Model Checking Agent Programming Languages*

Louise A. Dennis®* Michael Fisher® Matthew P. Webster? Rafael H. Bordini”

a: Department of Computer Science, University of Liverpool, Liverpool L69 3BX, United Kingdom.
l.a.dennis@liverpool.ac.uk,mfisher@liverpool.ac.uk

B : Virtual Engineering Centre, Daresbury Laboratory, Warrington WA4 4AD, United Kingdom.
matt@liverpool.ac.uk

Y: Institute of Informatics, Federal University of Rio Grande do Sul,
PO Box 15064, 91501-970 Porto Alegre, RS - Brazil.
R.Bordini@inf.ufrgs.br

Published as Automated Software Engineering Journal 19(1):3-63, Mar. 2012

Abstract

In this paper we describe a verification system for multi-agent programs. This is the first comprehen-
sive approach to the verification of programs developed using programming languages based on the BDI
(belief-desire-intention) model of agency. In particular, we have developed a specific layer of abstrac-
tion, sitting between the underlying verification system and the agent programming language, that maps
the semantics of agent programs into the relevant model-checking framework. Crucially, this abstraction
layer is both flexible and extensible; not only can a variety of different agent programming languages be
implemented and verified, but even heterogeneous multi-agent programs can be captured semantically.
In addition to describing this layer, and the semantic mapping inherent within it, we describe how the
underlying model-checker is driven and how agent properties are checked. We also present several ex-
amples showing how the system can be used. As this is the first system of its kind, it is relatively slow,
so we also indicate further work that needs to be tackled to improve performance.

1 Introduction

Since the introduction of the agent-based systems concept in the 1980s [2, 14, 26, 19, 32, 69] the field has
seen significant growth and increasing research maturity. This is true not only within academia but also for
industrial applications, where the agent metaphor has been shown to be useful in capturing many practical
situations, particularly those involving complex systems comprising flexible, autonomous, and distributed
components [53].

The large number of agent platforms now available [3] has meant that the industrial uptake of this
technology is continually growing. In software development, we have seen significant commercialisation
of multi-agent systems technology, e.g., in the form of a Java-based ontology development and multi-agent
toolkit [42]. Similarly, building effective and user-friendly transportation systems is increasingly tackled
using Al methodologies and multi-agent technology in particular [53]. Other application areas have seen
the emergence of agent frameworks, financed by industry, and designed to cope specifically with industrial
requirements [45], and such technology has been successfully introduced in many companies (e.g., goal-
oriented, autonomic process navigation [67]). An early survey of applications of agent technology in
industrial systems control can be found in [48]. Other areas in which agents are actively used include air-
traffic control [55], autonomous spacecraft control [58], and health care [57]. Clearly, many of these are
areas for which we must demand software dependability and security.

*The authors would like to thank EPSRC for its support of this work through research projects EP/D052548, EP/D0O54788, and
EP/F037201, and CNPq for its support through grant 307924/2009-2.

As agent-based solutions are used in increasingly complex and critical areas, there is clearly a need
to analyse, comprehensively, the behaviour of such systems. Not surprisingly, therefore, the area of for-
mal verification techniques tailored specifically for agent-based systems is now attracting a great deal
of attention [36]. While program verification is well advanced, for example Java verification using Java
PathFinder [74, 50], the verification of agent-oriented programs poses new challenges that have not yet
been adequately addressed, particularly within the context of practical model-checking tools. Tackling this
deficiency is our long-term aim in this work.

We here consider the formal verification, via model checking, of programs written in Agent Program-
ming Languages (APLs). As will be described below, such languages are significantly different from
traditional programming languages and, hence, their verification requires extended techniques. The pre-
dominant model for agent systems is the BDI (belief-desire-intention) model [64, 63] within which agents
are viewed as being rational and acting in accordance with their beliefs and goals. As such it is important
to be able to verify properties expressed in terms of such concepts. Thus, in agent verification, we have to
verify not only what the agent does, but why it chose that course of action, what it believed that made it
choose to act in this way, and what its intentions were that led to this. Our previous work in this area has
concentrated on one particular language, AgentSpeak [62], whereas we here extend to any agent language
that is based on the BDI paradigm [63] and for which a formal operational semantics can be provided
within our framework. In addition, we now go beyond previous work in verifying more complex multi-
agent systems. Though the performance is still not high when a larger number of agents are considered,
we show that our approach is very flexible and, with the speed improvements envisaged, can potentially
provide an effective verification system for much larger multi-agent systems.

In essence, our framework consists of two components. The Agent Infrastructure Layer (AIL) is a set
of Java classes designed to act as a toolkit for creating interpreters for BDI Agent Programming languages.
This toolkit is designed to make the construction of such interpreters quick and easy once an operational
semantics is provided. The second component is Agent JPF (AJPF), a version of the Java Pathfinder (JPF)
model checker [74, 50] which has been extended with a property specification language appropriate for
agent programs and some Java interfaces suitable for encapsulating multi-agent systems in an efficient
fashion.

Our aim has been to define a sufficiently general intermediate layer on which model checking could be
performed. AIL and AJPF are designed to work efficiently together: AIL is designed to optimise model-
checking time rather than execution time and to implement the interfaces specified in AJPF!. We are thus
able to model check the properties of any (potentially heterogeneous) multi-agent system implemented
in languages that have AIL-based interpreters. By optimising the AIL’s state representation for use with
AJPF, our customised version of the JPF model checker, we avoid the intricacies of carrying out such
optimisation for each language separately, thereby reducing the probability of introducing errors at this
stage.

The work described in this paper builds on results from a number of workshop [28, 76] and confer-
ence [5] papers. It develops and updates these results and includes unpublished applications [76] developed
to assess the practicality of the software. This paper constitutes the first complete description of the final
system, which is now available on Sourceforge, at http://mcapl.sourceforge.net.

