
Received December 20, 2019, accepted January 19, 2020, date of publication January 24, 2020, date of current version February 4, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2969276

Model Capacity Vulnerability in
Hyper-Parameters Estimation

WENTAO ZHAO 1, XIAO LIU 1, QIANG LIU 1, (Member, IEEE),

JIUREN CHEN 2, AND PAN LI 3
1College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China
2Science and Technology on Test Physics and Numerical Mathematic Laboratory, Beijing 100073, China
3School of Electronic Engineering and Computer Science, Queen Mary University of London, London E1 4NS, U.K.

Corresponding author: Qiang Liu (qiangliu06@nudt.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61702539 and Grant U1811462, in part
by the Hunan Provincial Natural Science Foundation of China under Grant 2018JJ3611, and in part by the NUDT Research Project under
Grant ZK-18-03-47.

ABSTRACT Machine learning models are vulnerable to a variety of data perturbation. Recent research
mainly focuses on the vulnerability of model training and proposes various model-oriented defense methods
to achieve robust machine learning. However, most of the existing research overlooks the vulnerability of
model capacity, which is more fundamental for model performance. In this paper, we study an adversarial
vulnerability of model capacity caused by the poisoning on the estimation of model hyper-parameters.
We further implement this vulnerability catering for the polynomial regression model, on which the evading
of model-oriented detection is challenging, to illustrate the effectiveness of the adversarial vulnerability.
Extensive experiments on one synthetic and three real-world data sets demonstrate that the vulnerability can
effectively mislead the hyper-parameter estimation of the polynomial regression model by poisoning a few
numbers of camouflage samples that cannot be detected by model-oriented defense methods.

INDEX TERMS Adversarial vulnerability, model capacity, hyper-parameter poisoning, gradient-based
optimization.

I. INTRODUCTION

As artificial intelligence is becoming a national strategy in
more and more countries, machine learning, which can be
divided into supervised learning [1], Semi-supervised learn-
ing [2] and unsupervised learning [3], is concerned as the
most important method in data science. But machine learning
methods are vulnerable to a variety of disturbances [4], such
as poisoning [5]–[7], evasion [8], and impersonation [9].
Most of these disturbances introduce adversarial samples,
which leverage the vulnerability of machine learning models
to achieve malicious goals. Similar to [10], we reiterate the
definition of adversarial vulnerabilities here as the weak-
ness points of a learning model where adversarial examples
crafted by feeding ǫ-sized ‖·‖-perturbations into genuine
ones can result in a significant performance difference. For
example, some work takes advantage of information loss
caused by feature extraction [11]–[13] and add noisy sig-
nals in facial images to fraud a well-trained face recognition

The associate editor coordinating the review of this manuscript and

approving it for publication was Venkateshkumar. M .

system [14], [15]. For another example, adversarial malware
examples generated by a generative adversarial network can
bypass the detection models [16].

As an outcome of the vulnerability study, recent research
proposes many robust machine learning methods, which
introduce various defense methods to detect and filter
adversarial samples. According to the defense mechanism,
we can classify these defense methods into two categories:
model-independent defense method and model-oriented
defense method. The model-independent method filters out-
lier data (a.k.a., data sanitization [17]; it includes outlier
detection, correction, and removing) before model train-
ing. Although the model-independent method works well,
it requires a lot of artificial designs and work. As a result,
the model-independent method may not fit the model that
trains on a large amount of data. In contrast, the model-
oriented method modifies a learning model to filter or toler-
ate outliers in model training [18]–[21]. This method wraps
outlier filtering into model training to achieve robust machine
learning efficiently. Accordingly, it becomes themost popular
method against model vulnerability.

21602 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/
VOLUME 8, 2020

https://orcid.org/0000-0002-2906-3238
https://orcid.org/0000-0002-1883-2230
https://orcid.org/0000-0003-2922-3518
https://orcid.org/0000-0002-8318-6757
https://orcid.org/0000-0001-7025-6878
https://orcid.org/0000-0002-9652-3118

W. Zhao et al.: Model Capacity Vulnerability in Hyper-Parameters Estimation

The model-oriented defense method can against most
of the existing vulnerabilities. The principle is that most
vulnerabilities are caused by adversarial samples that dis-
turb the parameters of a learning model [22], [23]; the
model-oriented defense method enables the parameters of a
learning model to tolerate adversarial samples. For example,
defense method [21], [24] can reduce the impact of outliers
in model training by changing the loss function of the learn-
ing model. For another example, some researches [25], [26]
can address the feature manipulation activities in the testing
stage by introducing the game theory in model training.
By thismeans, themodel-oriented defensemethod effectively
induces robust learning models.
In this paper, we study a new vulnerability, namely adver-

sarial vulnerability of model capacity, which cannot be
defended by the existing model-oriented defense methods.
Here, model capacity refers to the ability of a model to
fit a wide variety of functions [27]. It is more fundamen-
tal for model performance. For a given data, a model can
perform well if its capacity fits the data complexity. Oth-
erwise, the model (with little capacity) cannot comprehen-
sively learn the data distribution, or it (with large capacity)
may get stuck during the learning process. The studied vul-
nerability is caused by the poisoning on the estimation of
model hyper-parameters, which determine the capacity of
a learning model. As shown in Fig.1, a machine learning
process can be split into two stages: hyper-parameter esti-
mation and model parameter training. Because the current
model-oriented defense methods focus only on model param-
eter training, they will fail when facing the vulnerability
introduced by adversarial hyper-parameter estimation.
To illustrate the effectiveness of the adversarial vulnerabil-

ity, we further implement the vulnerability of model capacity
catering for the polynomial regression model, on which evad-
ing model-oriented detection is challenging. Specifically,
we propose a gradient-based degree confuse poisoning (DC
for short) method to implement the vulnerability. The DC
method generates poisoning points that can perform very
well at a specified degree but perform poorly at the other
degrees. Accordingly, the generated points will mislead a
wrong selection of the degree of polynomial regression. Also,
these points can escape from the detection of model-oriented
defense methods because these methods conduct only on the
model parameter training stage.
In summary, this paper makes the following contributions:
• As far as we know, it is the first work to study the
vulnerability of model capacity.

