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Abstract 

 

Meaningful learning should be the raison d’etre of schools and universities. 

Assuming that, the goal of conferences such as this should be to decide how to best use 

technology to support meaningful learning, given the constraints that education imposes 

on learning. I first argue that the best conception of meaningful learning is conceptual 

change. I then argue that building computer-based models of the ideas and processes that 

students are studying is the most conceptually engaging technology-based activity 

possible with the greatest contribution to conceptual change. I demonstrate how a variety 

of computer-based tools can b used to build models of domain content, problems, 

systems, and the cognitive processes required to learn (i.e. cognitive simulations).  

 

 

 

Meaningful Learning 
 

 

There are many conceptions of meaningful learning, including problem solving, 

critical thinking, collaborative learning, self-regulated learning, creativity, and many 

others. All of those conceptions assume that meaningful learning occurs when students 

are intentionally engaged in interacting with the world or representations of it for the 

purpose of individual knowledge construction and social co-construction of meaning. 

Unless and until learners willfully try to achieve some cognitive goal, they will not learn 

meaningfully. Meaningful learning requires engagement in meaningful tasks, those that 

emerge from, or at least simulate, some authentic context. 

 

Because learning in educational contexts must be assessed, we need a more 

circumscribed conception of meaningful learning. Emergent learning in everyday and 

professional contexts often is not assessed or is assessed using only performance 

indicators (did the job get done, in time, under budget?).  It is only in formal education 

contexts where we assess what learners know, not what they do.  What happens to 

learners when they are willfully engaged in an authentic task?  Their theories about the 

world change. So if we need to assess learning from authentic tasks, we need to be able to 

assess changes in personal or social theories about the task environment learners are 

working on.  

 

 

 



From a cognitive perspective, I believe that the most powerful and assessable 

conception of meaningful learning is conceptual change. Conceptual change occurs when 

learners change their understanding of concepts or conceptual frameworks.  Those 

conceptual frameworks change more rapidly when learners are engaged in some 

meaningful performance.  There are many ways to assess those changes.  

 

The process and pace of conceptual change varies, according to different 

researchers. For some (Chi, 1992; Thagard, 1992), conceptual change is a revolutionary 

process where the ways that concepts are understood is replaced by another hopefully 

better understanding.  The change is a radical or dramatic reorganization of knowledge 

structures (Dole & Sinatra, 1998).  Radical change involves a process of categorical 

reassignment. The learner’s ontologies (ways of representing and making sense of the 

world) are revised, as are the learner’s beliefs or theories about how the world works.  

 

For other researchers (Smith, diSessa, & Resnick, 1993; Siegler, 1996), 

conceptual change is a more evolutionary process of aggrandizement and gradual 

transformation of knowledge states.  This model of conceptual change is more Piagetian, 

where learners gradually accommodate existing knowledge into better knowledge 

structures. While it is obvious that learners undergo both kinds of conceptual change, the 

scope and timing of evolutionary makes it very problematic to assess. Therefore, I will 

focus on radical conceptual change, a process that occurs over a shorter period of time. 

  

Dole and Sinatra (1998) have proposed a model of conceptual change as the 

cognitive reconstruction of knowledge.  Learners manifest a certain strength, coherence, 

and commitment to their existing conceptions. They will interact with new information to 

the degree that the information is comprehensible, coherent, plausible and rhetorically 

compelling. The degree to which learners interact with new information lies on a 

continuum from low cognitive engagement to high metacognitive engagement.  Low 

engagement refers to unregulated, surface level processing, while high engagement refers 

to self-regulated, effortful, analysis and synthesis (deep processing) of information. At 

the highest level of engagement, according to Dole and Sinatra (1998), learners think 

deeply about arguments and counterarguments related to the message, resulting in the 

strongest likelihood of conceptual change.  Learners who process information at the 

highest level of engagement are more epistemically aware than other learners (Jonassen, 

Marra, & Palmer, in press).   

 

Conceptual change is a function of the level of conceptual engagement. 

