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Abstract Situational awareness is crucial for autonomous

driving in urban environments. This paper describes the mov-

ing vehicle detection and tracking module that we developed

for our autonomous driving robot Junior. The robot won sec-

ond place in the Urban Grand Challenge, an autonomous

driving race organized by the U.S. Government in 2007.

The module provides reliable detection and tracking of mov-

ing vehicles from a high-speed moving platform using laser

range finders. Our approach models both dynamic and geo-

metric properties of the tracked vehicles and estimates them

using a single Bayes filter per vehicle. We present the no-

tion of motion evidence, which allows us to overcome the

low signal-to-noise ratio that arises during rapid detection

of moving vehicles in noisy urban environments. Further-

more, we show how to build consistent and efficient 2D rep-

resentations out of 3D range data and how to detect poorly

visible black vehicles. Experimental validation includes the

most challenging conditions presented at the Urban Grand

Challenge as well as other urban settings.

Keywords vehicle tracking · autonomous driving · urban
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1 Introduction

Autonomously driving cars have been a long-lasting dream

of robotics researchers and enthusiasts. Self-driving cars promise

to bring a number of benefits to society, including preven-

tion of road accidents, optimal fuel usage, comfort and con-

venience. In recent years the Defense Advanced Research

Projects Agency (DARPA) has taken a lead on encouraging

research in this area and organized a series of competitions

for autonomous vehicles. In 2005 autonomous vehicles were

able to complete a 131 mile course in the desert (Buehler

et al, 2007). In the 2007 competition, the Urban Grand Chal-

lenge (UGC), the robots were presented with an even more

difficult task: autonomous safe navigation in urban environ-

ments. In this competition the robots had to drive safely with

respect to other robots, human-driven vehicles and the envi-

ronment. They also had to obey the rules of the road as de-

scribed in the California rulebook (see DARPA (2007) for

a detailed description of the rules). One of the most signif-

icant changes from the previous competition is the need for

situational awareness of both static and dynamic parts of the

environment. Several successful approaches have been de-

veloped in parallel by the UGC participants (Leonard et al,

2008; Urmson et al, 2008). Our robot, Junior, won second

prize in the 2007 competition. An overview of Junior’s soft-

ware and hardware architecture is given in Montemerlo et al

(2008). In this paper we describe the approach we developed

for detection and tracking of moving vehicles.

Vehicle tracking has been studied for several decades. A

number of approaches focused on the use of vision exclu-

sively (Zielke et al, 1993; Dickmanns, 1998; Dellaert and

Thorpe, 1998), whereas others utilized laser range finders

(Zhao and Thorpe, 1998; Streller et al, 2002; Wang et al,

2007) sometimes in combination with vision (Wender and

Dietmayer, 2008). We give an overview of prior art in Sect. 2.
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(a)

(b)

Fig. 1 (a) Our robot Junior (blue) negotiates an intersection with

human-driven vehicles at the qualification event for the Urban Grand

Challenge in November 2007. (b) Junior, is equipped with five different

laser measurement systems, a multi-radar assembly, and a multi-signal

inertial navigation system.

(a) without geometric model (b) with geometric model

Fig. 2 Scans from vehicles are often split up into separate clusters by

occlusion. Geometric vehicle model helps interpret the data properly.

Purple rectangles group together points that have been associated to-

gether. In (b) the purple rectangle also denotes the geometric vehicle

model. Gray areas are objects. Gray dotted lines represent laser rays.

Black dots denote laser data points. (Best viewed in color.)

For our application we are concerned with laser based

vehicle tracking from the autonomous robotic platform Ju-

nior, to which we will also refer as the ego-vehicle (see

Fig. 1). In contrast to prior art, we propose a model based

approach which encompasses both geometric and dynamic

properties of the tracked vehicle in a single Bayes filter. The

(a) without shape estimation

(b) with shape estimation

Fig. 3 Vehicles come in different sizes. Accurate estimation of ge-

ometric shape helps obtain a more precise estimate of the vehicle

dynamics. Solid arrows show the actual distance the vehicle moved.

Dashed arrows show the estimated motion. Purple rectangles denote

the geometric vehicle models. Black dots denote laser data points.

(Best viewed in color.)

approach eliminates the need for separate data segmentation

and association steps. We show how to properly model the

dependence between geometric and dynamic vehicle prop-

erties using anchor point coordinates. The geometric model

allows us to naturally handle the disjoint point clusters that

often result from partial occlusion of vehicles (see Fig. 2).

Moreover, the estimation of geometric shape leads to accu-

rate prediction of dynamic parameters (see Fig. 3).

Further, we introduce an abstract sensor representation,

called the virtual scan, which allows for efficient computa-

tion and can be used for a wide variety of laser sensors. We

present techniques for building consistent virtual scans from

3D range data and show how to detect poorly visible black

vehicles in laser scans. To battle the low signal-to-noise ra-

tio during rapid detection of vehicles in noisy urban settings,

we introduce the notion of motion evidence, which allows

us to quickly prune false positives caused by noise. Our ap-

proach runs in real time with an average update rate of 40Hz,

which is 4 times faster than the common sensor frame rate

of 10Hz. The results show that our approach is reliable and

efficient even in the challenging traffic situations presented

at the UGC.

2 Background

A number of vehicle tracking approaches have been devel-

oped over the past few decades (e.g. Zhao and Thorpe (1998);

Streller et al (2002); Wang (2004); Wender and Dietmayer

(2008)) including most recent developments by the UGC
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participants (Darms et al, 2008; Leonard et al, 2008). Typi-

cally these approaches proceed in three stages: data segmen-

tation, data association, and Bayesian filter update. During

data segmentation the sensor data is divided into meaning-

ful pieces — usually line features (Zhao and Thorpe, 1998;

Darms et al, 2008) or clusters (Wender and Dietmayer, 2008;

Leonard et al, 2008). During data association these pieces

are assigned to tracked vehicles. Next, a Bayesian filter up-

date is performed to fit targets to the data.

The second stage — data association — is generally con-

sidered the most challenging stage of the vehicle detection

and tracking problem because of the association ambiguities

that arise. Typically this stage is carried out using variants

of the multiple hypothesis tracking (MHT) algorithm (e.g.

Streller et al (2002); Wang et al (2007)).

In the third stage, the filter update is usually carried out

using variants of Kalman filter (KF), which is augmented by

the interacting multiple model method in some cases (Zhao

and Thorpe, 1998; Wang et al, 2007).

Although vehicle tracking literature primarily relies on

variants of KF, there is a great body of multiple target track-

ing literature for other applications where parametric, sample-

based, and hybrid filters are used. Blackman et al (2004)

provides a summary. For example Särkkä et al (2007) uses a

Rao-Blackwellized particle filter (RBPF) for multiple target

tracking on simulated data. A popular alternative to MHT

for data association is the joint probabilistic data associa-

tion (JPDA) method, which is used by Schulz et al (2001) to

track multiple targets from an indoor mobile robot platform.

