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SUMMARY

Much progress has been achieved in defining methods, techniques, and tools for software architecture
reconstruction (SAR). However, less progress has been achieved in constructing reasoning frameworks from
existing systems that support organizations in architecture analysis and design decisions. These reasoning
frameworks are necessary, for example, to assemble existing components and deploy them in new system
configurations. We propose a model-centric approach where this kind of reasoning is driven by the analysis
of quality attribute scenarios. The scenarios and the related quality attribute models guide the SAR effort by
focusing on the elicitation of model relevant artifacts. The approach further drives the model construction
towards the analytical support of What If scenarios that explore responses stimulated by new requirements,
such as new deployments of existing components. The paper provides two real-world case studies. The first
case study introduces the model-centric reconstruction approach in the context of a large satellite tracking
system. The second case study provides the construction of a time performance model for an existing
embedded system in the automotive industry. The model allows us to perform cost-efficient predictions
of component assemblies in new customer configurations. Copyright c© 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Software Architecture Reconstruction (SAR) supports organizations in understanding and analyzing

software in situations where, for example, existing:
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Figure 1. SAR context.

• software implementations have to conform to design descriptions;

• systems hit their architectural boundaries [1,2];

• software products have to evolve into product lines [3];

• software components have to be assembled and deployed in new system configurations, as

described in the case study in Section 4.

The typical method to carry out a SAR effort is to extract information from various sources, provide

collapsing strategies to aggregate implementation details into architectural abstractions and visualize

them in architectural views. Much research has been done on the methods and techniques, resulting

in a variety of approaches, such as manual reconstruction with tool support [4], query languages for

writing patterns that automatically build aggregations [5], clustering [6], data mining [7], and the use

of architecture description languages [8].

In the cases we are aware of, SAR is usually a facet in a much broader organizational context where

software architectures play an important role in achieving particular business goals. The organization

requires information from an existing system in order to support its decision-making processes.

The support for business or design decisions is provided by reasoning frameworks which process and

query for information about existing systems, as illustrated in Figure 1. Consequently, architecture

reconstruction has to comprise the elicitation of information from the system as well as the provision

of reasoning frameworks to support a particular application context in which decisions are made.

The latter activity is the key for successful SAR applications. At the heart of SAR are the reasoning

frameworks that embody models of existing systems, and not primarily the reconstruction techniques

and tools themselves. Someone who carries out a SAR in a business context is foremost experienced

in models and provides them in the context of an organization’s decision support process.

The major ingredient of a reasoning framework is the model. In our approach, architecture relevant

models are driven by quality attributes. Quality attributes are formulated in scenarios, typically growth

scenarios for the system in SAR efforts. Growth scenarios may include:

• porting a system to a different operating system;

• increasing the throughput for transactions;

• exchanging legacy components with components-of-the-shelf.
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The stimulus of each scenario is given by the particular application context; the constructed models

provide the response. It is important to note that a single model does not provide responses to all

scenarios. Typically, a model is tied to a particular quality attribute. For example, a portability model is

not concerned about all components but is rather interested in components that have dependencies to the

system platform. The automotive case study in this paper will introduce a model for time performance

for a particular distributed embedded system. The performance model will not respond to other quality

attribute scenarios, such as safety scenarios. In addition, the particular model instance of the case study

is most likely not suitable for other types of systems. It is limited to the performance quality attribute

and application context.

Our approach to architecture reconstruction centers the activities on the construction of models

that provide response to business situations that are articulated in growth scenarios, such as new

requirements for an existing product. With this, SAR is a means of constructing models obtained

from existing systems that allow architectural understanding and analysis. Architectures are primarily

manifested in models that support qualities. These models require program understanding of existing

systems in order to be constructed and analyzed in the context of a reasoning framework.

Once a model is constructed from the existing system it provides a powerful base for additional

prediction expertise, such as the support of What If scenarios. What If scenarios capture new stimuli

of an organization. The model—with additional expertise—provides ways to predict the response.

The automotive case study introduces an example time performance model-expert on top of a

constructed model with formalized expertise to evaluate new design settings, such as time performance

explorations in new deployment settings. With this, the organization is able to provide cost-efficient

performance predictions before the real system is built.

The SAR reasoning frameworks, illustrated in Figure 1, consist of the following major parts:

• quality attribute scenarios;

• models;

• model experts;

• SAR methods and techniques.

Model experts are optional, because not every context requires support for What If scenarios, for

example conformance measurements. This paper focuses on models and model experts in SAR.

The interested reader is referred to [9] for more information about quality attribute scenarios and related

elicitation techniques.

The remainder is organized as follows. In Section 2 we will relate our work to existing research.

Then, we will illustrate the approach by using two case studies.

• In Section 3 we introduce the model-driven approach along a SAR project that we carried out

for a satellite tracking agency.

• Section 4 provides an in-depth case study about time performance that we carried out in the

automotive industry. This case study will further illustrate the usefulness of building a model

expert in a commercial setting.

Finally, Section 5 summarizes the paper and outlines our future work.
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2. RELATED WORK

From our experience we believe that the model-centric approach driven by quality attributes is the right

mechanism for performing a SAR of existing systems. Indeed, Tahvildari et al. [10] outline an approach

that uses non-functional requirements or quality attributes, such as performance and modifiability, to

guide the reengineering process. Bengtsson and Bosch [11] outline a similar approach for reengineering

based upon quality attribute scenarios that drive architecture transformation.

In our case we apply a quality attribute driven approach to architecture reconstruction and goal-

based system understanding. The goal of the reconstruction is to provide information that will assist in

the analysis of the quality attributes and provide further analysis for predictions in the form of What If

scenarios.

In the past, several SAR efforts have related their work with more common/standard notations such

as UML [12]. The goal of our approach is not to align architecture visualizations with mainstream

notations, such as UML. The key to our approach is to enable architecture analysis of existing systems

via a quality attribute driven approach. The analysis is motivated by the knowledge that software

architectures are driven by business goals that incorporate quality attribute scenarios [9]. The work

outlined in this paper describes progress that we have made since we started the work on Quality

Attribute Driven Software Architecture Reconstruction (QADSAR) [13]. The work underpins the

QADSAR approach by providing a more in-depth case study on a performance model. In addition,

it goes beyond the QADSAR approach by illustrating the prediction capabilities of model experts for

What If scenarios.