• This paper proposes an adversarial vulnerability of
model capacity caused by the poisoning on the estima-
tion of model hyper-parameters.

• This paper instantiates the adversarial vulnerability of
model capacity on polynomial regression model by a
degree confuse poisoning method.

We evaluate the adversarial vulnerability on one synthetic
data set and three public data sets from different appli-
cation fields. Extensive experiments demonstrate that the

FIGURE 1. Model training process.

vulnerability can effectively mislead the hyper-parameter
estimation of the polynomial regression model by poisoning
a few number of camouflage samples (no more than 10%
of the population) that cannot be detected by model-oriented
defense methods.

II. RELATE WORK

A. ADVERSARIAL VULNERABILITY OF MODEL

A lot of vulnerabilities have been studied target the model
parameter. These vulnerabilities are mainly caused by poi-
soning and spoofing.

The poisoning method can change the parameters of a
model in the training stage by injecting adversarial points to
the training data set and reduce the performance of the clas-
sification and regression model. This method is mainly con-
ducted on classification models. For example, Shen et al. [28]
apply traditional poisoning points against NNs to prevent
users’ privacy images from being stolen and analyzed.
Mozaffari-Kermani et al. [29] conduct poisoning against
healthcare systems, resulting in severe and life-threatening
consequences. Laishram and Phoha [30] examine the poison-
ing method against SVM. Recently, limited studies have been
made on poisoning against regression models. For instance,
Mei and Zhu [31] use gradient methods on an implicit func-
tion to solve the bi-level optimization problem. The machine
with certain Karush-Kuhn-Tucker (KKT) conditions such as
SVM, logistic regression and linear regression will perform
worse with the generated poisoning points.

To exploit the vulnerabilities in model parameters,
the spoofing method input elaborate adversarial samples into
machine learning models, enabling these samples to avoid
detection (evasion) or disguise himself as a specific target in
classification methods (impersonate).

As the machine learning method has become an important
method in the instruction detection system (IDS), the evasion
method mainly used against IDS: Biggio et al. [32] present a
gradient-based approach that can evade themalware detection

VOLUME 8, 2020 21603

W. Zhao et al.: Model Capacity Vulnerability in Hyper-Parameters Estimation

in PDF files. Zhang et al. [33] use gradient methods to
optimize malicious samples so they can evade the detection
of spam filtering systems.
The impersonate method mainly targets and classifies

(especially multi-class) models: Kurakin et al. [9] demon-
strated an impersonate method in the physical world,
they print out the adversarial images as the inputs of
the camera and successfully deceived the image classifier.
Sharif et al. [14] achieve a spoofing attack via a pair of
eyeglass frame. The adversary can evade being recognized
or impersonate another individual by wearing the special
glasses.
In general, the existing adversarial method mainly targets

the vulnerability of model parameters. In this paper, we study
the vulnerability of model capacity and prove that this vulner-
ability also has a significant impact on model performance.

B. VULNERABILITY DEFENSE METHOD

Aiming at protecting the vulnerability of model parame-
ters, many researchers have proposed two kinds of meth-
ods: model-oriented defense method and model-independent
method.
The model-independent method focus on the training set

itself and regardless of subsequent training models. This
method is mainly used to solve the problem of missing data
or malformed data in the data set. Some researchers also use
it to detect adversarial samples. Steinhardt et al. [34] remove
the outliers by constructing approximate upper bounds on the
loss across a broad family of attacks.
As manual data sanitization methods require a lot of man-

power and the data sanitization programs have poor perfor-
mance in detecting outliers, the current mainstream defense
methods are model-oriented defense methods.
Some model-oriented methods aimed to remove or reduce

the impact of the outliers in the training set. For example,
the RONI method [35] measure the incremental effect of
a sample by testing the performance difference with and
without that sample. Then this method deletes the samples
that have a great impact on the performance of the model.
The Quantile regression [24] aims at estimating either the
conditional median or other quantiles of the response vari-
able, which makes it robust against outliers in the response
measurements.
There are also some model-oriented methods that improve

the robustness of the model during the model training stage
to defend against possible security threats during the test
stage. Globerson and Roweis [36] construct a classifier that
is optimal in the worst case using the thought of game theory.
Teo et al. [26] introduce adversarial samples with labels to
training data to get a more robust model in the training stage.
However, the existing model-oriented defense methods

only consider the vulnerabilities of model parameters. In this
paper, we propose a vulnerability of model capacity, which
is caused by poisoning on model hyper-parameters. Accord-
ingly, this new vulnerability cannot be effectively defended
by the existing model-oriented methods.

III. THE PROPOSED VULNERABILITY

In this section, we introduce a novel vulnerability that targets
on model capacity. The introduced model capacity vulnera-
bility is caused by poisoning data injected in a training data
set, which is similar to the existing vulnerabilities caused
by poisoning methods. However, the poisoning data lead to
an inappropriate hyper-parameter selection in model capacity
vulnerability instead of an impropermodel parameter training
in the existing vulnerabilities.

The proposed model capacity vulnerability can be con-
structed by iteratively generating poisoning data to shift
the target model hyper-parameters to an expected direction.
As is shown in Fig.2, this construction repeats a two-steps
procedure (i.e., poisoning data optimization and poison-

ing data injection) in the hyper-parameter estimation stage.
The first step optimizes poisoning data according to the
best hyper-parameters obtained in the current pre-training
process. The second step injects the optimized poisoning
data into the training data set for pre-training. The con-
struction procedure iteratively repeats these two steps until
the hyper-parameters estimated by the pre-training equal to
expected values.

The proposed vulnerability could be very effective on
most machine learning algorithms against the existing
model-oriented defense methods. The rationale is as follows.
In most of the machine learning algorithms, the performance
of the model is directly determined by the model parameters.
But most of the time, the hyper-parameter is only regarded as
an optional factor of model performance without concerning
its decisive role in model capacity. Therefore, there is not
much attention to the stage of hyper-parameter selection. For
example, many researchers leave the task of hyper-parameter
selection to their students and thus get one of the most
popular methods of hyper-parameter selection: babysitting
method (which is also named as grad student descent
method).

