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MODEL CATEGORY STRUCTURES
ON CHAIN COMPLEXES OF SHEAVES

MARK HOVEY

Abstract. The unbounded derived category of a Grothendieck abelian cat-
egory is the homotopy category of a Quillen model structure on the category
of unbounded chain complexes, where the cofibrations are the injections. This
folk theorem is apparently due to Joyal, and has been generalized recently
by Beke. However, in most cases of interest, such as the category of sheaves
on a ringed space or the category of quasi-coherent sheaves on a nice enough
scheme, the abelian category in question also has a tensor product. The in-
jective model structure is not well-suited to the tensor product. In this paper,
we consider another method for constructing a model structure. We apply it
to the category of sheaves on a well-behaved ringed space. The resulting flat
model structure is compatible with the tensor product and all homomorphisms
of ringed spaces.

Introduction

The unbounded derived category of an abelian category A is defined to be the
quotient of the category of unbounded chain complexes Ch(A) obtained by ad-
joining formal inverses to all the quasi-isomorphisms (maps that induce homology
isomorphisms). With this definition, one has little control over the morphisms in
the derived category. In fact, it is not known in general that the derived category is
a category, in the usual sense of having only a set of maps between any two objects.

One excellent way to cope with this problem is Quillen’s theory of model cat-
egories [Qui67]. If one can prove that Ch(A) is a model category with the quasi-
isomorphisms as the weak equivalences, then it follows from Quillen’s theory that
the derived category is a category. Furthermore, one has a fairly simple description
of the morphisms from X to Y in the derived category as chain homotopy classes
of chain maps from a cofibrant replacement for X to a fibrant replacement for Y .

It is a folk theorem, apparently due to Joyal [Joy84] (see [Bek99]), that Ch(A)
is a model category with quasi-isomorphisms as weak equivalences and monomor-
phisms as cofibrations whenever A is a Grothendieck abelian category. We call
this the injective model structure. This applies in particular to the category of
sheaves over a ringed space or topos, and to the category of quasi-coherent sheaves
over a quasi-compact, quasi-separated scheme. This result has been rediscovered in
various forms by several people (including the author). Moerdijk and Pronk con-
structed the injective model structure for sheaves in [MP92]. Many of the results of
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Spaltenstein on unbounded complexes [Spa88] and their generalizations in [TLS99]
follow immediately from the existence of the injective model structure.

However, the categories just mentioned are closed symmetric monoidal under
the tensor product, as are most Grothendieck categories used in practice. In this
case, the category Ch(A) will also be closed symmetric monoidal, with the usual
definitions of Hom and tensor of chain complexes. The injective model structure
does not interact well with the tensor product, making it useless for defining or
studying the derived tensor product.

We therefore discuss a different method for constructing a model structure on
Ch(A). This method enables us to define a different model structure on Ch(A)
in case A has a set of generators of finite projective dimension. In particular, we
apply it when A is the category of quasi-coherent sheaves on a nice enough scheme,
using the locally free sheaves as the generators. Though the resulting locally free
model structure is still not compatible with the tensor product, it does give us some
information about the resulting derived category that does not seem accessible from
the injective model structure.

But this method works better when A is the category of sheaves on a ringed
space (S,O) satisfying a hypothesis related to finite cohomological dimension. In
this case, we construct a flat model structure on Ch(A) that is compatible with the
tensor product. We then get model categories of differential graded O-algebras and
of differential graded modules over a given differential graded O-algebra. The flat
model structure is also natural for arbitrary maps of ringed spaces.

To understand this paper, the reader needs to know some basic facts about model
categories, Grothendieck categories, and sheaves. A good introduction to model
categories is [DS95]. The book [Hov98] is a more in-depth study, but still starting
from scratch. All the terms we need are defined in [Hov98]; we will give specific
references as needed. For Grothendieck categories, [Ste75] is a basic reference. We
also need the fact that every object X in a Grothendieck category A is small, in
the sense that A(X,−) commutes with κ-indexed colimits, for all cardinals κ with
sufficiently large cofinality. This follows from the important fact that Grothendieck
categories are locally presentable [Bek99, Proposition 3.10]. Because we have been
unable to find a published reference for this fact, we include a direct proof of
smallness in an appendix, based on the Gabriel-Popescu theorem. For sheaves and
schemes, we try to refer mostly to [Har77], but we occasionally need more advanced
results.

The author would like to thank Matthew Ando and Amnon Neeman for helpful
discussions about sheaves, and Dan Christensen and the referee for useful sugges-
tions.

1. A method for building model structures

In this section, we attempt to build a model structure on Ch(A) for a Gro-
thendieck category A by generalizing the usual projective model structure when
A = R-Mod for some ring R. Our approach is related to, but not identical with,
the method of [Chr98]; the difference is that we need the weak equivalences to be
the quasi-isomorphisms, whereas Christensen is willing to relax that hypothesis.

Recall from [Hov98, Section 2.3] that the projective model structure on Ch(A),
where A = R-Mod for some ring R, is a cofibrantly generated model structure
(see [Hov98, Section 2.1] for the definition of this term), with generating cofibrations
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CHAIN COMPLEXES OF SHEAVES 2443

I = {Sn−1R −→ DnR} and generating trivial cofibrations J = {0 −→ DnR}. Here
n runs through all integers, Sn−1M is the complex whose only nonzero object is
M in dimension n − 1, and DnM is the complex whose only nonzero objects are
M in dimensions n and n − 1. Our plan is to replace the map 0 −→ R by a set of
monomorphismsM.

Recall that, given a collection of maps J , J-inj is the class of all maps p having
the right lifting property with respect to J [Hov98, Section 2.1.2]; this means that,
given a commutative square

A
f−−−−→ X

i

y yp
B −−−−→

g
Y

where i ∈ J , there is a map h : B −→ X such that hi = f and ph = g. Similarly,
J-proj is the class of maps having the left lifing property with respect to J . We let
J-cof = (J-inj)-proj, and J-fib = (J-proj)-inj.

In a Grothendieck category A, J-cof is the smallest class of maps containing
J and closed under retracts (in the category of maps), pushouts, and transfinite
compositions. This follows from the small object argument (see [Hov98, Corol-
lary 2.1.15]), using the fact, proved in the Appendix, that every object in a Gro-
thendieck category is small.