Conceptual engagement describes how enmeshed, enthralled, perturbed, or otherwise 

interested learners become in trying to figure something out.  The harder learners work at 

a task, the more conceptually engaged they are.  I argue that the most conceptually 

engaging way that computers can be used is to construct models of the phenomena being 

studied. Model building is engaging because the mental models that people have 

constructed of phenomena in the world (scientific, social, cultural, political, and even 

phenomenological) are often naive, uninformed, and often inconsistent with established 

theories.  While developing personal theories and integrating them into mental models 

may be a natural human process, people are usually not very good at it.  Personal theories 



and mental models are replete with misconceptions and inadequate conceptions. So, 

building models has the greatest likelihood to result in radical conceptual change, 

because while building models, learners represent their conceptions or theories about the 

world, and they can compare, contrast, and test those models relative to others. If learners 

see better models, or models that produce better results, they are compelled to change 

their conceptualization.  

 

Science and mathematics educators (Confrey & Doerr, 1994; Frederiksen & 

White, 1998;  Hestenes, 1987; Lehrer & Schauble, 2000; White, 1993) have long 

recognized the importance of modeling in understanding scientific and mathematical 

phenomena. I believe that modeling is an essential skill in all disciplines, that is, it is an 

essential cognitive skill for meaning making in all domains. I also argue that in addition 

to modeling domain knowledge (the primary focus of math and science education work 

to date), learners can also benefit from modeling problems (constructing problem spaces), 

modeling systems, and modeling thinking processes (i.e. cognitive simulations). Why is 

modeling so important?  

 

What is model building?  The conceptions vary with the tools and domains that 

people study.  Most mathematicians and scientists tacitly believe that modeling 

phenomena is a mathematical process, that quantitative representations are the most 

explicit and informative.  Defining the relationships among variables is the primary goal 

of modeling. Hestenes (1986) proposed a modeling process for physics learning that 

includes four stages: describing the basic and derived variables in some diagrammatic 

form; formulating the relationships based on the laws of physics (writing equations; 

drawing ramifications of the model; and empirically validating the ramified model.  For 

Hestenes, “the model is the message” (p. 446), that is, “mathematical modeling should be 

the central theme of physics instruction”(p. 453).  

  

  Other researchers, however, believe that qualitative models are just as important as 

quantitative. Qualitative representation is a missing link in novice problem solving (Chi, 

Feltovich, & Glaser, 1981; Larkin, 1983). When students try to understand a problem in 

only one way, especially when that way conveys no conceptual information about the 

problem, students do not understand the underlying systems they are working in. So, it is 

necessary to help learners to construct a qualitative representation of the problem as well 

as a quantitative.  Qualitative problem representations both constrain and facilitate the 

construction of quantitative representations (Ploetzner & Spada, 1998).   

 

 

 

Model Construction vs. Consumption 

 

 As stated before, models are quite common in math and science education and are 

present to a lesser degree in other disciplines. Most science textbooks present a model of 

some phenomenon for students to comprehend. They follow-up the model with well-

structured problems related to those models for learners to solve.  This hypothetico-

deductive approach to learning is the most common method used in formal education: 



teach an abstract theory and maybe require learners to apply the theory in a story 

problem.  

 

Models are also commonly used as the intellectual engine in many  learning 

software programs.  For example, most intelligent tutoring systems possess learner 

models, expert or domain models, and tutoring models.  Model-based reasoning focuses 

on an explicit model of the physical systems that is being learned (deKoning & Bredweg, 

2001). In addition to intelligent tutors, most of the microworlds and other immersive 

learning environments represent model-based phenomena for learners to manipulate and 

experiment with. The model is implicit in the system. However, the model is immutable. 

Not only do learners have no access to the model, but also they cannot change it, except 

to manipulate a set of pre-selected variables within the model.  

 

Modeling in this presentation refers to student representation, construction, 

manipulation, and testing of a model. I describe how computer-based modeling tools can 

be used by learners to represent their conceptions and theories of phenomena and to 

manipulate and test those theories. Constructing computational models of phenomena in 

the world using computer-based modeling tools can engage students in rapid conceptual 

change more effectively than any other application of technology. 