2 Background

2.1 Rational Agents and Multi-Agent Systems

The agent abstraction captures truly autonomous behaviour. As we do not consider arbitrary, ‘random’
autonomy, then we assert that an autonomous system should have some motivation for acting in the way
it does. This aspect is captured by the concept of a rational agent [13, 19, 64]. The key aspect of a
rational agent is that the decisions it makes, based on dynamic motivations, should be both “reasonable”
and “justifiable”. In detail, a BDI agent comprises beliefs that the agent has about itself and its environment,
desires (or goals) representing its long-term aims, and intentions describing the agent’s immediate goals
(the ones it is currently trying to achieve through acting on the environment where it is situated). Thus,

'Note that, if required, AIL can be used without AJPF and vice versa.

such an agent analyses data about itself and its environment and generates, or updates, its beliefs. The
agent endeavours to tackle its long-term aims within this context, which leads to a set of immediate goals
(intentions), which are tackled through the agent’s plans (determining appropriate courses of action to
achieve goals). When several possible (conflicting) goals exist, the agent must undertake some deliberation
and decide which intention to realise in practice as well as reasoning about how to do so.

A multi-agent system (MAS) is a system consisting of a number of rational agents interacting with
each other. Problem solving using multi-agent systems is now an established area of software engineering.
The cooperation aspect helps solve problems that are difficult to solve by individual agents or traditional,
centralised, computer systems. Areas in which multi-agent systems have been successful include online
trading, space missions, air traffic control, disaster response, and the modelling of social structures [53, 45,
67, 57], to name just a few.

2.2 BDI Agent Programming Languages

There are many different agent programming languages and agent platforms based, at least in part, on the
BDI approach. Particular languages developed for programming rational agents include AgentSpeak [62],
Jason [9, 10], 3APL [43, 24], DRIBBLE [66], Jadex [60], GOAL [44, 1], CAN [79], SAAPL [78], GWEN-
DOLEN [27], and METATEM [34, 35]. Rather than providing a framework in which the complex logical
properties of systems using just one particular agent approach can be verified, we have developed a flexi-
ble and uniform framework allowing the verification of a wide range of agent-based programs, produced
using several different high-level agent programming languages. Specifically, our focus has been on BDI
languages, i.e., languages that generally follow the beliefs, desires, and intentions paradigm [63] of agent-
oriented programming. Consequently, the architecture presented in this paper is based upon our study of
common concepts and structures appearing in the operational semantics of various BDI programming lan-
guages [28]. Agents programmed in these languages commonly contain a set of beliefs, a set of goals, and
a set of plans. Plans determine how an agent acts based on its beliefs and goals; the sophisticated form
or plan execution is the basis for practical reasoning (i.e., reasoning about actions) in such agents. As a
result of executing a plan, the beliefs and goals of an agent may change as the agent performs actions in its
environment.

In [28], we tackled issues in the treatment of beliefs, goals, plans as well as events, intentions, and
other components central to the design of these languages. We started by extracting the major concepts
of 3APL [24] and the variant of AgentSpeak [62] encapsulated by Jason [10] for use in our framework.
However, our approach does not exclude other languages, in some cases even those based on completely
different agent architectures. It was our aim to include languages that have practical relevance. Thus, we
did not want to restrict ourselves to (abstract) programming languages that could not be considered for
serious software development projects.

2.3 Agent Verification

The main approaches to detailed systems analysis can be broadly categorised as festing [41], model check-
ing [18], and theorem proving [59].

Testing is fast, but generally non-exhaustive, and thus cannot guarantee that a property holds throughout
a given system. However, the latter two techniques are exhaustive and will, in principle, give a definite
answer to the question of whether a property holds for all program executions. Theorem proving requires
a deep knowledge of mathematical structures and techniques, is usually only partly automatable, and is, in
practice, often very costly, since the task can usually only be carried out by experts. Model checking, on
the other hand, relies on a complete, but automated, inspection of the system’s state space. This makes it
computationally costly (in terms of time and space), but does not usually require a specialist as in the case of
theorem proving. In order to reduce the computational problems, state-of-the-art model checkers employ a
number of reduction techniques that make it possible to handle even large state spaces relatively efficiently.
Since we require an automatic/definite answer and are looking into practical applications of verification in
the design of multi-agent programs, model checking is the most promising of the approaches.

Model checking is a technique whereby a finite description of a system is analysed with respect to a
property in order to ascertain whether all possible executions of the system satisfy this property. Formally,

the property is typically described using a temporal logic formula [33], while the model checking process
essentially involves trying to find a model within the system description for the negation of this property.
If any such model is found then it describes a ‘run’ of the system that does not satisfy the required prop-
erty [18]. In agent-based systems, it is vital to verify not only the behaviour that the system has, but also
to verify why the agents are undertaking certain courses of action within the multi-agent system. Thus, in
our approach the temporal basis of model-checking, capturing the dynamic nature of agent computation,
is extended with modal operators [38] capturing the informational (‘beliefs’), motivational (‘desires’) and
deliberative (‘intentions’) aspects of rational agents.

With the increasing use of multi-agent systems and the sophistication of model-checking technology,
it is not surprising that the concept of automated agent verification has attracted significant interest. Pi-
oneering work on model checking techniques for the verification of agent-based systems has appeared,
for example, in [6, 51, 7, 61]. Our previous work [6, 7] has concentrated on model checking techniques
for agent-based systems written in the logic-based agent-programming language AgentSpeak [62]. This
required a specific encoding of the AgentSpeak agent system’s states in the input language used by the
model checker. Applying similar techniques to other agent programming languages would require manu-
ally encoding the state representation of that language. This is both tedious and error-prone. This was a key
motivation for the work presented here. Our intention was to lift away the effort involved in developing a
model checking framework for a given language from encoding the language directly in a model checker,
moving up to the level of constructing a (model-checker backed) interpreter for the language given suitable
support.