3. MODELS ESSENTIALLY

As outlined in the introduction, our approach to architecture reconstruction centers on the

reconstruction activities for the construction of models that provide responses to particular business

contexts articulated in quality attribute scenarios. We formulate our approach in the following

way: SAR is a means to construct models obtained from existing systems that allow architectural

understanding and analysis. The approach describes the activity (construction), reasoning (models),

and the goal (understanding and analysis). The three parts will be explained using a real-world example,

which we will refer to in subsequent sections.

Example. A Satellite Tracking Agency (STA) supports efforts to develop, acquire, and deploy satellite-

tracking systems. In our example, the STA wanted to better understand the architecture of one of its

legacy systems, the Satellite Tracking System (STS), so as to be able to port the system to a new

environment. The STS consists of about 500KLOC, which is a mixture of C, C++, and Fortran that

currently runs in a Silicon Graphics environment. The system has been in operation for many years

and certain people know parts of the system for which they are responsible, though no one knows the

architecture of the entire system, thus the need to apply architecture reconstruction techniques.

3.1. The goal

The starting point for this effort came from the business context of the STA organization. This context

required the existing software to operate on a different platform. However, the software was not
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Figure 2. Model/system.

designed to support a portability scenario in the first place. At this point the STA has a couple of

questions. For example, what is the effort to redesign the existing STS? Are there other complexity

issues that require building parts of the STS from scratch? Is the whole system or only part of the

system affected?

The impact of the business context required understanding and analysis: understanding the existing

STS software in order to analyze the impact of the business goal. We conducted a SAR for the STA

with the STS since no one was available who understood the architecture of the entire system and who

could deal with the portability scenario.

Architecture reconstruction is not about effective partitioning algorithms, graphical visualization

tools, and source code parsers. It is about answering business objectives. Stakeholders are interested

in understanding or verifying architectures for re-documentation, architecture conformance, reuse

investigations, product line migration efforts, trade-off analysis, comparisons, and reengineering.

Each context has different objectives to accomplish that are primarily driven by the stakeholder

interests. Consequently, not every possible architecture model is constructed but rather models that are

important for the stakeholder context. Architecture reconstruction is therefore a goal-driven approach.

Although the application contexts and objectives differ, there is a common goal in reconstruction

efforts: gaining of architecture understanding that enables architecture analysis. Understanding and

analysis are complementary: understanding those system aspects that are relevant for the analysis of

the business case impact. Architectural understanding of an existing system is not an isolated effort,

but rather a necessary activity to enable an analysis or design effort justified by a business situation.

3.2. The reasoning

The construction of models is the core activity in every architecture reconstruction. Models are

abstractions or conceptions of the existing system that closely match stimulus/response pairs as

illustrated in Figure 2.

In our example, STA had to estimate the effort of exchanging the platform of an existing system.

The stimulus is the demand to change the platform; the response is the effort to perform this change.

Prior to a potential platform migration the architect has to estimate the effort and therefore needs a

model that closely predicts reality. The technical part of the model will probably provide information

such as the dependencies to the Silicon Graphics platform. The dependencies will have different

weights in terms of cost of change. Dependencies of the current platform to other parts of the
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system will uncover high or low probability of change and therefore have to be carefully analyzed.

Models allow analyzing, exploring, and verification of architectures. They provide a foundation to

evaluate change scenarios, performance predictions, and even project management considerations.

It is critical that models adequately reflect the reality of an existing system. Otherwise they may

be used to generate the wrong conclusions. Representative candidates are mental models that are

sufficiently adequate during the early phases of a software design but erode over the course of the

product’s lifetime due to growing complexity and people change.

In the STS example, portability is designed in terms of early documentations but the intention did not

make it into the realization. A model that does not sufficiently match the existing system is a prominent

reason to consider a reconstruction effort in the form of a conformance measurement.

3.3. The activity

Our approach intentionally uses the word ‘construction’ instead of ‘reconstruction’ in order to reflect

the typical situation. In the majority of cases there is no explicit model initially but rather distributed

mental models documented in box and arrow drawings. It is not the intent to reconstruct these mental

models but rather looking at a snapshot of existing sources and construct models that probably did not

already exist explicitly. In the STS case there was no existing model for portability. The reconstruction

of an architecture for portability would be less helpful. However, a model to reason about a portability

scenario would identify dependencies on the platform and be used to analyze the cost of change when it

comes to replacing, adding, or emulating functionality. This analytical capability provides an important

advantage over informal box and arrow drawings as often used in architectural views. We illustrate this

by providing a few myths regarding architectural views in the following subsection.

3.4. The view myths

Software architectures are presented as views [14]. Views are a major vehicle to communicate

architectures to stakeholders. Although they are of importance, their emphasis leads to side discussions

that underestimate and undermine the purpose of reconstruction efforts. Here are three myths that are

the result of such side discussions.

1. Architecture reconstruction is the generation of views in appropriate notations.

2. Views are models.

3. There is a set of common views for each class of systems.

The first myth is in fact the reduction of architecture reconstruction to a re-documentation activity.

The re-documented views should accurately reflect the architecture of a system, which sometimes did

not have an architecture documentation from the beginning. There are two implications to this opinion.

1. The re-documented views are the result of the constructed models. Views are difficult to analyze

because the semantic context and traceability to existing facts is difficult to obtain from drawings.

This is also valid for simplistic views, such as directory and file views. Even in this case it is

frequently up to the ‘viewer’ to determine the mental model of why files are located in particular

directories.
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2. Secondly, understanding and analysis are complimentary tasks. It is not an efficient approach to

re-document existing architectures without knowing the intention for which the resultant artifacts

are used. In addition, the re-documented architecture can be eroded by the time a later analysis

is required. In the majority of cases both tasks are therefore intertwined.

The second myth has at its core that views are a sufficient vehicle for architectural analysis.

Views are not models; they are representations of models in a particular notation. For example, views

can visualize performance aspects. However, they do not describe the performance algorithms or

the reasoning that leads to the construction of a particular view. Moreover, they hardly reveal the

consequences of adding or changing units of concurrency.

The third myth addresses the illusion that a particular set of views characterizes a larger system

category such as a set for object-oriented systems, multi-language systems, etc. Each system has its

own models. One reason is the different purposes and business goals systems are build for. The derived

design decisions result in a wide variety of models. Therefore, it is hard to envision a ‘one set

of models/views fits all’ approach or an automated model/view construction from existing systems

without any previous built-in mechanisms to elicit the models and views.