Definition 1.1. SupposeM is a set of monomorphisms in a Grothendieck category
A. Let F denote the set of codomains of the maps of M. We will say that M is
pointed if 0 ∈ F and, if F ∈ F , then 0 −→ F is in M. Define J to be the set of
all Dnf , where n is an integer and f ∈ M. Define I to be the union of J and the
maps Sn−1F −→ DnF for F ∈ F and n an integer. Then define a map p to be an
M-fibration if p is in J-inj, and define p to be an M-cofibration if p is in I-cof.

IfM consists only of the maps 0 −→ F for F ∈ F , then we recover the definitions
of [Chr98]. However, the results we prove in this section do not recover the results
of [Chr98], as we always use quasi-isomorphisms as our weak equivalences and thus
require more hypotheses.

Our goal is to determine conditions onM under which the quasi-isomorphisms,
the M-cofibrations, and the M-fibrations determine a model structure on Ch(A).
We use the recognition theorem [Hov98, Theorem 2.1.19]. Since the maps of J are
injective quasi-isomorphisms in I-cof, the maps of J-cof will also be. Indeed, it
suffices to show that injective quasi-isomorphisms are closed under retracts (clear),
pushouts, and transfinite compositions. For pushouts, use the fundamental theorem
of homological algebra. For transfinite compositions, use the fact that homology
commutes with colimits in any AB5 category. To apply the recognition theorem,
then, we need to show that the maps of I-inj coincide with the maps that are both
M-fibrations and quasi-isomorphisms.

We begin by characterizing the M-fibrations.

Definition 1.2. SupposeM is a pointed set of monomorphisms in a Grothendieck
category A. Define an object X of A to be M-flasque if A(f,X) is surjective for
all f ∈M.

This definition is a generalization of the usual notion of flasque, or flabby, sheaves.
We will discuss this in detail in the next section.
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Let us denote the category of chain complexes of abelian groups by Ch(Z).

Proposition 1.3. Suppose M is a pointed set of monomorphisms in a Grothen-
dieck category A. Then a map p : X −→ Y in Ch(A) is an M-fibration if and
only if A(F, p) is a surjection in Ch(Z) for all F in F and ker p is dimensionwise
M-flasque.

In particular, if F is a set of generators for A, then M-fibrations are surjective.
To see this, consider the map from Yn into the cokernel of pn.

Proof. Adjointness implies that p has the right lifting property with respect to

DnB
Dnf−−−→ DnC if and only if the map

A(C,Xn) −→ A(C, Yn)×A(B,Yn) A(B,Xn)

is surjective. Applying this when f is the map 0 −→ F for F ∈ F , we find that, if p
is an M-fibration, then A(F, p) is surjective. Furthermore, if p is an M-fibration,
then ker p −→ 0 is in J-inj. Applying the above criterion, we find that ker p is
dimensionwiseM-flasque.

Conversely, suppose A(F, p) is a surjection for all F ∈ F and K = kerp is
dimensionwiseM-flasque. Suppose f : B −→ C is inM. We have an exact sequence

0 −→ A(B,Kn) −→ A(B,Xn) −→ A(B, Yn)

and a similar exact sequence that is in fact short exact when B is replaced by C.
By pulling back the exact sequence for B through the map A(f, Yn), we obtain the
following commutative diagram.

A(C,Kn) −−−−→ A(C,Xn) −−−−→ A(C, Yn)

A(f,Kn)

y yg ∥∥∥
A(B,Kn) −−−−→ A(C, Yn)×A(B,Yn) A(B,Xn) −−−−→

h
A(C, Yn)

Note that, in this diagram, the composite hg is surjective, so h is surjective. There-
fore we have a map of short exact sequences. Since K is dimensionwiseM-flasque,
the map A(f,Kn) is surjective. The snake lemma now implies that g is surjective,
so p is an M-fibration.

Proposition 1.4. Suppose M is a pointed set of monomorphisms in a Grothen-
dieck category A. Suppose in addition that the set F of codomains of M generates
A. Then every map of complexes p : X −→ Y in I-inj is both an M-fibration and a
quasi-isomorphism.

Proof. Recall that the functor Sn−1 : A −→ Ch(A) is left adjoint to the functor that
takes X to Zn−1X , the cycles in Xn−1. This implies that p is in I-inj if and only
if it is an M-fibration and the map

A(F,Xn) −→ A(F, Yn)×A(F,Zn−1Y ) A(F,Zn−1X)

is surjective for all n and F ∈ F . Let K = ker p. If p ∈ I-inj, then the map
K −→ 0 is as well. Hence the map A(F,Kn) −→ A(F,Zn−1K) is surjective for
all n and all F ∈ F . Since F is a set of generators for A, this implies that the
map Kn −→ Zn−1K is surjective, and hence that K has no homology. A similar
argument shows that p is surjective, and so the long exact sequence implies that p
is a quasi-isomorphism.
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If F is not a generating set for A, we can still say that, if p ∈ I-inj, then A(F, p)
is a surjective quasi-isomorphism for all F ∈ F .

To complete the construction of our model structure, we need to know that every
map that is both an M-fibration and a quasi-isomorphism is in I-inj. We begin
with a lemma.

Lemma 1.5. Suppose M is a pointed set of monomorphisms in a Grothendieck
category A, and let F be the set of codomains of M. Suppose p : X −→ Y is a map
in Ch(A) such that A(F, p) is surjective for all F ∈ F . Then p is in I-inj if and
only if kerp −→ 0 is in I-inj.

Proof. The only if implication is clear. Suppose A(F, p) is surjective for all F ∈ F ,
and let K = ker p. Suppose K −→ 0 is in I-inj. In particular, this means that K is
dimensionwiseM-flasque, so p ∈ J-inj. In order to show that p is in I-inj, we must
show that, given F ∈ F , a map x : F −→ Zn−1X , and a map y : F −→ Yn such that
d ◦ y = p ◦ x, there is a map x′ : F −→ Xn such that p ◦ x′ = y and d ◦ x′ = x. First
choose z : F −→ Xn such that p ◦ z = y, using the fact that A(F, p) is surjective.
Then p ◦ (d ◦ z − x) = 0, so dz − x : F −→ Zn−1K. Since K −→ 0 is in I-inj, there is
a map w : F −→ Kn such that d ◦ w = d ◦ z − x. Now let x′ = z − w.