3 AIL: A Framework for Creating BDI Interpreters

The Agent Infrastructure Layer (AIL) is an intermediate layer that encompasses key concepts from a wide
range of BDI programming languages as data structures in Java and enables the implementation of their
operational semantics within a clear framework. These data structures can then be used both in creating
Java interpreters for the agent programming languages and for interfacing with the underlying agent model
checker.

An agent originally programmed in some agent programming language (APL) and running in an AIL-
based interpreter uses the AIL data structures to store its internal state comprising, typically: a belief base, a
plan library, a set of intentions, and other temporary state information. We also assume that the APL defines
a reasoning cycle which is expressed using an operational semantics. The rules in the cycle define how the
agent’s practical reasoning progresses, depending on its current internal representation and the current stage
of the reasoning cycle. The AIL provides support for constructing reasoning cycles along with a number of
rules that commonly appear in the operational semantics of agent programming languages. The operational
semantic rules within AIL are given in Appendix A. In short, the AIL toolkit collects together Java classes
that:

1. facilitate the implementation of interpreters for various agent programming languages;
2. contain adaptable, clear, operational semantics; and
3. can be verified through AJPF, an extended version of the open source Java model checker JPF [74].

If an AIL-based interpreter is run in conjunction with the AJPF model checker, then the system will notify
the model checker each time a new state is reached that is relevant to the verification. It is left to the
designers of interpreters to decide where, in the reasoning cycle, such points should fall.

As a natural consequence of this, AIL also makes it easier to develop an interpreter for a programming
language using the AIL classes than it would be to build an interpreter “from scratch” in Java. Fig.1
provides a diagrammatic representation of AIL within the AJPF model checking architecture.

AJPF is our extension of the JPF model checker [74, 50], which includes interfaces linking AIL in-
terpreters to the model checking framework and a property specification language. These interfaces also
allow programming languages that do not have their own AlL-based interpreters to be model checked

Multi-Agent Program Legend:
AJPF verification target
(AgentSpeak , 3APL,
Jadex, MetateM, GOAL,

Gwendolen, SAAPL, ...)

language
translation

property
specification

AIL — — — optional data/scheduling
heuristics
AJPF property handling Thoice
generator
AJPF LTL-based PSL
property checker
AJPF
listener
AJPF controller object
.- OEmQM. oo a @
rogram specific
P 2 Virtual Machine state

AJPF objects
_—Y | Biichi Automaton

e ____________________________J
JPF verification target

(Java bytecode
program)

management

oo
Search Strategy VM
Core JPF

property search
checker listener
search

system/
apps observation

Figure 1: AJPF3rchitecture [5].

against specifications written in the same property specification language, using AJPF. However these lan-
guages will not benefit from the efficiency improvements that the optimised AIL classes can provide. AJPF
is discussed in more detail in Section 4.2.

Fig. 1 shows how the combination of the translated agent program(s) together with the property spec-
ification constitutes an AJPF controller object. This controller is used as the JPF verification target. The
original program(s) with the original property specification can be viewed as the AJPF verification target;
they are fed into the appropriate translators available as part of our framework.

3.1 Components of Agent Programming Languages

We will now proceed to give an overview of the AIL structures available.

3.1.1 Agents

Agents are specified by a large class with multiple fields. This class is intended for sub-classing or wrapping
by language-specific interpreters which need only refer to the fields that are of interest to them. We discuss
some of the key components of this class below. It also contains components for exploring organisational
and group structures as outlined in [30], though we do not discuss these here.

When we have discussed many of the key data structures within an agent, we will provide a formal
definition of an AIL agent in section 3.1.12.

3.1.2 Beliefs

Every agent contains a belief base of statements it believes to be true. This can be viewed as a set of first
order formulae. AIL also supports Prolog-style reasoning based on a rule base of Horn clauses.

3.1.3 Guards and Logical Consequence

AIL uses the concept of a guard on a plan (as well as on other constructs). In the case of a plan, the guard
is used to determine the applicability of the plan. In general, guards are used whenever an agent needs to
check its own state.

A guard consists of two sets of expressions. These sets represent propositions the agent must hold
(positive states) — i.e., statements it believes, goals it possesses etc. — and propositions the agent must
not hold (negative states)?. A guard represents the conjunction of these expressions which can be checked
for validity against the agent’s internal state (so typically such expressions refer to things the agents be-
lieves or goals it possesses). AIL provides an interface for the expressions that may appear in guards and
requires these expressions to implement a logical consequence relation (we will write ag |= g to represent
that the guard, g, is a logical consequence of the internal state of agent, ag). Procedurally speaking, the
implementation of logical consequence provides a decision procedure for deciding whether a guard holds
in an agent’s current state.

AIL provides a default implementation of logical consequence which provides an algorithm for decid-
ing whether some statement is believed by the agent, is a goal of the agent, has been sent as a message by
the agent, as well as common propositional logical statements constructed from such atomic formulae (e.g.
conjuction, disjunction, and negation).

However, since different languages may have different semantics for belief, goal, etc., this procedure
can be overridden so, for instance, a different semantics can be supplied for what it means for a formula to
be a goal of the agent. It is also possible, by this means, for individual languages to provide custom data
structures for additional parts of an agent’s state that those languages need to appear in guards.

The default implementation of logical consequence supports reasoning using Prolog-style Horn clauses
where the literals appearing in such clauses may, themselves, be guards. This allows such rules to be used
in languages with varying semantics for the literals that appear in such rules, without each language having
to implement it’s own version of Prolog-style reasoning.

2The system distinguishes between strong and weak negation, i.e. the difference between not believing something is the case and
believing something is not the case.

The use of the logical consequence method for reasoning about an agent’s internal state is a key aspect
of the AIL system and it provides the bridge into the agent state for the atomic properties of the AJPF
property specification language. Then, if such properties refer, for instance, to the fact that some agent
believes something, the semantics for this is determined by the relevant agent’s implementation of the
logical consequence relation.