The work included in this paper has been presented at

two conferences: Petrovskaya and Thrun (2008a) focused

on efficient detection of vehicles and Petrovskaya and Thrun

(2008b) focused on model based tracking. In contrast to prior

vehicle tracking literature, we utilize a model based approach,

which uses RBPFs and eliminates the need for separate data

segmentation and association stages. Our approach estimates

position, velocity and shape of tracked vehicles.

Further, we propose techniques for fast and accurate mov-

ing vehicle detection, which is a prerequisite for vehicle

tracking. In prior art, the detection problem has been solved

by addition of vision sensors (e.g. Wender and Dietmayer

(2008)), although visual classification does not help distin-

guish moving vehicles from stationary. Another approach is

to sample frames at lower rates to overcome the low signal-

to-noise ratio (Wang et al, 2007), although this increases

the time it takes to detect a new moving vehicle. Other de-

scribed approaches detect vehicles by scan shape (Zhao and

Thorpe, 1998; Streller et al, 2002) or by location (Wang et al,

2007). Due to possible ambiguities in the range data, these

approaches tend to have lower detection accuracy.

3 Representation

In this paper we shall assume that a reasonably precise pose

of the ego-vehicle is always available. On our robot, the pose

estimates are provided by the localization module, which is

described in detail in (Montemerlo et al, 2008). Here we

provide a brief summary. The robot is outfitted with an Ap-

planix POS LV 420 inertial navigation system (INS) which

provides pose localization with 1m accuracy. Due to peri-

odic GPS measurement updates the INS pose estimate can

suddenly shift by up to 1m. The sudden shifts are very unde-

sirable for vehicle tracking as they greatly increase tracking

uncertainty. For the purposes of vehicle tracking the ego-

vehicle pose estimate should evolve smoothly over time. For

this reason we implemented smooth coordinates, which pro-

vide a locally consistent estimate of the ego-vehicle motion

by integrating the velocity estimates from the INS. Although

the smooth pose estimate can drift over time, it does not ex-

perience sudden shifts. To map from smooth coordinates to

globally consistent GPS coordinates, one simply needs to

add an offset, which is periodically updated to reflect the

mismatch between the smooth and GPS coordinate systems.

A similar smooth coordinate system was independently de-

veloped by the MIT UGC team (Leonard et al, 2008). In

the remainder of this paper all operations will be carried out

in the smooth coordinate frame, which we will also call the

world frame. The transformation from smooth to GPS coor-

dinates will only be needed when dealing with global fea-

tures, such as the digital road map.

Following the common practice in vehicle tracking (Del-

laert and Thorpe, 1998; Dietmayer et al, 2001; Leonard et al,

2008), we will represent each vehicle by a separate Bayesian

filter, and represent dependencies between vehicles via a set

of local spatial constraints. Specifically, we will assume that

no two vehicles overlap, that all vehicles are spatially sepa-

rated by some free space, and that all vehicles of interest are

located on or near the road.

3.1 Probabilistic Model and Notation

For each vehicle we estimate its 2D position and orientation

Xt = (xt ,yt ,θt) at time t, its forward velocity vt and its ge-

ometry G (further defined in Sect. 3.2). Also at each time

step we obtain a new measurement Zt . A dynamic Bayes

network representation of the resulting probabilistic model

is shown in Fig. 4. The dependencies between the parame-

ters involved are modeled via probabilistic laws discussed in

detail in Sects. 3.3 and 3.5. For now we briefly note that the

velocity evolves over time according to

p(vt |vt−1). (1)
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Fig. 4 Dynamic Bayesian network model of the tracked vehicle pose

Xt , forward velocity vt , geometry G, and measurements Zt .

Fig. 5 As we move to observe a different side of a stationary car, our

belief of its shape changes and so does the position of the car’s center

point. To compensate for the effect, we introduce local anchor point

coordinates C = (Cx,Cy) so that we can keep the anchor point Xt sta-

tionary in the world coordinates.

The vehicle moves based on the evolved velocity according

to a dynamics model:

p(Xt |Xt−1,vt). (2)

The measurements are governed by a measurement model:

p(Zt |Xt ,G). (3)

For convenience we will write X t = (X1,X2, ...,Xt) for the

vehicle’s trajectory up to time t. Similarly, vt and Zt will

denote all velocities and all measurements up to time t.

3.2 Vehicle Geometry

The exact geometric shape of a vehicle can be complex and

difficult to model precisely. For simplicity we approximate

it by a rectangular shape of width W and length L. The 2D

representation is sufficient because the height of tracked ve-

hicles is not important for driving applications.

During vehicle tracking, the state variable Xt usually rep-

resents the position of the vehicle’s center in the world co-

ordinate frame. However, there is an interesting dependence

between our belief about the vehicle’s shape and its position.

As we observe the object from a different vantage point, we

change not only our belief of its shape, but also our belief

of the position of its center point. Allowing Xt to denote the

center point can lead to the undesired effect of obtaining a

non-zero velocity for a stationary vehicle, simply because

we refine our knowledge of its shape as Fig. 5 illustrates.

To overcome this problem, we view Xt as the pose of

an anchor point whose position with respect to the vehicle’s

center can change over time. Initially we set the anchor point

to be the center of what we believe to be the car’s shape and

thus its coordinates in the vehicle’s local coordinate system

are C = (0,0). We assume that the vehicle’s local coordinate

system is tied to its center with the x-axis pointing directly

forward. As we revise our knowledge of the vehicle’s shape,

the local coordinates of the anchor point will also need to be

revised accordingly to C = (Cx,Cy). Thus, the complete set

of geometric parameters is G = (W,L,Cx,Cy).

3.3 Vehicle Dynamics Model

In vehicle tracking literature it is common to use a constant

velocity model (Dellaert and Thorpe, 1998), a constant ac-

celeration model (Dietmayer et al, 2001), or a switching dy-

namics model (Wang, 2004; Darms et al, 2008). We use the

constant velocity model and assume that velocity of each

tracked vehicle stays constant for the duration of each time

interval from t − 1 to t. It also instantaneously evolves at

each time step t via addition of random bounded noise based

on maximum allowed acceleration amax and the time delay

∆ t from the previous time step t−1. Specifically, we sample

∆v uniformly from [−amax∆ t, amax∆ t].

The pose evolves via linear motion (Thrun et al, 2005,

Sec. 5.4) — a motion law that is often utilized when exact

dynamics of the object are unknown. The motion consists

of perturbing orientation by ∆θ1, then moving forward ac-

cording to the current velocity by vt∆ t, and making a final

adjustment to orientation by ∆θ2. Again we sample ∆θ1 and

∆θ2 uniformly from [−dθmax∆ t, dθmax∆ t] for a maximum

allowed orientation change dθmax.