It is significant to study model capacity vulnera-
bility since most machine learning methods have a
hyper-parameter selection stage. For example, the support
vector machine (SVM) needs to decide the kernel function
as a hyper-parameter, such as linear function, polynomial
function, RBF function and so on. Different kernel functions
have their own hyper-parameters and in actual training,
and on summary, the SVM function in the sklearn python
library has 14 hyper-parameters that need to be input. The
hyper-parameter adjustment is also a difficult job in the
convolutional neural network (CNN): learning rate, iteration
number, batch size, activation function, dropout, number of
hidden layers, the units and so on. Researches on the model
capacity vulnerability can help models to combat potential
threats to model capability and enhance robustness.

IV. UTILIZATION OF MODEL CAPACITY VULNERABILITY

ON POLYNOMIAL REGRESSION

In this section, we explore the utilization of the model
capacity vulnerability and proposed a gradient-based degree

21604 VOLUME 8, 2020

W. Zhao et al.: Model Capacity Vulnerability in Hyper-Parameters Estimation

FIGURE 2. Utilization of model capacity vulnerability.

confusion poisoning method targeting the degree selection
stage in a polynomial regression model.

A. BACKGROUND AND PRELIMINARY

Polynomial regression can be regarded as the extension of
the linear regression problem to a high degree. For the poly-
nomial regression model in degree k , the formula is:

ŷ = β0 + β1x1 + β2x2 + · · ·

+βjxj + βj+1x
2
1 + βj+2x1x2 + · · ·

+βC2
j+2−1

x2j + βC2
j+2
x31 + · · · + βCkj+k−1

xkj , (1)

where x = (x1, x2, .., xj) and ŷ is the predicted value of x.
We simplify its expression by defining x[k] as:

x
[k] = (1, x1, · · · , xj, x

2
1 , x1x2, · · · , x

2
j , x

3
1 , · · · , x

k
j)

T, (2)

then we get:

ŷi = x
[k]
i · β, (3)

where β = (β0, β1, · · · , βCkj+k−1
). The dimension of parame-

ter β is determined by both x and k , it can be divided into k+1
parts and every part contains all possible combinations of
features with a total power equals to r (r ∈ (0, 1, 2, . . . , k)).
So the r th part has Cr

j+r−1 items and the total dimension of β

is Ck
j+k .

It is clear that the degree k determines the dimension of
the polynomial regression model parameters β. A wrong
degree will completely change the structure of a polynomial
regression model, and then affect the performance of the
model.

B. THE DEGREE CONFUSION POISONING METHOD

The hyper-parameter that needs to be estimated in polynomial
regression is the polynomial degree. The degree is usually
decided according to the algorithm as illustrated in Alg.1.
The algorithm selects hyper-parameters by several random
validation epochs. In each epoch, the algorithm randomly
selects a small part (e.g., 30%) of training data as validation
data and uses the remaining part to train the model. Then the

Algorithm 1 Degree Selection
Require: D, repeat times r
1: dict_k ← [1 : 0; 2 : 0; 3 : 0; 4 : 0; 5 : 0; 6 : 0]
2: kbest ← 0
3: for i = 1 to r do
4: tmp_err ← inf
5: tmp_k ← 0
6: for k = 1 to 6 do
7: Dtrn,Dval ← division(D)
8: β ← argminβ L(D

[k]
train, β)

9: ifMSE(D[k]
val, β) < tmp_err then

10: tmp_err ← MSE(D[k]
val, β)

11: tmp_k ← k

12: end if

13: end for

14: dict_k[tmp_k]+ = 1
15: end for

16: kbest ← max(dict_k)
17: for j = 1 to 6 do
18: dict_k[j]← dict_k[j]/(r − dict_k[kbest])
19: end for

20: return Best degree kbest , dict_k

algorithm traverses all possible degree values (for example,
the degrees that are not too big to cause overfitting) and
selects the degree with the smallest validation error as the
best degree of this cycle. After r epochs, the algorithm sets
the most frequent degree to the best degree kbest .
Target on the vulnerability of the model capacity, a mali-

cious adversary can inject poisoning points that fit a target
degree ktarg but perform badly in other degrees (especially
in the most suitable degree kbest). In degree selection stage,
the poisoning points which used in training should make the
model deviate greatly in non-target degree and that used in
validation should perform bad in no-target degree. In order to
distinguish models under different degrees, we make β[k] as
the training model when the degree is k , ŷ[k] be the prediction
value of x in model β[k] (s.t. ŷ[k] = x

[k]β[k]), and D
[k] be

VOLUME 8, 2020 21605

W. Zhao et al.: Model Capacity Vulnerability in Hyper-Parameters Estimation

the transformed data set when degree is k . The DC poisoning
algorithm affect the model by maximizing the difference of
ŷ
[kbest]
i and ŷ

[ktarg]
i :

argmaxxc ŷ
[kbest]
c − ŷ

[ktarg]
c

s.t. β[k] = argminβL({(x
[k]
i , yi)}, β),

(xi, yi) ∈ Dtrain

(xc, yc) ∈ Dpoison (4)

whereDtrain is the clean training set and theDpoison is a set of
poisoning points. As ismentioned before, the degree selection
algorithm randomly selection points to build a validation set,
so it is not sure that if the poisoning points are used in training
or validation. In this case, the influence of the poisoning
points on the model parameter β is not considered in the
optimizing process, i.e., β will not be updated in iteration:

∇xc (ŷ
[kbest]
c − ŷ

[ktarg]
c)

= ∇xc (β
[kbest]x[kbest]c − β[ktarg]x

[ktarg]
c)

= β[kbest]∇xcx
[kbest]
c − β[ktarg]∇xcx

[ktarg]
c . (5)

The computing method of ∇xcx
[k]
c is:

∇xx
[k] =

∂1

∂x1

∂1

∂x2
· · ·

∂1

∂xj
∂x1

∂x1

∂x1

∂x2
· · ·

∂x1

∂xj
...

...
. . .

...