Back to the example, this situation initially produced some confusion at the STA:

The STS is a classified system and access to the system and any information about it is tightly

controlled. Consequently, the reconstruction of the real system was performed by the developers of the

STA. The architectural views and the collapsing strategies were developed on a manipulated version of

the information extracted from the system. For example, the developers extracted source artifacts and

exchanged entity names with numbers. The collapsing strategies were applied by the developers on

the real STS system to generate a set of architectural views. Although this time-consuming process

produced a lot of overhead in effort and communication, it enabled STA to perform architecture

reconstructions on further system versions by themselves.

Due to the classified nature of the system, the developers performing the reconstruction asked for a

tool that would provide them with the—at this point in time—unknown architecture views. The STA

was unaware of the effort and scope involved in the construction of the model to accomplish their

particular goal.

Views are important to describe, understand, and communicate the architecture. In the process of

obtaining these views from existing systems there is the cost-intensive effort to construct the underlying

models. The cost is justified when the analysis requires a close match to architecture realities.

3.5. Models in practice

Despite the variety of models, there are recurring architectural parts that constitute models that have

been discussed in the community over the past several years, such as patterns and their detection

in existing systems, architecture styles, and quality attribute models. Further, there are a rich set of

strategies and techniques available to collapse detailed source information into more abstract structures.

Figure 3 provides an overview of the major ingredients that are typically required to construct models.

It is important to obtain an initial concept (hypothesis) for the model. The hypothesis guides the

identification of:

• facts from the existing system;

• useful collapsing strategies;
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• potential patterns;

• relevant quality attribute models.

Architecture reconstruction is hard to achieve without any initial idea about the architecture of the

existing system.

Back to the example system:

The initial model was elicited in interviews with the architects and reading of existing documentation.

As a result, we sketched the concept as illustrated in Figure 4. In this concept a unit relates to a set of

sub-units that have shared utilities. The unit is more abstract than a sub-unit. For example, ‘Weather’

could be a unit which contains sub-units for different types of weather conditions.

The example started with the intention to port the STS to a new system. The initial concept has

therefore to be transferred into a modifiability model to analyze the dependencies between the units

and the platform specific routines. The process to create the model was performed in the following

sequence.
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1. Identify an entity/relation schema suitable in a multi-programming language environment

(C/C++ and Fortran).

2. Extract the facts from existing sources.

3. Aggregate the facts into the unit concept of Figure 4 with suitable collapsing strategies.

Isolate the platform-specific modules in a separate unit.

4. Navigate, verify, and analyze the model to estimate the qualitative cost of change. Develop a

high-level presentation view with the associated cost of change.

Navigating and verifying the model reveals, for example, that there are relations between the sub-

units of Figure 4. Depending on their weight, the distinction between sub-models does not reflect the

realization. A pure reconstructed view uncovers dependencies between sub-units, but the decision as

to whether the architectural construct sub-unit exists in reality depends on the analysis and judgment

of the architect. In fact, the decision can be taken due to the use of particular program structures at the

code level rather than the high-level design.

Note that the analysis step is not primarily performed on a view level but rather at the modeling level.

It is essential to understand the current platform dependencies and compare them to dependencies

caused by the new platform. Not surprisingly, the initiated analysis task migrates naturally into a

reengineering task.

3.6. Adding expertise

Once a model is constructed, it provides a useful base for further analysis. For example, the STA

organization considers possibilities, such as:

• porting STS to several real-time operating systems and isolating the used platform operations in

an operating system abstraction layer; components and relations have to be added, manipulated,

or reorganized;

• adding a further sub-unit to the STS and analyzing the impact on the timing behavior.

In both cases the change input does not come from the source (the existing system) but from

interventions with the intention of exploring new scenarios. These scenarios are called What If

scenarios, because they explore new stimuli and the expected system responses. What If scenarios

add to the complexity of system understanding by requiring the prediction of future system responses.

Models provide a description about the current system. However, they do not have the capability of

predicting the reactions as stimulated by What If scenarios. The stimuli of What If scenarios are input

to a model expert as illustrated in Figure 5. Responses of model experts to What If scenarios include,

depending on the particular expert, improvement feedback for the current model as well as to the

existing system.

Bachmann et al. [15] introduce the notion of tactics as a means to control a quality attribute response

by manipulating some aspect of a quality attribute model through architecture design decisions. A tactic

is an architecture strategy that is concerned with the relationship between design decisions and a quality

attribute response. There are collections of tactics available to achieve particular quality attribute goals

(for further details, refer to [15]). We outlined an initial approach to develop model experts in our

QADSAR paper [13].

Different quality attributes have quality attribute models with different accuracy requirements.

Therefore, model experts are formal or informal, depending on the related quality attribute.
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For example, performance models can be fairly formal (queuing models) while usability models for

customer satisfaction can be more informal. A modifiability expert provides rather informal estimations

of change efforts.

The case study of Section 4 provides an example model expert, where predictions are required to

provide time performance design explorations for customer configurations. Once the performance

model is constructed, the case study shows ways to modify time budgets, network properties, or

changes of component deployments. The developed performance expert knows about performance

properties, such as scheduling algorithms. In addition, the expert provides prediction capabilities for

exploring worst-case reaction times. However, What If scenarios are limited to the knowledge and

scope of the constructed model expert. Consequently, not every What If scenario may be covered by

the expert.

4. AUTOMOTIVE CASE STUDY

The case study was carried out on a system in the automotive industry. The system is a door module

comprising a set of hardware modules, such as window lifters, door locks, associated software, and

more. The case study focuses on the construction of the time performance model and the development

of the model expert. This section provides:

• a system overview of door modules;

• a description of the scenarios;

• construction of an initial time performance model;

• fact extraction from sources;

• abstraction of detailed information;

• model construction;

• model expert creation and verification;

• scenario feedback;

• cost and benefit.
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This sequence reflects the process that we followed to perform the case study. The fact extraction and

abstraction sections are common activities in a reconstruction process. However, this paper does not

consider further aspects of the reconstruction process. The interested reader is referred to [16] for more

information about the process.

4.1. The door module

A door comprises a set of hardware modules, such as a window lifter, door lock, switch panel, and

mirror. In the past, door modules were mechanical systems with manual hand cranks and manual

adjustable mirrors. Today, these systems evolved into mechatronic systems, combining mechanics and

electronic controls. The added electronic parts allow the addition of distinguishing customer features,

such as slow and fast window sliding, or key-less entry. It also adds the necessity for safety regulations,

such as anti-pinch standards in case of encountering obstacles during the window closing operation.

Other popular examples for mechatronic systems in the automotive domain are adaptive cruise control,

or rain-sensing wipers. Electronic door modules are not independent from each other. They build

a master–slave system, with centralized functionality on a master, and specialized functions on the

slaves. For example, a button press on a switch panel (slave) is translated in the master component to

a move window command which eventually gets transferred to the window lifter component (slave).

