn  is a vector 

parallel to the tangent plane at p(u ,v). This follows from 0 = d (1) = d (n n) = 2dn n. 

The second fundamental form is

II  = - d p d n
= —(p„ du + pv dv )(ntt du + nv dv )

= - p K-nUdu2 -  (ptt -nv + pv -nu)dudv -  pv nvdv2 

= Ldu2 + TMdudv + Ndv2

where

N  = -p v nv

Since pu and pv are perpendicular to n for all (u ,v), that is

0 = (pu n)„ = Pa,, *n + pH -nM

0 = (p„n)v = p llvn + pMnv 

0  = (pv n)M = Pvu n  +  Pv nu

0 = (pv n)v = pvvn + pv nv 

Note that p is class £ 2 so that

Phv “  P  vu

(5.13)

£  = ~PU

M  = -y(P tf-nv +P»*n«) (5.14)
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Thus,

Pub "® =  —Pu n„

Puv"® “  ~Pu  n w =  —Pv n u 

Pw  ’® “  —Pv n V

Hence, we have alternative expressions for L , M , and N .

L  = puu n

M  = pav*n (5.15)

N  = pvvn

Therefore, we have

II -  Ldu2 + IMdudv + Ndv2
= puu-ndu2 + 2puv-ndudv + pvv-ndv2 (5.16)

s= d 2p n

We can view

d 2p = Puudu2 + 2pUvdudv + pw dv2 (5.17)

as the second order derivative of p at (u ,v) in the direction du j l v .

The second fundamental form II is invariant in the same sense that /  is invariant

under a parameter transformation which preserves the direction of n; otherwise II

changes its sign. Also, if p = p*(s,t) is another patch on the surface, then at a point 

d(s,t)
d(u,v) > 0 , we have
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L  = L * s 2 + 2M*sutu + N * t2

M  = L*susv +M*(sutv + tusv) + N* tutv (5.18)

N  = L * s 2 + 2M*svtv + N * t2

5.4 Nature of a Surface Point 

Define

8  = h i
2
1 (5.19)

= —(Ldu 2 + IMdudv + Ndv 2)
2

as a function called an osculating paraboloid at a point P . The nature of this para­

boloid at P  determines the nature of the surface in the neighborhood of P . We can 

distinguish four cases based on L , M , and N .

1. Elliptic: A point is called an elliptic point if LN - M 2 > 0. Function 8 of du 

and dv is an elliptic paraboloid in this case. In the neighborhood of this point the 

surface lies on only one side of the tangent plane. Note that 8  maintains the 

same sign for all (du,dv). The shape of the neighborhood is shown in Figure

5.1.
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Figure 5.1: L N - M 2 > 0

2. Hyperbolic: A point is a hyperbolic point if LN -  M 2 < 0. Function 8  of du and 

dv is a hyperbolic paraboloid. There are two lines through P in the tangent 

plane dividing the tangent plane into four sections in which 8  is positive and 

negative, alternatively. On the lines, 8  = 0. Thus, in the neighborhood of this 

point, the surface lies on both sides of the tangent plane. The shape is shown in 

Figure 5.2.
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Figure 5.2: LN -  M 2 < 0

3. Parabolic: A point is parabolic if LN - M 2 = 0 and L 2 + M 2 + N 2 *0 ,  i.e. 

L ,M ,  and N  are not all zero. Function 8 of du and dv is a parabolic cylinder in 

this case. There is a line through P in the tangent plane along which 5 = 0, oth­

erwise 8  remains the same sign. Note that the surface itself might lie on both 

sides of the tangent plane. The shape of the surface is shown in Figure 5.3.
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Figure S3: LN - M 2 = 0andL 2 + M 2 + N 2 * 0

4. Planar: A point is planar i f  L = M - N  = 0. In this case 8 = 0 for all du and dv . 

The degree of contact of the surface and the tangent plane is of higher order than 

any of the previous case.

It can be easily shown that the property of a point on a surface being elliptic, 

hyperbolic, parabolic, or planar is independent of the representation of the surface. If 

p = p* (s ,t) is another patch on the surface, it can be verified from (5.18) that at each 

point

2
L*N* - M *2 = d(u,v) ( L N - M 2) (5.20)

Since 5(«,v)
d(s,t)

*  0, L ’N~ - M * 2 is positive, negative, or zero together with LN - M 2



It also follows from (5.18) and their corresponding inverse equations that 

L =M = N  = 0 if and only if L* =M* =N* =0.

5.5 Curvatures

Let P be a point on a surface p = p(« ,v) of class ^  2, and p = p(u (r),v (r)) a 

curve C that lies on the surface and passes through P. The normal curvature vector to

C at P is the vector projection of the curvature vector k of C at P onto the normal n at

P, i.e.,

k„ = (k-n)n (5.21)

Notice that kn is independent of the sense of n or of C. The component of k„ in the

direction of n is called the normal curvature of C at P. That is

kn = k n  (5.22)

Here the sign of kn depends on the sense of n, but it is independent of the sense of C .

Note that the unit tangent to C at P is t = , and the curvature
ds |dp/dr |

. , d t  dtldt d  .. . d t  dnvector is k = —  = — ———. Thus, 0 = —  (t n) = —— n + 1 —— smce t is perpen-
ds |d p /d r | dt dt dt

dicular to n along the curve.

It follows that

k  _  L(du/dt)2 +  2M{du!dt)(dv/dt) + N(dv!dt)2 (5 2 3 )

"  E {dv /dt f  + 2F {du !dt ){dv /dt) + G (dv /dt f

Note that kn depends only on which is the direction of the tangent line to C at
dv/dt
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P. Otherwise, kn is a function of the fundamental forms I  and / / ,  which depend only 

on P.

All curves through a point P on a surface tangent to the same line through P 

have the same normal curvature at P  [45]. Since the normal curvature to C at P 

depends only on P and the direction of the tangent line to C at P , we can speak of the 

normal curvature in the direction du :dv, du and dv are not both zero, we have

Ldu2 + IMdudv +Ndv2 kn = ----- 5--------------------- r- (5.24)
Edu2 + IFdudv + Gdv2 

Notice that the above form is simply kn = y .  du :dv are the direction numbers of the

line in the tangent plane parallel to

pUdu + p  Vdv

du :dv and du :dv' determine the same line if and only if they are proportional.

It is clear that kn is invariant in the same sense as I  and II. kn does not change 

sign under a parametric transformation which preserves the sense of n and kn changes 

sign under a parametric transformation which reverses the sense of n.

Since I  £ 0, kn is positive, negative, or zero together with II.  That is, If P  is 

elliptic, then kn *  0 and remains the same sign for all du :dv at P.  If P is a hyperbolic 

point, then kn is positive, negative, or zero, depending on du:dv. If P is a parabolic 

point, kn remains the same sign and is zero for the direction for which / /  = 0. If P  is 

planar, kn = 0  in all directions.
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The two perpendicular directions for which the values of kn take on maximum 

and minimum values are called the principal directions. The maximum and minimum 

values of normal curvatures k x and k2 are called the principal curvatures [52]. A 

point on the surface at which kn is constant is called an umbilical point If 

kn = constant *  0, it is called elliptic umbilical point If kn = constant = 0, it is called 

parabolic umbilical point. Therefore, if all points of a connected surface S are umbili­

cal, then S is either contained in a sphere or in a plane [89].

The principal curvatures are roots of

(EG - F 2)k2 -  (EN + G L -  2FM)k+(LN -  M 2) = 0 (5.25)

which can be shown by proving that k\  is a principal curvature with principal direc­

tion du fdv  j if and only if k lt du x,dv x satisfy

(L — kiE)dui + (M —k lF)dvi = 0

(5.26)
(M —k lF)dul + (N -kyG )dv i  = 0

Let us first prove that (5.25) has only real roots, i.e., the discriminant of the equa­

tion (5.25) is greater than or equal to zero. It is equal to zero if and only if

4 r = 4-r = 7 7 . From (5.25), the discriminant is E F G

(EN + GL+ -  2FM)2 -  4(EG -  F 2)(LN -  M 2) 

which is identical to

E G - F 2 (EM - F L ) 2 +
E 2

Thus the discriminant is not less than zero.

EN - G L - ^ - ( E M - F L )



Since EG -  F 2 > 0, the discriminant is zero if and only if

E M - F L  = 0

and

which is if and only if

and

i.e., if and only if

E N - G L -  E M - F L )  = 0

E M - F L  = 0

E N - G L  = 0

L_ _ M_ _  N_
E F G

Now let’s prove that the roots of (5.25) are principal curvatures. Suppose k^ is a 

principal curvature with principal direction du^.dvi. We know that the principal cur­

vatures are the maximum and minimum values of the normal curvature kn. Hence if

^ _  Ldu2 + 2Mdudv + Ndv2 
" ~ Edu2 + TFdudv + Gdv2

has an extremum k  j at (du ̂ dv  ̂  then the partial derivatives
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I  n  a* -  i i  I ;
= o

at (dui,dvl).

/ / / ^  -  III .dv = o

Multiplying by /  gives

II

n du -  — h,. = o

-  y 7dv = o

Since —  = k i  at (dui,dvj), we have

77du k  l^du ~  ®

IIto  ^ l7*/v 0

Since IIdu = 2Ldu + 2Mdv and Idu = 2Edu + 2Fdv, etc., we get

(Ldul +Mdv1) — k^Edux+FdVi) = 0 

(Mdu1+Ndv1) -  k^FdUi + G dv^  = 0

Conversely, suppose that k if dulf dvi satisfy (5.26) and du2 + dv2 *  0. Then /fcj 

together with the principal curvatures must satisfy

det
L - k E  M - k F  
M - k F  N - k G = 0

or by expanding we get (5.25).
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Now suppose P is an umbilical point with curvature k . Since k is the same in

E M Nevery direction, the coefficients of (5.26) must all be zero, i.e., k = — = —  = — .
L F G

Then it follows from the above that (5.25) has a single root with multiplicity two. If 

P is nonumbilical, k must be one of the two distinct roots of (5.25).