3.14 Goals

Goals are represented by a first order literal with a particular type — in the AIL toolkit the types are achieve,
perform, test and maintain (following [24]). There are rules in the toolkit distinguishing between the first
three types — the fourth is currently unsupported. There is no reason why further goal types should not be
added.

Agents do not maintain an explicit list of goals. Instead they deduce their goals from the “commit to
goal” events that are found in their set of intentions. However, the ‘Agent’ class provides a number of
methods that allow the agent to be treated as if it did maintain an explicit set of goals. In reality these
methods inspect the intention data structure.

3.1.5 Intentions

AIL’s most complex data structure is that which represents an intention. BDI languages use intentions
to store the intended means for achieving goals — this is generally represented as some from of deed stack
(deeds include actions, belief updates, and the commitment to goals). Intention structures in BDI languages
may also maintain information about the (sub-)goal they are intended to achieve or the event that triggered
them. In AIL, we aggregate this information: an intention becomes a stack of tuples of an event, a guard, a
deed, and a unifier. This AIL intention data structure is most simply viewed as a matrix structure consisting
of four columns in which we record events (new perceptions, goals committed to and so forth), deeds (a
plan of future actions, belief updates, goal commitments, etc.), guards (which must be true before a deed
can be performed) and unifiers. These columns form an event stack, a deed stack, a guard stack, and a
unifier stack. Rows associate a particular deed with the event that has caused the deed to be placed on the
intention, a guard which must be believed before the deed can be executed, and a unifier. New events are
associated with an empty deed, €.

Example The following shows the full structure for a single intention to clean a room. We use a standard
BDI syntax: !g to indicate the goal g, and +!g to indicate the commitment to achieve that goal (i.e., a new
goal that g becomes true is adopted). Constants are shown starting with lower case letters, and variables
with upper case letters.

event [deed | guard | unifier
+!clean () +!goto (Room) dirty (Room) Room = rooml
+!lclean () +!vacuum (Room) T Room = rooml

This intention has been triggered by a desire to clean — the commitment to the goal clean() is the trigger
event for both rows in the intention. An intention is processed from top to bottom so we see here that the
agent first intends to commit to the goal goto(Room), where Room is to be unified with room1. It will
only commit to this goal if it believes the (guard) statement, dirty(Room). Once it has committed to that
goal it then commits to the goal Vacuum(Room). In many languages the process of committing to a goal
causes an expansion of the intention stack, pushing more deeds on it to be processed. So goto(Room) may
be expanded before the agent commits to vacuuming the room. In which case the above intention might
become

event [deed [guard [unifier

+!goto (Room) +!planRoute (Room, Route) T Room = rooml
+!goto (Room) +!follow (Route) T Room = rooml
+!goto (Room) +!enter (Room) T Room = rooml
+!clean () +!vacuum (Room) T Room = rooml

At any moment, we assume there is a current intention which is the one being processed at that time.
The function .%},; (implemented as a method in AIL) may be used to select an intention. By default, this
chooses the first intention from a queue, but this choice may be overridden for specific languages and
applications. Intentions can be suspended which allows further heuristic control. A suspended intention is,
by default, not selected by .. Typically an intention will remain suspended until some trigger condition
occurs, such as a message being received. Many operational semantic rules (such as those involved with
perception) resume all intentions — this allows suspension conditions to be re-checked.

3.1.6 Events

Events are things that occur within the system to which an agent may wish to react. Typically we think
of these as changes in beliefs or the new commitment to goals. In many (though not all) programming
languages, events trigger plans (i.e., a plan might selected for execution only when the corresponding event
has taken place).

In AIL there is a special event, ‘start’, that is used to start off an intention which is not triggered by
anything specific. This is mainly used for the initial goals of an agent — the intention begins as a start
intention with the deed to commit to a goal. In some languages the belief changes caused by perception
are also treated in this way. Rather than being added directly to the belief base, in AIL such beliefs are
assigned to intentions with the event st art and then added to the belief base when the intention is actually
executed.

3.1.7 Deeds

Deeds appear in the bodies of plans and as stacks in intentions, and represent things the agent is planning
to do but has not yet actually done. Deeds include:

Beliefs — an agent may both plan to add or to drop a belief.
Goals — an agent may both plan to commit to a goal (a sub-goal) or to drop a goal.
Actions — an agent may plan to perform an action.

No Plan Yet — the “no plan yet” deed is used when an intention contains an event that has yet to be
planned for; we represent the “no plan yet” deed with the distinguished symbol, €.

Lock/Unlock — a deed can lock or unlock an intention; the idea here is to allow an operational semantics
to, under some conditions, force an intention to remain current until it is unlocked.

Waiting — the wait for deed allows intentions to be suspended until a particular guard is satisfied in
the agent’s state. We represent “waiting for guard g”, as “xg’. The idea is to allow an operational
semantics to remove an intention from consideration by .#j,; until some condition is met.

3.1.8 Plan Library

The Agent class also contains a plan library. Plans are matched against intentions and/or the agent’s state
and manipulate existing (or create new) intentions. There are four main components to a plan, as follows.

1. A trigger event which may match the top event of an intention.
2. A prefix which may match the top of an intention’s deed stack.

3. A guard stack: the top guard is checked against the agent’s state for plan applicability. The rest of
the stack is paired off against the rows in the body and may provide additional conditions for that
row’s execution.

4. A body which is the new deed stack that the plan proposes for execution.

Reactive plans do not have trigger events but instead react to the current state (e.g. the beliefs and goals) of
the agent. By convention, within the AIL these have a variable representing an achieve goal as a placeholder
for a trigger but this is not used by plan selection which focuses simply on checking whether their guard
follows from the agent state.