Proposition 1.6. Suppose M is a pointed set of monomorphisms in a Grothen-
dieck category A. Suppose that the set F of codomains of M generates A, and,
furthermore, suppose that if K is an acyclic, dimensionwiseM-flasque complex and
F ∈ F , then A(F,K) is an acyclic complex of abelian groups. Then, if p : X −→ Y
is an M-fibration and quasi-isomorphism in Ch(A), then p is in I-inj.

Proof. By Lemma 1.5, it suffices to show that K = ker p −→ 0 is in I-inj. But K
is an acyclic dimensionwise flasque complex, and so A(F,K) is also acyclic. Hence
the map A(F,Kn) −→ A(F,Zn−1K) is surjective, and so K −→ 0 is in I-inj.

We have proved the following theorem.

Theorem 1.7. Suppose M is a pointed set of monomorphisms in a Grothendieck
category A such that the set of codomains F of M forms a generating set of A
and, for all acyclic, dimensionwise M-flasque complexes X and for all F ∈ F , the
complex A(F,X) is acyclic. Then Ch(A) is a proper cofibrantly generated model
category, where the weak equivalences are the quasi-isomorphisms, the fibrations are
the M-fibrations, and the cofibrations are the M-cofibrations.

We comment on the word “proper” in the above theorem. A model category is
called left proper if the pushout of a weak equivalence through a cofibration is again
a weak equivalence; right proper is defined dually. A model category is proper if
it is both left and right proper. The long exact sequence in homology implies that
any model structure on Ch(A) will be proper as long as weak equivalences coincide
with quasi-isomorphisms, every cofibration is an injection, and every fibration is a
surjection.

One interesting feature of the hypotheses of this theorem is that, if they are true
for a given set of monomorphisms M with codomains F , then they remain true if
we expandM by adding any set of monomorphisms whose codomains are all in F .
So in fact we get many different model structures with the same weak equivalences,
all relying on more or less stringent definitions of “flasque”.

One might hope that we would still get a model structure on Ch(A) if we drop
all hypotheses about the set of monomorphisms M. The weak equivalences would
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have to change, probably to maps f such that A(F, f) is a quasi-isomorphism for all
F ∈ F . With this definition, an appropriately modified version of Proposition 1.6
does hold. However, we do not know if the maps of J-cof are weak equivalences
with this definition.

2. Generators of finite projective dimension

In this section, we apply the method of the previous section to construct a new
model structure on Ch(A), when A is a Grothendieck category with generators of
finite projective dimension. We apply this construction to the category of quasi-
coherent sheaves over a nice enough scheme.

Recall that an object B is said to have finite projective dimension if there is
an integer n0 such that ExtnA(B,C) = 0 for all n ≥ n0 and all objects C of A.
These Ext groups are defined by injective resolutions, since Grothendieck categories
always have enough injectives [Ste75, Corollary X.4.3], but often do not have enough
projectives. In particular, the usual characterization of a module of finite projective
dimension as the 0th homology group of a finite complex of projectives will not hold
in the typical Grothendieck category.

Nevertheless, objects of finite projective dimension are useful in constructing a
model structure because of the following lemma.

Lemma 2.1. Suppose A is a Grothendieck category, F ∈ A has finite projective
dimension, and X ∈ Ch(A) is an acyclic complex such that ExtiA(F,Xn) = 0 for
all i > 0 and all n. Then A(F,X) is still acyclic.

Proof. Since X is acyclic, we have a short exact sequence

ZnX −→ Xn −→ Zn−1X.

Since ExtiA(F,Xn) = 0 for all i > 0, this gives us an exact sequence

0 −→ A(F,ZnX) −→ A(F,Xn) −→ A(F,Zn−1X) −→ Ext1
A(F,ZnX) −→ 0

and isomorphisms ExtiA(F,Zn−1X) ∼= Exti+1
A (F,ZnX) for i > 0. Thus

Ext1
A(F,ZnX) ∼= Extm+1

A (F,Zm+nX)

for all m ≥ 0. Since F has finite projective dimension, this implies Ext1
A(F,ZnX) =

0 for all n. It follows that A(F,X) is acyclic.

Theorem 2.2. Suppose A is a Grothendieck category with a set F of generators,
each of which has finite projective dimension. Let M denote the set of inclusions
A −→ F of subobjects of objects F ∈ F . Then there is a proper cofibrantly generated
model structure on Ch(A), where the weak equivalences are the quasi-isomorphisms,
the fibrations are the dimensionwise split surjections with dimensionwise injective
kernel, and the cofibrations are the M-cofibrations.

Note that, in a Grothendieck category, every object has a set of subobjects [Ste75,
Proposition IV.6.6], so M is really a set.

Proof. Note first that theM-flasque objects ofA coincide with the injective objects,
by [Ste75, Prop. V.2.9]. Lemma 2.1 implies that if X is an acyclic, dimensionwise
injective complex, then A(F,X) is acyclic for all F ∈ F . Hence Theorem 1.7 gives
us a model structure. AnyM-fibration is a surjection with dimensionwise injective
kernel, by Proposition 1.3, and therefore must be a dimensionwise split surjection.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CHAIN COMPLEXES OF SHEAVES 2447

Conversely, a dimensionwise split surjection with dimensionwise injective kernel
certainly satisfies the conditions of Proposition 1.3, so is an M-fibration.

This model structure is related to the injective model structure; the identity
functor from this model structure to the injective model structure is a Quillen
equivalence. It appears to be new even when A is the category of modules over a
ring R. The generating cofibrations and trivial cofibrations in this model structure
are explicit, and the fibrations are easier to understand than the injective fibrations.
On the other hand, we know nothing about the cofibrations in this model structure.

In general, this model structure is poorly behaved with respect to functors of
abelian categories. If F is an additive functor with right adjoint U , then U will
preserve fibrations in this model structure if and only if U preserves injectives,
which is equivalent to F being exact. But this is not enough to conclude that F
induces a Quillen functor; we must also know that U preserves acyclic complexes
of injectives. This will happen if U is exact, but may happen in some other cases
as well.