5.6 Gaussian and Mean Curvature

After dividing (5.25) by EG -  F 2, we have

k 2 _  EN +GL - 2 FM k LN - M 2 __ 
EG - F 2 EG - F 2

The average of the roots of (5.27)

is called the mean curvature at P .

(5.27)

it 1 /i . i v  EN + G L —2FMH  = — (k! + & 2) = ----------------o----  (5.28)
2 "  2 ( E G - F 2)

The product of the roots of (5.27)

, , L N - M 2 
1 2 = £ G ^ F r  (529 )

is called the Gaussian curvature at P.

Since

E G - F 2 = (pu-p„)(pv Pv,)-(pu pv)2 

by applying the formula in vector computation

(axb)-(cxd) = (ac)(bd) -  (ad)(bc)
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we have

E G - F 2 = (puxpv) ( Pl4xpv)

= IP„XPVI2

If we introduce the triple product [a b c] = a-(bxc) notation, we can derive the 

following

^  _ LN - M 1
EG - F 2
(puu-n)(pvv-n )- (p w -n)2

IP « x p J2

1

*
(Puu -(Pu XPv ))(Pyy -(Pu XPv )) -  (Puv -(Pu XPv ))2

IPuXPvl2 1 Pu Xpv 12

_ [PuuPuPvMPwPuPy] [PuvPuPy]
IPuxpv | 4

And similarly,

H _ E N + G L -  2FM 
2(EG - F 2)

(Pu Pu )(Pw (Pu xpv )) + (pv pv )(p„u (pu xpv)) -  2(pM pv )(pw (pB xpv))
2 |p„xp„ | 3

(5.31)

(Pu Pu )[PwP u  Pv3 + (Pv Pv )tPuu PuPy]- 2 ( P u  Pv )[pw Pu Pv]
2 |p Bxpv | 3

If a surface is represented in an explicit form z = z (x y  ), we can treat this as

p = (x ,y ,z(x ,y )) 

with two parameters x  and y . Thus, we have
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Hence,

px = ( 1 ,0  ,zx) 

Py = ( 0 , 1  , z y ) 

Pxc =  (0» 0 , zn )

Pyy (0, 0, Zyy )

Pxy = ( 0 ,  0 , Zjty)

^ n n ( Z* ZV 1)
( l+ z x2 + z/ ) 1/2 y

[ P a P x P j ]  “  zxx 

[P>yP*Pj] = Zyy 

[Pxy Px Py 1 =  zxy

X
I Px Xpy I = (1+Zx2 + Zy2) 2

Therefore, we have

IPxx Px Py ][Pyy Px Py 1 ~  [Pxy Px Py 1

'x~Vy 14
2

K  =
IPxXP

_ ZXX ‘ Z y y  z x y  

(1 + Z/ + Zy2)2

We also have

(5 .3 2 )
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H  _  (Px Px )[Pyy PxP> ] +  (Py Py )[Px=c PxP> ] ~  2(Px Py )[Pxy P* Pj. ]

ZIp^Xp^l3

(1 + zx2)zyy + (1 + zy2)Zxx -  2zxzyZxy (5'33)
3_

2(1 + z 2 + z 2) 2

Since kn at most changes sign with a change in orientation of the surface, the 

extreme values of kn at most both change sign with a change in orientation. It follows 

that K = k xk 2 is independent of its representation, an invariant property of the surface. 

Also, the magnitude of the mean curvature \H | is invariant

Since the sign of AT is the same as LN -  M 2, we can determine the nature of the 

surface in the neighborhood of a point according to the value of K  and H  at that point.

If K > 0, i.e., LN -  M 2 > 0, the point is elliptic. The surface is locally convex 

with respect to the tangent plane.

If AT < 0, i.e., LN -  M 2 < 0, the point is hyperbolic. The surface lies on both 

sides of the tangent plane in the neighborhood of this point

If K  = 0 and H *  0, i.e., LN  -  M 2 -  0 and L 2 + N 2 + M 2 *  0, the point is para­

bolic.

If AT = 0 and H = 0, i.e., L =M  = N  = 0, the point is called a planar point

H  and AT are in a sense the only invariants of the surfaces obtained algebraically 

from the two fundamental forms [45]. Our approach is to use H  and AT as heuristics
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to search the model surface space. Since a brute force search of the 3-D surface space 

is costly, we will organize the surfaces in a way that dramatically reduces the amount 

of search.



Chapter 6: Representation of Knowledge about Surface Shape

We have seen that the surface curvature information is invariant on properties of sur­

face shapes. In order to use this kind of information about the model surfaces, we 

have to organize the information in a way such that the computer can use it effectively 

and efficiently. In artificial intelligence (AI), we call this process knowledge 

representation.

An intelligent system is generally organized in a structure as shown in Figure

6.1. The Inference engine interacts with the environment to solve problems using 

information in the Knowledge base. The Knowledge base contains well-organized 

domain-specific knowledge. The knowledge base should be capable of maintaining 

its knowledge, such as learning new information, or modifying existing knowledge.

Inference
engine

Knowledge
base

Figure 6.1: Architecture o f  Intelligent Systems

65
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In this chapter, we discuss why we need to consider different knowledge 

representations for different intelligent systems, what we should consider in designing 

representation schemes for intelligent systems, and the representation formalism we 

use in our system. We refer to knowledge in intelligent systems as abstracted and 

organized information on specific domains, which is to be used by the intelligent sys­

tems to behave "intelligently."

6.1 Knowledge and its Representation

Knowledge is the facts and ideas acquired by study, investigation, observation, 

or experience. One has to know things in order to do them. We describe someone’s 

ability to behave with intelligence in terms of his or her knowledge. This concept is 

also applicable to intelligent systems. We say that a computer program is intelligent if 

it knows some domain knowledge and solves domain problems using the knowledge.

The nature of knowledge and intelligence has been pondered by researchers in 

different areas, such as psychology, philosophy, and education, for thousands of years. 

Since AI research involves the design of computer systems which have intelligent 

behavior, AI researchers have often taken a pragmatic approach to the subject of 

knowledge, i.e., focusing on improving the behavior of the systems.

Since an intelligent process is a process of acquiring and applying knowledge in 

a specific domain, knowledge must be represented in a way such that it can be 

efficiently stored, retrieved, used, and modified. Knowledge representation research
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develops techniques of representing and organizing knowledge in a domain for prob­

lem solving.

A representation of knowledge is a combination of data structures and interpre­

tive procedures which use the data structures. If the data structures and the procedures 

are well-designed, the system should be led to intelligent behavior by the 

"knowledge." Knowledge representation involves the design of classes of data struc­

tures for storing information in computer systems as well as the development of pro­

cedures which intelligently manipulate these data structures to make inferences.

In this chapter, we first discuss some properties of knowledge representation and 

then introduce the data structures used to represent the surface shapes for vision pro­

cess. The procedures which interpret the data structures, such as matching the image 

segment with the model surfaces, will be discussed in the next chapter, together with 

the search control strategy.

In general, data structures are not knowledge. For instance, a book is a source of 

knowledge, but without a reader, the book is just ink on paper. Similarly, we will talk 

about the curvature map data structures. We really mean that they represent the sur­

face shapes when used by certain programs to behave in a knowledgeable way.

For a given problem, one can think of many possible representations. Further­

more, these representations will have different functional abilities which refer to how 

well the representation can support the system process. In general, a representation 

with strong ability should have clear descriptions about the problem, and at the same



68

time, provide convenient and efficient access for the inference engine of the intelligent 

system.

Given a primitive problem, there may be a lot of redundant information which 

contributes nothing to the problem solution process, or the information may be 

presented in a way too far from what the inference engine can use. Only after deleting 

redundant information and abstracting the useful information to a level that the infer­

ence engine can use, can the problem be solved effectively and efficiently.

Let’s discuss different representations in terms of mapping, which is elegant and 

precise. We have the basic concepts of homomorphism and isomorphism in discrete 

mathematics. A homomorphism can simplify the representation, while an isomor­

phism can change the representation. They both are mappings maintaining the pro­

perties of computation.

Let P  = < Q , F >  and P '  =  < Q ' , F ' >  be two problems where Q  and Q '  are sets 

of facts for P  and P '  respectively, and F  and F '  are relations among Q  and Q  

respectively. If there is an onto mapping

h : Q ^ Q '

such that for any ordered pair

< q i , q j > & F

if and only if

< h ( < I i ) , h ( q j ) > e F '
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then P' is a homomorphic problem of P , and h is a homomorphism from P toP '.

If a homomorphism h is 1-1, then h is an isomorphism. Thus, isomorphism is a 

special case of homomorphism. The existence of a solution for the original problem 

implies the existence of a solution for its homomorphic problem. The existence of a 

solution of the isomorphic problem is equivalent to the existence of a solution of the 

original problem.

Homomorphism is an important concept which enables us to abstract useful 

information from problems and to delete some unimportant factors. A good 

homomorphism should reserve the properties of the original problem to some extent 

so that we do not miss the necessary information.

Homomorphism is a partial ordered relation. Thus, if is a homomorphism 

from P j to P 2, and h2 is a homomorphism from P 2 to P 2, then hi°h2 is a homomor­

phism from P  j to /*3, i.e., existence of a solution for P l implies existence of a solu­

tion for P 3. In other words, if there are no solutions for P 3, then there are no solu­

tions for P j.