3.4 Sensor Data Representation

In this paper we focus on laser range finders for sensing

the environment. Recently these sensors have evolved to be

more suitable for driving applications. For example IBEO

Alasca sensors allow for easy ground filtering by collecting

four parallel horizontal scan lines and marking which of the

readings are likely to come from the ground (Ibeo Automo-

bile Sensor GmbH, 2008). Velodyne HDL-64E sensors do

not provide ground filtering, however they take a 3D scan

of the environment at high frame rates (10Hz) producing
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(a) anatomy of a virtual scan

(b) a virtual scan constructed from Velodyne data

Fig. 6 In (b) yellow line segments represent virtual rays. Colored

points show the results of a scan differencing operation. Red points are

new obstacles, green points are obstacles that disappeared, and white

points are obstacles that remained unchanged or appeared in previously

occluded areas. (Best viewed in color.)

1,000,000 readings per second (Velodyne Lidar, Inc., 2008).

Given such rich data, the challenge has become to process

the readings in real time. Vehicle tracking at 10 - 20Hz is

desirable for driving decision making.

A number of factors make the use of raw sensor data

inefficient. As the sensor rotates to collect the data, each

new reading is made from a new vantage point due to ego-

motion. Ignoring this effect leads to significant sensor noise.

Taking this effect into account makes it difficult to quickly

access data that pertains to a specific region of space. Much

of the data comes from surfaces uninteresting for the pur-

pose of vehicle tracking, e.g. ground readings, curbs and

tree tops. Finally, the raw 3D data wastes a lot of resources

as vehicle tracking is a 2D application where the cars are

restricted to move on the ground surface. Therefore it is de-

sirable to pre-process the data to produce a virtual sensor

representation tailored for vehicle tracking.

Virtual sensors have been employed in the past for a

wide range of applications. For example, in neuroimaging,

virtual sensors have been created from fMRI data using ma-

chine learning techniques for diagnosis of mental processes

in patients with brain injuries (Mitchell et al, 2002). In sen-

sor networks, virtual sensors have been implemented to ab-

stract data from multiple non-homogeneous sensors (Kaba-

dayi et al, 2006). In geoscience, virtual sensors have been

constructed using models trained on spectrally rich data to

“fill in” unmeasured spectral channels in spectrally poor data

for improved detection of clouds over snow and ice (Srivas-

tava et al, 2005). In artificial intelligence and robotics, vir-

tual sensors are commonplace in simulated environments,

often used as a testbed for perception, planning and control

algorithms (Thalmann et al, 1997; Gerkey et al, 2003).

To create a virtual sensor for our application, we con-

struct a grid in polar coordinates — a virtual scan — which

subdivides 360◦ around a chosen origin point into angular

grid cells (see Fig. 6). In each angular grid cell we record the

range to the closest obstacle within that cell. Hence each an-

gular grid cell contains the following information: the space

from origin up to the recorded range is free, at the recorded

range – occupied, and beyond the recorded range – occluded.

We will often refer to the cone of an angular grid cell from

the origin up to the recorded range as a ray due to its simi-

larity to a laser ray. We will also treat each angular grid cell

as a single range measurement in the virtual scan.

Virtual scans simplify data access by providing a single

point of origin for the entire data set, which allows constant

time look-up for any given point in space. As we mentioned

earlier, it is important to compute correct world coordinates

for the raw sensor readings. However, once the correct po-

sitions of obstacle points have been computed, adjusting the

origin of each ray to be at the common origin for the virtual

scan produces an acceptable approximation. To minimize

the error due to approximation, we select the common origin

to be the average sensor pose during scan collection. Con-

structed in this manner, a virtual scan provides a compact

representation of the space around the ego-vehicle classified

into free, occupied and occluded. The classification helps us

properly reason about what parts of an object should be vis-

ible as we describe in Sect. 3.5.

One important parameter of a virtual scan is the angular

resolution. Although coarser resolutions can speed up com-

putations because fewer rays need to be examined, it is de-

sirable to set the resolution as fine as possible in order to

capture more detail about objects at long range.1 For this

reason, we set the resolution as fine as possible in our im-

plementation. For the IBEO lasers we set the resolution to

0.5◦, which is the highest resolution the sensor provides.

For the purpose of vehicle tracking it is crucial to de-

termine what changes take place in the environment over

time. With virtual scans these changes can be easily com-

puted in spite of the fact that ego-motion can cause two con-

secutive virtual scans to have different origins. The changes

are computed by checking which obstacles in the old scan

1 In principle it is possible to get the best of both worlds by con-

structing several virtual scans of varying resolution for the same laser

data. Lower resolution virtual scans can be used to examine close range

objects, while higher resolution scans can be used for long range oper-

ations.
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are cleared by rays in the new scan and vice versa. This

computation takes time linear in the size of the virtual scan

and only needs to be carried out once per frame. Fig. 6(b)

shows results of a virtual scan differencing operation with

red points denoting new obstacles, green points denoting ob-

stacles that disappeared, and white points denoting obstacles

that remained in place or appeared in previously occluded

areas.

Virtual scans are a suitable representation for a wide va-

riety of laser range finders. While this representation is easy

to build for 2D sensors such as IBEO, 3D range sensors

require additional considerations to produce consistent 2D

representations. We describe these techniques in Sect. 6.

3.5 Measurement Model

This section describes the measurement model p(Z|X ,G)

used in our approach. Here Z is a virtual scan representation

of a single frame of range data from a laser range finder. To

our knowledge, range scan likelihood models have not been

proposed for vehicle tracking, as most of the vehicle track-

ing literature is concerned with tracking point targets — usu-

ally centers of clusters (Wang, 2004; Leonard et al, 2008) or

features extracted from the range data (Streller et al, 2002;

Wender and Dietmayer, 2008; Darms et al, 2008). In contrast

to the prior art, we are able to provide a direct interpretation

of the range measurements because we model geometry of

the tracked vehicles. Measurement models for range find-

ers in the presence of a geometric environment model have

been proposed in mobile robot localization and mapping lit-

erature, where the environment is commonly represented by

an occupancy grid map (see Thrun et al (2005, Ch. 6) for

an overview). The two most common models are the inde-

pendent beam model (IB) (Moravec, 1988; Burgard et al,

1996; Fox et al, 1999) and the likelihood field model (LF)

(Thrun, 2001). The IB model treats each ray in the scan as

an independent measurement of range to the closest obstacle

along the ray corrupted by Gaussian noise. One drawback of

the IB model is that rays are represented by lines. This as-

sumption does not work well at longer ranges (50− 100m)

typical in outdoor environments. Outdoors it is better to rep-

resent rays by cones because the laser spot light is of non-

negligible radius (20−40cm). Another drawback is that the

IB model does not leave room for possible unmodeled oc-

clusions of the geometric model — a very common scenario

in vehicle tracking. The LF model also treats laser rays as in-

dependent of each other. The end point of each ray is com-

pared to the closest obstacle point (not necessarily on the

ray itself) under the assumption of Gaussian noise. The LF

model is more appropriate for cone representation of rays.

