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Abstract: With the explosive growth of the Internet and the distributed applications it 

supports, there is a pressing need for secure group communications - the 

ability of a group of agents to communicate securely with each other while 

allowing members to join or leave the group. Prompted by the success of 

other researchers in applying finite-state model-checking tools to the 

verification of small security protocols, we decided to attempt a larger security 

protocol: a recently published protocol for secure group communication. Not 

surprisingly, creating an ad hoc abstract model suitable for model-checking 

required cleverness, and state explosion was always a threat. Nevertheless, 

with minimal effort, the model checking tool discovered two flaws in the 

protocol, one of which has not been reported previously. We conclude our 

paper with a discussion of possible fixes to the protocol, as well as suggested 

verification tool improvements that would have simplified our task. 

1. INTRODUCTION 

Secure group communication is emerging as an important problem in 

networking. The objective is to allow messages to be sent securely to a set of 

authorized users. Such a mechanism underlies many new applications such 

as teleconferencing or pay-per-view content distribution. Trivially, we can 

build an n-party secure group communication protocol using t) normal 

point-to-point secure links and requiring each message to be sent 

individually to all other group members. For efficiency reasons, however, we 

would like to exploit the broadcast or multicast capabilities a network may 

offer, and we would like to introduce hierarchy to manage very large groups 

--- hence, the need for secure group communication protocols. In this paper, 
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we consider a recently published secure group communication protocol [13] 

that offers substantial performance benefits over previously published 

protocols (e.g. [10]). 

Security protocols are extremely tricky and have long been an important 

application domain for formal specification and verification techniques. 

Recently, a number of researchers have reported excellent results applying 

finite-state model-checking tools developed for hardware and general 

protocol verification to the verification of simple security protocols (e.g. key 

exchange, authentication) [8, 9]. The obvious promise of such an approach is 

a great reduction in labor and expertise required to carry out the verification. 

The obvious question is whether these automatic tools are sufficiently 

powerful in practice to handle interesting security protocols. This paper 

helps to answer that question by describing our experience using a 

model-checking tool on the above mentioned secure group communication 

protocol [13], which is more complex than has previously been attempted 

via model-checking. We will discuss the protocol and how we modeled it, 

the benefits and limitations of the model-checking approach and the tool we 

used, and the errors we discovered in the protocol. 

2. THE PROTOCOL 

In this section, we will briefly sketch the protocol we are studying. We 

refer interested readers to the original paper for details [13]. 

The protocol presumes a trusted server that administers the group. 

Requests to join or leave the group are sent to this server. The server has 

some mechanism for authenticating new users who request to join the group 

and for distributing or negotiating a private session key with the new user. 

These are standard operations and are assumed to work correctly. All 

cryptographic keys are assumed to be symmetric, private keys. 

The basic idea of the protocol is to construct a hierarchy of keys 

organized in a tree. 1 (See Figure 1.) Each user is associated with a leaf of the 

tree, and the key at that leaf is the private session key between the server and 

that user alone. Each internal node of the tree corresponds to a subgroup key 

that is known by all users descending from that node. At the root is the group 

key that is shared by all users in the group. Accordingly, we can send a 

secure message to all the users in any subtree by using the key at the root of 

that subtree. Each user needs to know all the keys on the path from itself to 

the root. 

1 The paper also proposes a star graph, which is just a special case of a tree, and a 

complete graph, which is discarded as impractical. 



471 

KeyE 

User A UserB Use!C UserD UserE 

Figure 1. Key Tree: Each user is associated with a leaf in the tree and knows all the keys on 

the path from itself to the root. A secure message can be sent to all (and only the) users in a 

subtree by using the key at the root of that subtree. 

When a new user wishes to join the group, it sends a join request to the 

server. The server authenticates the user, finds a position in the tree to attach 

the new user, and then must rekey all the nodes on the path from the root to 

the new user to ensure that the new user cannot read old messages from 

before it joined the group. (For example, in a pay-per-view application, a 

user should not be able to decode and view saved copies of previously 

broadcast programs using the key purchased for a more recent program.) 

Note that the rekeying means that every user must update at least one of its 

keys whenever a new user joins the group. Similarly, when a user wishes to 

leave the group, it sends a leave request to the server. Again, the server must 

rekey all nodes on the path from the root to the leaving user to ensure that it 

can no longer read any messages from the group. 