In addition to the abstraction process, filling in details is also an important intelli­

gent process. In AI research, we often use homomorphism methods to simplify prob­

lems to process and then fill in the details. However, we should be careful about two 

points: there are some cases when P i  is homomorphic to P by and P 2 is 

homomorphic to P by h2, but P \  and P 2 are neither isomorphic nor homomorphic;
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and there are also cases when P  is homomoiphic to P^ by h x, and P is homomorphic 

to P 2 by h2, but P  i and P 2 are neither isomorphic nor homomorphic.

Using the properties of homomorphism, we can often find a homomorphism h to 

apply to a complex problem so that the complex problem is converted into a simpler 

and easier problem. After obtaining a solution for the simpler problem, we apply the 

inverse homomorphism h~x to the solution and fill the details to obtain the solution for 

the original problem. The process can be shown in Figure 6.2.

(easy)

h and

filling in details

(difficult)

homomorphic
problem

original
problem

solution for 
original problem

homomorphic
solution

Figure 6.2: Using Homomorphic Mapping to Solve Problems 

Isomorphism is an equivalence relation. Thus, we can represent problems in dif­

ferent isomorphic ways to process such that the new representations have suitable 

natures for computer manipulation. For instance, a digraph is represented by linked 

lists.

Homomorphism and isomorphism are one of the theoretical foundations for
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knowledge representation research. In the following discussion, we may not express 

the homomorphic or isomorphic relation explicitly, however, the representations can 

all be formalized in terms of homomorphic or isomorphic mappings.

In the process of problem solving, finding suitable representations is very impor­

tant. In some cases, intelligence is mainly seen in finding the suitable representation. 

Once the problem is represented suitably, the problem can be solved pretty easily. In 

today’s AI research, the representation is always chosen by human researchers. Hope­

fully, in the future, computer systems can automatically select the best representation 

for specific problems according to the nature of the problems. Notice that since any 

knowledge representations are data structures and programs, they all have the same 

characteristics.

There is no theory of knowledge representation. We do not know why some 

schemes are good for certain tasks and others are not We can only discuss some 

characteristics of knowledge representation schemes which have been considered 

important

6.2 Considerations of Knowledge Representation

The most important consideration in designing knowledge representation 

schemes is the eventual use of the knowledge. The actual use of the knowledge 

involves three stages: (1) acquiring new knowledge; (2) retrieving information from 

the knowledge base relevant to the problem at hand; and (3) reasoning in search of a



72

solution.

To human beings, acquisition of new knowledge involves relating new materials 

to what we already know in a psychologically complex way. AI systems often clas­

sify the new data structure before it is added to the knowledge base. In many systems, 

new structures can interact with the old structures. Some other representations are 

concerned with acquiring knowledge in a form which is natural to human beings who 

are the source of the new knowledge. If the acquisition process is not designed prop­

erly, the system accumulates new facts or data structures without improving its intelli­

gent behavior, or sometimes even degenerating its behavior.

When a system "knows" too many different things, determining what knowledge 

is relevant to a given problem becomes crucial. The fundamental ideas about retrieval 

in AI systems can be classified as two basic techniques, linking and lumping. If in a 

reasoning task it is known that one data structure will entail another data structure, an 

explicit link can be put in between the two structures. If several structures are typi­

cally going to be used together, they can be grouped into a larger structure. All these 

techniques will be seen in our data structures for describing surface shapes.

Inference is unavoidable when the system is required to perform a task which it 

has not been told explicitly how to do. The system reasons to figure out what it needs 

to know from what it already knows. An intelligent system must be able to deduce 

and verify a number of new facts beyond those it has been told explicitly.
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When designing a knowledge representation scheme, we must ask ourselves 

what kind of reasoning is possible, easy, natural, etc., in this formalism. There are 

many kinds of reasoning we could think about. Formal reasoning syntactically mani­

pulates data structures to deduce new ones following inference rules, which are 

prespecified. Procedure reasoning performs simulation to answer questions and solve 

problems. For instance, a procedure of an arithmetic model could be run to answer 

"what is the sum of 3 and 4." Analogy reasoning seems natural to the thought of 

humans, however, so far, it is difficult to accomplish in AI systems. Generalization 

and abstraction are also natural processes for human beings that are difficult to pin 

down well enough to implement in computer systems, though some systems can per­

form a little generalization or abstraction. This ability may be at the core of human 

learning; however, it has not yet become a useful technique in AI since we humans do 

not understand our reasoning process well enough.

When acquiring new knowledge, the system should be concerned with how the 

new information will be retrieved and used in reasoning. For application AI systems, 

efficiency and accuracy are major concerns. Thus, retrieval and use of knowledge are 

of more concern than acquisition of new knowledge.

Factors concerning the scope and grain size of a knowledge representation 

scheme can help determine whether a formalism is suitable for the solution of a partic­

ular problem. The factors are what portion of the external world should be 

represented in a specific system, in what detail objects and events are represented, and 

how much is actually needed by the reasoning mechanisms. However, it is not easy to
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determine these factors. Exactly how much detail is needed depends on the perfor­

mance desired. In general, uniformity of detail is desirable for a given reasoning task.

It is possible to represent almost everything that the system must know in one 

formalism. However, somethings are more easily represented than others. "Being 

represented more easily" involves the representation, the domain, and the reasoning 

strategies. These are part of the art of doing AI research. There is still no formal cri­

terion for the appropriateness of a knowledge representation scheme.

In terms of mapping, as discussed in the previous section, we are designing a 

mapping from the objects and events of the world into some internal encoding, which 

is the representation scheme. Therefore, the issue is whether the mapping in a given 

situation is easy, natural, efficient, and the like.

The choice of the primitive attributes of the domain, which are used to build up 

facts in the knowledge base, strongly affects the expressiveness of the knowledge 

representation scheme in any representation formalism. The selection of primitive 

elements for the expression of knowledge in a given domain is a fundamental problem 

in all knowledge representation schemes.

One characteristic of knowledge representation schemes is modularity. Modular­

ity refers to the ability to add, modify, or delete data structures more or less indepen­

dently from the rest of the knowledge base. Generally, human beings understand and 

work with modular or decomposable systems more easily.
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The problem with nonmodular systems is that the meaning of data structures in 

the knowledge base is dependent on the context where the knowledge is being used. 

Context dependence dramatically affects the modifiability of the knowledge base. If 

the meaning of a fact is independent of the rest of the system, modification is much 

easier. How much the system is capable of being understood by human beings is 

important in its development and performance, such as design and implementation of 

the system, acquisition of knowledge from humans, performance of the task, and 

interaction with and explanations for the final user.

Note that no system is completely modular. There is some degree of interaction 

between the data structures which form the knowledge base. Certainly some formal­

isms are more inherently modular than others.

When designing knowledge based systems, we also need to consider to what 

knowledge the programmer and the system have direct and manipulatory access, and 

what knowledge is built-in. This is the issue of what part of the system’s knowledge 

is explicit and what is implicit in the system’s program. One advantage of explicit 

representation schemes is the same fact can be used for multiple purposes, because the 

facts are in a form which allows global interpretations. In large systems, this feature 

is a significant advantage.

Some AI researchers emphasize declarative representation schemes for their 

flexibility and economy, for their completeness and the certainty of the deductions, 

and for the modifiability of the systems.
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Other AI researchers stress procedural representation schemes for their directness 

of the line of inference, such as using domain-specific heuristics to avoid irrelevant or 

unnatural lines of reasoning, and the ease of coding and understandability of the rea­

soning process.

There are still many open questions, in fact serious problems, in knowledge 

representation research. Many issues discussed above are contradictory to each other. 

There are many trade-offs in practical systems. That is the reason why people talk 

about the art, but not about the science, of AI research.

6.3 Data Structures for our System

We have discussed the issues in designing knowledge representation schemes. 

We now discuss the design of data structures for our vision system. The use of the 

represented knowledge will be discussed in the next chapter.

In our vision task, the knowledge which the system needs is the descriptions 

about objects. The knowledge should be represented in a way that the system can use 

it efficiently to recognize objects. We already have the B-rep about objects. However 

the B-rep is suitable for producing image from object models but not suitable for 

vision tasks.

A model database is a set

(6.1)
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where each mt , I <,i £ n , is the B-rep for a solid object

A B-rep is a set

mi = ' f  i b f  i2> • • • >fipi ' (6-2)

where f i j , 1 £ j  £ p it is a surface patch. This set of surface patches cover the boun­

dary of mi.

Each model is described by a set of surface patches and the implicit spatial rela­

tionships among the surface patches. This information is sufficient for generating an 

image from the models, which will be used in our verification process during object 

recognization and localization. More information, however, is needed for the reason­

ing process of object recognization and localization.

The addition information about objects is the knowledge about the surface 

shapes of different objects. We will use the surface shape information as heuristics to 

direct the reasoning. We have discussed the invariant surface shape information, 

Gaussian curvature and the magnitude of mean curvature in the last chapter. It is 

natural to consider using this invariant information to recognize objects.

However, how to use it is not as simple as we might hope. The surface curva­

tures are continuous functions on smooth surfaces. The representation elements of the 

models in the database are smooth surface patches. Surface curvatures are different at 

different points of same surface patch. Designing data structures to represent the 

shapes of surface patches is not an easy task. We introduce a novel approach which
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represent the surface shape clearly and is efficient and accurate for the object recogni­

zation and localization reasoning.

We are using a data structure called a curvature map to represent the surface 

shape. A curvature map is obtained for each surface patch. A curvature map can be 

viewed as a mesh on a surface patch as shown in Figure 6.3.

I

Figure 6.3: Curvature Map as a Mesh on a Surface Patch

We compute the Gaussian curvature K  and magnitude of mean curvature \H | at 

each node of the mesh is Figure 6.3. The density of the mesh should be higher than 

that of the image pixels if the surface patch is seen in an image. Thus the distance d 

of adjacent nodes must be less than the distance of any adjacent pixels in an image. If 

the distance of two adjacent pixels in an image corresponds to real world distance D .