We now consider an interesting example of this model structure. Suppose S is a
noetherian scheme. We say that S has enough locally frees if every coherent sheaf
on S is a quotient of a locally free sheaf of finite rank. For example, a noetherian,
integral, separated, locally factorial scheme has enough locally frees by a result of
Kleiman [Har77, Ex. III.6.8].

Proposition 2.3. Suppose S is a noetherian scheme with enough locally frees. In
addition, suppose that S is either finite-dimensional or is separated. Then the
locally free sheaves of finite rank are generators of finite projective dimension for
the category QCo(S) of quasi-coherent sheaves on X.

Proof. We first show that the locally frees generate QCo(S). Deligne [Har66, Ap-
pendix, Prop. 2] has shown that every quasi-coherent sheaf is a colimit of finitely
presented sheaves. On a noetherian scheme, finitely presented sheaves are coherent,
and thus, since S has enough locally frees, are quotients of locally free sheaves of
finite rank.

Now let F be a locally free sheaf of finite rank, and C a quasi-coherent sheaf of
O-modules on S. By the corollary to [Gro57, Prop. 4.2.3], we have

ExtiO-Mod(F,C) ∼= Hi(S; Hom(F,C)),

where Hom denotes sheaf Hom and the cohomology groups are sheaf cohomology.
If S is finite-dimensional, we can apply Grothendieck’s vanishing theorem [Har77,
Theorem III.2.7] to conclude that these cohomology groups are 0 for large enough
i. If S is separated, then we can apply [Har77, Ex. III.4.8] to reach the same
conclusion, using the fact that Hom(F,C) is quasi-coherent.

This does not complete the proof, because these are Ext groups in O-Mod rather
than in QCo(S). However, these two possibly different Ext groups in fact coincide,
because the exact inclusion functor QCo(S) −→ O-Mod has a right adjoint and left
inverse Q [SGA71, p. 187] whenever S is quasi-compact and quasi-separated, as any
noetherian scheme is. In detail, given a quasi-coherent sheaf C, we can first take
an injective resolution I∗ of C in O-Mod and apply Q to get a complex of injectives
QI∗ in QCo(S). We claim that QI∗ is still exact. To see this, consider the short
exact sequence

0 −→ C −→ I0 −→ ZI1 −→ 0.
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After we apply Q, we get a long exact sequence involving the derived functors
RiQ of Q. However, RiQC = 0 for i > 0, by the last paragraph of [SGA71,
p. 189]. Furthermore, RiQI0 = 0 for i > 0 because I0 is injective. It follows
that (RiQ)ZI1 = 0 for i > 0 as well. Repeating this argument on the short exact
sequence

0 −→ ZI1 −→ I1 −→ ZI2 −→ 0,

we find that (RiQ)ZI2 = 0 for i > 0, and, by induction, that (RiQ)ZIm = 0 for
all m and i > 0. Hence QI∗ is still exact, and so is an injective resolution of C in
QCo(S).

Applying QCo(S)(B,−) to QI∗ and using adjointness, we find that, if B and C
are both quasi-coherent, then ExtiQCo(S)(B,C) = ExtiO-Mod(B,C), completing the
proof.

Hence, as a corollary to Proposition 2.3 and Theorem 2.2, we get the following
theorem.

Theorem 2.4. Suppose S is a noetherian scheme with enough locally frees, and
suppose that S is either finite-dimensional or separated. Then there is a proper,
cofibrantly generated, model structure on the category ChQCo(S) of unbounded com-
plexes of quasi-coherent sheaves, where the weak equivalences are the quasi-isomor-
phisms and the fibrations are the dimensionwise split surjections with dimensionwise
injective kernel.

Let us call this model structure the locally free model structure. We do not
understand the cofibrations in the locally free model structure, though we point
out that SnF is cofibrant for any locally free F , and DnA is cofibrant for any
coherent sheaf A. If f : S −→ T is a map between schemes satisfying the hypotheses
of Theorem 2.4, then the functor f∗ : QCo(T ) −→ QCo(S) will induce a Quillen
functor between the locally free model structures if and only if f∗ is exact; we have
already seen that this is necessary, and it is sufficient since f∗ preserves locally free
sheaves of finite rank.

Despite these drawbacks, the locally free model structure does gives some infor-
mation about the derived category D(QCo(S)).

Recall that an object A of a triangulated category C (such as D(A) for any Gro-
thendieck category A) is said to be small if C(A,−) takes coproducts to direct sums
(triangulated categories rarely have any other colimits). A set of weak generators
for C is a set G such that X = 0 if and only if C(G,X)∗ = 0 for all G ∈ G, where
we have used the graded Hom groups always present in a triangulated category.

Corollary 2.5. Suppose S is a noetherian scheme with enough locally frees, and
S is either finite-dimensional or separated. Then the locally free sheaves of finite
rank form a set of small weak generators for the derived category D(QCo(S)).

Proof. The fact that the locally free sheaves form a set of weak generators follows
from [Hov98, Section 7.3]. To see that they are small, in the triangulated sense, we
use the result of [Hov98, Section 7.4]. We must then show that, if F is a locally free
sheaf of finite rank, the functor QCo(S)(F,−) preserves all transfinite compositions.
Since we are on a noetherian scheme, we can take the transfinite composition in
the category of presheaves [Har77, Ex. II.1.11]. It is then easy to check the desired
result.
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In case S is a quasi-compact, quasi-separated scheme, we can use the right adjoint
Q to the inclusion QCo(S) −→ O-Mod to show that QCo(S) is a closed symmetric
monoidal category under the tensor product. Thus ChQCo(S) is also a closed sym-
metric monoidal category. It would be preferable, then, to have a model structure
on ChQCo(S) that is compatible with the closed symmetric monoidal structure, in
the sense of [Hov98, Chapter 4]. This compatibility condition is discussed before
Theorem 3.6 below. Unfortunately, the locally free model structure is not compat-
ible with the tensor product.

