
Model-Based Traceability

Jane Cleland-Huang
1
, Jane Huffman Hayes

2
, J. M. Domel

1

1
School of Computing

DePaul University

{jhuang,jdomel}@cs.depaul.edu

2
Department of Computer Science

University of Kentucky

hayes@cs.uky.edu

Abstract

Many organizations invest considerable cost and effort in

building traceability matrices in order to comply with

regulatory requirements or process improvement

initiatives. Unfortunately, these matrices are frequently left

un-used and project stakeholders continue to perform

critical software engineering activities such as change

impact analysis or requirements satisfaction assessment

without benefit of the established traces. A major reason

for this is the lack of a process framework and associated

tools to support the use of these trace matrices in a

strategic way. In this position paper, we present a model-

based approach designed to help organizations gain full

benefit from the traces they develop and to allow project

stakeholders to plan, generate, and execute trace strategies

in a graphical modeling environment. The approach

includes a standard notation for capturing strategic

traceability decisions in the form of a graph, and also

notation for modeling reusable trace queries using

augmented sequence diagrams. All of the model elements,

including project specific data, are represented using XML.

The approach is demonstrated through examples from a

traffic simulator project composed of requirements, UML

class diagrams, code, test cases, and test case results.

1. Introduction

Successful traceability processes generally incorporate

a carefully devised planning stage to determine when, how,

where, and why each traceability link will be created [5].

By aligning traceability tasks with project and

organizational goals, and capturing these planning

decisions in a trace strategy graph, project stakeholders can

ensure that their traceability effort provides effective

support for critical software engineering tasks. In prior

work, several researchers have proposed the use of strategic

traceability graphs [5,1] to define the traceability goals of a

project. In its simplest form, such a graph defines a set of

traceable artifacts, the traceability links between them, and

the purpose of each of these links.

However, such graphs fall short of providing the level

of support needed to fully automate the traceability process,

especially when artifacts are stored in heterogeneous

formats. Furthermore, there is no easy way to facilitate

reuse of trace strategies, decisions to create and maintain a

certain set of traceability links, across different artifacts

within a project [4]. These limitations were illustrated

through an informative discussion between one of the

authors and a group of developers from a large, safety-

critical project at a level 3 CMMI organization. In this

project, complete traceability between requirements,

design, and code was required as part of the process

improvement initiative. Despite having a relatively

accurate and complete set of traceability matrices, the

developers claimed never to use these traceability matrices

at all. There appeared to be a usability problem which

meant that extracting useful information from the matrices

was not seen as a cost-effective or useful exercise. One

possible reason for this was the lack of supporting

traceability tools with which to generate queries and review

the results.

This paper addresses these problems through proposing

a new model-based approach which builds on the

underlying structure of the traceability strategy graph. In

much the same way as a model-driven engineering

environment focuses on abstracting the particulars of a

domain from the underlying platform-level implementation

details [6], model-based traceability separates out tracing

strategies and reusable trace queries from their underlying

document representations. This separation of concerns

makes it much easier for traceability strategies and queries

to be reused across projects. It also means that the

traceability links become significantly more accessible and

common queries are supported through the simple click of a

button.

2. Traceability Model Representation

Our proposed model-based traceability approach

includes four distinct layers:

 The strategic layer captures the artifacts and their

associated traceability links in a model known as the

strategic traceability graph. This takes the form of a

traceability metagraph as previously defined by Ramesh

[5] which defines the types of artifacts to be traced, and

specifies link types as well as additional information

defining who will use the links, when they will be used,

and where the data is stored. Building the strategic

traceability graph forces project stakeholders to make

decisions about how much traceability they want in their

TEFSE’09, May 18, 2009, Vancouver, Canada
978-1-4244-3741-2/09/$25.00 © 2009 IEEE ICSE’09 Workshop6

project and to analyze the purpose and projected

benefits of their traceability plan.

 The document management layer records the names

and locations of all project level software artifacts and

traceability matrices. In early prototypes of our

approach, these components are represented as XML

documents; however, it is relatively straight forward to

extract this information, periodically or on demand,

from 3
rd

 party CASE tools in order to keep the XML

representations current [3].