We select d < -j-D, which proved dense enough in our system. This is the issue
Xi

about the grain size of knowledge representation, as discussed previously.
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In the system, a curvature map is in fact a three-layer structure as shown in Fig­

ure 6.4. One layer stores the spatial coordinates of each node of the mesh. The other 

two layers are for the Gaussian curvature and the magnitude of mean curvature at the 

corresponding points.

Figure 6.4: Curvature Map as a Three-layer Structure

To compute the Gaussian curvature and magnitude of mean curvature, we use 

formulas introduced in Chapter 4. For CAD models described in bivariate parametric 

functions, we use (5.30) and (5.31) to compute the curvatures.
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K  =  [Puu P“ Pv][Pvv P«* Pv ] ~  tPw P u Pv ]2 

IPuXPvl4

H  _  (P« Pu )[Pw P« Pv ] +  (Pv Pv )[p«g PU Py 3 -  2(P„ -pv )[puv ptf P„ ]

2 |p ux Pv I3

Bivariate parametric surfaces are often represented as

p(«,v) = USPTVt

where

U  = [un «"-1 • • • u 1]

V — [vm vm_1 • • • v 1] 

and S , T  are coefficient matrices, and P is the matrix of control points.

Hence, we have

pu =  l f S P T V T

where

I f  =  [nun~l ( « - 1 ) m " _2 • • • 1 0]

and

pv =  U S V T V '7

where

Y  = [mvm~1 (rn-l)vm-2 - 1  0]
and so on.

For instance, a bi-cubic B-spline function is

p(u,v) = N (u)piN (v)T
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where

N (u) =

N (v)  =

( 1 - m ) 3 3 k 3 - 6 m 2 +  4  -3m 3 +  3m2 +  3m +  1 u^_ 

6 6 6 6

(1 -  v )3 3v3 - 6 v2 +  4  - 3 v3 +  3v2 +  3v +  1
6

and

P3

Thus, we have

6 6

P i - U - i P i - l J P i-W + l P i- lJ + 2

P i j - l P  i j P iJ + l P* ,7+2

P*+1J-1 P i+ lj Pi+W+1 P i+ lJ+ 2

P«+2J-1 Pi+2J Pi+2,j+l Pi+2J+2

Pu =  lV '(M )P3iV (v )T

pv =  N ( u ) p ^ \ v f  

Puu = N " ( u ) p ^ ( v f  

P w  =  N ( u )P3N " ( v )t  

Puv =  N X u ) p ^ \v ) r

where

N '(u ) = (m -  l ) 2 3m2 -4 m  - 3 m 2 +  2m +  1 w  

2 2 2 2

N '(v) = (v - 1)2 3v2 - 4v - 3 v 2 + 2v + 1
2 2 2 2

,  0 < m £ 1

, OSv^l
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N"(u  ) = |— u + 1 3m -  2 -  3m + 1 Mj 

N "(v)  = v + 1 3v — 2 — 3v + 1 vj

For model boundaries described in explicit function z = f ( x y ) ,  we use (5.32) 

and (5.33) to compute Gaussian curvature and mean curvature.

Z ’Z — z 2 K — yy ^
+ zx + z>2)2

_ (1 + z 2)Zyy + (1 +  z 2)Zxx -  2zxzyZxy
1

2(1 + z 2 + z 2) 2

It is pretty straightforward to derive the derivatives of the explicit function 

z =f(x ,y ) .  For instance, if

z =aox3 + aj,x^y + agcy2 + + a4x 2 + a$xy + a^y2 + a-jx +a$y + a9

Then we have

zx = 3a0x2 + 2 a1x y + a 2y 2 +  2a 4X + « 5y + a 7 

zy = a ix 2 + 2a-gcy + Za^y2 + a^c +2a$y + a 8 

Zxx -  6a qx +2a jy  + 2a 4 

Zyy = 2a 2X +  6a jy  +  2a 6 

Zjy =  2axx  + 2a&  + a 5 =  Zyx

The curvature map can closely represent the shape of a surface if the mesh is 

sufficiently dense. However, it is not easy to locate a point on the curvature map
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when given curvatures for the point Linear search is cost prohibitive. Since the sys­

tem only needs the coordinates of the point when locating the given curvatures, which 

will be discussed in the next chapter, we reorganize the curvature map into ordered 

list so that the system can use binary search to locate points efficiently.

Each curvature map is reorganized into the structure shown in Figure 6.5. Thus, 

we can view the logical structure of curvature maps as in Figure 6.4, and the physical 

structure of curvature maps as in Figure 6.5. In Figure 6.5, we can still see three 

layers of a curvature map. The Gaussian curvature layer and the magnitude of mean 

curvature layer are sorted arrays. Each value in either curvature layer is associated 

with a point coordinates. Note that Kt and | //,• | do not necessarily associated with 

the same point.
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Ki-1 < K i <  K i+1 •

i+1

|Hj-i |

| H i - i |  <  | H , | <  |Hj+ 1 l

Figure 6.5: Physical Structure o f Curvature Map

In the knowledge base, a model is a B-rep and curvature maps for surface 

patches of the boundary description. Notice that some curvature maps need not be 

stored, such planar surfaces. In fact, the curvature map of a plane is not meaningful. 

Only the plane normal direction is meaningful. Using the techniques discussed in the 

previous sections, we group some structures together if they are typically going to be 

used together or they have the similar characteristics.

From (6.1) and (6.2), the database can be view as a set of surface patches, each 

of which belongs to one of the models. That is,

M  =  \ f i j  I /y-e/w ,-, ! < /< « ,  \ < j < P i , (6.3)
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where n is the number of models, p t is the number of surface patches representing 

object model mt . In f i j , the first subscript i indicates the solid object model and the 

second subscript j  indicates the surface patch on the solid object model.

The database M  is to be divided into five disjoint subsets Mp[anar, MparaboUc»

Melliptic > ^hyperbolic ^ m ix  tfrst

^planar  ^  ^parabolic Melliptic Mhyperbolic K J  Mmix ~  M

and

M s C \ M t =  4> 

s , t e-|p/anar, parabolic, elliptic, hyperbolic, mixj-

The surface patches are classified into these five sets in the following way. Mplanar 

contains surface patches with only planar points, i.e., K — 0 = H  at all points of the 

surface patches. MparaboUc contains surface patches with only parabolic points, i.e., 

K  = 0 and H *  0 at all points of the surface patches. MelUptic contains surface patches 

with only elliptic points, i.e., K  > 0 at all points of the surface patches. M/^perbolic 

contains surface patches with only hyperbolic points, i.e., K < 0 at all points of the 

surface patches. M ^  contains surface patches which do not fall into the other four 

subsets.

The classification is performed easily, since we already have a curvature map for 

each surface patch. Apparently, it is not necessary to store the curvature maps for 

planar surface patches. Similarly, the Gaussian curvature layer of the curvature map 

for a parabolic surface patch does not need to be stored, since AT = 0  all over the sur-
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face patch.

However, we do need some other information about planes in order to perform 

recognition reasoning. First, each plane is associted with its surface normal. For a 

parametric surface function, the surface normal is

P«XPwn =
IPuxpv I

For an explicit function z = /  (x ,y), the surface normal is

( ZjC> ~Zy , 1)
n = -------- ——

(1 + z 2 + z 2)m

If we have a plane represented as

Ax + By +Cz +D  = 0 

then the surface normal is even simpler,

n = ( A , B , C )
(A2+ B 2 + C 2)112

The direction of an individual plane normal will not help recognize objects. The 

relationship between plane normals within a model can help recognition reasoning as 

discussed in the next chapter.

Since

a b = | a | | b | cos0

where 0 is the angle between a and b, we can easily obtain the information on angles 

of planes within a model. Suppose



where sit l<d<k, is a plane and m is a B-rep model of surface patches. Each st has a 

surface normal nJ;. We can compute

cos0 = iy n ^

for

Si f  S: e ■ '» i*Js 2> • • • * S/c

and store this information in the database for use in recognition search. Note that if k 

is a large number, it is impossible to precompute and store all angle information. This 

extreme case happens when curved surfaces are approximated using small plane 

patches, which should not be the case in our system since models are described by 

smooth surfaces.

So far, a knowledge base of the models for solid objects is built. The knowledge 

base has most of the characteristics discussed before. It is very easy to update the 

models and recompute the curvature maps for new surface patches. Locating a point 

with given curvatures is simply achieved by binary search of curvature maps. We are 

now ready to move on to the next chapter for recognition and localization reasoning 

process.



Chapter 7: Control Strategy

The vision process in an autonomous robot normally involves the recognition of com­

plex objects in scenes and the problems of estimating the position and orientation of 

an object The above process is computationally intensive, and new models are 

needed that permit efficient ways of recognizing and localizing 3-D objects.

This portion of our work is about two topics. One is the recognition problem for 

complex objects using geometric modeling transformation. The other is the estima­

tion of localization properties of the objects. Recognition and localization introduced 

for this problem are described in detail in the following sections.

7.1 Recognition and Localization Task

Suppose there are n objects, O = {o j, o 2, . .  ■, on}, in a scene, and there are k 

models, M = {m m2, • • •, rnk }, in the model database. Our task is to find a match­

ing

Of = TRANSFORM (mj ) (7.1)

where 0, 6 0 , rnjeM  and TRANSFORM is a transformation. That is, we should find a

matching between ot and rtij for the recognition task, and also to find the transforma­

tion TRANSFORM for the localization task.

Since we can only find a set of surface segments S  = {s1} $2> • • • * J/} 311

image, the task becomes one of finding the membership of an image surface segment

88
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in the set of models, i.e., finding

st e TRANSFORM (mj) (7.2)

where s,- e S , and ntjeM.

Since each model is described in terms of a set of surface patches

mi • • • > fipt

the task becomes one of finding the membership of an image surface segment in a 

subset of the surface patches of a certain model, i.e.,

si e  TRANSFORM (m'j)

where st e  S , and m'j c m .