∂xkj

∂x1

∂xkj

∂x2
· · ·

∂xkj

∂xj

. (6)

It is clear that the function ŷ
[kbest]
c − ŷ

[ktarg]
c is not convex,

whichmeans that the poisoning point may be optimized to the
extreme point during the optimization process. In this paper
we add additional 5% points at the initial poisoning points
selection stage, and optimize these poisoning points at the
same time. Poor poison points will be removed at the end
of the algorithm. As is shown in Alg.2, the algorithm first
tests the most suitable degree of the data set. Then, given
a poisoning rate rt , an initial poisoning points set Dpoison

contains (rt+0.05) · |Dtrain| points is randomly selected from
training set Dtrain. In every iteration, the algorithm calculates
the probability that each degree value is selected as the best
degree. For every possible degree k , the algorithm compute
the gradient ∇xc (ŷ

[k]
c − ŷ

[ktarg]
c) and weighted summation them

based on their probability of occurrence as an optimization
gradient. Using this gradient, the poisoning points are opti-
mized to increase the difference between the validation error
of the target degree and other possible degrees. At the end
of each iteration, the label of the poisoning point xc, yc is
assigned the predicted value ŷ

ktarg
c of xc. This allows the

poisoned points to confuse the best degree in the degree selec-
tion stage, and also to evade detection of the model-oriented
defense approach during the training stage. The algorithm
ended if the most suitable degree kbest equals to the target
degree ktarg.

Algorithm 2 DC Poisoning Method
Require: training setDtrain, ktarg, poisoning rate rt , step size

λ, maximum degree kmax
1: kbest , dict_k ← DegreeSelection(Dtrain)
2: Dpoison← random(Dtrain, rt + 0.5)
3: while ktarg 6= kbest do

4: for xc, yc ∈ Dpoison do

5: xc← xc + λ
∑kmax

k=1 dict_k[k] · ∇xc (ŷ
k
c − ŷ

ktarg
c)

6: yc← ŷ
ktarg
c

7: end for

8: D
′
poison =remove poor poisoning point from Dpoison

9: D
′← Dtrain ∪ D

′
poison

10: kbest , dict_k ← DegreeSelection(D′)
11: end while

12: return D
′
poison

C. DISCUSSION

1) LINKS TO THE EXISTING POISONING METHODS

Although the proposedDCmethod is similar to the traditional
poisoning method in injecting poisoning samples to the train-
ing set, there are some differences between the two kinds of
poisoning points.

a: DIFFERENT OPTIMIZATION OBJECTIVE

According to the adversary intentions, the traditional poison-
ing method can be divided into two categories: one intends to
invariably increase the error of the model during the testing
stage while another only increases the testing error of a cer-
tain type of sample. Different from that, the hyper-parameter
poisoning method intends to change the model capacity in the
hyper-parameter selection stage.

b: DIFFERENT TRAINING ERROR

In order to change the model parameters during the training
stage, traditional machine learning methods often inject poi-
soning points that are contrary to normal samples, forcing
machine learning algorithms to deviate from normal sam-
ples. However, as the number of poisoning samples is much
smaller than normal samples, the machine learning algo-
rithms will preferentially fit normal samples, which results
in a very large training error for poisoning samples. The
hyper-parameter poisoning samples aimed at changing the
result of the hyper-parameter selection stage, so it is not
necessary for them to behave abnormally during the training
phase.

2) OPEN PROBLEMS IN MODEL CAPACITY VULNERABILITY

Although the DC method demonstrates an example of
exploiting the vulnerability of model capacity, there still are
many open problems to be studied in about vulnerability:

a: SENSITIVITY OF THE DATA SET TO HYPER-PARAMETERS

The hyper-parameter poisoning method manipulates a model
through change the hyper-parameter of the model. But if

21606 VOLUME 8, 2020

W. Zhao et al.: Model Capacity Vulnerability in Hyper-Parameters Estimation

the data set is insensitive to the hyper-parameter, changing
the hyper-parameter will not lead to a great increased in the
testing error.

b: CURSE OF DIMENSIONALITY

The model complexity is usually determined by data dimen-
sions and hyper-parameters. In the majority of cases, a set
of normal hyper-parameters will not makes the model
too complicated, but the hyper-parameter poisoning points
will manipulate the machine learning model to select
a set of abnormal hyper-parameter which may lead to
high-dimensional parameters. Even if there is no detection
mechanism for anomalies, abnormal models may cause alert-
ness to trainers.

V. EXPERIMENTS

In this section, we evaluate the effectiveness of model
capacity vulnerability. In order to do that, we verified three
properties of the DC poisoning: spatial distribution of poi-
soning points, ability to change degree, and impact on model
performance.

A. COMPARISON METHODS

In this paper, we compare the proposed poisoning method
with two typical methods: (1) Baseline: The baseline method
randomly select some points from the training set and assigns
new predictive values of these examples to y′i = 1 − yi (i =
1, · · · ,m), resulting in a baseline poisoning set {(xi, y′i)}

m
i=1.

(2)MaximumError (ME) poisoning: For comparison with the
traditional poisoning methods, we proposed a gradient-based
poisoning against polynomial regression model. Aimed at
maximizing the training error, this method iteratively calcu-
lates the gradient ∇xcMSE(Dval, β) and optimizes poison-
ing points xc. Detailed method analysis is showed in the
appendix.
Meanwhile, we apply the poisoning methods on several

model-oriented robust regression algorithms: (1) RANSAC
[19] method first randomly select a subset from the train-
ing data set called consensus set and trains a model using
this data set, then the algorithm adds the points which are
consistent with the model to the consensus. The RANSAC
algorithm iteratively repeats the above two steps until the
obtained consensus set in certain iteration has enough points
and this consensus set is considered as the clean training
set. (2) Theil-Sen regression computes all the slope between
pairs of points and chooses the median as the estimate of the
regression slope. Then pass a line through each pair of (x, y)
using the slope before, choose the median of the intercepts as
the estimate of the regression intercept. (3) TRIM is proposed
by Jagielski in [18]. This method iteratively estimates the
regression parameters, while at the same time training on a
subset of points with the lowest residuals in each iteration.
Finally, it can get a model trained by the points with low
residuals.

B. DATA SETS

In order to evaluate the vulnerability of the polynomial regres-
sion model capacity, one synthetic data set and three public

data sets are used in our experiment. Among them, the syn-
thetic data set is used to show the sample distribution, and
the public data set is used to verify the poisoning effect.
Each data set is divided into three parts: 60% of points in
the data set are for training, 20% for validation, 20% for
testing.