Example Recall our previous example intention:

event [deed [guard [unifier
+!clean () +!goto (Room) dirty (Room) Room = rooml
+!clean () +!vacuum (Room) T Room = rooml

A plan that matches this intention is

trigger | +!clean()

prefix +!goto (Room)

+!vacuum (Room)

guard - dirty (Room)

body +!find_dirty_room(Room2)

So if the current intention was triggered by goal !clean() (the trigger event), and it currently intends to go
to a room and vacuum it (prefix), but that room is not dirty (guard), it proposes, instead, to replace that
part of the intention with the goal of locating a dirty room. If this plan was applied, the intention would
become:

event | deed | guard | unifier

+!clean () [+!find_dirty_room(Room2) [= dirty (Room) [Room = rooml1

It is more common for plans to match only intentions which contain unplanned goals (i.e., those associated
with the “no plan yet” deed, €). For instance after a commitment to goto (Room) the above intention
might appear as:

event | deed | guard | unifier

+!goto (Room) € T Room = rooml
+!clean() +!goto (Room) dirty (Room) Room = rooml
+!clean () +!vacuum (Room) T Room = rooml

which would match the plan

trigger | +!goto (Room)

prefix €

guard current_floor (ground) Aupstairs (Room)
T

body +!goto (stairs)
+!goto (Room)

This would transform the intention to:

event [deed [guard | unifier
+!goto (Room) +!goto(stairs) current_floor (ground)

A upstairs (Room) Room = rooml
+!goto (Room) +!goto (Room) T Room = rooml
+!clean () +!goto (Room) dirty (Room) Room = rooml
+!clean () +!vacuum (Room) T Room = rooml

Applicable Plans Applicable Plans represent an interim data structure that describes how a plan from an
agent’s plan library changes the current intentions. Essentially an applicable plan states how many rows are
to be dropped from the intention and what new rows are to be added. The new rows are generated from an
event, a guard stack, a unifier and a stack of deeds. The guard and deed stacks are the same size. The new
intention rows are generated by creating a row for each deed and guard on the two stacks and associating
the event and unifier with each of those rows (so the event and unifier are duplicated several times).

Therefore, an applicable plan is a tuple, (pe, pg, pas, Po,n), of an event p,, a guard stack p,, a deed
stack pgs, a unifier pg and the number of rows to be dropped, n. The applicable plan in the first example
above would be

(+!clean(),[~dirty(Room)], [+ find_dirty_room(Room?2)],{Room = room1},2) (1)

or in the previous tabular presentation we could represent this as:

Drop 2 Lines

event [deed | guard | unifier

replace with

+!clean () [+!find_dirty_room(Room2) [—dirty (Room) [Room = rooml

The applicable plan for the second example would be

(+!goto(Room), [current_floor(ground) A upstairs(Room); T],

[+!goto(stairs);+!goto(Room)], {Room = room1},1))
or
Drop 1 Line
event deed [guard unifier
replace Wlth +!goto (Room) +!goto(stairs) current_floor (ground) A
upstairs (Room) Room = rooml
+!goto (Room) +!goto (Roo) T Room = rooml

Applicable plans are used because many APL reasoning cycles first go through a phase where they de-
termine a list of applicable plans and then move to a phase where they pick one plan to be applied. The
function .#jja, (implemented as a Java method in AIL) is used to select one applicable plan from a set. By
default, this treats the set as a list and picks the first plan, but it may be overridden by specific languages
and applications.

Applicable Plan Generation Method For the purposes of this discussion, we will write plans using the
Syntax pe : pp : pgu : Pa Where p, is the trigger event, p,, is the prefix, pg, is the guard, and p, is the body.

AIL provides a default function, appPlans, for the generation of applicable plans from the current
intention and an agent’s internal state. This function creates two sets of applicable plans. The first set is,
essentially, the applicable plans for continuing to process intention i without any changes:

{(Bd, (i),hdg(i),hda (i), 0 U 6™ 1) | (ag = hd 07 0) A (nda(i)06™) # €)} 3)

Here, hd, (i) is the top event in i, hd, (i) is the top guard, hd,(i) is the top deed, and 824 s the top unifier.
The notation ag |= g,0 means that the guard, g, is satisfied by agent ag given unifier 6. The notation 70
indicates the application of unifier 6 to term ¢. So, for instance, hdd(i)Gth(i> is the result of applying the
unifiers 6 and 6*() to the top deed on the intention.

Note that the above generates an empty set if the intention’s top deed is the “no plan yet” deed, €.

The second set is

{<pe>pguapd>6hd(i) Uea#pp>| Pe :Pp:Pgu’Pd € PA
#pp >0 — (hd. (i) = p. Aunifier(pp,i) = 6.) Nag =hd(pgu)6.,0}

Here, hd, (i) = p. means that the plan’s trigger event follows from the top event on the current intention.
This allows for Prolog-style reasoning on plan triggers and is a version of the logical consequence method.
Function unifier(p,,i) generates the unifier of the plan prefix with the top n rows of intention i where
n = #p, (the size of the stack of the plan’s prefix).

This general mechanism for deriving applicable plans has proved sufficient for all the APLs imple-
mented in the AIL to date.

10

3.1.9 Actions

Actions are the means by which an agent affects the external world, and are normally represented as first
order terms. In general, when an agent encounters an action, it will cause the execution of “native” code
— i.e., code typically developed with traditional programming paradigms rather than code developed for
rational behaviour in autonomous systems — to take place in the environment. For instance an action, in
a robot, to pick up an object is likely to execute detailed control system code to handle the actual task of
picking something up, and this is normally programmed in standard programming languages for control.

3.1.10 Inbox and Outbox

Agents maintain Inboxes and Outboxes for storing messages. The default logical consequence method
checks the Outbox (to check that a message has been sent) but not the Inbox — so far the operational
semantics implemented have used the Inbox only for temporary storage of messages which are then pro-
cessed by the agent, but in principle the method could be extended to check for received messages as well.
It should be noted that storing all messages sent or received is potentially inefficient and languages are not
required to use the inboxes and outboxes in the agent class.