 

 

 

What is Being Modeled 

 

If modeling can aid the construction of mental models, then learners should learn 

to model a variety of phenomena.   In this section, I will briefly describe the range of 

phenomena that can be modeled using different tools. Later, I will briefly describe the 

nature of some of those tools.  

 

Most of these models are what Lehrer and Schauble (2000) refer to as syntactic 

models. These are formal models, each of which imposes a different syntax on the learner 

that conveys a relational correspondence between the model and the phenomena it is 

representing.  The purpose of syntactic models is to summarize the essential function of 

the system being represented.   
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Figure 1. Concept map or semantic network about a poem. 

 

 

 

Modeling Domain Knowledge 

 

 It is generally accepted by psychologists that knowledge in long-term memory is 

organized in a variety of structures. These structures describe how concepts are 

interrelated. These organizations provide meaning to concepts and principles that are part 

of every domain of study. That is, the meaning for ideas is determined by the associations 

between them, and most educators believe that it I important for students to understand 

the language of the field. Understanding the language of a domain requires that learners 

build meaningful associations between the concepts in a domain. Building models of 

domain knowledge is one use for model-building tools. 

 

Figure 1 shows a concept map that is part of a much larger map address British 

romantic poetry.  The central concept is the title of a poem, which is linked to important 

characteristics of that poem. Clicking on any of the other concepts shows all of the 



associations to that concept.  The aggregation of all pf these individual maps is 

someone’s semantic network related to the domain. Understanding poetry requires that 

learners understand the associations between these concepts, such as rhyme, rhythm, 

motif, imagery, and so on. 

 

Another tool for helping learners to articulate the semantic structure of ideas 

within a domain is the common database.  Databases are used ubiquitously to organize 

information about every aspect of our lives.  They can also be used by learners to 

organize information that they are studying.  Figure 2 illustrates a database about cells 

created by biology students. This database, including fields about function, shape, 

location, tissue system, and other attributes of cells, provides a structure for interrelating 

these attributes. Students can compare and contrast cell types by searching and sorting the 

database.   

 

 
 

Figure 2. Database on cells. 

 

 

 

Domain knowledge building tools, such as databases, concept mapping, 

hypermedia construction, and others force students to use organize the knowledge that 

they are constructing.  The organizational formalisms that are embedded in this software 

require students to explicitly signal the interrelationships between these ideas, forming 

the semantic foundation for understanding a domain.    

 

 

 

 

 



Modeling Problems 

 

 Another important but unresearched issue is the use of modeling tools for 

developing explicit models of problems that students are trying to solve.  In these 

applications, students are representing the problem space (Jonassen, under review). It is 

generally accepted that problem solvers need to construct some sort of internal 

representation (mental model) of a problem (problem space) in order to solve a problem. 

These personal problem representations serve a number of functions (Savelsbergh, de 

Jong, & Ferguson-Hessler (1998): 

 

• To guide further interpretation of information about the problem, 

• To simulate the behavior of the system based on knowledge about the properties 

of the system, and 

• To associate with and trigger a particular solution schema (procedure).  

 

The purpose f problem representation tools is the explicitly represent problem spaces.  

 

 

 
 

Figure 3. Resistor series model built in a spreadsheet. 

 



Problem spaces are mentally constructed by selecting and mapping specific 

relations of the problem (McGuinness, 1986).  The underlying assumption of this paper is 

that using modeling tools to create physical, visual, or computational models externalizes 

learners’ mental models. Related to problem solving, constructing visual and 

computational models of problems externalizes learners’ internal problem spaces. 

Constructing models of problem spaces is important for all kinds of problems. As the 

complexity of the problem increases, producing efficient representations becomes more 

important; and efficiency of representations is a function of organization, integration, or 

coherence (McGuinness, 1986).  

 

Problem models can be built using spreadsheets.  The model in Figure 3, for 

example, was built by students to test the effects of a series of resistors.  The model is 

explicated in the formulae that are entered into each cell.  If this model was built by the 

teacher for students to manipulate and test effects, it would function model using, not 

model building. Because students constructed the simulations themselves, they were 

model building.    

 
 

Context 'This knowledge base is intended to simulate the processes of calculating molar conversions. ' 

 

D1: 'You know the mass of one mole of sample.' 