Despite this, it is known that D(QCo(S)) is a symmetric monoidal triangu-
lated category, at least when S is a finite-dimensional noetherian scheme. In-
deed, Lipman [Lip98, Section 2.5] shows that D(O-Mod) is a symmetric monoidal
triangulated category. But D(QCo(S)) is equivalent to the full subcategory of
D(O-Mod) consisting of complexes with quasi-coherent cohomology, when S is
a finite-dimensional noetherian scheme, by [SGA71, p. 191], and the inclusion
D(QCo(S)) −→ D(O-Mod) has a right adjoint given by the right derived functor
of Q. It follows from this that D(QCo(S)) is a symmetric monoidal triangulated
category.

Furthermore, locally free sheaves F of finite rank are strongly dualizable in
D(QCo(S)). Recall that this means that the natural map

Hom(F,O) ⊗X −→ Hom(F,X)

is an isomorphism, where of course both the Hom and the tensor have to be in-
terpreted in D(QCo(S)), so are really derived versions. This follows from the
corresponding fact in O-Mod itself, and the fact that locally free sheaves are flat.

In the language of [HPS97], then, we have proved the following corollary.

Corollary 2.6. Suppose S is a finite-dimensional noetherian scheme with enough
locally frees. Then the category D(QCo(S)) is a unital algebraic stable homotopy
category, where the generators are the locally free sheaves of finite rank.

3. The flat model structure on sheaves

In this section, we apply the method of Theorem 1.7 to the category O-Mod of
sheaves over a ringed space (S,O). In this case, there is a standard set of generators;
namely, the sheaves OU for U an open set of S. Recall that OU is the sheafification
of the presheaf that assigns V to O(V ) if V ⊆ U , and to 0 otherwise. The stalk of
OU at x is 0 if x 6∈ U , and is Ox if x ∈ U . We have O-Mod(OU , X) ∼= X(U), which
implies easily that the OU form a generating set for O-Mod.

Note that, if V ⊆ U , there is a natural monomorphism OV −→ OU corresponding
to 1 ∈ OU (V ). Thus, we take the set of monomorphismsM of the previous section
to consist of these natural monomorphisms. One can then easily check that a sheaf
X is M-flasque if and only if the restriction maps X(U) −→ X(V ) are surjective
whenever V ⊆ U , corresponding to the usual notion of a flasque sheaf.

To apply Theorem 1.7 we need to know that, if X is an acyclic complex of flasque
sheaves, then O-Mod(OU , X) is also acyclic; i.e. that X is acyclic as a complex
of presheaves. Unfortunately, this need not always be true. Amnon Neeman has
constructed a complex X of injective sheaves on infinite-dimensional real projective
space whose sheaf cohomology is trivial, but whose presheaf cohomology is non-
trivial. The example is a bit complicated, but is closely related to the example
in [Hov98, Remark 2.3.18].
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We therefore need a hypothesis on our ringed space to apply Theorem 1.7.

Definition 3.1. Define a ringed space (S,O) to have finite global dimension if
there is an integer n > 0 such that Hn(X) = 0 for all O-modules X , where H∗(X)
denotes the sheaf cohomology groups of X . Define (S,O) to have finite hereditary
global dimension if every open ringed subspace (U,O|U ) has finite global dimension.

We then get the following theorem.

Theorem 3.2. Suppose (S,O) is a ringed space with finite hereditary global dimen-
sion. Then there is a cofibrantly generated proper model structure on Ch(O-Mod),
called the flat model structure, where the weak equivalences are the quasi-isomor-
phisms and the fibrations are the surjections with dimensionwise flasque kernel.

Proof. We apply Theorem 1.7, taking the set M to be the inclusions OV −→ OU .
We use Lemma 2.1. One can easily check that ExtiO(OU , B) = Hi(U ;B|U ); this is
essentially the definition of sheaf cohomology. In particular, S has finite hereditary
global dimension if and only if each OU has finite projective dimension. Also,
since the restriction of a flasque sheaf is still flasque and flasque sheaves have no
cohomology, Exti(OU , Xn) = 0 if i > 0 and X is a complex of flasque sheaves. So
Lemma 2.1 applies, and Theorem 1.7 gives us the desired model structure.

The characterization of fibrations in Proposition 1.3 translates into surjections
of presheaves with dimensionwise flasque kernel. However, sheaf surjections with
flasque kernel are also presheaf surjections, so we get the claimed characterization
of fibrations.

The author knows of two cases when ringed spaces are guaranteed to have finite
hereditary global dimension.

Proposition 3.3. Suppose (S,O) is a ringed space.
1. If S is a finite-dimensional noetherian space, then (S,O) has finite hereditary

global dimension.
2. If S is a finite-dimensional locally compact topological manifold that is count-

able at infinity, in particular if S is a finite-dimensional compact manifold,
then (S,O) has finite hereditary global dimension.

Proof. Part 1 follows from the vanishing theorem [Har77, Theorem III.2.7] of Gro-
thendieck, since an open subspace of a finite-dimensional noetherian space is still a
finite-dimensional noetherian space. Part 2 is an immediate consequence of [KS90,
Proposition 3.2.2].

We now discuss the cofibrations in the flat model structure. Recall that the
category O-Mod is a closed symmetric monoidal category. The monoidal structure
is given by the tensor product X ⊗O Y , which we will always denote by X ⊗ Y .
This is defined by forming the obvious presheaf tensor product, and sheafifying.
On each stalk, the tensor product is the ordinary tensor product of modules. In
particular, a sheaf F is flat if and only if each stalk Fx is flat as a Ox-module;
hence, the sheaves OU are flat. The closed structure is given by the sheaf Hom;
Hom(X,Y )(U) = O|U -Mod(X |U , Y |U ). These structures extend to complexes in
the usual way, making Ch(O-Mod) into a closed symmetric monoidal category.
This works for any symmetric monoidal additive category, as described in [HPS97,
Section 9.2]
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Definition 3.4. Suppose A is a symmetric monoidal abelian category. Define a
complex F ∈ Ch(A) to be DG-flat if each Fn is flat, and, for any acyclic complex
K, the complex F ⊗K is also acyclic.

Proposition 3.5. Suppose (S,O) is a ringed space with finite hereditary global
dimension. Then any cofibration in the flat model structure is a degreewise split
monomorphism on each stalk, with DG-flat cokernel.