The paper proposed three different rekeying schemes. For simplicity, we 

considered only "group-oriented" rekeying, the scheme with the best 

server-side performance. Intuitively, the scheme handles a join by sending a 

single message with all the needed keys to the new user and by broadcasting 

a single message to the whole group that contains all the changed keys, 

appropriately encrypted so that no user learns any keys that it shouldn't 

know. Similarly, the scheme handles a leave by broadcasting a single 
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message to the whole group that contains all the changed keys, again with 

each key encrypted separately so that no user (especially the one that just left) 

learns new keys that it shouldn't. 

More formally, let s ~ u : m denote sending message m from s to u. 

Generalized, s ~ {u1 ..... un}: m denotes broadcasting message m to all the 

users u1, .... Un. A message (or portion of a message) enclosed in subscripted 

braces { m} k denotes message m encrypted using key k. Only users who know 

k can encrypt or decrypt such a message. The join protocol is as follows: 

Join Protocol 

I. u ~ s :join request 

2. s ~ u: authenticate and negotiate key ku 

3. s attaches u to tree. Let k0 • ... , Is be the keys from root (k0) to the 

node where we attached u. (The node with Is is the parent of the 

node with ku . ) 

4. s generates new keys k0' , ••• , Is' 
5. s ~ {all users} : {ko'}kO, ... , { /s'h1 
6. s ~ u: {k0', ... , /s'}ku 

The leave protocol is more complex. The server broadcasts a message 

containing all the new subgroup keys. The difficulty is that the normal way 

to send secret information to a subgroup is to use that subgroup's key. The 

leaving user, however, knows its current subgroup keys and could thereby 

learn the new subgroup key as well. To avoid this problem, each new 

subgroup key is sent encrypted by the (possibly new) keys of its subgroups. 

For example, in Figure I, if User D requested to leave the group, the new 

KeyABCE' (replacing KeyABCDE) would be included in the rekey message 

twice: once encrypted by KeyAB and once encrypted by the new KeyCE', 

which replaces KeyCDE. Similarly, the new KeyCE' (which Users C and E 

need in order to decrypt the new KeyABCE') would be included twice: once 

encrypted by the new KeyC' and once encrypted by KeyE. This process 

continues to the leaves of the key tree. More formally, the leave protocol is 

as follows: 

Leave Protocol 

1. u ~ s: leave request 

2. s ~ u: leave granted 

3. s detaches u from tree. Let k0 ..... Is be the keys from root (k0) to the 

node where we attached u. (The node with Is is the parent of the 

node with ku . ) Let x0, ••• , x1 be the corresponding nodes. 

4. s generates new keys ko' , ... , Is' 
5. We will now construct the rekey message in several pieces. For 

i=O.J, we create m; to be the portion of the message containing k; '. 

In particular, for each child of X; (the node corresponding to k;), m; 

will contain a copy for k;' encrypted by key for that child. In the 
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case of X;+ 1 (one of the children of X;), the key used will be the new 

key k;+1 '. 

6. s ~{all users}: m0, ... , m1 

Note that as described, there is an obvious flaw: an adversary can forge 

rekey messages and "black out" authorized users from reading subsequent 

messages in the group. The original paper suggested that rekey messages be 

signed using a secure digital signature scheme to prevent forging. 

3. MODELING AND MODEL-CHECKING 

In this section, we describe how we modeled the protocol and applied 

model checking. 

Our first decision was which model checker to use. We chose the Murphi 

verifier [ 4] rather arbitrarily, but in part because others have used it 

successfully on security protocols [9]. We expect that other state-of-the-art 

model-checkers such as Spin [5] or FDR [8] would have produced similar 

results. We chose not to use a BDD-based model checker such as SMV [2]. 

BDD-based model checking has done very well for hardware, but not nearly 

as well on high level protocols [6]. We will discuss some of the advantages 

and disadvantages of choosing Murphi later in this paper. 

Having chosen Murphi, we were able to follow the general approach of 

Mitchell et at. (9], who had first used Murphi on small security protocols. 

Murphi is a guarded-command language [3], so we model the various 

components of the system (e.g., server, users, adversary) as sets of 

commands for the possible actions of each part of the system. This modeling 

is somewhat tedious, but generally straightforward. For example, the 

commands to model the users allow an idle user to request to join the group 

(which entails sending a join message to the server and changing state to 

wait for the reply), a user waiting for a reply to process that reply, etc. 

Murphi has no notion of communication channels, so the network must be 

modeled explicitly using shared variables as a multiset of messages. 