It also handles unmodeled occlusions very well. However

the LF model allows rays to go through obstacles without

any penalty. This is undesirable for vehicle tracking because

(a)

(b)

Fig. 7 Measurement likelihood computations. (a) shows the geometric

regions involved in the likelihood computations. (b) shows the costs

assignment for a single ray. (Best viewed in color.)

rays going through a candidate vehicle provide strong evi-

dence that these points may not belong to the same physical

object.

Given a vehicle’s pose X , geometry G and a virtual scan

Z, we compute the measurement likelihood p(Z|G,X) as

follows. We position a rectangular shape representing the

vehicle according to X and G. Then we build a bounding

box to include all points within a predefined distance λ 2

around the vehicle (see Fig. 7). Assuming that there is an ac-

tual vehicle in this configuration, we would expect the points

within the rectangle to be occupied or occluded, and points

in its vicinity to be free or occluded because vehicles are

spatially separated from other objects in the environment.

Like the IB and LF models for laser range finders, we

consider measurements obtained along each ray to be con-

ditionally independent of each other given vehicle pose and

geometry. Thus, if we have a total of N rays in the virtual

scan Z, the measurement likelihood factors as follows:

p(Z|G,X) =
N

∏
i=1

p(zi|G,X). (4)

Following the IB and LF models, we use a Gaussian form

for each ray’s likelihood. Specifically, we model it as a zero-

mean Gaussian of variance σi computed with respect to a

2 We used the setting of λ = 1m in our implementation.
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cost ci selected based on the relationship between the ray

and the vehicle (ηi is a normalization constant):

p(zi|G,X) = ηi exp
(

−
c2

i

2σ2
i

)

. (5)

The costs are set to constants that depend on the region in

which the ray’s end point falls (see Fig. 7 for illustration).

cocc is the cost for range readings that fall short of the bound-

ing box and thus represent situations when another object is

occluding the vehicle. cb is the cost for range readings that

fall short of the vehicle but inside of the bounding box. cs is

the cost for readings on the vehicle’s visible surface which

we assume to be of non-zero depth. cp is used for rays that

extend beyond the vehicle’s surface. Assigning likelihood

based on the region of space in which a ray’s end point falls

bears resemblance to the LF model. It is more appropriate

for cone representation of rays than the IB model. Like the

LF model our measurement model gives little penalty to oc-

clusions by other objects, but unlike the LF model we assign

a large penalty to rays passing through the candidate vehicle.

We also enforce our assumption of free space around each

vehicle by assigning a large penalty to rays that terminate in

this region.

The domain for each range reading is between the mini-

mum range rmin and the maximum range rmax of the sensor.

Since the costs we select are piece-wise constant, it is easy

to integrate the unnormalized likelihoods to obtain the nor-

malization constants ηi. Note that for the rays that do not

target the vehicle or the bounding box, the above logic au-

tomatically yields uniform distributions as these rays never

hit the bounding box.

Note that the above measurement model naturally han-

dles partially occluded objects including objects that are “split

up” by occlusion into several point clusters (see Fig. 2). In

contrast, these cases are often challenging for approaches

that utilize separate data segmentation and correspondence

methods.

4 Vehicle Tracking

Most vehicle tracking methods described in the literature

apply separate methods for data segmentation and corre-

spondence matching before fitting model parameters via ex-

tended Kalman filter (EKF). In contrast, we use a single

Bayesian filter to fit model parameters from the start. This

is possible because our model includes both geometric and

dynamic parameters of the vehicles and because we rely on

efficient methods for parameter fitting. We chose the particle

filter method for Bayesian estimation because it is more suit-

able for multi-modal distributions than EKF. Unlike the mul-

tiple hypothesis tracking (MHT) method commonly used in

the literature, the computational complexity for our method

grows linearly with the number of vehicles in the environ-

ment because vehicle dynamics dictates that vehicles can

only be matched to data points in their immediate vicinity.

The downside, of course, is that two targets can in principle

merge into one. In practice we have found that this happens

rarely and only in situations where one of the targets is lost

due to complete occlusion. In these situations target merging

is acceptable for our application.

We have a total of eight parameters to estimate for each

vehicle: X = (x,y,θ), v, G = (W,L,Cx,Cy). Computational

complexity grows exponentially with the number of param-

eters for particle filters. Thus, to keep computational com-

plexity low, we turn to RBPFs first introduced in Doucet et al

(2000). We estimate X and v by samples and keep Gaussian

estimates for G within each particle. Below we give a brief

derivation of the required update equations.

4.1 Derivation of Update Equations

At each time step t, we produce an estimate of a Bayesian

belief about the tracked vehicle’s trajectory, velocity, and ge-

ometry based on a set of measurements:

Belt = p(X t ,vt ,G|Zt). (6)

The derivation provided below is similar to the one used

in Montemerlo (2003). We split up the belief into two con-

ditional factors:

Belt = p(X t ,vt |Zt) p(G|X t ,vt ,Zt). (7)

The first factor encodes the vehicle’s motion posterior,

Rt = p(X t ,vt |Zt). (8)

The second factor encodes the vehicle’s geometry posterior,

conditioned on its motion,

St = p(G|X t ,vt ,Zt). (9)

The factor Rt is approximated using a set of particles; the

factor St is approximated using a Gaussian distribution (one

Gaussian per particle). Let us denote a particle by qt
m =

(X t,[m],vt,[m],S
[m]
t ) and a collection of particles at time t by

Qt = {qt
m}m. We compute Qt recursively from Qt−1. Sup-

pose that at time step t, particles in Qt−1 are distributed ac-

cording to Rt−1. We compute an intermediate set of particles

Q̄t by sampling a guess of the vehicle’s pose and velocity

at time t from the dynamics model (described in detail in

Sect. 3.3). Thus, particles in Q̄t are distributed according to

the vehicle motion prediction distribution,

R̄t = p(X t ,vt |Zt−1). (10)

To ensure that particles in Qt are distributed according to Rt

(asymptotically), we generate Qt by sampling from Q̄t with

replacement in proportion to importance weights given by
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wt = Rt/R̄t . Before we can compute the weights, we need to

derive the update equations for the geometry posterior.

We use a Gaussian approximation for the geometry pos-

terior, St . Thus we keep track of the mean µt and the co-

variance matrix Σt of the approximating Gaussian in each

particle: qt
m = (X t,[m],vt,[m],µ [m]

t ,Σ [m]
t ). We have:

St = p(G|X t ,vt ,Zt)

∝ p(Zt |G,X t ,vt ,Zt−1) p(G|X t ,vt ,Zt−1)

= p(Zt |G,Xt) p(G|X t−1,vt−1,Zt−1). (11)

The first step above follows from Bayes’ rule; the second

step follows from the conditional independence assumptions

of our model (Fig. 4). The expression (11) is a product of the

measurement likelihood and the geometry prior St−1. To ob-

tain a Gaussian approximation for St , we linearize the mea-

surement likelihood as will be explained in Sect. 4.3. Once

the linearization is performed, the mean and the co-variance

matrix for St can be computed in closed form because St−1 is

already approximated by a Gaussian (represented by a Rao-

Blackwellized particle from the previous time step).

Now we are ready to compute the importance weights.