 The stored query layer defines a set of queries that are

facilitated by the lower-level strategic and document

management layers. These queries are designed by a

project manager or requirements analyst and used by

other stakeholders in the course of their regular software

engineering tasks.

 The executable layer is responsible for interpreting the

queries in the stored query layer, transforming them into

executable code, invoking them, and reporting or

visualizing the results.

In our model, reuse of trace strategies and queries is

facilitated through the separation of these four concerns.

Continuing the analogy of model-driven software

engineering, the strategic and stored query layers are

similar to a platform independent model (PIM), while the

document management layer relates to the platform specific

model (PSM) [6]. Both the strategic and stored query

layers are reusable across projects as they are mapped to

project-specific physical files by the document

management layer.

2.1 The Strategic Layer

To illustrate and evaluate our approach, we first

introduce a simple project consisting of 54 software

requirements, and their associated UML classes, java code,

JUnit test cases, user acceptance tests, and test results.

These artifacts were taken from a small software project to

create a traffic simulation model, developed as part of the

coursework by a student at DePaul University. The

strategic traceability graph showing artifacts and their

associated traceability links is depicted in Figure 1. In this

example, the traceability paths were chosen because they

supported basic software engineering tasks such as

determining if the design satisfied the requirements, or if

the code implemented the design.

 The underlying graph structure is documented using a

standard XML representation. In this very simple example,

bidirectional traceability is facilitated between requirements

and design, design and code, code and test cases,

requirements and test cases, and test cases and their results.

Trace relationships for a small subset of the artifacts are

shown in the following XML specification:

<ProjectTraces>

 <Artifact>

 <ArtType>Requirements</ArtType>

<ArtName>SystemRequirements </ArtName>

<XMLFile>XMLReqs1.xml</XMLFile>

</Artifact>

 <Artifact>

 <ArtType>UMLClasses</ArtType>

 <ArtName>UMLClasses</ArtName>

 <XMLFile>XMLReqPro142.xml</XMLFile>

</Artifact>

<TracePath>

 <Source>UMLClasses</Source>

 <Sink>SystemRequirements</Sink>

 <TraceRep>Matrix</TraceRep>

 <TraceType>Satisfies</TraceType>

</Tracepath>

</ProjectTraces>.

Although not included here due to space

considerations, this XML file also documents layout

coordinates of the strategic traceability graph’s visual

components. Actual file names and information about the

traceability matrices are project specific and are therefore

provided as part of the document management layer.

2.2 The Document Management Layer

Each individual set of artifacts is also represented

using a standard XML format. For example, an XML

representation for one of the requirements is shown below:

<Requirements>

 <Requirement>

 <ReqID>2.1</ReqID>

<ReqText>The map layout shall be defined

in a text file.</ReqText>

 <ReqType>Business Use Case</ReqType>

 <ReqParent>2.0</ReqParent>

<Module>Maps</Module>

<Status>Implemented</Status>

</Requirement>

</Requirements>.

 Noteworthy features of this XML document are that it

includes specific attributes that are deemed strategic for

performing the most common types of traces. For example,

traces might be filtered by module name or requirements

Figure 1. Strategic traceability graph for the
traffic simulation project

7

status, and therefore these attributes are included in the

XML document.

 Other artifact types such as UML Classes, code, test

cases, and test results are represented in similar ways using

appropriate XML schemas. For example, source code is

represented in a format known as srcML [2]. These other

artifacts are not shown here due to space constraints. All

trace matrices depicted in the strategic traceability graph

are represented as follows:

<TraceMatrix>

 <TraceType>Satisfies</TraceType>

 <Trace>

 <SourceID>13</SourceID>

 <SinkID>1102</SinkID>

 <Confidence>1</Confidence>

 </Trace>

 More traces here

</TraceMatrix>.

 This file includes source ID and target ID of each link,

as well as a confidence score. When just-in-time tracing

tools based on information retrieval methods are used, this

confidence score is computed automatically, while it is

initially set to 1 for manually constructed trace matrices.