We do not know if the converse to this proposition holds, nor even whether
every DG-flat complex is cofibrant. This latter statement would require that
Ext1
O(F,X) = 0 for every flat sheaf F and every flasque sheaf X .

Proof. The maps of I are all degreewise split monomorphisms on each stalk. Every
cofibration is a retract of a transfinite composition of pushouts of maps of I, by the
small object argument [Hov98, Theorem 2.1.14]. Since retracts, transfinite compo-
sitions, and pushouts all commute with the operation of taking stalks and preserve
split monomorphisms, each cofibration will be a degreewise split monomorphism on
each stalk. The cokernel of a cofibration will of course be cofibrant, so to complete
the proof it suffices to show that every cofibrant object is DG-flat.

Every cofibrant object A is a retract of the colimit of a transfinite sequence Xα,
where each map Xα −→ Xα+1 is a pushout of a map of I and X0 = 0. Since colimits
commute with tensor products and homology, it suffices to show that, if Xα is DG-
flat, so is Xα+1. On each stalk, the maps of I are degreewise split monomorphisms
with degreewise flat cokernel, so the same will be true of Xα −→ Xα+1. Thus, if Xα

is a complex of flat sheaves, so is Xα+1.
Now suppose K is an acyclic complex and f is a map of I. Again, since the

maps of I are degreewise split monomorphisms on each stalk, the map f ⊗K will
still be injective. Thus the map Xα ⊗ K −→ Xα+1 ⊗ K, which is a pushout of
f ⊗K for some f ∈ I, will be injective. By the long exact sequence in homology, to
show that Xα+1 is DG-flat given that Xα is so, it suffices to show that f ⊗K is a
quasi-isomorphism. In case f is of the form DnOV −→ DnOU , both the domain and
codomain of f are contractible. The same will be true of f ⊗K, so f ⊗K will be
a quasi-isomorphism. In case f is of the form Sn−1OU −→ DnOU , the codomain of
f ⊗K is contractible, so it suffices to show that Sn−1OU ⊗K is acyclic. But, since
OU is flat, we have Hm(Sn−1OU ⊗K) = Hm−n+1(K)⊗OU , so we are done.

In particular, it follows that cofibrations are pure monomorphisms, in the sense
that, if f is a cofibration and K is an arbitrary complex, then f ⊗ K is still a
monomorphism.

We now show that the flat model structure is compatible with the tensor product
on Ch(O-Mod). To do this, we need to recall the definition of this compatibility.
If f : A −→ B and g : C −→ D are maps in a cocomplete closed symmetric monoidal
category, we denote the induced map

(A⊗D)qA⊗C (B ⊗ C) −→ B ⊗D

by f2g. In case C is also a model category, we say that C is a symmetric monoidal
model category if, whenever f and g are cofibrations, so is f2g, and furthermore,
if one of f or g is a trivial cofibration, so is f2g. This is the condition needed
to ensure that the homotopy category Ho C is again closed symmetric monoidal,
as explained in [Hov98, Chapter 4]. (Actually one also needs a condition on the
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unit, but this condition is unnecessary when the unit is cofibrant, as it is in the flat
model structure).

Theorem 3.6. Suppose (S,O) is a ringed space with finite hereditary global di-
mension, and f and g are maps in Ch(O-Mod).

(a) If f is a flat cofibration and g is a monomorphism, then f2g is a monomor-
phism.

(b) If f and g are flat cofibrations, then so is f2g.
(c) If f is a flat cofibration and g is an injective quasi-isomorphism, then f2g is

a quasi-isomorphism.
(d) If f is a flat trivial cofibration and g is a monomorphism, then f2g is a

quasi-isomorphism.

Proof. As explained in [Hov98, Chapter 4], since monomorphisms and injective
quasi-isomorphisms are closed under retracts, transfinite compositions, and push-
outs, it suffices to check this theorem when the flat cofibration is in fact a map of
I, and the flat trivial cofibration is a map of J . We begin with parts (a) and (d).
Suppose that g : A −→ B is a monomorphism, and suppose f is the map DnOV −→
DnOU . Let P denote the domain of f2g, and suppose x ∈ S. If x ∈ V , then
the stalk of Pm at x is (Bm−n ⊕ Bm−n+1)x; if x ∈ U \ V , then the stalk of P
at x is (Am−n ⊕ Am−n+1)x; and if x is not in U , then the stalk of P at x is 0.
The stalk of the codomain of f2g at x is (Bm−n ⊕ Bm−n+1)x if x is in U , and 0
otherwise, and the map f2g does the obvious thing on the stalks. Hence f2g is a
monomorphism. Furthermore, the domain and codomain of f are contractible, so
the same will be true for f2g. Thus f2g will be a quasi-isomorphism, completing
the proof of part (d).

To complete the proof of part (a), we must show that f2g is a monomorphism,
where now f is the map Sn−1OU −→ DnOU . In this case, the stalk of the domain P
of f2g at a point x is 0 if x 6∈ U , and otherwise is (Am−n ⊕Bm−n+1)x. The stalk
of the codomain of f2g at x is 0 if x 6∈ U , and otherwise is (Bm−n ⊕ Bm−n+1)x.
The map f2g does the obvious thing, and so is a monomorphism.

For part (c), we can assume f is the map Sn−1OU −→ DnOU . Then the codomain
of f2g is contractible, so it suffices to show that the domain P of f2g has no
homology. Since g : A −→ B is an injective quasi-isomorphism, and OU is flat,
g⊗Sn−1OU is also an injective quasi-isomorphism. Hence its pushout A⊗DnOU −→
P is also an injective quasi-isomorphism. Since DnOU is contractible, it follows that
P has no homology.

Finally, for part (b), we can assume that both f and g are maps of I. To calculate
f2g in this case, use the easily checked (on stalks) fact that OU ⊗OV ∼= OU∩V . It
follows that

SmOU ⊗ SnOV ∼= Sm+nOU∩V
and

SmOU ⊗DnOV ∼= Dm+nOU∩V
and that DmOU ⊗DnOV is an amalgamation of Dm+n−1OU∩V and Dm+nOU∩V .
With these identities in hand, the proof is a calculation we leave to the reader.