In this functionally partitioned model, slaves are reduced to their elementary functions. Coordination

functions and administrative tasks, such as storing of personalized mirror positions, are located on a

master module that orchestrates the door functionality.

Figure 6 illustrates an example for a configuration of a two-door car with a master for the driver

side and a master for the passenger side. Both masters are connected via a bus, such as CAN [17] or

FlexRay [18]. Besides the two masters there are a variety of further electronic control units (ECUs)

connected to the bus that are not considered in this case study. The LIN bus for the slaves is a cost-

optimized serial bus for low-traffic communication [19].
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4.2. Scenario collation

The organization wanted to accomplish three goals from this case study.

1. Exchange hard-wired connections with flexible bus structures to reduce wire harness. The cable

length for an average vehicle is about 1.6 km with 300 plugs and 2000 cable pins [20]. The cable

cost is a cost-sensitive part in a modern vehicle (average cost about €400 [21,22]).

2. Partition the functionality in such a way that the mechatronic module cost is as low as possible.

3. Flexible topology of mechatronic systems for a rich variety of customer configurations.

For example, replacing a two-master configuration with a one-master configuration for driver

and passenger side.

The organization developed two- and four-door prototypes in cooperation with car manufacturers

(customers) to explore design alternatives and prove the validity of the model. One of the main issues

arising out of these projects was time-performance characteristics, such as worst-case reaction time for

different system configurations. In general, customers wanted one of the following scenarios.

• Scenario A: adding a new peripheral such as climate control to an existing LIN channel.

• Scenario B: adding a second master to the configuration and migrating functionality from the

original master to the additional master.

The organization was in the situation of either building further prototypes and performing

measurements for worst-case reaction time, or defining a formal model that is able to calculate time-

performance scenarios for a variety of configurations, including the addition of further LIN devices,

such as a climate control unit. The organization decided to take the approach of building a model,

because of:

1. the cost involved in building prototypes; and

2. the ability to explore further customer scenarios using the model.

Scenarios A and B represent the What If scenarios that were introduced in Section 3.6. Therefore, the

model approach includes the development of both the time performance model (Sections 4.3–4.6) and

the model expert (Section 4.7).

4.3. Constructing an initial time-performance model

Constructing the initial time-performance model forms the hypothesis that allows for fact elicitation

from sources, as earlier illustrated in Figure 3. Only those facts that affect performance aspects have to

be considered.

The initial model follows a stimulus/response pattern. The model response consists of minimum,

average and worst-case end-to-end system response times. There are many ways to define minimum,

average, and worst-case reaction time, depending on the type of system, networks, and more. In this

case, we favored a pragmatic solution particular for this system.

• The minimum response time is a best case with a single button press just before the polling cycle,

clear network channels, and the master not busy with previous events.
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• The average response time differs from the minimum case in that the button press happens just

after the polling cycle.

• The worst-case response time determines a situation with network traffic while the master is busy

with other events, such as previous button presses.

Note that the minimum, average, and worst-case scenarios have to be weighted with probabilities in

order to reflect real-world scenarios. For example, the probability of a worst-case scenario is extremely

low. Most real-world response times will be slightly faster than the response time given by the described

average scenario.

The initial model construction primarily required interviews with the system developers.

The interviews resulted in the following model.

• System topology: the system consisted of three system component types: master, slaves, and

connecting buses. The master was connected to five slaves using the LIN version 1.3 bus

protocol [19]. Master and slaves each contained a microprocessor. The system topology is

represented in a graph where each node is a system component. The graph is restricted by the

following rules:

1. slave and master nodes are connected via a bus node;

2. bus nodes can only be connected via a master node.

• Messaging: under normal execution, the master polls each of the slave nodes querying for state

change information. Upon notification of a state change, the master does a calculation that

results in a new set of messages that are sent as a response to other slave nodes residing on

the bus. This new set of messages is scheduled by statically defined message priorities as well as

debounce times given by the individual slave node. When all the events have been handled, the

system returns to its normal polling state.

• LIN as the key element: from the performance perspective, the LIN communication seemed

to be the key in understanding the system’s timing. All LIN messages are required to be a

multiple of a global time tick. Given the bus nature of LIN, every message can be thought of

as a global broadcast, which allows the master to arbitrate slave-to-slave communication while

at the same time ensuring coarse-grained time synchronization. This helps further reduce the

cost of the system by eliminating the need for expensive hardware crystals for synchronization

while maintaining that all nodes on the bus are synchronized to within at least one global time

tick.

• Scope reduction: the structure of the LIN bus allows us to model each slave as a system

component that either succeeded or failed to meet the LIN specified deadline. The slave typically

reads analog or digital port values, sets an output value to control an actuator and then services a

communication request. Once this has been guaranteed to occur within the LIN global time tick,

no further analysis is required. Instead, the important transactions occur on the master. Even in

the case where a slave fails to meet a deadline, the error must be handled on the master in order

for the system to effectively compensate. Given this, slaves can be reduced to system components

that do not have to be refined in the initial model.

• Cyclic executive: due to cost reasons, the master does not run a preemptive operating system.

Instead, it runs a cyclic executive loop. The loop operates at the LIN global tick frequency so that

it can process and produce the next LIN message without missing a communication opportunity.
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Previous work has analyzed cyclic executives [23], but these do not typically account for

dynamic runtime dependencies. Granted, the same set is called each cycle, but they generate

chains of events that alter what type of execution will be required on the next iteration of the

executive loop. Because this application logic is mixed into the dynamic scheduling, there are

no obvious guarantees usually associated with periodic scheduling.

The initial model resulted in the primary analysis of the master with its LIN communication package

to determine node properties in the system topology graph.

4.4. Fact elicitation from the master

The master software was written in C and comprised around 45 KLOC with 760 functions, and 3100

variables. The elicitation for the master was performed in two steps.