3.1.11 Reasoning Cycle

Agents are assigned a “reasoning cycle” by the language in which they are written. Each stage of a lan-
guage’s reasoning cycle is typically formalised as a disjunction of semantic rules which define how an
agent’s state may change during the execution of that stage. Any rule to be used as part of an AIL agent
reasoning cycle has to implement a particular Java interface. This can be achieved either by implement-
ing the interface directly or by sub-classing an existing rule. The combined rules of the various stages of
the reasoning cycle define the operational semantics of that language. The construction of an interpreter
for a language involves the implementation of these rules (which in some cases may already exist in the
language’s original toolkit) and the implementation of a reasoning cycle, by organising the rules into (the
stages of) such a cycle.

In this way, we have implemented, for example, both GOAL [1] and SAAPL (Simple Abstract Agent
Programming Language) [78] interpreters, following their respective operational semantics [29] as well
as a GWENDOLEN interpreter [27] 3. The implementations of these interpreters make use of the AIL
operations together with some additional classes specifically added to reproduce faithfully the semantics of
those languages.

3.1.12 Formal Definition of an AIL Agent
An AIL agent can be formalised as a tuple consisting of
e The agent’s name (a string), ag.
e The agent’s belief base (a set of beliefs), B.
e The agent’s rule base (a set of prolog-style rules for reasoning about guards), R.
e The agent’s plan library, P.
e The agent’s current intention (which may be empty), i.
e The agent’s other intentions, /.
e The agent’s currently applicable plans, appPlans.
e The agent’s inbox of unprocessed messages, In.

e The agent’s outbox of sent messages, Out.

3The GWENDOLEN language was developed as a side effect of some of the initial design work on the AIL.

11

e The current stage of the agent’s reasoning cycle, S.

Operational semantic rules operate on this tuple to change the agent’s state. It should be noted that individ-
ual language implementations may add further elements to this tuple as well as ignore some elements.

A multi-agent system therefore consists of a tuple of several agents and an environment (£). The
environment has to provide certain services to the agent (the ability to access perceptions, and take actions)
but has no formal semantics of its own governing how it should alter from state to state; a model of the
environment is assumed to be provided by AIL users in Java.

3.2 Example: Implementing an Interpreter for an Agent Programming Language

GOAL [44, 1] is a BDI language introduced by Hindriks et al. to illustrate the use of purely declarative
goals in agent programming. An agent is defined by its mental state comprising two sets of formule: X
for the agent’s beliefs; and I" for the agent’s goals. GOAL assumes an underlying logic on its formula
language, %, with an entailment relation |=¢; its semantics then defines entailment for mental states as
follows:

Definition 1 Let (X,T") be a mental state:
(Z.T) =u B9 i TEco
EDEuGy iff yeL
EDEu-¢ iff ED)FEuo,
ED)Enoing iff (Z,T) =u ¢ and (ET) =y ¢o.

An agent’s behaviour is governed by its capabilities and conditional actions.

Capabilities are associated with a partial function .7 : Bcap x (L) — (%), which operates on the belief
base X in order to alter it. Capabilities may be enabled or not for an agent in a particular configuration. If
the capability is not enabled then 7 is undefined. .7 is used by the mental state transformation function
A to alter the agent state as follows:

Definition 2 Let (X,T") be a mental state, and 7 be a partial function that associates belief updates with
agent capabilities. Then the partial function . is defined by:

(7(ax), , :
A(a)= T\yel| 7@y cyy T7@)isdefned @
is undefined for a € Bcap if 7(a,L) is undefined
A (drop(¢),(Z.1)) = (Z,I\{y €T |y =c ¢}))
. o
A (adopt(¢), (Z,T)) ={ TU{¢' |ZWc ¢’ [Eco—¢'}) if e ~¢ and L[¢ ©)
is undefined ifXEc ¢ or Ec ¢

Lastly, an agent has a set of conditional actions, I1. Each conditional action consists of a guard, ¢, and a
capability or instruction, @, written ¢ t> do(a). The conditional actions together with a commitment strategy
provide a mechanism for selecting which capability to apply next.

Definition 3 Let (¥,I") be a mental state with b = ¢ t>do(a) € IL Then, as a rule, we have: If
1. the mental condition ¢ holds in (£,T), i.e. (£,T") =y @, and
2. aisenabled in (X.T'), i.e., #(a,(L,T)) is defined,

then (£,T') b .#(a,(L,I) is a possible computation step. The relation — is the smallest relation closed
under this rule.

The commitment strategy determines how conditional actions are selected when several potentially apply
and this is not specified directly by the GOAL semantics.

12

3.2.1 GOAL Implemented with AIL

We discuss the implementation of GOAL with AIL. This work was reported in [29] so we here focus on
some key aspects, in order to use it as an example.

GOAL agents were implemented as sub-classes of the AIL agent class. To model GOAL’s mental
states we treated the AIL belief base as the GOAL belief base X. Although the AIL agent does not contain
a specific goal base, we were able to use the method for extracting goals from intentions to represent I'; a
slight modification was needed to the method to return only achievement goals®.

The implementation of =y was straightforward. Belief formulz of the form B(¢) are equivalent to the
expressions appearing in AIL’s guards and use of AIL’s own logical consequence method was sufficient.

3.2.2 Capabilities and Conditional Actions

We chose to model both capabilities and conditional actions as AIL plans, since both control how an agent
reacts to its environment.

Inherent in the description of a capability is the idea that the agent performs an action associated with
the capability and then makes a number of belief updates. We treated capabilities as perform goals because
they function as steps/sub-goals that an agent should perform, yet they are not declarative. AIL requires
the execution of actions to be triggered explicitly so we decided to treat .7 (@, X) as a function on the belief
base paired with an optional action. We write this as .7 (a,X) = do(a) + f(X) and represent it in the AIL
as a plan, where the range of f is a deed stack of belief updates. The enabledness of a capability is then
governed by the plan guard.