Corollary 3.7. Suppose (S,O) is a ringed space with finite hereditary global di-
mension. Then the flat model structure makes Ch(O-Mod) into a symmetric monoi-
dal model category. Furthermore, if A is cofibrant, then the functor A⊗− preserves
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quasi-isomorphisms. Therefore, to calculate the derived tensor product up to iso-
morphism, it suffices to replace one of the factors by a cofibrant complex quasi-
isomorphic to it.

Proof. The fact that Ch(O-Mod) is a symmetric monoidal model category is im-
mediate from Theorem 3.6. Suppose A is cofibrant. Then A ⊗ − preserves trivial
cofibrations in any symmetric monoidal model category. So, in order to see that
A⊗− preserves quasi-isomorphisms, it suffices to show that, if p is a trivial fibra-
tion, then A ⊗ p is a quasi-isomorphism. Let K denote the kernel of p, so that
K is an acyclic complex. Since cofibrant objects are degreewise flat, A ⊗ p is still
surjective, and its kernel is A ⊗K. Since cofibrant objects are DG-flat, A ⊗K is
still acyclic, so the long exact sequence completes the proof that A ⊗ − preserves
quasi-isomorphisms. In general, the total derived functor of the tensor product is
defined by X ⊗L Y = QX ⊗ QY , where QX (resp. QY ) is a functorial cofibrant
replacement for X (resp. Y ). But, since the map QX ⊗ QY −→ QX ⊗ Y is a
quasi-isomorphism, X ⊗L Y is isomorphic in the derived category to QX ⊗ Y .

Note that Theorem 3.6 actually says not only that the flat model structure is
symmetric monoidal, but also that the injective model structure is a module over
the flat model structure, in the sense of [Hov98, Chapter 4].

We can also use Theorem 3.6 to conclude that the derived category of O-modules
is almost a unital algebraic stable homotopy category [HPS97].

Corollary 3.8. Suppose (S,O) is a ringed space such that S is a finite-dimensional
noetherian space. Then the derived category of O-modules is a symmetric monoidal
triangulated category and {OU} is a set of small weak generators.

Proof. It is well-known that the derived category of any abelian category is trian-
gulated, but this also follows, in a stronger sense of the word triangulated, from the
results of [Hov98, Chapter 7]. We have already seen that the flat model category is
a symmetric monoidal model category, so the derived category is also closed sym-
metric monoidal in a way that is compatible with the triangulation (see [Hov98,
Chapter 6], with one technical point dealt with by [Hov98, Corollary 5.6.10]). Since
the flat model structure is cofibrantly generated, the cofibers of the generating cofi-
brations form a set of weak generators [Hov98, Section 7.3]. In our case, these are
the objects SnOU (the cofibers of the maps of J are trivial in the derived cate-
gory). Because S is noetherian, the presheaf colimit of a direct system of sheaves
coincides with the sheaf colimit [Har77, Exercise II.1.11]. It follows from this that
Ch(O-Mod)(SnOU ,−) commutes with direct colimits. The results of [Hov98, Sec-
tion 7.4] then show that SnOU is small (in the triangulated sense) in the derived
category.

The derived category of O-modules is known to be a symmetric monoidal tri-
angulated category even without the finite hereditary global dimension assump-
tion [Lip98, Section 2.5]. This might indicate that there is some replacement for
the flat model structure that works more generally, or it might indicate that model
categories are simply not adequate to cope with the general case.

To show that the derived category is in fact a unital algebraic stable homotopy
category, we would need to know that the generators OU are strongly dualizable.
This would mean we would need to show that the natural map

RHom(OU ,O)⊗OV −→ RHom(OU ,OV )
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is a quasi-isomorphism. (We don’t need the derived tensor product since OV is
cofibrant, using Corollary 3.7). Unfortunately, this is false in the simplest non-
trivial example. Indeed, consider sheaves of abelian groups on the Sierpinski space
S. Recall S has only two points, exactly one of which is open. Sheaves on S coincide
with presheaves, which in turn coincide with maps A −→ B of abelian groups. In
this case, O is the identity map Z −→ Z, and, taking U to be the open point, OU is
the map 0 −→ Z. One can then calculate to find RHom(OU ,O) = RHom(OU ,OU ),
but this equality is destroyed on tensoring the left hand side with OU . A similar
counterexample works if we think of S as the underlying space of SpecZ(p).

There is an additional condition that a symmetric monoidal model category
might satisfy, called the monoid axiom [SS97]. This axiom guarantees that the
monoids in a symmetric monoidal model category, and the modules over a given
monoid, themselves form model categories. The monoid axiom asserts that every
map in K-cof is a weak equivalence, where K is the class consisting of all maps
f ⊗X , where f is a trivial cofibration and X is an arbitrary object.

Theorem 3.9. Suppose (S,O) is a ringed space with finite hereditary global di-
mension. The the flat model structure on Ch(O-Mod) satisfies the monoid axiom.

Proof. Suppose f is a flat trivial cofibration, and X is an arbitrary object. Then
0 −→ X is a monomorphism, so applying Theorem 3.6 shows that f ⊗ X is an
injective quasi-isomorphism. Since injective quasi-isomorphisms are closed under
pushouts and transfinite compositions in any AB5 abelian category, the theorem
follows.

The following corollary follows immediately from Theorem 3.9 and [SS97].

Corollary 3.10. Suppose (S,O) is a ringed space with finite hereditary global di-
mension. Then:

(a) The category of monoids in Ch(O-Mod) is a cofibrantly generated model cate-
gory, where a map of monoids is a weak equivalence or a fibration if and only
if it is so in the flat model structure on Ch(O-Mod).

(b) Given a monoid R in Ch(O-Mod), the category of R-modules, R-Mod, is a
cofibrantly generated proper model category, where a map of modules is a weak
equivalence or a fibration if and only if it is so in the flat model structure on
Ch(O-Mod).

(c) If R is a commutative monoid, then R-Mod is a symmetric monoidal model
category satisfying the monoid axiom. Furthermore, the category of algebras
over R is a cofibrantly generated model category, where a map of algebras is a
weak equivalence or fibration if and only if it is so in the flat model structure
on Ch(O-Mod).