Since to search all possible combinations of image surface segments with model 

surface patches could be cost prohibitive, the task becomes an AI search problem. 

Since heuristic search is well-defined and understandable, we introduce our approach 

in terms of heuristic search.

7.2 Main Algorithm

Our algorithm is a heuristic search procedure using an evaluation function to 

direct search through the state space. A curved surface in an image contains more 

heuristic information by itself than a planar surface, which can be understood intui­

tively. We focus our proposed technique on curved surface segments differently from 

planar surface segments in an image. First, we use information from curved surface
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segments to direct the search. If no curved segments can be used, the planar surface 

segments are used to continue searching.

The main algorithm and its flow diagram are as follows.

MAIN ALGORITHM

1. If the input image is empty, then exit.

2. Let s be the set of all models, each of which consists of a set of surface patches. 

Set TEMP and P  to <j>.

3*. Find a curved surface segment p ' in the input image such that p ' is close to one 

segment in P and p ' is not in TEMP. Add p ' to P.  If not found, go to step 13.

4*. Obtain the subset s '^ s  such that p ' e P  is matched to the surface patches of mit 

for all m, e  s'.

5. If | s' | = 0, delete p ' from P and place p ' in TEMP. (If |F  | = 0 , erase p ' from 

the image.) Go to step 3.

6*. If | s' | = 1, a hypothesis is formed. Go to step 9 for verification.

7*. If there are three surface segments in P that match with the same model in s' , 

then find the model m in s' which matches the most segments in P . Delete m 

from s '. Go to step 9 for verification.

8 . Let s = s ' . Go to step 3.

9*. If verification succeeds, erase TRANSFORM(m) from the input image. Go to 

step 1.
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10*. Check whether surfaces of m can match to segments in P  at different positions. 

If another matching position is found, go to step 9.

11. If | s' | = 0, fail to recognize all segments in P . Erase aHp'eP  from the image. 

Go to step 1.

12. Go to step 6 .

13*. If \P | > 0 , find a planar surface segment in the image close to one segment in 

P . If found, go to step 4, otherwise go to step 15.

14*. Find three planar surface segments close to each other. If found, go to step 4.

15. Exit with failure.

Note: Steps with * will be discussed in detail in the following sections.
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image/

I  empty? exit

s «- all models {mi m,}
TEMP < -$ ;P  «-<J>

Find a curved segmentp 'in i 
such that p’ is not in TEMP and is

t n  n n m A  x / r  D  As4j4 am* D find a planar 
segment p' ?

found p’ ? IP |>0?
find 3 planarXN  
segments? J

Obtain s' c i  such thatp’ eP  
is matched to m^ for all mjes

P <r-P~{p'} 
TEMP <—  TEMP { j[ p ‘ }

If' |=1?

|P |=0?
3 segments in P  match 

with some m e / ?

Find m e /  which matches with 
the most segments in P . 

s '« - ? -{m }
S i - /

Hypothesis formation 
TRANSFORM ( m )

Erase TRANSFORM( m ) verified?

m match to segments i n N  Y 
P at different positions ? yOUtpUt >

m , TRANSFORM

Fail to recognize segments in P .
D w io a  n i l  am* ^  D  f t w w f

Figure 7.1: Flow Diagram of the Main Algorithm
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The correctness of the algorithm can be established with the following theorems.

Theorem 7.1. The algorithm always terminates.

Proof. Whenever a matching (7.2) of image surface segments and model sur­

faces is verified at step 9, all the image surface segments £,• e  TRANSFORM (mj) are 

erased from the image. If a segment cannot match with any model surface patches, it 

is erased at step 5 from the image. If all possible matches of surface segments in P 

and models cannot be verified, surface segments in P  are erased from the image at 

step 11. When the image surface segments are all erased at step 9,11, or 5, the algo­

rithm terminates at step 2. If each left-over surface segment in the image can match to 

several models but no more than two segments can match to the same model, the algo­

rithm terminates at step 15.

Since accuracy and efficiency are the most important factors in application, we 

designed the algorithm to guarantee that the match is accurate and that finding the 

match is efficient in the cost of failing to recognize objects in some extreme cases. A 

heuristic search algorithm is complete if it guarantees finding a solution when a solu­

tion exists.

Theorem 7.2. The algorithm is not complete.

Proof. The above definition of completeness is used here. The incompleteness 

is caused at step 15, where the algorithm terminates when there might be some possi­

ble matches. Since at that point each surface segments in P  matches to more than one
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model, but no more than two segments go to the same model, it is either that the visi­

ble areas of objects in the image are too small or that there are no corresponding 

models for objects in the image.

Theorem 7.3. The algorithm is complete if it explores every possible match of 

surface segments in P and models in M  before it exits at step IS.

Proof. If the algorithm checks every match before it exits at step 15, all the pos­

sible matches can be explored. If there is a solution, the algorithm guarantees finding 

i t  However, in the extreme cases when each surface segment in P matches to more 

than one model but no more than two surface segments match to surface patches on 

the same model, the algorithm spends too much time on checking all possibilities 

before ending the process. This is not generally acceptable in real applications.

The original algorithm is more applicable in practice though it is incomplete. 

Since in robot vision applications the system must respond within a time constraint, 

which is called a real-time system, we cannot afford the time to explore all possibili­

ties.

Theorem 7.4. The algorithm is admissible.

Proof. If the search algorithm returns an optimal solution, the search algorithm 

is admissible. Our algorithm is admissible in the sense that the algorithm finds the 

exact matching between object surface segments in the image and surface patches of 

the model, which is guaranteed by the verification.
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There are a lot of trade-offs in application systems. Heuristics help reduce the 

amount of search. However, applying heuristics to find the search directions is also 

expensive. The more heuristics we use, the more accurately it directs the search. 

Therefore, the search is more efficient However, the more heuristics we use, the 

higher the cost that the evaluation function has. It is very difficult to design an 

evaluation function which not only performs efficiently but also contains a great deal 

of heuristic information.

Hence, the total cost of a search system can be classified as two classes: one is 

the cost of the search process; another is the cost of heuristic evaluation operator. The 

total cost of a search system can be shown informally in Figure 7.2.

Cost

\  Total cost
Heuristic evaluation

Search

Heuristics

Figure 7.2: Search System Cost
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In designing a search system, we first have to find trade-offs, considering the 

application requirements and the factors of the search system.

One way to design heuristic evaluation functions is to design multiple functions 

to deal with different situations so that each function is efficient Our approach is to 

use different heuristic information and different evaluation functions to deal with 

curved surface segments and planar surface segments in the input image, which has 

been proven to be efficient.

7.3 Image Segmentation

This section discusses techniques used to obtain a surface segment in steps 3,13 

and 14.

The knowledge about model surface patches is represented as a Gaussian curva­

ture map and a magnitude of mean curvature map for curved surfaces, and angles 

between surface normals for planar surface patches. Therefore, the useful features in 

the image are the curvatures of curved surface segments and angles between planar 

surface segments.

In order to find these features, the simplest method is to use an approximation 

function to apply to a small window of pixels to find the curvatures, and then to clas­

sify a region of neighboring pixels into surface segments such that each segment con­

tains a smooth surface.
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Suppose that we use a 5x5 window to obtain the curvatures of the central pixel of 

the window as shown in Figure 7.3.

-2 -1 0

-2

-1

0

1 2

(0 , b)

♦ y

Figure 73: Window for Approximation to Obtain Curvatures

Let’s use an explicit function z —f  (x,y ) to approximate the window in order to 

obtain the first and second derivatives on the central pixel to compute the curvatures. 

Let

z = a 0x3 + a 1jc^y + a^xy2 + a$y3 + a4x 2 + a gey +a^y2 + a-fx +a$y + a9 (7.3)

Let the center of the window be ( r j )  = (0, 0), and every pixel is one unit, as 

shown in Figure 7.3. We can use a least-squares approach to find the approximation 

efficiently. Let

x =  a 9 i
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y = [z ( -2 ,-2), z ( - 1,-2) , . . . ,  z (2 - 2), z ( -2, - 1), z ( - l , - l ) .......... z(2 , - l ) ......... z(2 ,2) f

A =

* o  *oyo *aV o  yo 

x l  * h \  X\y\ y \

x 24 x 2& 24 x 2Ay2A

*0  3̂ 0 1 

x i y i i

*24 ^24 1

-8 -8  -8  -8  
-1 -2  -4  - 8

8 8 8 8

-2  -2  1 
-2  -2  1

2 2 1

where (ac0, y  o) = (“ 2» “ 2), (-*1, y i) = (~1» -2), (*2> y2) = (0 , -2 ) , . . . ,  (*24» y24> = (2,2). 

We have an over determined system

A x  = y (7.4)

The least-squares method is to find an x such that

| A x - y | 2 = minimum

Multiply A t to both sides of (7.4), thus, we have

A tA x -  A t y (7.5)

where



99

'650 0 340 0 0 0 0 170 0  01
0 340 0 340 0 0 0  0 100 0

340 0 340 0 0 0 0  100 0  0
0 340 0 650 0 0 0  0 170 0

a t a  — 0  0 0 0 170 0 100 0 0 50/I /I — 0  0 0 0 0  100 0  0 0  0
0  0 0 0 100 0 170 0 0 50

170 0 100 0 0 0 0 50 0  0
0  100 0 170 0 0 0  0 50 0
0  0 0 0 50 0 50 0 0 25

Since A T A is nonsingular, we have

0.013889 0 0 0 0 0 0 -0.047222 0 o0 0.007143 0 0 0 0 0 0 -0.014286 0
0 0 0.007143 0 0 0 0 -0.014286 0 0
0 0 0 0.013889 0 0 0 0 -0.047222 0
0 0 0 0 0.014286 0 0 0 0 -0.028571
0 0 0 0 0 0.01 0 0 0 0
0 0 0 0 0 0 0.014286 0 0 -0.028571

-0.047222 0 -0.014286 0 0 0 0 0.209127 0 0
0 -0.014286 0 -0.047222 0 0 0 0 0.209127 0
0 0 0 0 -0.028571 0 -0.028571 0 0 0.154286

Thus, multiply (ATA )-1 to both sides of (7.3), we have

x = {ATA)~lA T y  (7.6)

Let

B  = {AtA T xA t

Then

x= B  y  (7.7)

where B  is a 10x25 matrix which is computed before the system starts, y is the data

from the window. Therefore, the coefficients of the approximation function (7.3) are

easily obtained.