D2: 'You need to determine molar (formula) mass.' 

D3: 'Divide sample mass by molar mass.' 

D4: 'Multiply number of moles by molar mass.' 

D5: 'You know atomic mass units.' 

D6: 'You know molar mass.' 

D7: 'Divide mass of sample by molar mass and multiply by Avogadro's number.' 

D8: 'Divide number of particles by Avogadro's number' 

D9: 'Convert number of partcles to moles, then convert moles to mass' 

D10: 'Convert mass to moles using molar mass, and then convert moles to molecules using 

Avogadro's number.' 

D11: 'Convert from volume to moles (divide volume by volume/mole), and then convert moles to 

moles  by multiplying by Avogadro's number.' 

 

Q1: 'Do you know the number of molecules?'    A 1 'yes' 2 'no' 

Q2: 'Do you know the mass of the sample in grams?'  A 1 'yes' 2 'no' 

Q3: 'Do you know the molar mass of the element or compound?' A 1 'yes' 2 'no' 

Q4: 'Do you know the number of moles of the sample?'  A 1 'yes' 2 'no' 

Q5: 'Do you want to know the number of molecules?'  A 1 'yes' 2 'no' 

Q6: 'Do you want to know the mass of the sample in grams?' A 1 'yes' 2 'no' 

Q7: 'Do you want to know the molar mass of the compound?' A 1 'yes' 2 'no' 

Q8: 'Do you want to know the number of moles of the sample? 'A 1 'yes' 2 'no' 

Q9: 'Do you know atomic mass units?'    A 1 'yes' 2 'no' 

Q10: 'Do you know the volume of a gas?'    A 1 'yes' 2 'no' 

 

Rule1: IF q2a1 AND q8a1 THEN D2 

Rule2: IF (d1 OR q3a1) AND q2a1 AND q8a1 THEN D3 

Rule3: IF q4a1 AND q3a1 AND q6a1 THEN D4 

Rule4:  IF q3a1 THEN D1 

Rule5: IF q3a1 THEN D5 

Rule6: IF q9a1 THEN D6 

Rule7: IF qq3a1 AND q2a1 AND q5a1 THEN D7 



Rule8: IF q1a1 AND q8a1 THEN D8 
Rule9: IF q1a1 AND q6a1 THEN D9 

Rule10:IF q2a1 AND q5a1 THEN d10 

Rule11:IF q10a1 AND q1a1 THEN d11 

 

Figure 4.  Excerpt from expert system rule base on stoichiometry 

 

 

Although many computer-based modeling tools support the construction of 

quantitative models of problems, constructing qualitative models of problems is equally, 

if not more, important. Qualitative representations assume many different forms and 

organizations.  They may be spatial or verbal, and they may be organized in many 

different ways. Qualitative representations are more physical than numerical. Physical 

representations of problems consist of entities that are embedded in particular domains 

(e.g. physics), and the inferencing rules that connect them and give them meaning are 

qualitative (Larkin, 1983).  

 



 
 

Figure 5. Systems dynamics model of stoichiometry problem in Stella. 

 

 

In fact, Ploetzner, Fehse, Kneser, and Spada (1999) showed that when solving 

physics problems, qualitative problem representations are necessary prerequisites to 

learning quantitative representations. When students try to understand a problem in only 

one way, they do not understand the underlying systems they are working in. Figure 4 

illustrates a qualitative model of a simple stoichiometry (molar conversion) problem in 

chemistry using an expert system. That is, the learners constructed a production rule 

system that describes the logic needed to solve the problem. Qualitative representations 

support the solution of quantitative problems. The best problem solutions may result from 

the integration of qualitative and quantitative models. That integration is best supported 

in systems modeling tools, such as Stella, that provide quantitative representations of the 



relations between problem components expressed qualitatively.  Figure 5 illustrates a 

Stella model of a stoichiometry problem, providing both quantitative and qualitative 

representations of the problem. Qualitative representations function to:  

 

• explicate information that is stated only implicitly in problem descriptions but is 

important to problem solution 

• provide preconditions on which quantitative knowledge can be applied 

• qualitative reasoning supports construction of quantitative knowledge not 

available initially, and yield a set of constraints that provide guidelines for 

quantitative reasoning (Ploetzner & Spada, 1993). 