The adversary is the most interesting part of the modeling. Standard 

practice in the security community is to allow the adversary to intercept, 

modify, and generate arbitrary messages. However, the paper describing the 

protocol proposed using digital signatures to prevent forged messages, so we 

limited our adversary to eavesdropping and remembering messages, and then 

sending out previously saved messages later. Thus, our adversary is limited 

to "replay attacks", which cannot be prevented by digital signatures. The 

adversary can remember a finite number of previous messages. The 

adversary cannot encrypt or decrypt a message unless it knows the key. 
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The main modeling challenge we faced was incomplete information. The 

original paper emphasized performance, so many implementation details 

were missing. For example, the properties of the underlying communication 

network were never specified in the paper. We chose to model a network 

that guarantees delivery of messages, but does not guarantee preservation of 

message order --- properties that are typical of broadcast and multicast on 

wide-area networks. We expect such networks to be the typical underlying 

infrastructure for a secure group communication system. We also modeled a 

network that preserves message order; we will discuss this briefly in the next 

section. 

Another challenge created by incomplete information was specifying 

properties to verify. Formal verification is only as good as the properties 

being verified. The original paper, however, never stated a security policy, 

other than a parenthetical comment about privacy, integrity, and authenticity. 

For our correctness properties, we specified that all members of each 

subgroup shared the subgroup key, and that all non-members did not have 

that key. Furthermore, the adversary should never obtain a usable key, and 

the adversary's messages should never be processed. Clearly, these are 

necessary conditions for correctness of the protocol; we do not claim 

sufficiency. 

Throughout the verification process, state explosion was a constant threat. 

We were forced to make countless simplifying assumptions, such as limiting 

the size of the model to only a few users total, allowing the adversary to 

remember only a small finite history of previous messages, having a small 

number of possible keys and purging the adversary's memory when we are 

forced to recycle any keys, and many, many others. Altogether, these 

simplifications mean that countless bugs in the real protocol may have been 

simplified out of the Murphi model. This fact combined with the incomplete 

specifications means that model checking must be viewed as a debugging aid, 

rather than a certification of correctness. Success is achieved by finding bugs 

that had otherwise eluded detection. 

4. RESULTS 

Surprisingly, the adversary did not play a major role in the bugs we found. 

Instead, the bugs were the result of subtle ordering problems with the 

messages.2 

A number of trivial bugs appeared very early on. For example, the 

protocol as stated allows a user to join and then immediately leave the group. 

2 Given that the original paper did not specifY an underlying network model, it is perhaps 

unfair to label these as bugs, rather than merely as surprises. 
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Thus, a leave request might reach the server before the join request for that 

user. Adding a simple handshake would eliminate this problem. A similar 

problem is that the adversary can replay previous join/leave requests and 

overload the server and network, creating a denial-of-service attack. A 

proper authentication procedure (which the protocol presumes) would use 

nonces (one-time random numbers) in the authentication to prevent 

replaying previous joins/leaves. In order to explore other possible bugs, and 

to reduce state explosion, we simply modified the model to prohibit these 

behaviors. 

Murphi found two more serious bugs. The first bug was mentioned in the 

original paper-a forged rekey message can be used to "black out" a 

legitimate user from subsequent communication in the group. The paper 

proposed using digital signatures to prevent forged rekey messages, but 

neglected to consider replay attacks. The Murphi model found that the 

adversary can save an old rekey message (properly signed by the server) and 

send it out again later, switching the victim to old, no-longer-valid keys. A 

solution is to timestamp the messages or to use sequence numbers, encrypted 

into the message to prevent tampering. Note that the timestamp must be 

large enough to prevent the adversary from reusing old messages whenever 

the clock wraps around. It is interesting that the authors of the protocol 

noticed the problem, proposed a solution, but didn't realize that the solution 

was inadequate, whereas the verification tool found the error quite easily. 