1) SYNTHETIC DATA SETS

The synthetic data is a randomly generated data set that fits
a certain distribution function. This kind of data can meet
the need for visualizing the distribution of adversarial points.
In this paper, we generate the synthetic data set which fits the
sine function:

y = sin(x)+ e, (7)

where e is a random error. The sine function is a typical
function that can be fitted by polynomial function:

sin(x) =
x1

1!
−
x3

3!
+
x5

5!
−
x7

7!
+ · · · . (8)

Generally speaking, a polynomial regression with a higher
degree will fit this data set better. But the generated syn-
thetic data set does not conform to the distribution of the
sine function strictly, a polynomial regression model with
a high degree may be overfitting on the synthetic data set.
As the degree selection result shows (Tab.1), the validation
error of the synthetic data set reaches a minimum at degree
8 and then begins to increase. Therefore, for the synthetic
data set, we only consider its performance in the polynomial
regression model with a degree of 10 or less.

2) PUBLIC DATA SETS

The public data sets are collected from UCI machine learning
repository [37]. The data sets are both multiple-input and a
single output, the degree selection program is executed on the
data sets to get the most suitable degrees (in Tab.2).

a: AIRFOIL SELF-NOISE DATA SET (Dair) [38]

As described in [38], There are five features in the data
set, namely frequency, the angle of attack, chord length,
free-stream velocity, and suction side displacement thickness.
The data set has only one output called scaled sound pressure
level.

b: CONCRETE COMPRESSIVE STRENGTH DATA SET

(Dcon) [39]

This data set contains 1030 data examples, which have
8 quantitative input variables and 1 quantitative output vari-
able.

c: REAL ESTATE VALUATION DATA SET (Dest) [40]

This market historical data set of real estate valuation is
collected from Sindian Dist., New Taipei City, Taiwan.
It contains 6 input variables and 1 output variable.

VOLUME 8, 2020 21607

W. Zhao et al.: Model Capacity Vulnerability in Hyper-Parameters Estimation

FIGURE 3. The validation error of public data sets before and after poisoning.

TABLE 1. Degree selection result for synthetic data set, where the frequency(F) represents the frequency of this degree as the best degree in repeated
training, and VE is the validation error.

TABLE 2. The result of degree selection for public data sets. The most
frequency degrees are concerned as the best degree.

C. VERIFICATION OF THE MODEL CAPACITY

VULNERABILITY

Since the model capacity is greatly affected by the
change of hyper-parameters, a key question is whether the
hyper-parameters estimation stage will be manipulated by
the adversary. To verify the vulnerability of model capacity,
we perform the proposed DC poisoning method target the
polynomial regression model on the three public data sets and
set the poisoning rate to 10% for all of the three public data
sets.
we consider the validation error of the polynomial regres-

sion model at different degrees to determine the target degree
ktarg. However, as the capacity of the polynomial model will
increase greatly with the increase of the degree, an high
degree may cause the dimension of the model parameters
larger than the number of data, and eventually alert the trainer.
In this case, we use both data dimension and size of data set
to limit the target degree (s.t. Ck

j+k < |Dtrain|).
According to the data dimension and the size of data set,

degrees of the three public data sets are limited to below 6,
4, 4. Then we compute the validation errors in every possible
degree of three public data set and get the target degree which
can cause maximum validation error: 6 for airfoil self-noise
data set, 4 for concrete compressive strength data set and

4 for real estate validation data set. The result is shown in
Tab.6.

Since the goal of DC poisoning method is changing the
degree of the polynomial regression model, this poisoning
method is concerned to be successful as long as the polyno-
mial regression model selects the target degree in the degree
selection stage. As is showed in Tab.2, the best degrees of the
three public data sets are 3, 3, 2 before poisoning. Note that
the degree selection program (in Alg.1) chooses the degree
with the highest frequency of occurrence as the best degree.
We mix the poisoning points with the training points and
get the validation error. The comparative results are shown
in Fig.3, we can find that the DC poisoning method leads
to a sharp rise in validation error for all degrees except the
target degree. The target degree has become the most suitable
degree after poisoning.

The experiments show that the hyper-parameter estimation
stage can be easily affected by the poisoning method with
a small poisoning rate which is a key reason for the vulner-
ability of model capacity. By injecting elaborate poisoning
points, the adversary can change the degree of the polynomial
regression model to the specified value, thereby making the
model overfitting or underfitting.

D. DISTRIBUTION OF POISONING POINTS

As most of the public data sets have high data dimensions,
experimental results are difficult to visualize. In this paper,
the proposed DC poisoning method is applied to the low
dimensional synthetic data set. Through the scatter plots,
we can intuitively see the spatial position relationship of
poisoning points, normal points, normal model and poisoned
model, which can help us understand the spatial distribution
of the poisoning points vulnerability.

21608 VOLUME 8, 2020

W. Zhao et al.: Model Capacity Vulnerability in Hyper-Parameters Estimation

FIGURE 4. Distribution of normal points, poisoning points, normal model and poisoned model, the blue line is the clean polynomial model and the
red line is the poisoned model.

TABLE 3. Testing error of different defense methods over airfoil
self-noise data set, the proposed DC method perform worse when there
is no defense method as the data set is hyper-parameter insensitive.

The DC poisoning method effects the polynomial regres-
sion model choosing a pre-specified degree ktarg. For the
synthetic data set, we set the target degree ktarg to 4. The result
is shown in Fig.4. The global view shows that the poisoning
points which distribute far away from normal points can be
also far away from the model with kbest but fits the model
with ktarg.
The experimental results show that in the poisoning-based

model capacity vulnerability utilization, it is difficult for the
model with normal hyper-parameters to fit the poisoning
sample. In this case, the model will select a set of wrong
hyper-parameters to get an overall best match (in the poly-
nomial regression model, a wrong degree will be selected to
get a lower validation error).
We can also find from the enlarged view that some poison-

ing points are very similar to normal points. That is because
the gradient-descent method can only optimize the poisoning
points to a locally optimal position when the function is not
convex, so these poisoning points which move to extreme
positions can not continue to be optimized.

E. AFFECTION OF THE MODEL CAPACITY VULNERABILITY

As the changes to model capacity will have an impact on
model performance, in this section we will verify the effect of
model capacity on the model performance and compare the
hyper-parameter poisoningmethodwith traditional poisoning
method. The model performance is measured by testing error,
which is measured using mean square error (MSE):

MSE =
1

n

n
∑

i=1

(y− ŷ)2 (9)

TABLE 4. Testing error of different defense methods over concrete
compressive strength data set.