 

 

 

Modeling Systems  

 

 Another way of thinking about subject matter content is as systems. Rather than 

focusing on discrete facts or characteristics of phenomena, when learners study content as 

systems, they develop a much more integrated view of the world. There are several, 

related systemic conceptions of the word, including open systems thinking, human or 

social systems thinking, process systems,  

 

 

 
Figure 6. Modeling the circulatory system with Model-It.  



 
 

Figure 7. Modeling the effect of a hurricane on Bryzoan using EcoBeaker.   

 



feedback systems thinking, systems dynamics, control systems or cybernetics, activity 

theory, and the most common living systems.  All of these conceptions share similar 

attributes, including irreducible wholes, self-producing pattern of organization 

determined by dynamic interactions among components, interdependent parts, goal-

driven, feedback controlled, self-maintaining, self- regulating, synergetic, and 

teleological. Requiring learners to organize what they are leaning into relevant systems 

that interact with each other provides learners with a much more holistic as well as 

integrated view of the world.  There are a variety of computer-based tools for supporting 

systemic thinking. Based on systems dynamics, tools like Stella, PowerSim, and VenSim 

provide sophisticated tools for modeling systems. These tools enable learners to construct 

systems models of phenomena using hypothetical-deductive reasoning.  Students must 

construct the models before testing them. Figure 6 illustrates a systemic view of the 

circulatory system constructed with Model-It, a simplified systems modeling tool 

developed by the HI-CE group at the University of Michigan for junior high school 

students. This tool scaffolds the identification of relationships among  

 

 

 
 

Figure 8. Model of blood glucose using Stella. 

 



variables. Rather than entering formulae to describe relationships, students must identify 

the direction of the relationship and the potential effect of one variable on another. 

 

 

 

Modeling Thinking 

 

 Another kind of modeling entails developing models of thinking processes.  

Rather than modeling content or systems, learners model the kind of thinking that they 

need to perform in order to solve a problem, make a decision, or complete some other 

task.  That is, learners can use computer-based modeling tools to construct cognitive 

simulations. "Cognitive simulations are runnable computer programs that represent 

models of human cognitive activities" (Roth, Woods, & People, 1992, p. 1163).  They 

attempt to model mental structures and human cognitive processes.  "The computer 

program contains explicit representations of proposed mental processes and knowledge 

structures" (Kieras, 1990, pp. 51-2).  The primary purpose of cognitive simulations is to 

attempt to externalize mental processes for analysis and theory building. Most often used 

by knowledge engineers to construct elaborate tutoring systems, I have found that even 

young learners can reflect on their thinking in order to build these simulations. Jonassen 

(in press) describes the process of constructing a cognitive simulation of metacognitive 

reasoning using an expert system shell.  

 

Figure 9 shows selected factors from that knowledge base. Students were required 

to reflect on how they used executive control and comprehension monitoring activities 

while study for their seminar. Lippert (1988) argued that having students construct small 

knowledge bases is a valuable method for teaching problem solving and knowledge 

structuring for students from sixth 

 

 
ASK:"Why am I studying this material? 

Assigned = Material was assigned by professor 

Related = Material is useful to related research or studies 

Personal = Material is of personal interest" 

 

ASK: "How well do I need to know this material? 

Gist = I just need to comprehend the main ideas. 

Discuss =  We will discuss and interrelate the issues. 

Evaluate = I have to judge the importance or accuracy of these 

ideas. 

Generate = I have to think up issues, new ideas, hypotheses about the material." 

 

ASK: "How fast of a reader am I?" 

CHOICES:slow, normal, fast 

 

ASK: "How many hours do I have to study? 

None = Less than an hour 

Few = 1 - 3 hours 

Several = 4 - 8 hours" 

 

ASK: "How many days until class?" 



CHOICES Days: more_than_7, 2_to_6,less_than_2 
 

ASK:"How do I compare with the other students in the class?  