1. Elicitation of the call graph—to identify threads of execution.

2. Elicitation of the control flow graph—to investigate the control flow via data dependencies.

4.4.1. Call graph

The call graph was generated to investigate whether major parts of the cyclic executive could be

represented as a branch off the main function. This was a first effort towards extracting the major

components of the system. In an ideal case, the call graph of the program would have built a hierarchy

of components. Understanding the main components at the initial depths of the call tree would have

been a first step towards building a system component map. Figure 7 shows a spring layout of the

call graph in the master. This graph was automatically generated by a custom program that utilized

C-scope [24] to find functions and the Graphviz [25] graphical drawing package to plot the resulting

data. The call graph depicts particular functional responsibilities, such as the LIN communication, and

parts of the application logic. Some branches in the graph share functions, but most of the functions

are directly or indirectly connected to the main function. This structure tends to occur in low-memory

footprint-embedded environments, because stack space needs to be conserved. Instead of using a

hierarchy of function calls, the software on the master uses conditional flags that tightly connected

many of the functions. Even though the main cyclic executive loop calls nearly 50 functions, on any

particular cycle, only a handful of those execute. Not only does this mean that the separation of different

execution threads is not automatically extractable from the call graph, it also indicates the difficulty in

achieving this task by manual inspection. A different technique is required in order to extract the threads

of execution.

4.4.2. Control flow graph

The second fact elicitation step to resolve threads of operation was performed by investigating the

control flow graph of the master. Using a reverse engineering tool, such as Imagix 4D [26], it is possible

to isolate individual regions of the source code and generate a control flow graph, listing all possible

paths of program execution. We chose Imagix because of its ability to resolve advanced C language
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Figure 7. Call graph.

constructs such as function pointers. Unfortunately, the tool is unable to decompose sub-functions,

prohibiting the creation of graphs that are multiple function calls deep. It also has the limitation of

only being able to export an image of the flow graph instead of providing the traversed information.

However, it is possible to enable a debugging mode where traversal information is stored in a trace file.

By writing a short script, the flow graphs for each function from the debugging file can be recreated.

These graphs could then be linked together to form the entire control flow graph of the program.

Figure 8 shows an example graph on the left of a small flow diagram. The graph of the entire source

contained thousands of nodes with tens of thousands of connections making it unsuitable for visual

analysis.

In order to reduce this flow graph, regions of the source consisting of consecutive logic blocks

separated by function calls that were not interrupted by a branch were merged together. The right side

of Figure 8 illustrates this compression.
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Figure 8. Compression of a control flow graph.

4.5. Abstraction

Abstraction in the context of architecture reconstruction strives to collapse detailed source information

into architectural elements. The strategy to achieve this objective depends on the type of system and

the model to be constructed. In this context the emphasis is on the master and useful abstractions

for time performance. Source analysis, expert interviews, and analysis of specifications and/or written

documentation are important to build a model describing what the important elements in the system

are, and how they relate to each other. In the door module, these elements may or may not have been

physical hardware or software components. We did find that physical location did tend to help in

organizing the components. Figure 9 illustrates areas of interest and encapsulates a performance-related

state machine of different event paths that can occur in the system. The dashed rectangles illustrate the

physically isolated system components: master and slaves with sensors and actuators. These boundaries

help clarify what the nodes in those particular regions are responsible for. For example, the cyclic

executive inside the master contains all of the elements of the master’s main loop that will consume

time. The shaded regions in Figure 9 designate three major areas of interest with respect to performance

as well as where this information was discovered:

• cyclic executive of the master (source code analysis);

• LIN network (source code and Line Description File analysis);
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• the interfaces between the slaves and the LIN bus as well as the interface between the slaves and

their environment (component specifications and/or measured timing).

These regions were determined to be most important because they have the largest effect on the end-

to-end latency of the system. Other minor components such as the Other Comm. on the master have a

fixed or trivial influence on the overall system timing.

4.5.1. Cyclic executive of the master

The starting point for the software model of the master was the compressed control flow graph.

Much of the information contained in this control flow graph does not directly affect time performance.

Initialization sections could be ignored since they only occur at startup. All LIN related communication

could be grouped into a single block that would have to be analyzed separately. Other low priority

communication with the rest of the car environment could also be isolated. As illustrated in the lightest

gray region of Figure 9 (the Cyclic Executive block), we abstracted the main cyclic executive loop

into several major components. The master block represents the aggregated and abstracted source

level information. This sub-graph was generated using human inspection of the compressed control

flow graph. Worst-case reaction time—and not functionality—defined the critical components found

in this graph. The beginning of the cyclic executive loop waits for a timer to expire in order to remove

computational jitter and drift. This allowed us to ignore branches in the control flow graph that bypassed

major functionality.

4.5.2. LIN schedule analysis

The first step towards understanding the LIN communication in the code was to interview an expert that

had previously worked on the code. During this interview certain naming conventions associated with

LIN communication were outlined as well as a description of the overall flow of messages. The LIN

schedule depicted in Figure 10 is constructed by LIN function calls that pass scheduling information

in the form of message data structure arguments. For example,

status = fs_lin_oneshot_schedule (RX_SLAVE_2_Check);

schedules a message requesting information from slave two. RX SLAVE 2 Check is a predefined

LIN data structure to be requested. All messages are outlined in a LIN description file that is used at

compile time by the LIN driver to set up the message data structures. Manual inspection was required

to extract the different LIN function calls and message priorities from the master’s source, but this

process could have been automated given previous source code annotations. The LIN description file

provides information about the size of the individual messages and the configuration of the LIN bus

(baud rate etc.). Figure 10 shows a state diagram of the different possible message chains that could be

generated by system inputs.

4.5.3. Slave node analysis

The details of the internal software executing on the slaves are not important with respect to overall

system performance. The slaves are bound by the global tick of the LIN bus and are therefore required
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Figure 9. Aggregated information.
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Figure 10. LIN state diagram.
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to complete all of their tasks within that period. This allows us to view them as hardware components

that only respond to LIN messages. Even if the slaves miss their LIN deadline, the error handling

responsibility would still fall on the master node. The only other consideration is that it could take

longer than a single LIN global tick to process sensor data or control an actuator. An example of this is

the time required for the window lifter to raise the window. This time must be factored into the overall

end-to-end latency, but it does not change the slave nodes’ response time to LIN messages and therefore

has no effect on the master node’s timing. The physical timing values associated with different actuators

were either measured by the designer of that specific node, or as is the case with the sensors, amortized

by the LIN communication overhead. In Figure 9 each slave is shown containing a LIN message

handler and connects to a pentagon shape that represents sensors or actuators. When developing the

performance model, these LIN functions will be factored into the LIN component leaving the slaves to

only contribute the extra time required to engage the actuators.

4.6. Model construction

It is important to develop a model that gives adequate responses while still operating at an abstract

enough level to allow for important parameter adjustments. Past approaches to modeling automotive

systems tend to create a single cohesive model made up of components that internally direct control and

data flow [27,28]. In these approaches, components have a mapping that connects inputs to outputs, and

then consume a resource. These systems can elegantly describe a single configuration of the system,

but they are difficult to modify in order to perform design explorations because too much of the control

flow logic is encapsulated in the individual components.