Briefly, following the derivation in Montemerlo (2003), it

is straightforward to show that the importance weights wt

should be:

wt = Rt/R̄t =
p(X t ,vt |Zt)

p(X t ,vt |Zt−1)
= IESt−1

[ p(Zt |G,Xt) ]. (12)

In words, the importance weights are the expected value

(with respect to the vehicle geometry prior) of the measure-

ment likelihood. Using Gaussian approximations of St−1 and

p(Zt |G,Xt), this expectation can be expressed as an integral

over a product of two Gaussians, and can thus be carried out

in closed form.

4.2 Motion Inference

As we mentioned in Sect. 3.1, a vehicle’s motion is governed

by two probabilistic laws: p(vt |vt−1) and p(Xt |Xt−1,vt). These

laws are related to the motion prediction distribution as fol-

lows:

R̄t = p(X t ,vt |Zt−1)

= p(Xt ,vt |X
t−1,vt−1,Zt−1) p(X t−1,vt−1|Zt−1)

= p(Xt |X
t−1,vt ,Zt−1) p(vt |X

t−1,vt−1,Zt−1) Rt−1

= p(Xt |Xt−1,vt) p(vt |vt−1) Rt−1. (13)

The first and second steps above are simple conditional fac-

torizations; the third step follows from the conditional inde-

pendence assumptions of our model (Fig. 4).

Note that since only the latest vehicle pose and velocity

are used in the update equations, we do not need to actually

store entire trajectories in each particle. Thus the memory

storage requirements per particle do not grow with t.

4.3 Shape Inference

In order to maintain the vehicle’s geometry posterior in a

Gaussian form, we need to linearize the measurement likeli-

hood p(Zt |G,Xt) with respect to G. Clearly the measurement

likelihood does not lend itself to differentiation in closed

form. Thus we turn to Laplace’s method to obtain a suit-

able Gaussian approximation. The method involves fitting

a Gaussian at the global maximum of a function. Since the

global maximum is not readily available, we search for it

via local optimization starting at the current best estimate of

geometry parameters. Due to construction of our measure-

ment model (Sect. 3.5), the search is inexpensive as we only

need to recompute the costs for the rays directly affected by

a local change in G.

The dependence between our belief of the vehicle’s shape

and its position (discussed in Sect. 3.2) manifests itself in

a dependence between the local anchor point coordinates

C and the vehicle’s width and length. The vehicle’s corner

closest to the vantage point is a very prominent feature that

impacts how the sides of the vehicle match the data. When

revising the belief of the vehicle’s width and length, we keep

the closest corner in place. Thus a change in the width or

the length leads to a change in the global coordinates of the

vehicle’s center point, for which we compensate with an ad-

justment in C to keep the anchor point in place. This way a

change in geometry does not create phantom motion of the

vehicle.

4.4 Initializing and Discontinuing Tracks

New tracks are initialized in areas where scan differencing

detects a change in data that is not already explained by

existing tracks. New tracks are fitted using the same mea-

surement and motion models that we use for vehicle track-

ing (Sects. 3.5 and 3.3). The candidates are vetted for three

frames before they can become “real tracks”. Detection of

new vehicles is the most computationally expensive part of

vehicle tracking. In Sect. 5 we describe the techniques we

used to achieve reliable vehicle detection in real time.

We discontinue tracks if the target vehicle gets out of

sensor range or moves too far away from the road.3 We also

discontinue tracks if the unnormalized weights have been

low for several turns. Low unnormalized weights signal that

the sensor data is insufficient to track the target, or that our

estimate is too far away from the actual vehicle. This logic

keeps the resource cost of tracking occluded objects low,

yet it still allows for a tracked vehicle to survive bad data

or complete occlusion for several turns. Since new track ac-

quisition only takes three frames, it does not make sense to

3 A digital street map was available for our application in the Road

Network Definition Format (RNDF).
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continue tracking objects that are occluded for significantly

longer periods of time.

5 Vehicle Detection

Accurate moving vehicle detection in laser range data re-

quires three frames. The first two frames are required to de-

tect motion of an object. The third frame is required to check

that the motion is consistent over time and follows the ve-

hicle dynamics law. Thus for a 10Hz sensor the minimum

vehicle detection time is 0.3 seconds.

Note that detection based on three frames allows for ac-

curate results because we can observe two consecutive mo-

tion updates and verify that the observed motion is consis-

tent with a moving vehicle. For some applications it may be

acceptable to sacrifice accuracy in favor of faster detection

based on just one or two frames. For example in Wang et al

(2007) objects that appear in areas previously seen as empty

are detected as “moving”. Often this approach is adopted

when the intention is to filter out moving obstacles to build

a static map.

5.1 The Basic Detection Algorithm

Our vehicle detection method proceeds in three stages:

1. First a vehicle is fitted using importance sampling in an

area where a change in the environment has been de-

tected by scan differencing. The scoring is performed

using the measurement model described in Sect. 3.5.

2. Next the vehicle’s velocity is estimated by performing a

particle filter update step and scoring using the measure-

ment model in the next frame.

3. During the last stage, another particle filter update is per-

formed and scored against a third frame.

5.2 Challenges in Vehicle Detection

The range data in outdoor urban environments contains large

amounts of noise that adds up from a number of sources.

The limitations of horizontal scan resolution (0.5◦ for IBEO

and 0.1◦ for Velodyne) and vertical scan resolution (0.4◦ for

Velodyne) produce 40−50cm noise at 60m range. Another

source of noise is the laser beam spot size, which can exceed

the scan resolution (Sick Optics, 2003). Scanning the same

vehicle at a slightly different height can result in 1 − 2m

range discrepancy. Additional noise comes from the virtual

scan approximation (25cm at 60m range for 0.5◦ angular

resolution) and the box model approximation of the vehi-

cle’s shape (20− 40cm). Internal sensor construction, cir-

cuitry, and messaging time delays also produce noise, which

Fig. 8 Diagram representing forward motion of a bus. Green color rep-

resents the position of the bus at time t. Red color represents its posi-

tion at time t + 1. The green shaded area in the back of the bus frees

up as the bus moves forward. The red shaded area in the front of the

bus becomes occupied. Note that these changes are small compared to

the overall area taken up by the bus, which remains occupied in both

frames. (Best viewed in color.)

is in general difficult to quantify. Studies have been per-

formed for older sensors (Mäkynen, 2000; Blais, 2004), but

this information is not yet available for the newer models

of range finders. Finally, environmental factors such as dust

and rain cause false readings many meters off the actual tar-

get.

For the driving application we need to detect vehicles

moving at 5mph to 35mph with a 10Hz sensor. Thus a vehi-

cle moves 20− 150cm per frame. This signal can be easily

overwhelmed by noise especially in the lower range of the

velocities. The poor signal-to-noise ratio makes it difficult to

accurately tell a moving object apart from noise in just three

frames.

Although the signal is easier to detect if we use more

than three frames, this solution is undesirable because it in-

creases the detection time and takes up more computational

resources. A more efficient approach, proposed by Wang

et al (2007), is to sample the frames at a lower rate (e.g.