Superior = I think that I am better able than my classmates to comprehend the material. 

Equal = I am equivalent to the rest of the class in ability. 

Worse = I am no as knowledgeable or intelligent as the rest of 

the class." 

 

Figure 9.  Metacognitive factors in cognitive simulation 

 

grade to adults. Learning is more meaningful because learners evaluate not only their 

own thinking processes but also the product of those processes 

 

 We have also been experimenting with systems dynamics tools for constructing 

cognitive simulations.  Figure 10 illustrates a Stella model of memory (thanks to Ran-

Young Hong).  Stella is a systems dynamics tool for representing the dynamic 

relationships between systems phenomena. Both expert systems and systems dynamics 

tools enable the learners to construct and test the assumptions and functioning their 

models.  

 

 



 
 

Figure 10. Stella model of memory. 

 

 

 

Rationales for Model Construction 

 

Schwarz and White (in press) argue that modeling is fundamental to human 

cognition and scientific inquiry. They believe that modeling helps learners to express and 

externalize their thinking; visualize and test components of their theories; and make 

materials more interesting. I briefly summarize some of the reasons for constructing 

models to support meaningful learning and mental model construction. 

 

• Model building is a natural cognitive phenomenon. When encountering unknown 

phenomena, humans naturally begin to construct theories about those phenomena 

as an essential part of the understanding process.  



• Modeling supports hypothesis testing, conjecturing, inferring, and a host of other 

important cognitive skills. 

• Modeling requires learners to articulate causal reasoning, the basis for most 

models of conceptual change.   

• Modeling provides a high level of conceptual engagement, which is a strong 

predictor of conceptual change (Dole & Sinatra, 1998).  

• Modeling results in the construction of cognitive artifacts (mental models) by 

constructing physical artifacts. 

• When student construct models, they own the knowledge. Student ownership is 

important to meaning making and knowledge construction. When ideas are 

owned, students are willing to exert more effort, defend their positions, and 

reason more effectively.   

• Modeling supports the development of epistemic beliefs. At the very root of 

learning are people’s beliefs about what knowledge and truth are and how we 

come to develop these beliefs.  From a biological perspective, we accept that 

humans are marvelously adapted to learning because of the size of their cortex. 

But what drives people to learn? Sociologists and psychologist talk about 

fulfilling needs, which supplies a solid conative reason for learning. But 

epistemologically, what motivates our efforts to make sense of the world.  

According to Wittgenstein, what we know is predicated on the possibility of 

doubt.  We know many things, but we can never be certain that we know it. That 

uncertainty can only be mollified by efforts to know more about the world. 

Modeling tools enable learners to externalize and test their epistemological beliefs 

about the meaning of epistemological constructs, such as knowledge and truth and 

how those beliefs change over time 

• Modeling provides shared workspaces provide a strong reason to collaborate. 

 

 

Limitations of Model Building 

 

Although I have made a strong case for using technologies as model-building 

tools, I would be remiss if we did not acknowledge any limitations. Model building is a 

powerful way to use technology, but we must be aware of these limitations when 

assessing and evaluating their effectiveness. 

 

• All models are incomplete; they are merely models of reality (identity theory 

inaccurate).  

• Cognitive engagement equals effortful learning. Building models is hard work.  

• Skill, time, effort must be expended learning the affordances of the different 

formalisms.  Although Jonassen (2000) has argued that most of these tools can be 

learned with an hour or so, others require more time. And facility with the tools 

will require extensive use.  

• Allowing learners to construct models will result in very different models. 

Teachers must accept that every student’s model won’t be correct. That requires 

that the teacher abdicate some intellectual authority. However, when student 

models contain misconceptions, the teacher can use them as important lessons. 



• Barab, Barnett, Yamagata-Lynch, Squire, and Keating (in press) used activity 

theory as an analytical lens for understanding the transactions and pervasive 

tensions that characterized course activities. Reflecting on their analyses, they 

interpreted course tensions and contradictions in the framework of the overall 

course activity system, especially between learning to use the technology tools 

and learning the content. While model building can help students to learn content, 

it is necessary to expect some contradictions between those activities.  
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