Other approaches [29,30] have gone beyond state machine-based models to provide accurate

timing information through simulation. Given the complexity of modern systems, simulation-based

approaches are rapidly becoming implausible. The door module comprises a huge number of states

that are all dependent on relative timing between different environmental or user inputs. It would be

impossible to exhaustively simulate these inputs in order to guarantee that all corner cases are covered.

As a solution to this problem, we propose a modeling system where the components can be isolated

from the control and data flow through the system. The modeling system is represented by a graph,

as described in Section 4.3. Each node in the graph has a set of configuration parameters that define

the system components (masters, slaves, buses) and their interconnections. The messages, events, and

data that are exchanged by the nodes are specified in a stimulus file. This file explicitly defines each

hop across the graph topology accumulating performance information at each step. Figure 11 shows

our scenario’s topology with a sample trace diagram on the right. The numbers along each arrow in

the trace diagram show the sequence of events that an unlock button action would take when unlocking

the door. For example, lines 1–4 depict the node master requesting state change information from node

slave 1. The data are transmitted through the node LIN to the slave node and then back to the master

node. Each one of these intermediate hops along the trace needs to be formally analyzed in order to

generate the worst-case reaction time as a function of the specific configuration.

The information required to generate each of these worst-case components came from the previously

described software analysis of the master, the communication analysis of the LIN bus and the reaction

times of the sensors and actuators on the slave nodes. In our example scenario, most of the important

timing values are based on the LIN global time tick and the different message lengths extracted from the

LIN description file. The relationship between these LIN timing values and the system’s inputs comes
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Figure 11. Graph topology (left) with sample trace (right).

from the abstracted control flow information that was extracted from the master’s source. The final

timing information associated with the sensors and actuators was either physically measured by the

designer of that particular slave or, in the case of the sensors, amortized by the LIN communication.

4.7. Building the model expert

The model expert provides stimulus/response pairs for What If scenarios. With this, the model expert

generalizes the model as constructed in Section 4.6. Figure 12 illustrates the model expert architecture.

The user must supply the executive with two inputs.

• The node library—containing functions with the node performance characteristics.

• The stimuli file—containing a trace of events and messages between the nodes and the list of

nodes that have to be processed.

The nodes in the node library are implemented as C functions. They are linked into the model executive,

which interprets the stimulus file and facilitates the calling, as well as record keeping, of the individual

node executions. When all of the stimuli data are interpreted and processed, the executive then packages

and displays the performance response. In the following, we will explore the implementation of an

example scenario by describing the details of the node library and the stimulus file.
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Figure 12. Model expert architecture.

4.7.1. The node library

Each node in the node library is defined as a function that takes in operational parameters and returns

a performance data structure given a specific set of inputs. For example,

tm_data lin(void *args[]) {
tm_data time;
...
time.min=calculated_min;
time.avg=calculated_avg;
time.max=calculated_wcet;
strcpy(time.title,"LIN network transaction");
return time;

}

For the purpose of performance modeling, the tm data structure stores the worst-case reaction

time, the average reaction time, and the minimum reaction time. It has an additional field that can be

used to pass annotations that are used by the executive to clarify the output. The void *args[]
is used as a generic method for passing arguments that will later be specified in the stimulus file.

The executive provides a set of helper functions in order to extract arguments. For example,

instance=get_int_arg(args,0);
// argument pointer, argument index
event_type=get_int_arg(args,1);
message_priority=get_int_arg(args,2);
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In this case, the second parameter passed to the helper function get int args( ) is the position

of the argument in the argument list *args[]. The input parameters must be defined by the

designer of the node and should incorporate as many of the critical performance-related factors as

possible. In the above example we show that the event type and message priority are the

two critical LIN performance factors (instance just allows for multiple instances of the same

node). These critical input parameters came from a detailed analysis of possible LIN usages that were

explored by manipulating different message combinations and system configurations on a spread sheet.

Consequently, the worst-case reaction time is a function of the two input parameters in conjunction

with numerous static configuration parameters. These parameters are passed to the LIN configuration

function at startup before the node is executed. Below is an example of the LIN configuration

function:

tm_data lin_config(void *args[]) {
int instance;
instance=get_int_arg(args,0);
LIN_GLOBAL_TICK[instance]=get_int_arg(args,1);
LIN_BAUDRATE[instance]=get_int_arg(args,2);
LIN_SLAVE_NODES[instance]=get_int_arg(args,3);
LIN_POLL_LOOP_SIZE[instance]=get_int_arg(args,4);
LIN_RX_MSGS[instance]=get_int_arg(args,5);
LIN_RX_MSG_SIZE[instance]=get_int_arg(args,6);
LIN_TX_MSGS[instance]=get_int_arg(args,7);
LIN_TX_MSG_SIZE[instance]=get_int_arg(args,8); }

The important parameters are shown in all capitals proceeded by LIN . These parameters define the

connections and configurations of the nodes previously described in Figure 11. These values are used

during the stimulus file execution in the lin() node like this:

polling_time=(1000/(LIN_BAUDRATE[instance]/(LIN_POLL_SIZE[sel]*8)));

In this example, a variable polling time is computed and will be used later in the node’s timing

calculations. Eventually, the lin() function will return the tm data structure that will be recorded

by the executive. Once the node library is constructed, it is important to write a specification that

adequately describes the different model functions. This will allow future developers to reuse the nodes

without having to fully understand all of the detail that went into the analysis.

4.7.2. The stimulus file

The stimulus file configures the nodes and executes different nodes with user-specified parameters.

The stimulus file contains traces that outline a path through the node topology graph. The configuration

is a special instance of a trace that only executes once and does not collect performance data.

The stimulus file is a text file that is parsed and executed by the executive at runtime. This is important

because it makes the addition of graphical user interfaces possible, it protects intellectual property by

allowing the distribution of binary node libraries, and it facilitates rapid execution of trace permutations

without requiring recompilation. Below is an example of the configuration section of a stimulus file:
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#config
register_components();
slave_config(0,5); // Instance, cycle_time
master_config(0,5,8); // Instance, cycle_time, cpu_speed
lin_config(0,5,19200,5,4,2,16,3,16);
// Instance, global_lin_tick,baudrate,number_of_slaves,
//polling_loopl_size,RX_msgs,RX_msg_size,TX_msgs,TX_msg_size

The #config is a keyword used in the trace file to signify a trace that should execute only once, and

should not collect performance data. As shown in Figure 12, all transactions between the executive

and the nodes pass through a registry. The register components() method is required in the

node library and is responsible for associating a plaintext name (i.e. slave config) with the correct

memory addresses for that function. The lines of code remaining load the configuration parameters for

the rest of the nodes described in Section 4.7.1.