TABLE 5. Testing error of different defense methods over real estate
valuation data set.

We first mix the poisoning points with the training points
and select a suitable degree for the mixed data set. Then,
several defense methods mentioned before are used on the
data set. Finally, we can get four trainingmodels: model with-
out defense method, model with RANSAC method, model
with Theil-Sen method and model with TRIM method. The
comparative results are shown in Tab.3, Tab.4 and Tab.5.

When there are no defense method in the polynomial
regression model, we see that the ME method perform better
than DC method in airfoil self-noise data set. That is because
the airfoil self-noise data set has no major improvement when
changing the degree (in Fig.3a), in other words, this dataset
is not sensitive to model capacity. But in other two data
sets, the change of hyper-parameter have a greater impact on
model performance than change in parameters.

As said before, the traditional poisoning method is easy
to be found by the model-oriented. The experiment result
shows that the RANSAC method and the TRIM method can
greatly reduce the impact of ME attacks and the Theil-Sen

VOLUME 8, 2020 21609

W. Zhao et al.: Model Capacity Vulnerability in Hyper-Parameters Estimation

TABLE 6. Choosing the target degree of the three public data sets by validation error: the degree with minimum validation error is best degree while that
with maximum validation error is the target degree.

method works bad because it does not delete the poisoned
points, but only reduces their weights. Different from the
traditional poisoning method, the DC method affects model
performance by changing model capacity, so when faced
with three defense methods, its performance is almost not
degraded. In most of times, as the DC poisoning points have
lower training error than normal points, the defense method
may treat the normal points as outliers and make the model
perform worse.
In general, the impact of changing model capacity is

greater than directly changingmodel parameters, and existing
defense methods not only fail to correct changes in model
capacity, but also worsen model performance.

VI. CONCLUSION

In this paper, we examine the vulnerability of the machine
learning model capacity. Different from the model param-
eter vulnerability which happens in the training stage and
testing stage, the model capacity vulnerability happens in
the hyper-parameter estimation stage. We find that a minor
change to the model hyper-parameters can cause huge
changes in the model capacity, which may cause the model
to overfit or underfit. Accordingly, it is significant to learn
the vulnerability of model capacity, which has not received
much attention.
We also illustrate the vulnerability by a gradient-descent

based hyper-parameter poisoning method, which targets on
the degree selection stage of a polynomial regression model.
We show that the poisoning points generated by this method
can induce an inappropriate model capacity and cannot be
detected by the existing model-oriented defense methods.

APPENDIX

TRADITIONAL POISONING METHOD TARGET

POLYNOMIAL REGRESSION MODEL

The traditional poisoning methods inject poisoning points
into the training set to affect the model training stage and
get a maximized testing error. The optimization function is
formulated as:

argmaxDpoison
1

m

m
∑

i=1

(yi − ŷi(xi, β
∗))2

s.t. β∗ = argminβL(Dtrain ∪ Dpoison, β),

(xi, yi) ∈ Dval, (10)

Algorithm 3ME Poisoning Method
Require: Dtrain, Dval , a poisoning rate rt
1: i← 0
2: D

(i)
p ← baseline(Dtrain, rt)

3: β(i)← polyRegTrain(D(i)
p ∪ Dtrain)

4: valMSE (i)← MSE(Dval, β
(i))

5: repeat

6: for k = 1, 2, · · · ,m do

7: Retrieve a poisoning example (x(i)k , y′k) from D
(i)
p

8: x
(i+1)
k ← x

(i)
k + λ

(i)
k ∇x(i)k

MSE(Dval, β
(i))

9: end for

10: D
(i+1)
p ←

⋃m
i=1{(x

(i+1)
i , y′i)}

11: β(i+1)← polyRegTrain(D(i+1)
p ∪ Dtrain)

12: valMSE (i+1)← MSE(Dval, β
(i+1))

13: i← i+ 1
14: until

∣

∣valMSE (i) − valMSE (i+1)
∣

∣ < ε

15: Dpoison← D
(i)
p

16: return Resulting adversarial examples Dpoison

where L denotes the loss function of the target polynomial
regression model. The bi-level optimization problem is usu-
ally solved by gradient descent method.

In this paper, we propose a gradient-based poisoning
method named ME method. This method start from the
baseline method. Specifically, n represents the size of a
clean training data Dtrain, rt refers to the poisoning rate.
The baseline method select m (m = rt ∗ n) training
points to make an initial adversarial point set D

(0)
p =

{(xi, y′i)i=1}
m. After that, the algorithm optimizes the fea-

tures of the initial poisoning points through the gradient
descent method. In every iteration, a gradient ∇xMSE is
calculated for every adversarial examples in D

(0)
p . The algo-

rithm converges and outputs resulting in adversarial exam-
ples when the MSE difference between two continuous
iterations is small enough. The pseudo code is showed in
Alg.3.

The key parameter in optimization progress is the gradient
∇xMSE(Dval, β).

∇xMSE = ∇xβ · ∇βMSE . (11)

The second part can be calculated directly:

∇βMSE(Dval, β) =
2

n

n
∑

t=1

(yt − (xtβ + et))xt . (12)

21610 VOLUME 8, 2020

W. Zhao et al.: Model Capacity Vulnerability in Hyper-Parameters Estimation

Now we consider the former part in the equation (11). As is
mentioned before, polynomial regression models are usually
solved by transforming it into linear regression. Sowe express
∇xβ as:

∇xβ = ∇xx
[k] · ∇

x
[k]β. (13)

According to vector derivation rules, the calculation method
of ∇xx[k] has been given in Eq.6
We have shown in line 3 of Algorithm 3 that β is the best

solution of polynomial regression model whose training data
is Dtrain ∪ D

(i)
p . Then, it satisfies:

∇βL(Dtrain ∪ Dpoison, β) = 0 (14)

Meanwhile, this condition remains valid when updating x.
Hence, we also have:

∇x[k] (∇βL(Dtrain ∪ Dpoison, β)) = 0. (15)

Then,

∇x[k]∇βL +∇x[k]β
T · ∇2

βL = 0. (16)

Finally,

∇x[k]β
T = −∇x[k]∇βL(∇

2
βL)
−1. (17)

REFERENCES

[1] L. Xiang, G. Guo, J. Yu, V. S. Sheng, and P. Yang, ‘‘A convolutional neural
network-based linguistic steganalysis for synonym substitution steganog-
raphy,’’Math. Biosci. Eng., vol. 17, no. 2, pp. 1041–1058, 2019.