Since the purpose of finding the approximation function is to compute the curva­

tures at the central pixel of the window, we can derive a more efficient way to perform 

the task.
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The first derivatives of (7.3) are

zx = 3dQX2 + 2aixy + a^y2 + 2a^x +a$y + a 7

zy = a ix 2 + 2a^cy +3a^y2 + a^c + 2a$y + a 8 

and the second derivatives of (7.3) are

z ^  = 6a  qX + 2  a\y +2a 4 

= 2a  2* + 6a  jy + 2a  6 

= 2a  ̂  + 2a 2V + a 5 = Zyx

Substituting the coordinates of the center of the window which are (0,0). At the 

central pixel of the window we have

— a 7
Z y = a 6

zxx = 2a

Z y y = 2a

zxy = a s

(7.8)

If we represent B in (7.7) as

B  =

r* o  
b  i 
B  2

B,

whereBi}0<, i <, 9, is a 1x25 matrix which is the i th row of B , then we have
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zx ~  a l =  6  7y

2y =  a 8 =  B &y
zxx — 2 a4 =  2 6 4 y

Z y y =  2 a 6 =  2 6 gy

zxy = a 5 =  B sy

(7.9)

Since y is a 5x5 window on the image, we can represent the above as 5x5 window 

operators so that we just apply the operators to the window. An operator is 

represented as a 5x5 matrix. When applying the operator, we just multiply the 

corresponding elements in the window and then add them together. The operators are 

give below.

0.073810 -0.104762 0.0 0.104762 -0.073810 
-0.011905 -0.147619 0.0 0.147619 0.011905 
-0.040476 -0.161905 0.0 0.161905 0.040476 
-0.011905 -0.147619 0.0 0.147619 0.011905 

0.073810 -0.104762 0.0 0.104762 -0.073810

0.073810 -0.011905 -0.040476 -0.011905 0.073810 
-0.104762 -0.147619 -0.161905 -0.147619 -0.104762 

0.0 0.0 0.0 0.0 0.0 
0.104762 0.147619 0.161905 0.147619 0.104762 

-0.073810 0.011905 0.040476 0.011905 -0.073810

*xx

0.057143 -0.028571 -0.057143 -0.028571 0.057143 
0.057143 -0.028571 -0.057143 -0.028571 0.057143 
0.057143 -0.028571 -0.057143 -0.028571 0.057143 
0.057143 -0.028571 -0.057143 -0.028571 0.057143 
0.057143 -0.028571 -0.057143 -0.028571 0.057143
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‘■yy "

0.057143 0.057143 0.057143 0.057143 0.057143 
-0.028571 -0.028571 -0.028571 -0.028571 -0.028571 
-0.057143 -0.057143 -0.057143 -0.057143 -0.057143 
-0.028571 -0.028571 -0.028571 -0.028571 -0.028571
0.057143 0.057143 0.057143 0.057143 0.057143

cxy ••

0.04 0.02 0.0 -0.02 -0.04
0.02 0.01 0.0 - 0.01 - 0.02
0.0 0.0 0.0 0.0 0.0

- 0.02 - 0.01 0.0 0.01 0.02
-0.04 -0.02 0.0 0.02 0.04

Now we can apply (5.32) and (5.33) to obtain the curvature.

„  _  zxxzyy zxy
( l+ zx2 + zy2f

H  =
(1 +  Z?)Zyy +  (1 +  z } ) Z „  ~  2ZX Zy 

2(l 4- Zj2 + l y f 2

In this way, we can obtain curvatures for each pixel in a small region. A smooth 

surface is a surface which has continuous first and second derivatives. Therefore, we 

should not include edge points in the surface segment region in order to obtain a 

smooth surface segment. Since edge points must have high curvature, we can deter­

mine whether a point is on an edge by testing the principal curvatures at that point 

From (5.27), (5.28) and (5.29), we have

k 1 = H -  (H - K )

k 2 = H  + (H2 - K )
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If either I#! | or \k2\ is greater than a threshold T  > 0, the point is on an edge. 

The selection of T  is by experimentation.

Finally, we obtain a local curvature map of a smooth surface segment in the 

image. The surface nature can be determined according to the curvatures. If the 

whole map has \K  | < Kzero and \H \ <, , the surface is a plane.

Kzero and are also thresholds for testing the zero of K  and H , since K  and 

H  cannot really be zero in the input image due to noise and quantization effects. 

Since K  is the product of principal curvatures and H is the average of principal curva­

tures, we let Kzero '2.Hzero. These thresholds are also selected through experimenta­

tion.

After the surface nature and the local curvature map are obtained, they are used 

as heuristic information in the evaluation function at step 4 in the main algorithm.

7.4 Surface Matching Evaluation

We discuss how to perform steps 4 and 10 of the main algorithm in this section.

After the curvature map of a surface segment is obtained, we can evaluate how 

close the curvature map matches with the curvature maps of model surface patches in 

set 5 . s has all models initially and then contains a subset of models after one or more 

iterations.
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If the curvature map of the surface segment indicates the surface segment as a 

plane, then the surface segment can match to all planar surface patches of models in s . 

Therefore, at step 4, all models not including any planar surface patches are deleted 

from 5 to form s '.

If the surface segment is curved, we need more work to select the subset s' of s 

at step 4. The surface segment curvature map can be viewed as a three-layer data 

structure. The first layer is the surface segment from the image where every pixel is 

associated with its coordinates (x *y ,z) in the 3-D space, i.e., the pixel coordinates in 

the image associates with (x ,y ) and the pixel value is z , as shown in Figure 7.4.

z(x,y)

x

Figure 7.4: Surface Segment Layer



The other two layers are the Gaussian curvatures and the magnitudes of mean 

curvature, which are the same size as the surface segment layer. Every pixel in the 

segment has its Gaussian curvature and the magnitude of its mean curvature in these 

two layers as shown in Figure 7.5 and Figure 7.6, respectively.

- 2 - 1 0  1 2

Figure 7.5: Gaussian Curvature Layer
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-2

-1

0

1

2

Figure 7.6: Magnitude o f Mean Curvature Layer

Now let’s take a model m  from s to check whether the surface segment can 

match to its surface patches. As in Section 6.3 above, we can determine to which set 

° f  Memptic, Mparabolic, Mhyperboiic, or M ^  the surface segment can be classified, and 

then look for the possible matching surface patch in the corresponding set Note that 

Afffuc should be checked if a surface segment cannot be found in other sets.

Since the surface segment is smooth, the center shape of the surface segment is 

least affected by noise. We first locate the possible positions of the center pixel of the 

surface segment on the model m . From the initial positions, if we can develop a local 

fitting of the surface segment to the model surfaces, it is possible that the surface seg­

ment matches with the model. Then, the fitting position of the center of the segment

|H |
0 ,0

-2 - 1 0  1 2
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is also recorded.

In the previous chapter, we discussed the knowledge representation of surface 

shapes of the models. The surface shape is represented as a curvature map for a sur­

face patch. The curvature maps are ordered lists, sorted by values of K  and \H  |.

The initial possible positions of the segment center are located in the following 

way. Suppose that the center of the surface segment is on the (0,0) pixel of the seg­

ment curvature map, as shown in Figure 7.5 and Figure 7.6. Let

a  = max-j | AT(0>0) — ̂ T(f- |  : i j  = - 1, 0, 1

p = m axj| | H  | (0i0) -  \H \(iJ) \ : i j  = -1 ,0 ,1

Thus, a  is the maximum difference between the central K  value and its neighboring 

K  value, and P is the maximum difference between the central | H  | value and its 

neighboring values.

A point p on the model with Gaussian curvature K p and magnitude of mean cur­

vature | H  | p is a possible matching position of the center of the surface segment if

I * (0,0) - * P I < a

and

I l «  l(o,0) - | t f | p l  < P

These points can be found efficiently by binary search from model surface curvature 

maps which are represented as ordered lists. Let these initial points be in set SP , let



108

the distance between two neighboring pixels be -^-e, and let the noise rate be o. Then

we use the following procedure to check whether the points in SP can be selected as 

corresponding points to the center of the surface segment:

Procedure Fitting

1. n = total number of pixels of the surface segment, u = 0 , which is the number of 

pixels unmatched.

2. If SP = <J*, exit with failure.

3. Take p from SP. SP =SP - {p}.

4. For every noncentral position ( t , j  ) of the surface segment curvature map

5. oc — maxj ^  (i+f j+ f) I • *' ~ ^

6 . P' = maxj | |H  | (/J) -  | / /  \(i+i'j+f) I : » ' , /  = - 1, 0 , 1  •

7. For every point p ' on the model m with

8 . If | distance(seg_p (0>0), segj> (ij))-  distance(p', p) | < e, go to step 4.

9. End_for /* step 7 */

10. u = u + 1.

11. If — > a, then go to step 2.
n
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12. End_for /* step 4 */

13. Exit with success.

Note that the procedure Fitting only finds a very possible match when it exits 

successfully. The procedure only does checking on the distance between points, 

which is a necessary condition for a match but not a sufficient condition. If we want 

to inspect all conditions to guarantee the exact match, however, the process will be 

very expensive. Referring to Figure 7.2, we have a trade-off between the evaluation 

cost and the search cost.