Next, in the stimulus file are the execution traces that are to be analyzed. For example,

*Door Lock Press
slave(0,$BUTTON_PRESS);
master(0,$LIN_DEP);
lin(0,$RX,$LOW_PRI);
slave(0,$PROCESS);
master(0,$LIN_DEP);
lin(0,$TX,$LOW_PRI);
slave(0,$ACTUATE);

*Window Button Press
slave(0,$BUTTON_PRESS);
master(0,$LIN_DEP);
lin(0,$RX,$LOW_PRI);
slave(0,$PROCESS);
master(0,$LIN_DEP);
lin(0,$TX,$LOW_PRI);
slave(0,$ACTUATE);

Traces have names that start with a * character. For instance, the functions following *Door Lock
Press would be stored as the response associated with a door lock button being pressed. Each of the

following function calls specifies the node that is to be called as well as the arguments that should

be passed into it. Values starting with the $ character are defined by the node library and alias to

an associated value. Similar to #defines in C, this helps make the stimulus file more readable.

The first value passed to each of the node specifies a particular instance. In this example, there is only

one instance of each node. The model executive’s output is separated into four major sections: the

registration, the configuration, the execution, and the response phase. The registration phase displays

the names of all nodes that are available as well as checking that they have a valid function pointer

associated with them. The initial lines from the simulation look like this:
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Running stimulus file "current.tra"
Registered [add_defines]
Registered [master_config]

The configuration phase checks the configuration argument parameters, and executes the associated

configuration node. The configuration nodes can use this as an opportunity to log their current

configuration. For example,

SLAVE_0 configured:
cycle_time: 5 MASTER_0 configured:
cycle_time: 5
cpu_speed: 8Mhz

LIN_0 configured:
Global Tick Time: 5ms
Baud Rate: 19200
Number of Nodes: 5
Poll Msg Size: 4 bytes
RX messages: 2
RX size: 16 bytes
TX messages: 3
TX size: 16 bytes

The execution phase will call each node and pass it the parameters specified in the stimulus file.

The return values of these nodes are then collected by the executive to be displayed compactly after

all traces have completed. By default, the executive will display the node being executed and the times

consumed. For example, the door lock button trace would produce

0: Door Lock Press SLAVE_0 called
Waiting for input: min = 0ms, avg = 0ms, max = 0ms

MASTER_0 called
Master Default Event: min = 0ms, avg = 0 ms, max = 0ms

LIN_0 network transaction
LIN RX time: min = 15 ms, avg = 40ms, max = 80ms

SLAVE called
Processing time: min = 0ms, avg = 2ms, max = 5ms

MASTER_0 called
Master Default Event: min = 0ms, avg = 0ms, max = 0ms

LIN_0 network transaction
LIN TX time: min = 15ms, avg = 25ms, max = 50ms

SLAVE_0 called
Driving Actuator: min = 1ms, avg = 5ms, max = 10ms

Finally, after all of the traces were executed, the total reaction time is displayed for each trace.

For example,

Trace "Door Lock Press "
min: 31 ms
avg: 72 ms
max: 145 ms
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4.8. Model verification

The next step is to verify that the model expert is returning adequate timing information. The model

expert is based on the analysis of a real system which it can be compared against. The difficulty is

simulating the inputs into the system at the precise times and in the correct order so as to stimulate the

worst-case response times derived from the earlier analysis. In our system, we chose to use Vector’s

Canalyzer [31] software, an analysis software for networks in distributed systems, to masquerade

particular nodes in the system to infuse particular stimuli. Using the CAPL (CAN Access Programming

Language) of the Canalyzer software, it was possible to set up the conditions when fake messages

should be broadcast on the bus. These messages appeared to the master as if they had been sent by

a slave and usually indicated that a sensor had been triggered. We then collected the remainder of

the messages with timestamps allowing us to see how long it took for the master to respond to the

stimuli. Since we are comparing the real system to a model that was directly based on it, it should be

no surprise that our timing values were nearly identical. For example, unlocking a door took minimally

15 ms after pressing the button, and a maximum of 130 ms, while our model predicted 15 and 135 ms.

The 5 ms difference in the maximum time is due to limitations in the network traffic analyzer we used.

The limitations did not allow us to simulate events at the very end of the LIN global time tick. Even so,

this demonstrated that our critical paths existed in the system and that the system was performing as

the model expert had predicted. We experimented with a few random input sequences to make sure that

none exceeded our calculated critical path. None of the random tests where nearly as long as the worst-

case path and most times were similar to our estimated average latency. This was another indication

that the model was adequately describing the real system.

4.9. Scenario feedback

At this point we are in a position to discuss the feedback that our model expert predicted about our

design scenarios from Section 4.2.

The goal of scenario A was to investigate the implications of adding a climate control system to

an existing LIN channel. In such an experiment we hoped to gauge the scalability of our current

configuration. The left columns of Tables I and II show the resulting stimulus file and output of the

newly configured system. As expected, the worst-case response times of the button presses increase

from around 130 ms in our current system to 175 ms. This large increase in latency could make

the system fail to meet customer end-to-end latency requirements. It is impossible to keep adding

functionality to the master node without eventually seeing unsatisfactory performance.

Scenario B investigated a possible solution to the problems posed in scenario A. Instead of just

adding a climate control system, we also added an additional master to support the new climate control

system from scenario A. In order to load balance the devices we also migrated the actuators for the

passenger side of the vehicle onto the new master. Button inputs should still be located on the original

master’s network since it already contains the other system buttons. The passenger side actuators would

now utilize a new LIN channel. The driver and passenger side masters would then communicate over

a third LIN channel in order to pass button commands from one master to the other.

Each component is developed with enough flexibility so that only the initialization parameters have

to be adjusted when altering the node topology. Table I compares the original and modified stimulus

file. In the new stimulus file, the additional master communicates via an added LIN channel to the
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Table I. Scenarios A and B.