The category of monoids will certainly be right proper, but the category of
monoids need not be left proper in general, as pointed out by the referee. Indeed,
take O = SpecZ, and let X = Y = Z/2, thought of as a complex of quasi-coherent
sheaves concentrated in degree 0. Let A = B be the standard projective resolution
of Z/2. Then we have a weak equivalence of monoids f : Z⊕(A⊕B) −→ Z⊕(X⊕Y ),
where both monoids have trivial multiplication. The map Z −→ Z[t] is easily seen to
be a cofibration of monoids, and so its pushout g : Z⊕(A⊕B) −→ (Z⊕(A⊕B))∗Z[t]
is also a cofibration of monoids, where ∗ denotes the coproduct in the category of
monoids. But the pushout of f through g is not a weak equivalence, because there
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will be a summand A⊗B mapping to the corresponding summand X⊗Y , and the
map A⊗B −→ X ⊗ Y is not a weak equivalence.

A map of monoids R −→ R′ will induce the usual induction and restriction
adjunction R-Mod −→ R′-Mod. This adjunction will be a Quillen adjunction, but
we would like something more.

Proposition 3.11. Suppose (S,O) is a ringed space with finite hereditary global
dimension, and R −→ R′ is a weak equivalence of monoids in Ch(O-Mod). Then the
induction and restriction adjunction R-Mod −→ R′-Mod is a Quillen equivalence.

Proof. It suffices to show that, if N is a cofibrant R-module, then −⊗RN preserves
weak equivalences, by [SS97]. The proof of this is very similar to the proof of the
corresponding fact in Corollary 3.7, so we leave it to the reader.

We now investigate the functoriality of the flat model structure. Suppose we have
a map of ringed spaces f : (S,OS) −→ (T,OT ). Recall that this is a continuous map
f : S −→ T together with a map of sheaves of rings OT −→ f∗OS . Here, for any
sheaf X on S, f∗(X) is the sheaf on T defined by f∗(X)(U) = X(f−1(U)). If X is
an OS-module, then f∗X is an f∗OS-module, and so an OT -module by restriction.
The functor f∗ : OS-Mod −→ OT -Mod has a left adjoint f∗. To define this, recall
that if Y is a sheaf on T , f−1Y is the sheaf on S associated to the presheaf that
takes U to colimV⊇f(U) Y (V ). The functor f−1 is left adjoint to f∗ on the category
of sheaves of abelian groups, so in particular we have a map f−1OT −→ OS . Given
an OT -module Y , we define f∗Y = OS ⊗f−1OT f

−1Y . It is well-known that f∗ is
left adjoint to f∗ and is symmetric monoidal [Gro60, Section 0.4.3].

One can verify using adjointness that, if U is an open subset of T , then f∗OU =
Of−1U . Hence we have the following proposition.

Proposition 3.12. Suppose f : (S,OS) −→ (T,OT ) is a map of ringed spaces with
finite hereditary global dimension. Then f∗ is a left Quillen functor with respect to
the flat model structures.

In particular, this shows that the total left derived functor of f∗ exists and is left
adjoint to the total right derived functor of f∗. It is proved in [Lip98, Section 2.7]
that the total left derived functor of f∗ exists without the finite hereditary global
dimension hypotheses. It is disconcerting that we are unable to reproduce this
result using model categories.

Appendix A. Smallness

The object of this appendix is to prove that every object in a Grothendieck cat-
egory is small. This follows immediately from the fact that Grothendieck abelian
categories are precisely the locally presentable abelian categories [Bek99, Proposi-
tion 3.10]. Beke’s proof, and the proof of smallness we give here, depend crucially
on the Gabriel-Popescu theorem [Ste75, Theorem X.4.1], which shows that every
Grothendieck abelian category is the localization of a module category with re-
spect to a hereditary torsion theory. The proof in Beke relies on general theorems
about locally presentable categories, whereas the proof we give uses properties of
the localization functor (which can be found in [Ste75]).

We begin with a precise definition of the term “small”.
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Definition A.1. 1. Given a limit ordinal λ, the cofinality of λ, cofinλ, is the
smallest cardinal κ such that there exists a subset T of λ with |T | = κ and
supT = λ.

2. Given an object A in a cocomplete category C and a cardinal κ, we say that A
is κ-small if, for every ordinal λ with cofinλ > κ and every colimit-preserving
functor X : λ −→ C, the natural map colimi<λ C(A,Xi) −→ C(A, colimi<λXi)
is an isomorphism.

3. An object A in a cocomplete category C is called small if it is κ-small for
some cardinal κ.

Proposition A.2. Every object in a Grothendieck category is small.

Proof. By the Gabriel-Popescu theorem [Ste75, Theorem X.4.1], we may as well
assume that our Grothendieck category A is the localization of R-Mod with respect
to a hereditary torsion theory T , for some ring R. Let κ be the larger of ω and
the cardinality of R, let λ be an ordinal with cofinλ > κ, and let X : λ −→ A be a
colimit-preserving functor. We will first show that colimXi, calculated in R-Mod,
is still T -local, so is also the colimit in A. This proof will depend on the fact that
both R/a and a are κ-small in R-Mod [Hov98, Example 2.1.6], for all (left) ideals
a of R.

To see this, first note that colimXi is torsion-free. Indeed, T is generated by
cyclic modules R/a, so it suffices to show that R-Mod(R/a, colimXi) = 0. But we
have chosen κ so that

R-Mod(R/a, colimXi) ∼= colimR-Mod(R/a, Xi),

and this is 0 since each Xi is torsion-free. Hence colimXi is torsion-free.
It follows that the localization of colimXi is

colima Hom(a, colimiXi),

where the colimit is taken over ideals a such that R/a is torsion, as in [Ste75,
Section IX.1]. But then we have

colima Hom(a, colimiXi) ∼= colima colimi Hom(a, Xi)
∼= colimi colima Hom(a, Xi) = colimiXi.

Thus colimXi is already local.
Now suppose M is an arbitrary local module. There is a cardinal κ′ such that

M is κ′-small as an R-module, and we can choose κ′ ≥ κ. It is then immediate
from the argument above that M is κ′-small in A.
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