7.5 Hypothesis Formation

In this section, we discuss the techniques in steps 6  and 7 of the main algorithm, 

which are used to form a hypothesis for verification in step 9.

In section 7.1, we defined our task as finding matchings between surface seg­

ments in the image and a transformation of model surfaces

Si e  TRANSFORM(rrij) 

where j,-e j  , which is a set of surface segments, and m jeM , which is a set of models.

We have discussed how to find a possible membership of r,- on ntj. However, in order

to verify the matching, we have to find TRANSFORM and then check whether s, is

really on TRANSFORM (ntj). Thus, at this point, we just need to find TRANSFORM

to obtain the hypothesis.
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If | s' | > 1 at step 7, we select a model m from s' such that m has the most pos­

sible matching surface segments i n f  to form the hypothesis.

If there are three curved surface segments matched to m , and their possible posi­

tions on m have been found in previous steps as discussed in section 7.4, then we per­

form a distance checking between these points similar to that in procedure Fitting. If 

the distance checking fails, the hypothesis cannot be formed. Otherwise, we can 

obtained TRANSFORM from the relationship of the central points of the three surface 

segments and the corresponding positions on the model m since three noncollinear 

points uniquely determine a 3-D spatial transformation.

If there is only one curved surface segment matched with model m , which is pos­

sible at step 6 , then we use the central point of the surface segment and two additional 

noncentral points to obtain the transformation.

Let the three points from the surface segments be (sxq, sy0, sz0), (sx i,sy lt sz{) 

and (sx2, sy2, sz2). Let their corresponding points on the model m be (xq, y o, zq), 

(* i> y  i>z i ) 311(1 <*2» yi> z2>-

A transformation of points in 3-D space is represented explicitly as

[x' y ' z'] = [x y  z W + T  (7.10)

where R  is a 3x3 rotation matrix and T  is a 1x3 translation matrix.

A rotation about the z -axis in 3-D is



I l l

Rz (6) =
cosO sin6 0 
-sin0 cos0 0  

0  0  1

The x  -axis rotation matrix is

RX(Q) =
1 0  0 
0  cos0 sin0 
0  -sin0 cos0

The y  -axis rotation matrix is

Ry (0) =
cos0 0  -sin0 

0  1 0  
sin0 0  cos0

Thus, R in (7.10) is the composition of an arbitrary sequence of rotations about 

the x , y ,  and z axes. We have

R =
roo rot r 02
riO ''It r 12 
r 20 r 21 r 22

T  — [tx  ty t2 ]

To find the transformation of the three points, we can first pin down the transla­

tion easily.

T  = t'x ty tg]
-  [ « < r * o  syo~yo  « 0- 2 o]

When we substitute the three points in (7.10), we have

[ix0 sy0 sz0] = [x0 y 0 z0]/? +T (7.11)
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[sxt sy t s z j  = [xx y j z x\R + T  (7.12)

[sx2 sy2 J z j  = [x2 y% z £ R +T  (7.13)

From (7.11), (7.12) and (7.13), we get

■S*0 =  jc0r 00 +  yo r 10 +  z 0r 20 +  ^

**1 =  X1r00 + y lr l0 + z lr2a + tx 

“ 2 =  x 2r00 + y 2r 10 + z2r20 + tx

Similarly, we get

Wo = x<foi+y<fu + zor2l + ty 

syi = x j r o i + y j r u  + zjrzi + ty 

^ 2  =  ^ O l + ^ l l  +  ^ l  +  'y

SZQ =  JC0^02 +  3’0r  12 +  z Or 22 +  *z 

sz \ = ;clr 02 + y i^l2 + z lr 22 + rz

sz0 = X2ro2+y2r12 + z2r22 + rz

From the above three linear systems, we obtain R . Therefore, the hypothesis is 

formed, which is a matching between surfaces and their transformation.

If there are only planar segments matched with model m , we need three non­

parallel planes to determine a transformation in 3-D space.

and
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To obtain a plane equation

Ax +By +Cz +D  = 0 (7.14)

we need three non-collinear points on the plane. Given three noncollinear points

(*i>;yi» z i)> (x2, y 2, z i) and (x 3>y3t z i) on the plane, we have

Ax j + By j + Cz 2 +D  = 0  

Ax2 + By2 + Cz2 + D =  0 
Ax$+By$ + Cz$+D  = 0

Since the three points are riot collinear, the equations can be solved for A , B , C 

and D by arbitrarily assigning a value to one of them and then solving the resulting 

three equations in three unknowns. A better way to obtain (7.14) is to select any point 

(x , y , z ) on the plane, then we have

Ax +By +Cz +D -  0 
Ax 2 + By 2 + Cz j+ D  = 0  

Ax 2 + By 2 Cz2 + D — 0 
A*3 +By% + CZ3 +D = 0

If there is a nontrivial (nonzero) solution to this homogeneous system, the deter­

minant of its coefficients

det

x  y  z 1"
x i y \  z i i 
*2  y i  z i  i
*3 ?3 *3 1

must be zero. Expanding by cofactors about the first row, we have

A'x + B 'y+ C 'z +D' = 0 (7.15)

where
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A' -  det

B' — —det

C  = det

D' = -det

y i *i 1 

y i  z2 1

? 3  z 3 1

*1 z l 1 

x 2 Z2 1

* 3  Z3 1

* i y i 1

x 2 y 2 1 

* 3 y 3 i

*1 3>i Z1 
x 2 y 2 z2

* 3  3*3 z 3

Thus, (7.15) is the equation we want The three points cannot be collinear. If all 

cofactors in (7.15) are zero, collinearity occurs.

The surface normal of (7.14) is

n =
(A2+ B 2 + C2)m

Let the three plane segments be

A 'iX + B 'i + C '^ + D 'i  = 0

A'jjc + B' 2 + C* 2z + D' 2 — 0

(7.16)

(7.17)

A' jpt +B'^ + C'2z +1), 3 — 0 (7.18)
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and their surface normals be

'  = (**1, ^ 1, CTi)
B l  (A '2 + B 'f  + C 'i)m

n 2 =
(A'2,B'2, C J  

{A'I + B 'i  + C 'Z)m

, = (A'3,B '3, C 3)
" 3 (A 'i  + B 'f  + C 'i)m

In order to determine a 3-D transformation uniquely, we must have n,- *  nj ,

The angle between two planes is obtained from 

cos0  = n,- -Uj

A i Aj  +  B(- Bj  +  C,- Cj

(Ai2 +B 2 + C h m (A } +B f  + C/ ) 1/2

Since we have had all the angle information between planes in a model, we 

should inspect the angles between any two planar surface segments and compare with 

the angles between planes in the model. If a matching can be found, we can proceed 

to find the transformation from the corresponding planes to form a hypothesis.

Suppose the three corresponding planes on the model m are
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Ajjc + B x + C xz + D X = 0 (7.19)

A^c + ff2 + C2z + -^ 2  = ® (7.20)

A j X  +  B 3  +  C 3 Z  + D $  =  0 (7.21)

Let’s first determine the rotation matrix of the transformation, i.e. to rotate the 

model m such that after rotation (7.19) is parallel to (7.16), (7.20) is parallel to (7.17), 

and (7.21) is parallel to (7.18). We use the rotation matrix in (7.10). Substitute the 

transformation in (7.19). We have

^ l(Jcr0O + 3,'‘l0 + z r20 + (*)
- B 1(xr01+ y r11 + zr21 + ty)

+  C lC*T0 2 + y r 12 +  zr22 +  * z ) + ^ l  =  0

The new equation is

(Airoo+Biroi + C ir  02)*

+  (A i r  10+ b  i r  11+  c  ir ii)y
+ (A lr 20 + B lr 21 + C lr 22)z (7.22)
D  J + tx + ty + tz = 0

Since (7.22) is parallel to (7.16), we have

^ l r Q0 + ̂ l r 01 + C lr Q2 _  A xr io + B 1r 11 + C tr  12

"  B' 1

^ l r 20 + ̂ l r 21 +  ̂ l r 22 (7.23)
C [

Similarly, from (7.20) and (7.21), we have
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^ 2 r 00 +  ̂ 2 r 01 +  ^ 2 r 02 ^ 2 r 10 +  ^ 2 r l l  +  ^ 2 r 12
aT2 ■ W 2

A 2r 20 "*■ ̂ 2r 21 +  C 2r 22 (^*2 4 )

C7̂

and

^3rQ0 + ̂ 3r0i +  ^3r02 _  ^ 3r 10 + B  $r u  + C $ r  u

A '$  ~  W 3

^ 3r 20 + ̂ 3r 21 +  ^ 3r 22 (7*25)

Thus, we can solve nine unknowns in nine linear equations of (7.23), (7.24) and 

(7.25).

In order to let (7.22) and (7.16) represent the same plane, we have other condi­

tions shown as follows:

D i + tx +ty +tz A ir 00 + B lr0l + C lr

D 2 + tx 4" ty A 2r  00 + & 2r 01 + C 2r 02
D '2 A ' 2

D 3 + tx +ty +tZ ^3r 00+ ^ 3 r 01 + ^3r 02
D '  3 A 'l

which determine the translation matrix

T  =  \tx ty tz \

Therefore, we obtain the transformation from the corresponding matching sur­

face to a hypothesis.
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7.6 Verification of the Hypothesis

The task of robot recognition and localization is to find a matching between sur­

face segments in an image and surface patches on models and the transformation from 

the model original position to the object position.

A hypothesis is obtained locally by analyzing some neighboring surface seg­

ments in the image. The way of obtaining hypotheses is efficient and robust to occlu­

sion, especially when several objects are presented in a scene and each object is par­

tially visible. However, local analysis does not guarantee a valid matching.