1Hz), so that the signal is prevalent over the noise. How-

ever, this method also increases the total time required for

detection of a vehicle and therefore it is unsuitable for our

application.

5.3 Motion Evidence

To overcome the poor signal-to-noise ratio, we turn to the

method used by humans to detect moving vehicles in noisy

data. Consider a long bus moving forward at 5mph (Fig. 8).

From one frame to the next it travels 20cm - a negligible dis-

tance compared to the noise and overall size of the vehicle.

Since the middle of the bus appears stationary, a human try-

ing to discern motion will focus on the front and back of the

bus, to see if there is at least a tad of motion.

To take advantage of the same method for vehicle detec-

tion, we define a score we call motion evidence. To compute

this score, we consider the regions cleared by the vehicle as

it moves. The cleared area behind the vehicle should be oc-
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cupied in the prior frame and free in the current frame. Sim-

ilarly, the area in front of the moving vehicle should be free

in the prior frame and occupied in the current frame. Often

we can only observe the front or the back of the vehicle, thus

only half of the evidence is available due to self-occlusion.

To allow for self-occlusion and partial occlusions by other

objects we threshold the motion evidence score at 25%.

Note that the motion evidence score is different from the

probabilities obtained by fitting a vehicle using a particle

filter. The particle filter computes the probability that mo-

tion “could have” happened, whereas the motion evidence

scores the motion that “must have” happened. In the bus ex-

ample given above the motion evidence score would ignore

the entire bus except 20cm in the front and in the back.

The motion evidence score can be computed for any pair

of consecutive frames. In our approach we compute it for the

first and the second pairs of frames and filter out vehicle can-

didates for which the score is below the threshold. Doing so

provides a very dramatic decrease in false positives, without

affecting the false negatives rate.

5.4 Optimizations

Since new vehicle detection is computationally expensive,

we developed several optimizations to achieve reliable real

time performance. We describe the optimization techniques

below and evaluate their impact on the performance of vehi-

cle detection in Sect. 7.2.

5.4.1 Road Masking

Since a digital road map is available in our application, one

simple optimization is to restrict the search to the road re-

gions. We do this by marking each data point as “close to

road” or “far from road”. Only the points near the road are

considered for new vehicle detection. This optimization greatly

improves the efficiency of the vehicle detection algorithm.

5.4.2 Cleared Area

As we already discussed above, a change in the data can

be caused by either noise or motion. Ultimately the motion

evidence score will help disambiguate motion from noise.

However, the motion evidence score can only be used after

the vehicle model has already been fitted to data. To make

the search more efficient we would like to distinguish be-

tween noise and motion before performing any model fit-

tings.

When a vehicle moves forward with a minimum velocity

vmin for a time interval ∆ t, it clears an area of approximately

vmin∆ tW . Thus we can examine each data point to see if

enough space has been cleared around it to allow for mo-

tion of a vehicle. If the vehicle is moving away from us, the

cleared area will be in the current frame with respect to the

prior frame. If the vehicle is approaching us, the cleared area

will be in the prior frame with respect to the current frame.

Thus we can find both types of cleared area by performing a

symmetric clearing operation between the two frames.

Even though cleared area logic is not as powerful as

the motion evidence score, it provides a significant speed-

up when used as a fast data pre-processing step.

5.4.3 Scaling Series

The first step of vehicle detection involves fitting the geo-

metric vehicle model to a virtual scan under conditions of

large uncertainty: several meters in position and 360◦ in ori-

entation of the vehicle. Using simple importance sampling

with three state parameters makes the problem intractable

within real time constraints.

To improve performance, we turn to Scaling Series, a

method first proposed in Petrovskaya et al (2006) for a tac-

tile localization application. In that application the number

of parameters was also too large to perform an importance

sampling step in real time in conditions of global uncer-

tainty. They proposed the Scaling Series algorithm to effi-

ciently produce a much more informed proposal distribu-

tion, one that is concentrated around the areas of high prob-

ability mass. We refer the reader to Petrovskaya et al (2006)

for details on Scaling Series, but briefly, the algorithm works

by performing a series of successive refinements, generat-

ing an increasingly informative proposal distribution at each

step of the series. The successive refinements are performed

by gradually annealing the measurement model from artifi-

cially relaxed to realistic.

For our problem, we applied the Scaling Series algo-

rithm to choose the proposal distribution for the initial im-

portance sampling step. We obtained measurement model

relaxations by inflating the width, ω, of the vehicle surface

region (see Fig. 7). The normal setting for ω is 0.25m. The

most relaxed model was obtained by padding the region by

1m on the inside and outside, resulting in an ω setting of

2.25m. At this setting the vehicle surface region expands to

consume the free space region, and thus the penalty cb is

not applied. However, even with this coarse model, the algo-

rithm quickly rules out vehicle candidates placed more than

1m away from the actual vehicle location. The resulting high

likelihood region includes a region of 1m radius around the

true position of the vehicle. As ω is gradually annealed from

2.25m to 0.25m, the high likelihood region shrinks, result-

ing in a more and more informed proposal distribution.

In Sect. 7.2 we show that using this method, we obtained

a very significant improvement in the reliability of the search

and reduced the time it takes to detect a new moving vehicle

by a factor of 10.
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Fig. 9 We determine ground readings by comparing angles between

consecutive readings. If A,B,C are ground readings, then α is close to

0 and thus cosα is close to 1.

5.4.4 Backward Search

Since vehicle detection takes three frames, the minimum de-

tection time is 0.3 seconds for a sensor with a frame rate of

10Hz. It turns out that if we only search forward in time, then

the minimum detection time is 0.4 seconds for approaching

vehicles because the first frame is only used to detect dy-

namic data points in the second frame. However, if we fit

the vehicle in the second frame and then move it backwards

in time, we can utilize the first frame as well. In this case

we use frame number two for the initial vehicle fitting and

frame number one for velocity estimation. As before, the

third frame is used to check motion consistency.

6 Working with 3D Range Data

As we explained in Sect. 3.4, vehicle tracking is a 2D prob-

lem, for which compact 2D virtual scans are sufficient. How-

ever for 3D sensors, such as Velodyne, it is non-trivial to

build consistent 2D virtual scans. These sensors provide im-

mense 3D data sets of the surroundings, making computa-

tional efficiency a high priority when processing the data.

In our experience, the hard work pays off and the resulting

virtual scans carry more information than 2D sensor data.

To produce consistent 2D virtual scans, we need to un-

derstand which of the 3D data points should be considered

obstacles. From the perspective of driving applications, we

are interested in the slice of space directly above the ground

and up to 2m high, as this is the space that a vehicle would

actually have to drive through. Objects elevated more than

2m above ground — e.g. tree tops or overpasses — are not

obstacles. The ground itself is not an obstacle (assuming

the terrain is drivable). Moreover, for tracking applications,

low obstacles such as curbs should be excluded from virtual

scans because they can prevent us from seeing more impor-

tant obstacles beyond them. The remaining objects in the

2m slice of space are obstacles for a vehicle, even if these

objects are not directly touching the ground.