A more serious bug was also discovered by Murphi. To our knowledge, 

this bug was previously unknown. The problem is that when multiple 

transactions are occurring, the respective rekey messages can arrive at a user 

out-of-order. Depending on the details of the message format (i.e. are there 

known fields in the encrypted parts of messages in addition to the 

randomly-generated key?) the result is at best that the user receives a bunch 

of unintelligible messages, at worst that the user switches to an incorrect key 

based on decrypting the new key with the wrong old key. Unfortunately, 

there are no easy solutions to this problem. Unencrypted sequence numbers 

would be vulnerable to attack by the adversary, causing the messages to be 

decrypted with the wrong keys. Encrypted sequence numbers are useless, 

because we need to know the ordering of the messages in order to decrypt 

them correctly. For a small network with infrequent rekey messages, a user 

could save all unintelligible messages and retry each one whenever a new 

rekey message arrives, but this approach is obviously impractical if rekey 

messages are frequent. Another approach would be to implement a scheme 

to provide order-preserving broadcast on top of the non-order-preserving 

network, such as ABCAST [1]. Unfortunately, such schemes Impose 

substantial overhead and hinder scalability to large networks. 
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Note that the original paper did not specify the underlying network model. 

We chose a model that does not preserve message order, as in practice, that 

would be typical for an underlying network supporting multicast. When we 

changed our network model to preserve message order and reran the model 

checker, the above bugs disappeared. Thus, the protocol may have been 

designed assuming preservation of message order, but that assumption was 

never stated. 

Altogether, the verification process required less than two months of 

part-time effort. Despite the fact that the protocol was published and hence 

presumed free of obvious bugs, we were able to discover two difficult bugs 

with very little effort. Furthermore, the two student authors, who carried out 

the bulk of the verification, had had no previous formal verification 

experience. In short, we had a very good bug/effort ratio. 

5. DISCUSSION AND CONCLUSION 

In retrospect, the choice of Murphi as our model-checking tool proved 

quite reasonable. Although we feel that other contemporary model checkers 

would also have served well, some positive features of Murphi stood out. 

Ease-of-use was perhaps the most important point. Murphi provides a very 

simple, small language, which makes the learning curve easy. For a novice 

user, or if we wish verification to be adopted by non-experts, initial 

ease-of-learning and ease-of-use can be critical. Similarly, the guarded 

command semantics of Murphi proved to be very convenient for modeling 

the protocol. Finally, Murphi provides special data types that allow powerful 

symmetry reductions to be applied automatically [7]. We made extensive use 

of these data types, resulting in an enormous savings in the number of states 

explored. 

The hash compaction scheme, a probabilistic verification technique that 

compresses states stored in the hash table, proved to be absolutely vital to 

avoid running out of memory. The scheme is supported in both Spin and 

Murphi [12]. 

Murphi also has downsides. For example, Murphi has a very weak 

language for specifying properties to check, allowing only simple invariants 

that must hold in all reachable states. We did not find this restriction to be 

burdensome, but if more powerful properties could be specified, perhaps we 

would have found them indispensable. Similarly, Murphi has no 

communication primitives. The protocol we considered is broadcast-oriented, 

so the lack of communication primitives was not a problem. For a more 

connection-oriented protocol, however, communication primitives, such as 

the channels provided by Spin, would be very useful. 
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More generally, as the importance of security protocols increases, there is 

a need for verification tools tailored for this domain. The tool could provide 

primitives for communication, encryption/decryption, and the adversary, as 

well as opening the door to domain-specific reduction techniques. 

Shmatikov and Stern have recently published some provably-sound 

reduction techniques specifically designed for model checking security 

protocols [11]. Much more progress along these lines should be possible. 

The greatest challenge we faced was incomplete informal specifications. 

The paper describing the protocol did not provid~all the information needed. 

In particular, no security policy was given, nor were all assumptions about 

the environment stated. Greater attention to these issues is certainly 

necessary for security protocols. Formal description techniques, even in the 

absence of automated tool support, could be helpful. The saying comes to 

mind, "A program that has not been specified cannot be incorrect; it can only 

be surprising." [14] For security protocols, surprises are dangerous. 

We were able to find bugs in a published security protocol with minimal 

effort. The two student authors, who performed the bulk of the verification 

work, had no prior formal verification experience. Clearly, model checking 

tools and methodology are now robust enough that they can be a routine part 

of security protocol design. There are no guarantees that the model checking 

will succeed, but the likelihood of finding bugs is high, and the effort 

expended is low. 

Finally, we note that the numerous ad hoc simplifications one needs in 

order to use model checking imply that an error-free model-checking run 

does not ensure "correctness". For critical applications, conventional 

proof-based methodologies --- using a more expressive formal description 

technique and perhaps automated proof assistants --- are still needed. 

Nevertheless, the ease-of-use and excellent bug/effort ratio of model 

checking makes this approach an excellent tool for designing and debugging 

security protocols. 
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