Given a hypothesis of

SieTRANSFORM (m) 

where = {si, s-^ . . . ,  st}, which are the surface segments in the image, and

m e  model set M , we build an image P  from TRANSFORM (m ) and then compare P

with the input image O to make decisions based on the correlation between P and O .

Suppose that each object in the scene has at least y  percent area visible, for 

instance 50%. We compare the image points on P  with values in corresponding posi­

tions on O . If more than y  percent image points on P  can match with input image O 

within a noise estimate 5, for instance 5%, we can believe that the hypothesis is true 

and then erase the matching region of P from O such that O does not contain the 

recognized and localized object for the next iteration.

To obtain hypothesis image P , we simply use the z-buffer technique of computer
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graphics [32]. This technique is also called the depth-buffer image space algorithm. 

The algorithm is simple to implement. The performance of the algorithm tends to be 

constant since, on the average, the number of pixels covered by each surface decreases 

as the number of surfaces in the view volume increases [32]. The algorithm works in 

the following way.

The hypothesis image P is initialized to the largest representable z value. For 

each point (x ,y )  inside TRANSFORM(m)

1. Compute the depth z(x ,y)  at (jcy ).

2. If z(x ,y )  is less than the image P value at (jc,y ), then place z(x ,y)  into the 

image P at (x,y).

The algorithm records the smallest z encountered for each (x,y). The order of 

surfaces of the model has no effect on the resulting image. The hidden surfaces have 

larger z values which are replaced by visible surfaces’ z values.



Chapter 8: Experimentation

We have implemented the approach as a robot vision system Free-form Object Recog­

nition and Localization (FORL) and tested using synthesized range images. FORL is 

implemented in C on Sun-3/160C Workstation. A block diagram of our system is 

shown in Figure 8.1.

The modules in the dotted box in Figure 8.1 correspond to the main algorithm we 

introduced in Section 7.2. The vision process shown in the dotted box uses the infor­

mation in the knowledge base about surface shapes and the CAD database to recog­

nize and localize 3-D free-form objects. Input to the vision process is the range 

images. Output from the vision system is the identification of objects and their 

transformations with respect to the ideal positions of the CAD models.

The module Find a segment in the image performs the image segmentation, as 

we discussed in Section 7.3. The module Find possible model surfaces to match with 

the segment executes the surface matching evaluation procedure we described in Sec­

tion 7.4. The Hypothesis formation module provides a hypothesis for verification 

using the technique we introduced in Section 7.5. The Verification module produces a 

synthetic image from the hypothesis and verifies it, as we showed in Section 7.6.

The CAD database is the source of the object models. The module surface shape 

information abstraction performs the process we described in Chapter 6 . The module 

abstracts the surface shape information from the CAD models and then stores the 

information in the knowledge base in the representation scheme we introduced in

120



Section 6.3.



image

knowledge base 
about surface shapes

CAD
database

Verification of 
the hypothesis

surface shape 
information 
abstraction

Find a surface 
segment in the image

Hypothesis formation 
(model and transformation)

Find possible model 
surfaces to match 
with the segment

models and transformations

Figure 8.1: Flow Diagram o f FORL
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The following is one of the examples of recognizing and localizing multiple 3-D 

free-form objects in FORL. Figures 8.2 and 8.3 show the objects in the CAD database. 

We arbitrarily selected three objects and threw them in the 3-D space. Figure 8.4 is 

the front view of the three objects to be recognized and localized. The view at the 

viewpoint 25 degrees from -z axis to x  axis and 25 degrees from -z axis to y  axis is 

shown in Figure 8.5. Figure 8.6 shows the contour of the range image.

Figure 8.7 shows that one object is recognized and localized. When the first 

recognized object is erased, the contour of the image is shown in Figure 8 .8. Figure 

8.9 shows the next object is recognized and localized. Again, the contour of the 

image is shown in Figure 8.10 when the second object is erased. Figure 8.11 shows 

the recognition and localization of the last object.



Figure 8.2: Objects in the CAD database



Figure 8.3: Objects in the CAD database
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Figure 8.4: Front View o f the Objects to Be Recognized
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Figure 8.5: The Three Objects to Be Recognized and Localized



Figure 8.6: Contour o f the Range Image



Figure 8.7: One Object is Recognized and Localized
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m itmza

Figure 8.8: Recognized and Localized Object is Erased
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Figure 8.9: Second Object is Recognized and Localized



Figure 8.10: Second Recognized and Localized Object is Erased
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Figure 8.11: Last Object is Recognized and Localized



Chapter 9: Conclusions

Applications envisaged for autonomous robots which must operate in unstructured 

environments involve achieving operational responses in hard real-time. Fast, real­

time response is especially important for robot vision. Typically, the vision problem 

involves the integration of recognition and localization of range data projected from 

3-D objects. Yet, recovering 3-D information from range data is a challenging task. 

Towards this objective, we present a solution to an important problem of robot vision. 

The focus of our work is to develop an efficient technique to recognize and localize 

3-D objects using the geometric models of objects.

We have designed an effective method of surface characterization of 3-D objects 

using surface curvature properties and developed an efficient approach to recognizing 

and localizing multiple 3-D free-form objects in range images. The approach is 

implemented as a robot vision system Free-form Object Recognition and Localization 

(FORL) and tested using synthesized range images. FORL performs satisfactorily to 

our expectation. Experimentation on real images is being undertaken.

The novelty of our method is in the definition of new high performance data 

structures for characterizing the surfaces of objects. The approach presented here is 

very unique and gives superior performance when compared to previous approaches. 

Prior work on recognition of free-form objects uses small planar or quadric patches to 

obtain the approximation of object models. The approximation methods certainly lose 

some information in many cases, and therefore cannot recognize some classes of
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objects.

9.1 Contributions of this Work

The approach uses boundary representation for object models, which is one of 

the most popular CAD model representations. Since CAD systems are popular and 

provide a user-friendly environment for design, they are natural sources for solid 

models in robot vision. Furthermore, CAD models describe solids in detail so that 

recognition and localization of complex objects become possible. Previous partial 

models are not adequate for high requirement sensing tasks.

The most common CAD database description of a surface of a part is in terms of 

discrete points associated with inteipolation parametric functions such as quadrics, 

composite Besier patches, or B-splines. Previously, these descriptions were not found 

to be useful in vision tasks. Different primitive concepts of different CAD systems 

make the automatic transfer from CAD model descriptions to descriptions for robot 

vision a very difficult problem. The desired information for robot vision may not be 

explicitly represented though CAD models provide details about objects.

Therefore, we have developed a knowledge representation scheme for describing 

free-form surface shapes. A representation of knowledge is a combination of data 

structures and interpretive procedures which use the data structures. We designed 

classes of data structures for storing information in computer systems and developed 

procedures which intelligently manipulate these data structures to make inferences.



The data structures and the procedures are well designed so that the knowledge leads 

the system to intelligent behavior, i.e., recognizing and localizing 3-D objects.

Our approach automatically abstracts knowledge about model surface shapes 

from CAD models for directing the search during vision process and uses CAD 

models directly in verification of the vision hypotheses. The approach makes use of 

the CAD models intelligently, and thus opens a door to natural sources of object 

models in robot vision.

The knowledge representation we developed eases the processes of knowledge 

acquisition, information retrieval, modification of knowledge base, and reasoning for a 

solution. The knowledge base used in our approach consists of a CAD database and 

surface shape information abstracted from CAD models automatically.

Acquiring new knowledge is straightforward to our system, which is simply 

adding a new model to the CAD database. Modifying the knowledge base is also 

made simple by modifying the CAD models. Retrieving information from the 

knowledge base is efficient, since the knowledge about surface shapes is organized as 

sorted arrays, which enables binary search to be performed. Reasoning in search of a 

solution using the knowledge base is effective and efficient

Localization is a by-product of the recognition process. Since localization is 

necessary in robotic applications, this by-product is significant. In fact the recogni­

tion process is to recognize objects by hypothesizing and locating objects. The 

approach uses the knowledge about the surface shapes to make the hypotheses and
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uses the CAD models to locate the objects.

Model representation has a significant effect on model-based recognition. 

Without using surface properties many important industrial vision tasks will remain 

beyond the competence of machine vision. Numerical features about lines and topo­

logical features about connectivity suffer from partial occlusion. Geometric features 

such as equations of curves and surfaces are much more stable.

One of the most important problems in 3-D machine vision is the recognition of 

3-D objects from their partial view. Objects may be occluded by other objects or even 

by themselves. However, if models of objects are given, occluded parts are supposed 

to be able to be inferred, which is factually a very difficult task for the previous 

methods that we have seen in the literature, since occlusion makes many feature rela­

tions invisible.

9.2 Advantages of our Approach

Our approach is surface-based, which is not sensitive to noise and occlusion. 

Surface-based recognition and localization is applicable in dirty and uncontrolled 

environments.

Our approach is capable of recognizing multiple objects since it is surface-based, 

which is not sensitive to occlusion, and forms hypotheses by local analysis of surface 

shapes, which does not depend on the visibility of the complete objects.



Our approach uses appropriate strategies for recognition and localization follow­

ing the information from the CAD database. This makes the integration of robot 

vision systems with CAD/CAM systems a promising future.

9.3 Future Work

Future research should be on combining surface-based recognition systems and 

edge-based recognition systems since, in some situations, edges are visible and edge- 

based constraints are obtainable and efficient. Especially in some situations where 

objects have regular surfaces, such as cylinders, edge-based systems probably would 

be faster than surface-based systems. This should be tested. Surface-based recogni­

tion is typically useful and efficient to recognize irregularly shaped, free-form solids.

Our approach is very suitable for parallel processing to increase efficiency. Our 

work (Wang and Iyengar) [92,93] on parallel processing of pattern recognition tasks is 

an excellent candidate. Developing parallel algorithms for our approach to 3-D vision 

is another future research direction.
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