[2] X. J. Zhu, ‘‘Semi-supervised learning literature survey,’’ Dept. Comput.
Sci., Univ. Wisconsin-Madison, Madison, WI, USA, Tech. Rep., 2005.

[3] L. Xiang, G. Zhao, Q. Li, W. Hao, and F. Li, ‘‘TUMK-ELM: A fast
unsupervised heterogeneous data learning approach,’’ IEEE Access, vol. 6,
pp. 35305–35315, 2018.

[4] Q. Liu, P. Li, W. Zhao, W. Cai, S. Yu, and V. C. M. Leung, ‘‘A survey
on security threats and defensive techniques of machine learning: A data
driven view,’’ IEEE Access, vol. 6, pp. 12103–12117, 2018.

[5] P. Li, Q. Liu, W. Zhao, D. Wang, and S. Wang, ‘‘Chronic poisoning against
machine learning based IDSs using edge pattern detection,’’ in Proc. IEEE
Int. Conf. Commun. (ICC), May 2018, pp. 1–7.

[6] P. Li, W. Zhao, Q. Liu, X. Liu, and L. Yu, ‘‘Poisoning machine learning
based wireless IDSs via stealing learning model,’’ in Proc. Int. Conf.

Wireless Algorithms, Syst., Appl. Cham, Switzerland: Springer, 2018,
pp. 261–273.

[7] Y. Dong, P. Zhu, Q. Liu, Y. Chen, and P. Xun, ‘‘Degrading detection per-
formance of wireless IDSs through poisoning feature selection,’’ in Proc.
Int. Conf. Wireless Algorithms, Syst., Appl. Cham, Switzerland: Springer,
2018, pp. 90–102.

[8] H. Kwon, Y. Kim, K.-W. Park, H. Yoon, and D. Choi, ‘‘Multi-targeted
adversarial example in evasion attack on deep neural network,’’ IEEE
Access, vol. 6, pp. 46084–46096, 2018.

[9] A. Kurakin, I. Goodfellow, and S. Bengio, ‘‘Adversarial examples
in the physical world,’’ 2016, arXiv:1607.02533. [Online]. Available:
https://arxiv.org/abs/1607.02533

[10] C.-J. Simon-Gabriel, Y. Ollivier, L. Bottou, B. Schölkopf, and
D. Lopez-Paz, ‘‘First-order adversarial vulnerability of neural networks
and input dimension,’’ in Proc. Int. Conf. Mach. Learn., 2019,
pp. 5809–5817.

[11] W. Ding, C.-T. Lin, and W. Pedrycz, ‘‘Multiple relevant feature ensemble
selection based on multilayer co-evolutionary consensus MapReduce,’’
IEEE Trans. Cybern., vol. 50, no. 2, pp. 425–439, Feb. 2020.

[12] W. Ding, C.-T. Lin, and M. Prasad, ‘‘Hierarchical co-evolutionary clus-
tering tree-based rough feature game equilibrium selection and its appli-
cation in neonatal cerebral cortex MRI,’’ Expert Syst. Appl., vol. 101,
pp. 243–257, Jul. 2018.

[13] L. Xiang, X. Shen, J. Qin, and W. Hao, ‘‘Discrete multi-graph hash-
ing for large-scale visual search,’’ Neural Process. Lett., vol. 49, no. 3,
pp. 1055–1069, Jun. 2019.

[14] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter, ‘‘Accessorize to
a crime: Real and stealthy attacks on state-of-the-art face recognition,’’
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur. (CCS), 2016,
pp. 1528–1540.

[15] B. Biggio, L. Didaci, G. Fumera, and F. Roli, ‘‘Poisoning attacks to com-
promise face templates,’’ in Proc. Int. Conf. Biometrics (ICB), Jun. 2013,
pp. 1–7.

[16] Z. Wang, ‘‘Deep learning-based intrusion detection with adversaries,’’
IEEE Access, vol. 6, pp. 38367–38384, 2018.

[17] S. Wu, ‘‘A review on coarse warranty data and analysis,’’ Rel. Eng. Syst.
Saf., vol. 114, pp. 1–11, Jun. 2013.

[18] M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and B. Li,
‘‘Manipulating machine learning: Poisoning attacks and countermeasures
for regression learning,’’ in Proc. IEEE Symp. Secur. Privacy (SP),
May 2018, pp. 19–35.

[19] M. A. Fischler and R. C. Bolles, ‘‘Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated car-
tography,’’ Commun. ACM, vol. 24, no. 6, pp. 381–395, 1981.

[20] L. Y. Xiang, Y. Li, W. Hao, P. Yang, and X. B. Shen, ‘‘Reversible natural
language watermarking using synonym substitution and arithmetic cod-
ing,’’ Comput. Mater. Continua, vol. 55, no. 3, pp. 541–559, 2018.

[21] X. Dang, H. Peng, X. Wang, and H. Zhang, ‘‘Theil-sen estimators in a
multiple linear regression model,’’ Tech. Rep., 2008.

[22] B. Li, Y. Wang, A. Singh, and Y. Vorobeychik, ‘‘Data poisoning
attacks on factorization-based collaborative filtering,’’ in Proc. Adv.

Neural Inf. Process. Syst. 29 (NIPS), D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon, and R. Garnett, Eds. Curran Associates, 2016,
pp. 1885–1893. [Online]. Available: http://papers.nips.cc/paper/6142-
data-poisoning-attacks-on-factorization-based-collaborative-filtering.pdf

[23] S. Alfeld, X. Zhu, and P. Barford, ‘‘Data poisoning attacks against
autoregressive models,’’ in Proc. AAAI Conf. Artif. Intell., 2016,
pp. 1452–1458.

[24] R. Koenker andG. Bassett, ‘‘Regression quantiles,’’Econometrica, vol. 46,
no. 1, pp. 33–50, Jan. 1978.