#config #config
add defines() add defines()
slave config(0,5) slave config(0,5)

//ID, cycle time // still only one slave configuration
master config(0,5) master config(0,5)

//ID, cycle time // original master configuration
lin config(0,5,19200, 5,4, 3,16,4,16); master config(1,5);

// ID, global tick,baud // second master for climate control
// num of slaves,poll size, lin config(0,5,19200, 4,4, 2,16, 3,16);
// RX msgs,RX size, // original master-slave channel
// TX msgs,TX size // ID, global tick,baud,

*Door Lock Press // num of slaves,poll size,
slave(0,$BUTTON PRESS); //RX msgs,RX size
master(0,$LIN DEP); // TX msgs,TX size
lin(0,$RX,$LOW PRI); lin config(1,5,19200, 1,4,1,16, 1,16);
slave(0,$PROCESS); // channel between the two masters
master(0,$LIN DEP); lin config(2,5,19200, 1,4, 1,16,1,16);
lin(0,$TX,$LOW PRI); // channel from new master to slaves
slave(0,$ACTUATE);

*Door Lock Press
*Increase Temperature Button Press slave(0,$BUTTON PRESS);

slave(0,$BUTTON PRESS); master(0,$LIN DEP);
master(0,$LIN DEP); lin(0,$RX,$LOW PRI);
lin(0,$RX,$LOW PRI); slave(0,$PROCESS);
slave(0,$PROCESS); master(0,$LIN DEP);
master(0,$PROCESS); lin(0,$TX,$LOW PRI);
lin(0,$TX,$LOW PRI); slave(0,$ACTUATE);
slave(0,$ACTUATE);

*Increase Temperature Button Press
slave(0,$BUTTON PRESS);
master(0,$LIN DEP);
lin(0,$RX,$LOW PRI);
slave(0,$PROCESS);
master(0,$PROCESS);
lin(1,$RX,$LOW PRI);
master(1,$PROCESS);
lin(2,$TX,$LOW PRI);
slave(0,$PROCESS);
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Table II. Response before (left) and after (right) scenario B modifications.

Running trace file scenarioB 1.tra Running trace file scenarioB 2.tra
SLAVE 0 configured: SLAVE 0 configured:

cycle time: 5 cycle time: 5
MASTER 0 configured: MASTER 0 configured:

cycle time: 5 cycle time: 5
LIN 0 configured: MASTER 1 configured:

Global Tick Time: 5ms cycle time: 5
Baud Rate: 19200 LIN 0 configured:
Number of Nodes: 5 . . .

Poll Msg Size: 4 bytes LIN 1 configured:
RX messages: 3 . . .

RX size: 16 bytes LIN 2 configured:
TX messages: 4 . . .

TX size: 16 bytes
. . . . . .

Trace “Door Lock Press” Trace “Door Lock Press”
min: 30 min: 30
avg: 87 avg: 64
max: 175 max: 130

Trace “Increase Temperature Button Press” Trace “Increase Temperature Button Press”
min: 30 min: 45
avg: 87 avg: 66
max: 175 max: 135

original master. The additional master then has a second LIN channel for communication with its own

slave nodes. Notice that only the configuration settings and the immediately effected traces have to

change. All of the other elements in the system, such as the door lock button, remain the same. There is

still only one instance of a slave module, because all of the slaves in the system are identical with

respect to response times.

Table II shows the abbreviated response produced by running the two traces. Contrary to our initial

intuition, the end-to-end latency from the temperature button press on one slave to the temperature

controller unit on another slave decreased from 175 to 135 ms. In fact, all of the system latencies

decreased even though the modified stimulus to response path requires more hops. This demonstrates

how significant the LIN network usage affects the system’s overall performance. Specifically, the

number of slaves on the LIN bus that actively pass messages drastically changes the worst-case

latencies. This is due to the cyclic nature of the message scheduling. When a slave is removed, the

polling loop time drastically decreases, yielding proportionally lower end-to-end message latencies.

4.10. Cost and benefit

Developing systems in a cost-efficient way forces companies to constantly improve their products in

accelerating markets. One way to achieve this in mass markets is the trend towards product lines.
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For example, different models are based on the same production platform. This translates directly to

the software platform for vehicles with the creation of standards to integrate software in a platform as,

for example, envisioned by the AUTOSAR consortium [32]. The resulting artifacts describe, among

other things, plug standards for software components, such as for the automotive body domain of this

case study. However, plug standards do not guarantee component play. Key to play standards is the

ability to predict the behavior of assembled components. Solutions to this ability include models for

quality attributes translated into particular domains.

The introduced performance expert of this case study is a natural but prerequisite step towards

automotive body domain play standards as the LIN bus structure with a client–server approach will

penetrate the market. Play predictions for other automotive manufacturer configurations with similar

plug standards will become cost efficient. A particular solution can be predicted before the commitment

of large resources. Of course, additional model experts are required towards the full realization of this

ambitious goal. For example, safety model experts in x-by-wire constellations, where communication

is done without mechanical backups, such as automotive steer-by-wire and break-by-wire [33].

Creating a model expert for an existing system is probably expensive in case the constructed model

is used only once and/or the system is already delivered. The development of the time performance

expert of this case study included the following:

• developer interviews, investigation existing documentation, scenario development;

• tool selections, source code parsing (master);

• initial performance model;

• building a target verification environment for the initial model;

• design and coding of the performance expert;

• documentation.

The total effort was approximately 2 person months. With further customer configurations, the

investment in a model expert is extremely beneficial, not only as a tool for developers but also as a

useful support tool during product acquisition phases.

5. CONCLUSIONS

The model-centric SAR approach establishes the link between quality attribute driven analysis and

architecture reconstruction. The business goal driven approach of system understanding provides an

efficient way to steer the reconstruction process by providing the required models for a particular

system. The quality attribute related model experts are an efficient way to infuse the reconstruction and

analysis process to measure the response to What If scenarios.

Model construction requires effort. Depending on the required model accuracy the construction

effort can be too expensive. On the other hand, an inadequate model does not provide reasonable

answers to the business context. Depending on the context, the understanding and analysis is performed

with interview and presentation techniques, in a reconstruction effort based on source code analysis, or

a mixture of both techniques.

The automotive case study has shown the application of the approach for a performance model in

an embedded system. It shows that models are not restricted to software models. Often, they require

additional system aspects, such as deployment, processor performance, communication protocols, and
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available memory, in particular for embedded systems. The introduced formal approach allows a model

expert to predict worst-case timing of new deployment scenarios for distributed mechatronic systems

before the commitment of resources to build the particular configuration. This design exploration

enables organizations to quickly respond to new customer settings. As systems are increasingly

incorporating domain standards we expect rapid demand for model experts in the area of component

assembly predictions.

This case study showed evidence that a model-centric approach provides a substantial contribution

to leverage SAR in concrete organizational contexts on the basis of a detailed investigation of quality

attributes for particular classes of systems.
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