2.3 The Stored Query Layer

 The stored query layer composes queries from different

types of primitive links. It also constructs composite

queries out of lower-level more primitive ones. This

section describes these composition methods and also

introduces a possible visual representation to be used in our

modeling notation. As traces are dynamic, we define them

using sequence-style diagrams that we call trace query

sequence diagrams, and then map them onto the strategic

traceability graph in much the same way as a use case map

maps a use case scenario onto a class diagram. Note that

strategic traceability graphs can be hierarchical. If more

than one such graph exists, such as for a large project with

many artifacts, we map the trace query sequence diagrams

onto the high level strategic traceability graph. The actual

notation shown here is just an example of the notation that

will used in the final modeling language.

 Primitive traces occur between two adjacent artifact

types in the strategic traceability graph. This is the simplest

form of trace for which three primary factors can vary

independently. The first factor is the direction of the link.

For example, the trace UMLClasses satisfies Requirements

could support forward traces such as “is requirement R

satisfied in the design?” or backward traces such as “does

this design element trace back to a requirement?” A

satisfies trace between two artifacts such that A satisfies B

in the original strategic traceability graph is modeled as

follows:

 A trace query that uses this link as-is is shown in bold,

as follows:

 A reverse direction trace is depicted in a similar way.

However, the original name and direction of the trace is

depicted as an annotation above the reverse trace, as shown

below:

 Another common case of tracing across primitive links

defines whether the trace should return a set of matching

(i.e., traced) artifacts, i.e., “Return a list of B elements and

the A elements that satisfy them” or instead return the

missing set with the query “Return a list of B elements that

are not satisfied by one or more A elements.” In our

proposed modeling notation, we represent the case of the

missing set query as:

in which the ! symbol represents the missing trace query

described above.

 Primitive traces can also be constrained according to

filters. For example, we might issue a trace from B to A, in

which B is filtered according to the value of some attribute.

Each filter is set on one specific artifact type. For example,

in the following diagram, artifact B is filtered to only

include records for which Status = True. This is

represented in our modeling notation as follows:

 Composite traceability paths occur between two non-

adjacent artifact types in the traceability graph. They are

used to compose two or more primitive traces. Composite

traceability paths can be visualized on the strategic

traceability graph, as depicted in Figure 2, which maps the

trace query “return a list of requirements that trace to code

which has failed its test case.” However, as trace queries

can be fairly complicated, we have adopted the technique of

modeling them in sequence-style diagrams, as shown in

Figure 3. There are several different ways (called

traceability paths) in which this trace query could be

implemented. For example, we could start at requirements,

and trace via code, to test cases, and then to test case results

and then filter out the results to include only those

requirements with failed test cases. Alternately, we could

start at the failed test cases and then trace back to find

corresponding code and related requirements. Generally,

most trace queries can be performed in more than one way.

In this case the results should be the same, but the second

approach is more efficient. On the other hand, the second

approach would not catch the case of untested code, as it is

8

limited to detecting failed test cases. The purpose of the

trace must therefore be carefully considered and modeled.

One of the purposes of modeling a trace is so that it can be

automatically transformed into an executable query. This is

discussed in the following section on the executable layer.

 Composite trace queries occur when multiple

traceability paths are combined to increase the reliability or

the knowledge of the trace result. For example, Figure 4

shows two different traces which are combined to answer

the query of whether there are any missing links between

requirements and code which could be discovered by

exploring indirect links from requirements, via design, to

code. In Figure 4, sub-query 1 returns the set of

requirements which do not have traceability links to code,

while sub-query 2 uses these untraced requirements as

input, and traces them via the UML design to look for

indirect traces to code. The results can be used to help an

analyst update the requirements to code traceability matrix.

This is an example of a composite trace.

 Sub-queries can therefore be combined together in

several different ways including: (i) Composition, (ii)

reporting multiple results as separate entities, (iii)

displaying multiple results in a single physical report

without making any attempt to reconcile the results, and

finally (iv) defining a set of heuristics or formulas for

merging the results into a single consolidated result set. As

a very simple example, a trace could be returned either if

both result sets show it to be correct or if at least one of

them does. Alternately, a voting scheme could be

employed to generate a final set of results.

2.4 The Executable Layer

 The executable layer provides a relatively simple user

interface which displays all pre-defined queries for the

project. A non-technical project stakeholder could

therefore select a query, execute it, and analyze the results

either using a special visualization tool, some kind of word

processing document, or a spreadsheet.