In order to classify the data into the different types of

objects described above we first build a 3D grid in spherical

coordinates. Similarly to a virtual scan, it has a single point

of origin and stores actual world coordinates of the sensor

readings. Just as in the 2D case, this grid is an approximation

of the sensor data set because the actual laser readings in a

scan have varying points of origin. In order to downsample

and reject outliers for each spherical grid cell we compute

the median range of the readings falling within.4 This gives

us a single obstacle point per grid cell. For each spherical

grid cell, we will refer to the cone from the grid origin to the

obstacle point as a virtual ray.

The first classification step is to determine ground points.

For this purpose, we select a single slice of vertical angles

from the spherical grid (i.e. rays that all have the same bear-

ing angle). We cycle through the rays in the slice from the

lowest vertical angle to the highest. For three consecutive

readings A, B, and C, the slope between AB and BC should

be near zero if all three points lie on the ground (see Fig. 9

for illustration). If we normalize AB and BC, their dot prod-

uct should be close to 1. Hence a simple thresholding of

the dot product allows us to classify ground readings and to

obtain estimates of local ground elevation. Thus, one use-

ful piece of information we can obtain from 3D sensors is

an estimate of ground elevation. A similar ground estima-

tion method was independently developed by the MIT Ur-

ban Challenge team (Leonard et al, 2008).

Using the elevation estimates, we can classify the re-

maining non-ground readings into low, medium and high

obstacles, out of which we are only interested in the medium

ones (see Fig. 10). It turns out that there can be medium

height obstacles that are still worth filtering out: birds, in-

sects and occasional readings from cat-eye reflectors. These

obstacles are easy to filter because the BC vector tends to be

very long (greater than 1m), which is not the case for normal

vertical obstacles such as buildings and cars. After identify-

ing the interesting obstacles we simply project them on the

2D horizontal plane to obtain a virtual scan.

6.1 Detection of Black Obstacles

Laser range finders are widely known to have difficulty see-

ing black objects. Since these objects absorb light, the sen-

sor never gets a return. Clearly it is desirable to “see” black

obstacles for driving applications. Other sensors could be

used, but they all have their own drawbacks. Here we present

a method for detecting black objects in 3D laser data. Fig-

ure 11 shows the returns obtained from a black car. The only

readings obtained are from the license plate and wheels of

the vehicle, all of which get filtered out as low obstacles. In-

stead of looking at the little data present, we can detect the

black obstacle by looking at the absent data. If no readings

are obtained along a range of vertical angles in a specific

direction, we can conclude that the space must be occupied

4 In our implementation, the angular grid resolution for Velodyne

based virtual scans is 0.5◦, which results in three readings per angular

grid cell on average — just enough to reject outliers.
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(a) actual scene (b) Velodyne data

(c) after classification (d) generated virtual scan

Fig. 10 In (c) Velodyne data is colored by type: orange — ground, yellow — low obstacle, red — medium obstacle, green — high obstacle. In (d)

yellow lines denote the virtual scan. Note the truck crossing the intersection, the cars parked on a side of the road and the white van parked on a

driveway. On the virtual scan all of these vehicles are clearly marked as obstacles, but ground, curbs and tree tops are ignored.

by a black obstacle. Otherwise the rays would have hit some

obstacle or the ground. To provide a conservative estimate of

the range to the black obstacle we place it at the last reading

obtained in the vertical angles just before the absent read-

ings. We note that this method works well as long as the

sensor is good at seeing the ground. For the Velodyne sen-

sor the range within which the ground returns are reliable is

about 25−30m, beyond this range the black obstacle detec-

tion logic does not work.

7 Experimental Validation

7.1 Tracking Results

The most challenging traffic situation at the Urban Grand

Challenge was presented on course A during the qualifying

event (Fig. 12) . The test consisted of dense human driven

traffic in both directions on a course with an outline resem-

bling the Greek letter θ . The robots had to merge repeatedly

into the dense traffic. The merge was performed using a left

turn, so the robots had to cross one lane of traffic each time.

In these conditions, accurate estimates of positions and ve-

locities of the cars are very useful for determining a gap in

traffic large enough to perform the merge safely. Cars passed

in close proximity to each other and to stationary obstacles

(e.g. signs and guard rails) providing plenty of opportunity

(a) traffic density

(b) course A outline

Fig. 12 Test conditions on course A at the Urban Grand Challenge.

The test consisted of repeated merges into dense traffic (a) on a course

with an outline resembling the Greek letter θ (b).
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(a) actual appearance of the vehicle (b) the vehicle gives very few laser returns

(c) virtual scan with black object detection (d) virtual scan without black object detection

Fig. 11 Detecting black vehicles in 3D range scans. White points represent raw Velodyne data. Yellow lines represent the generated virtual scans.

(a) without size estimation (b) with size estimation

Fig. 15 Size estimation on the example of a passing bus from a data set taken in Alameda. Without size estimation (a) the tracking results are poor

because the geometric model does not fit the data well. Not only is the velocity estimated incorrectly, but the track is lost entirely when the bus is

passing. With size estimation (b) the bus is tracked successfully and the velocity is properly estimated. (Best viewed in color.)
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Table 1 Tracker performance on data sets from three urban environments. Max TP is the theoretically maximum possible true positive percent for

each data set. TP and FP are the actual true positive and false positive rates attained by the algorithm.

Total Total Correctly Falsely Max TP TP FP

Data Sets Frames Vehicles Identified Identified (%) (%) (%)

UGC Area A 1,577 5,911 5,676 205 97.8 96.02 3.35

Stanford Campus 2,140 3,581 3,530 150 99.22 98.58 4.02

Alameda Day 1 1,531 901 879 0 98.22 97.56 0

Overall 5,248 10,393 10,085 355 98.33 97.04 3.3

(a) actual scene

(b) Velodyne data

(c) virtual scan and tracking results

Fig. 13 Tracking results on course A at the UGC. In (c) yellow line

segments represent the virtual scan and red/green/white points show

results of scan differencing. The purple boxes denote the tracked vehi-

cles. (Best viewed in color.)

Fig. 14 Size estimation results on Stanford campus. Vehicles of differ-

ent sizes are successfully estimated and tracked. (Best viewed in color.)

for false associations. Partial and complete occlusions hap-

pened frequently due to traffic density. Moreover, these oc-

clusions often happened near merge points which compli-

cated decision making.

During extensive testing, the performance of our vehi-

cle tracking module has been very reliable and efficient (see

Fig. 13). Geometric shape of vehicles was properly esti-

mated (see Figs. 14 and 15), which increased tracking re-

liability and improved motion estimation. The tracking ap-

proach proved capable of handling complex traffic situations

such as the one presented on course A of the UGC. The com-

putation time of our approach averages at 25ms per frame,

which is faster than real time for most modern laser range

finders.