[25] W. Hu and Y. Tan, ‘‘Generating adversarial malware examples for black-
box attacks based on GAN,’’ 2017, arXiv:1702.05983. [Online]. Available:
https://arxiv.org/abs/1702.05983

[26] C. H. Teo, A. Globerson, S. T. Roweis, and A. J. Smola, ‘‘Convex learn-
ing with invariances,’’ in Proc. Adv. Neural Inf. Process. Syst., 2008,
pp. 1489–1496.

[27] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[28] J. Shen, X. Zhu, and D. Ma, ‘‘TensorClog: An imperceptible poison-
ing attack on deep neural network applications,’’ IEEE Access, vol. 7,
pp. 41498–41506, 2019.

[29] M. Mozaffari-Kermani, S. Sur-Kolay, A. Raghunathan, and N. K. Jha,
‘‘Systematic poisoning attacks on and defenses for machine learn-
ing in healthcare,’’ IEEE J. Biomed. Health Inform., vol. 19, no. 6,
pp. 1893–1905, Nov. 2015.

[30] R. Laishram andV. V. Phoha, ‘‘Curie: Amethod for protecting SVM classi-
fier from poisoning attack,’’ 2016, arXiv:1606.01584. [Online]. Available:
https://arxiv.org/abs/1606.01584

[31] S. Mei and X. Zhu, ‘‘Using machine teaching to identify optimal training-
set attacks on machine learners,’’ in Proc. 29th AAAI Conf. Artif. Intell.,
2015, pp. 1–7.

[32] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov,
G. Giacinto, and F. Roli, ‘‘Evasion attacks against machine learning at test
time,’’ inProc. Joint Eur. Conf.Mach. Learn. Knowl. DiscoveryDatabases.
Berlin, Germany: Springer, 2013, pp. 387–402.

[33] F. Zhang, P. P. K. Chan, B. Biggio, D. S. Yeung, and F. Roli, ‘‘Adversarial
feature selection against evasion attacks,’’ IEEE Trans. Cybern., vol. 46,
no. 3, pp. 766–777, Mar. 2016.

[34] J. Steinhardt, P. W. W. Koh, and P. S. Liang, ‘‘Certified defenses for
data poisoning attacks,’’ in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 3517–3529.

[35] B. Nelson, M. Barreno, F. J. Chi, A. D. Joseph, B. I. Rubinstein, U. Saini,
C. Sutton, J. Tygar, andK. Xia, ‘‘Misleading learners: Co-opting your spam
filter,’’ inMachine Learning in Cyber Trust. Boston, MA, USA: Springer,
2009, pp. 17–51.

[36] A. Globerson and S. Roweis, ‘‘Nightmare at test time: Robust learning by
feature deletion,’’ in Proc. 23rd Int. Conf. Mach. Learn. (ICML), 2006,
pp. 353–360.

[37] D. Dua and C. Graff. (2017).UCI Machine Learning Repository. [Online].
Available: http://archive.ics.uci.edu/ml

VOLUME 8, 2020 21611

W. Zhao et al.: Model Capacity Vulnerability in Hyper-Parameters Estimation

[38] A. Asuncion and D. Newman. (2007). UCI Machine Learning Repository.
[Online]. Available: https://archive.ics.uci.edu/ml/datasets/airfoil+self-
noise

[39] I.-C. Yeh, ‘‘Modeling of strength of high-performance concrete using
artificial neural networks,’’ Cement Concrete Res., vol. 28, no. 12,
pp. 1797–1808, Dec. 1998.

[40] I.-C. Yeh and T.-K. Hsu, ‘‘Building real estate valuation models with
comparative approach through case-based reasoning,’’ Appl. Soft Comput.,
vol. 65, pp. 260–271, Apr. 2018.

WENTAO ZHAO received the Ph.D. degree from
the National University of Defense Technology
(NUDT), in 2009. He is currently a Professor
with NUDT. His research interests include net-
work performance optimization, information pro-
cessing, and machine learning. He has edited one
bookDatabase Principle and Technology and sev-
eral technical articles, such as Communications
of CCF, WCNC’17, ICANN’17, WF-IoT, MDAI,
and FAW. Since 2011, he has been serving as a

member of the Council Committee of Postgraduate Entrance Examination
of computer science and technology, NUDT.

XIAO LIU received the B.Eng. degree from
the National University of Defense Technology,
in 2017, where he is currently pursuing the M.S.
degree. His research interests include machine
learning and cyber security.

QIANG LIU (Member, IEEE) received the Ph.D.
degree in computer science and technology from
the National University of Defense Technology
(NUDT), in 2014. From 2011 to 2013, he was a
Visiting Scholar with the Department of Electri-
cal and Computer Engineering, The University of
British Columbia (UBC), Canada. He is currently
an Assistant Professor with NUDT. He has con-
tributed over 50 archived journal and international
conference papers, such as the IEEE Network

Magazine, the IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, the IEEE
TRANSACTIONS ON CYBERNETICS, the IEEE TRANSACTIONS ON KNOWLEDGE AND

DATA ENGINEERING, Pattern Recognition, the IEEE COMMUNICATIONS LETTERS,
Neurocomputing, Neural Computing and Applications, Mobile Information
Systems, EDBT’17, WCNC’17, ICANN’17, and SmartMM’17. His research
interests include 5G networks, the Internet of Things, wireless network secu-
rity, and machine learning. He is a member of China Computer Federation
(CCF). He serves on the Editorial Review Board of Artificial Intelligence
Research Journal.

JIUREN CHEN received the B.E. and M.S.
degrees in electronic science and technology from
the University of Science and Technology Beijing,
China, in 2012 and 2017, respectively. He is cur-
rently a Research Assistant with the Science and
Technology on Test Physics and Numerical Math-
ematic Laboratory. His research interests include
sentiment analysis, machine learning, and infor-
mation security.

PAN LI received the B.Eng. degree from the
University of Science and Technology Beijing,
in 2016, and the M.S. degree from the National
University of Defense Technology. He is cur-
rently pursuing the Ph.D. degree with the Queen
Mary University of London. His research interests
include machine learning and cyber security.

21612 VOLUME 8, 2020