 The executable layer is responsible for transforming a

query in the model into the underlying XQuery

representation. Our modeling notation is designed to

support this kind of transformation. For example, the first

trace in Sub-query 1 of Figure 4 represents a request to

retrieve the list of system requirements that are not satisfied

by code. To accomplish this, a complete list of system

requirements is retrieved from Requirements.xml (as

defined in the CodeToReqs.xml matrix document). The

diff between this list and the list of traced requirements in

the trace matrix is computed, and a list of requirements

with no matching code links is returned.

 The executable layer is also responsible for various

visualizations and reporting formats of the delivered

results. For this reason, the sequence diagram in Figure 3

also shows a “Visualizer” object.

Figure 3. Defining a trace query as a sequence diagram

Figure 2. Trace query mapped onto the strategic

traceability graph

Fi

9

3. Reuse across Projects

 In addition to easing the task of developing and issuing

traceability queries, several parts of our approach are easily

shared across projects. For example, an organization could

define a generic strategic traceability graph and associated

trace queries for use across multiple projects. These would

then be mapped to specific documents at the individual

project level. Our approach also allows for trace queries to

be organized by role, so that a tester sees one specific

subset of queries, while a project manager sees another.

4. Conclusions

 This position paper has proposed a new approach for

managing traceability strategies and queries in which

project stakeholders can plan, generate, and execute trace

strategies in a modeling environment. The four layered

model builds on existing techniques for defining

traceability metagraphs, and then introduces a new

technique for modeling reusable traceability queries. The

proposed approach requires little additional effort above

and beyond the non-trivial effort already needed to create

and maintain traceability links; however its benefits are

realized when traceability queries are made more accessible

to more stakeholders, and when these queries and

associated strategic traceability graphs are re-used in

subsequent models.

 The closest related work by Sousa et al. [7] introduced a

traceability based framework for product line development,

in which traces were executed through instantiating abstract

classes. However their approach is very development

centric and not designed for general stakeholder use. Our

approach has the potential to significantly improve the

benefits that can be achieved by establishing traceability

matrices for a project. We have currently implemented a

prototype of our model using a set of XML documents and

associated queries executed using a tool named BASEX.

 Current work is focused on developing and

comparatively evaluating several candidate modeling

notations to determine which approach is most intuitive for

an average user while supporting a wide variety of queries.

Our current work involves building the GUI prototype

outlined in this paper. Future work will test the utility of

the modeling notation and the overall approach against

much larger and more varied sets of software artifacts.

Acknowledgments
This work is funded in part by the National Science

Foundation under NSF grants CCF-0811140 and 0810924.

References

[1] J. Cleland-Huang, B. Berenbach, S. Clark, R. Settimi,

and E. Romanova. "Best Practices for Automated

Traceability," Computer, 2007, vol. 40, no. 6, pp. 9.

[2] M.L.Collard, J.I. Maletic, and A. Marcus, (2002),

"Supporting Document and Data Views of Source

Code," in Proceedings of ACM Symposium on

Document Engineering (DocEng’02), McLean VA,

November 8-9, 2002, pp. 34-41.

[3] J. Lin, J. Cleland-Huang, R. Settimi, J. Amaya, G.

Bedford, B. Berenbach, O.B.Khadra, C.Duan, and X.

Zou, (2006), "Poirot: A Distributed Tool Supporting

Enterprise-Wide Traceability," in Proceedings of IEEE

Intn’l Conf. on Requirements Engineering (RE'06) -

Tool Demo, Sept. 2006.

[4] R. Oliveto, A. Marcus, J. Huffman Hayes, “Software

Artefact Traceability: the Never-Ending Challenge.”

ICSM 2007: 485-488

[5] B. Ramesh, and M. Jarke, (2001), "Towards Reference

Models for Requirements Traceability," IEEE Trans.on

Software Engineering, vol. 27, no. 1, Jan, pp. 58-93.

[6] D.C.Schmidt. “Model-driven engineering," IEEE

Computer, vol. 39, no 2, February, 2006, pp. 25-31.

[7] Sousa et al, “A Model-Driven Traceability Framework to

Software Product Line Development,” ECMDA Traceability

Workshop, June, 2008.

Figure 4. A composite query in which the output of one sub-query provides the input for another

10