We also gathered empirical results of the tracking mod-

ule performance on data sets from several urban environ-

ments: course A of the UGC, Stanford campus and a port

town in Alameda, CA. In each frame of data, we labeled the

vehicles a human is able to identify in the laser range data.

The vehicles had to be within 50m of the ego-vehicle, on or

near the road, and moving with a speed of at least 5mph. We

summarize how the tracker performed on the labeled data

sets in Tbl. 1. Note that the maximum theoretically possible

true positive rate is lower than 100% because three frames

are required to detect a new vehicle. On all three data sets

the tracker performed very close to the theoretical bound.

Overall the true positive rate was 97% compared to the the-

oretical maximum of 98%.
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(a) standard PF

(b) Scaling Series

Fig. 16 Comparison of standard PF to Scaling Series for new vehicle

detection. The horizontal axis denotes time in seconds. The vertical

axis has two states: 0 — target is not tracked, 1 — target is tracked. To

verify target acquisition, the code was specifically modified to discon-

tinue tracking a target after 1 second. By construction of the algorithm,

the minimum possible time spent in non-tracking state is 0.3 seconds.

(a) standard PF has a long target acquisition time — too dangerous

for autonomous driving. (b) Scaling Series method has nearly perfect

acquisition time.

7.2 Detection Results

To evaluate the performance of the vehicle detection algo-

rithm empirically, we forced the tracking module to drop

each target as soon as it was detected. We then ran vehi-

cle detection on data sets from three different urban envi-

ronments: Area A of the Urban Grand Challenge qualifiers,

the Stanford campus, and a port town in Alameda, CA (see

Tbl. 2). In each frame of data we labeled all vehicles iden-

tifiable by a human in the range data. The vehicles had to

be within 50m of Junior, on or near the road, and moving

with a speed of at least 5mph. For each vehicle, we counted

how many frames it took to detect it. We also counted false

positives. Overall, all vehicles were detected in five frames

or less and the false positive rate was 0.4%.

To evaluate motion evidence contribution, we ran the al-

gorithm with and without motion evidence logic on labeled

data sets. The use of motion evidence brought false discov-

ery rate from 60% down to 0.4%. At the same time the rate

of false negatives did not increase.

We used prerecorded data sets to evaluate performance

gains from the optimization techniques. We compared the

computation time of the algorithm with and without road

masking. Road masking sped up the algorithm by a factor

of eight. We also ran the algorithm with and without cleared

area logic. The speed up from this optimization was approx-

imately a factor of three. The backward search optimization

reduced the minimum detection delay for oncoming traffic

by 25%.

To evaluate improvements from Scaling Series, we used

a 30 second data set of our ego-vehicle following another

car. For evaluation purposes we modified the tracker to drop

each target after tracking it for 1 second. Figure 16 presents

comparison of results obtained using a standard particle fil-

ter and Scaling Series particle filter. Vehicle detection with

the standard particle filter took 4.44 seconds on average and

13.7 seconds in the worst case, which can easily result in a

collision in a real life situation. In contrast the Scaling Se-

ries particle filter took 0.32 seconds on average to detect the

vehicle, with the worst case being 0.5 seconds. Thus, the

Scaling Series approach performs very close to the theoreti-

cal minimum of 0.3 seconds.

Several videos of vehicle detection and tracking using

the techniques presented in this paper are available at the

website

http://cs.stanford.edu/people/petrovsk/uc.html

8 Conclusions

We have presented the vehicle detection and tracking mod-

ule developed for Stanford’s autonomous driving robot Ju-

nior. Tracking is performed from a high-speed moving plat-

form and relies on laser range finders for sensing. Our ap-

proach models both dynamic and geometric properties of

the tracked vehicles and estimates them with a single Bayes

filter per vehicle. In contrast to prior art, the common data

segmentation and association steps do not need to be carried

out prior to the filtering step. The approach has proved re-

liable, efficient and capable of handling challenging traffic

situations, such as the ones presented at the Urban Grand

Challenge.

Our approach explicitly models tracked vehicle’s geo-

metric shape, which is estimated simultaneously with the

vehicle’s motion using an efficient RBPF method. The in-

troduced anchor point notion allows us to correctly model

the shape vs motion ambiguity, previously unaddressed in

vehicle tracking literature. This reduces motion uncertainty

and improves the estimation of vehicle dynamics.

Unlike prior vehicle tracking approaches, which relied

on features for tracking, we introduced a direct measure-

ment model for range scans. This approach eliminates the

need for data segmentation and association steps. Moreover

it naturally handles partial occlusions of the tracked vehi-

cles, including situations where the vehicle scan is split up

into multiple disjoint clusters by occlusion.

We presented a number of optimization techniques to

improve accuracy and efficiency of vehicle detection. These

techniques are largely independent of each other. To aid the

design decisions of future vehicle tracking approaches, we

provided an analysis of how each technique influences the

end result.

We presented techniques for efficient manipulation of

3D data clouds and construction of 2D virtual sensor mod-

els. The method relies on a ground estimation technique,
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Table 2 Vehicle detector performance on data sets from three urban environments. For each car we counted how many frames it took to detect it.

By construction of the algorithm, at least three frames are required. We also counted the number of false detections. The ’% Detected’ columns

give the percentages of cars detected by frame three, four and five. ’FP %’ is the false positive rate attained by the vehicle detection algorithm.

Total Detected in Frame False % Detected by Frame FP

Data Sets Cars 3 4 5 Detections 3 4 5 %

UGC Area A 713 596 103 14 1 83.6 98.0 100.0 0.1

Stanford Campus 679 645 32 2 2 95.0 99.7 100.0 0.3

Alameda Day 2 532 485 45 2 5 91.2 99.6 100.0 0.9

Overall 1,924 1,726 180 18 8 89.7 99.1 100.0 0.4

which we expect to be applicable not only in urban envi-

ronments but also in off-road settings with rugged terrain.

The method purposefully ignores short obstacles in an ef-

fort to extract data useful specifically for vehicle tracking.

As a result, detection and tracking of vehicles is unimpeded

by curbs and short foliage present in urban settings, or even

small rocks and rough features in completely off-road envi-

ronments. It also ignores overhanging obstacles — such as

trees, signs, and overpasses — if there is sufficient clearance

for a vehicle to pass underneath. However, due to the fact

that short obstacles are ignored, the presented data extrac-

tion method is not suitable for estimation of terrain drivabil-

ity. For this reason, we used a separate method for detection

of small hazards as described in Montemerlo et al (2008).

We also introduced a method for detection of poorly vis-

ible black objects in 3D range data. This method is applica-

ble not only for vehicle tracking but also for static mapping

and collision avoidance. Moreover it can be extended to dark

object detection using 3D range scanners in indoor settings.

There is ample room for future work in the field of per-

ception for autonomous urban driving. The presented ap-

proach does not model pedestrians, bicyclists, or motorcy-

clists — a prerequisite for driving in populated areas. An-

other promising direction for future work is fusion of differ-

ent sensors, including laser, radar and vision.
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