For simplicity, we abstract the full agent state and consider it just as a short tuple of the agent name,
current intention, and other intentions: {ag,i,/). Conditional actions were modelled as reactive plans with
¢ as the plan guard. In both cases we were able to use the default mechanisms for plan matching and
application.

Although we used the default appPlans algorithm, we incorporated custom operational semantic rules
within this. For instance, for applying a capability we used the rule:

A={(a,d;f (X)) | a € Bcap Aenabled(a) N 7 (a,L) =do(d') + f'(X)}
A#0D Fpan(A) =(a,a:f(X))
(ag,(@,€):i.I) — (ag.(a,a; f(X)): 7, \{i'} U{i})
This was a new rule but made use of pre-existing AIL operations (such as .#},jan). A represents the output
of appPlans.
By way of illustration, we show some of the Java code for the new ‘“Plan with Capabilities” rule.
The key methods of an AIL operational semantics rule are checkPreconditions and apply which,

broadly speaking, represent the conditions for valid rule application and the effects of applying the rule.
The precondition for the rule application is that

(N

A£0 ®)
The equivalent code is:

public boolean checkPreconditions (AILAgent a)
{
Intention i1 = a.getIntention();
if (i.empty())
return false;

if (1i.hdE() .getGoal () .getGoalType () == Goal.performGoal)
{
if (a.filterPlans(a.appPlans(i)) .isEmpty())
return false;
else
return true;

4As we discuss later, we also used perform goals to model capabilities and did not want these to be returned as part of T'.

13

}

return true;

}

appPlans is the Java implementation of appPlans and returns the set A; the above method returns true
if this set is non-empty. filterPlans is an overridable method allowing the applicable plan list to be
modified in an application specific fashion if desired. By default it does nothing. The test

i.hdE () .getGoal () .getGoalType () == Goal.performGoal

restricts the method so it only succeeds if the head event of intention 1 is a “perform goal” (since capabili-
ties are represented by perform goals). The application of the rule is then governed by the code:

public void apply (AILAgent a)
{

Intention i1 = a.getIntention();
LinkedList<ApplicablePlan> delta = a.filterPlans(a.appPlans(i));

GOALAgent ga = (GOALAgent) a;
ApplicablePlan p = ga.selectPlan(delta, 1i);

i.dropP (p.getN());
i.iConcat (p.getEvent (), p.getPrefix(),
p.getGuard(), p.getUnifier().clone());
}

Here we select a capability, p, from A (selectPlan is the implementation of .#},,). We drop (using
dropP) the appropriate number of lines (1) from the intention (as specified by the applicable plan), and
then add (using 1Concat) a new row onto the intention consisting of the event, prefix, guard, and unifier
of p. All these methods are provided by the AIL.

3.2.3 The Reasoning Cycle

AIL assumes a reasoning cycle that passes through a number of explicit stages to which rules are assigned.
We therefore analysed the GOAL operational semantics to identify stages. It first selects a conditional
action (this involved a new rule, similar to the rule for planning with a capability shown above); then
processes the conditional action by applying .#; this generally involves selecting a capability and applying
it (equivalent to using our new rule above to select a capability) and then processing the effects of that
capability as specified by .7 (this was easily implemented using existing rules for performing actions and
handling belief updates).

3.2.4 Faithfulness of the Implementation

Any claim to have implemented the operational semantics of a language is faced with correctness issues
involved in transferring a transition system to, in this case, a set of Java classes. Verifying implementations
is a complex undertaking. Such a verification effort would be a significant task and falls outside the scope
of this work. However, that aside, it is also the case that we have not directly implemented the system
presented in [1] but a variant of it using, for instance, our representation of capabilities. The question
arises: “Are these two transition systems equivalent?” Although we have not done such proofs, we believe
they would not represent an insurmountable amount of work.

4 AJPF: Verification for Multi-Agent Systems

4.1 Java PathFinder

Java PathFinder (JPF) is an explicit-state Open Source model checker for Java programs [74, 50]. JPF is
implemented in Java and provides a special Java Virtual Machine (JVM) running on top of the host JVM

14

and exploring all executions that a given program can have, resulting from thread interleavings and non-
deterministic choices. JPF’s backtracking JVM executes Java bytecodes using a special representation of
JVM states. Essentially, JPF uses Java’s listener mechanism to provide a representation of an automaton
that is attempting to build a model based on the program execution. As the program proceeds, the listener
recognises state changes and checks against user specified properties. At appropriate times this JVM might
backtrack and the listener might be reset.

JPF employs state-of-the-art state-space reduction techniques, such as on-the-fly partial-order reduc-
tion, i.e., combining instruction sequences that only have effects inside a single thread and executing them
as a single transition. This ensures that — out of the box — JPF is a usable (though not very efficient)
program model checker; it also should be noted that recent improvements in JPF make it orders of magni-
tude faster than previous versions. Nevertheless, we have to ensure that the state space relevant to an agent
system remains as small as possible. For instance, we want to ensure that only relevant backtrack points
are stored (i.e., backtracks points in the execution of the operational semantics and not incidental backtrack
points in the low-level Java code), thereby limiting the state space and improving the efficiency of model
checking.

As well as its usability, we have chosen JPF for several other reasons. Firstly, a large number of APL
interpreters are implemented in Java, so a model checker for Java programs was naturally the first choice.
Secondly, in order to customise the model checker for our needs and provide it to the public as an Open
Source project, we needed the underlying model checker to be Open Source too. Since we were to do
significant work in extending the model checker to an agent context (for example, using interfaces), we
preferred a model checker working within a standard but higher level programming language. Lastly, we
preferred a model checker with an active development team and one that had been developed to provide
good extensibility mechanisms. Taking into account these prerequisites, the obvious choice was to base
our framework on the Open Source Java model checker JPF.

4.2 AJPF architecture

The AJPF architecture consists of the JPF model checker, the AJPF interfaces, a property specification
language (PSL), the controller and AJPF listener classes, and a family of language parsers and translators.
A schematic diagram of the architecture was shown in Fig. 1.

A given program, written in one of the supported APLs, is translated into its AIL representation and
embedded in an AJPF controller object. The result is a Java program that includes parts of the AIL libraries.
This Java program becomes half of the JPF verification target, but instead of invoking standard JPF, we use
the JPF extension mechanisms to configure our own listener. This implements the property specification
language and performs the checking of the property that is supplied with the program. The property is
represented as a Biichi Automaton [70]. The AJPF controller object combines this Biichi Automaton and
the AIL program and then the controller governs when properties are checked and the Biichi Automaton
advanced. This is linked to the progress of the agent reasoning cycle.

4.3 The AJPF Agent System Interfaces — Use and Semantics

AJPF (see Fig. 1) provides interfaces for model checking a multi-agent program against a property spec-
ification written in the Property Specification Language (PSL) introduced later (in Section 4.4). AJPF
requires that, for any given APL, two Java interfaces are implemented: one for individual agents and an-
other for the overall multi-agent system. This software layer provides an AJPF controller which requests
a list of agents from the multi-agent system and encapsulates each of them in a special thread object which
alternately calls one reasoning step of the agent, anticipated to be one full run of the reasoning cycle, and
then checks this against the specification by calling, for instance, methods that implement belief checking
as defined by the specific language. It should be noted that this means the notions of belief, goal, etc.
defined within the AIL classes are those invoked by the property checking algorithm. So any language
that has an AlIL-based interpreter inherits this semantics although individual methods can, of course, be
over-ridden. For languages without an AIL-based interpreter, these notions have to be formalised in the
implementation of the AJPF interface. Properties are also checked when JPF detects that an “end state” is
reached (this could indicate a cycle in the states of a run as well as program termination).

15

4.3.1 BDI Languages without Formal Semantics

The AIL toolkit is designed for the prototyping of languages which have a clearly defined BDI-based
operational semantics. The construction of AJPF however does mean that in principle it could be used
with agent platforms that have no clear semantics but which are, nevertheless, implemented in Java. The
JACK framework [77], for instance, provides a set of Java classes for programming agents which embody
BDI concepts such as beliefs, goals, and plans. In theory, therefore, the appropriate modalities of the
property specification language could be defined for JACK programs and, assuming a reasoning steps can
be identified, then JACK programs could be model checked using AJPF.

In reality such an attempt is likely to encounter efficiency problems since the JACK code will not make
use of atomic sections and state matching hints in order to reduce the model checking state space, so even
for a small programs full verification may not be possible in practice.

4.3.2 Environmental Models

Since we are dealing with Java programs, we generally assume that the environment in which they operate
is also a Java program that can be included in the closed system for model checking. Obviously there
are situations where this is not the case, for instance if the programs we are checking are intended to
run on robots that operate in the real world. In these cases they have to be model checked against an
abstraction of the real environment that would have to be, again, implemented in Java. The same is the case
for applications which are intended to be distributed across several different machines. AJPF relies upon
Java’s thread model for asynchronous execution of agents and can only check a single program executing
on a single machine. Therefore the effects of a distributed environment would need to be abstracted into a
(possibly multi-threaded) single program environment for model checking in AJPF.

4.4 Specification of Properties

In our framework, we are interested in verifying simple properties about goals, beliefs, actions, etc. We
do not, in this approach, tackle the verification of properties involving nested modalities, such as beliefs of
one agent concerning the beliefs of another agent. Hence, we do not implement a property specification
language based on a fully expressive logic of beliefs or knowledge.

A typical property of an agent-based protocol specification could be described by a statement such as:
“given an agent a with a goal g and a set of current beliefs {b1,...,b,}, will a eventually believe g?”

Properties are specified at the AJPF level. For agents running on an AIL-based interpreter, the semantics
of the properties are already specified as part of the AIL toolkit itself. The PSL allows users to refer to
agent concepts at a high level, even though JPF carries out model checking at the Java bytecode level.

We use a property specification language based on propositional linear-time temporal logic (LTL) [33]
with added modalities for agents’ beliefs, goals, etc. It should be noted that, since it was released as Open
Source, JPF no longer supports LTL model checking. Our implementation therefore represents a significant
addition to JPF. Also, we do not tackle more complex properties such as those involving nested beliefs and
so the PSL defined below is relatively “shallow”.

The PSL syntax for property formula ¢ is as follows, where ag is an “agent constant” and f is a ground
first-order atomic formula:

¢ == Blag,f)|Glag,f) | Alag,f) [ag,f) |P(f) [9V [-¢[¢UO[9RO

Intuitively, B(ag, f) is true if ag believes f to be true, G(ag, f) is true if ag has a goal to make f true, and
so on (with A representing actions, I representing intentions, and P representing percepts, i.e., properties
that are true in the environment).

We next examine the specific semantics of property formula. Consider a program, P, describing a
multi-agent system and let MAS be the state of the multi-agent system at one point in the run of P. Let
ag € MAS be an agent at this point in the program execution. Then

MAS Eyc Blag, f) iff ag = f

16

where |= is logical consequence as implemented by the agent programming language. The interpretation
of G(ag, f) is given as:
MAS Euc Glag, f) iff f€agg

where ag; is the set of agent goals (as implemented by the APL). The interpretation of A(ag, f) is:

MAS [=yc Alag, f)

if, and only if, the last action changing the environment was action f taken by agent ag. Similarly, the
interpretation of I(ag, f) is given as:

MAS ':MC I(ag, f)

if, and only if, f € ag; and there is an intended means for f (in AIL this is interpreted as having selected
some plan that can achieve f). Finally, the interpretation of P(f) is given as:

MAS Eyc P(f)

if, and only if, f is a percept that holds true in the environment.
The other operators in the AJPF property specification language have standard LTL semantics [33] and
are implemented by the AJPF interface. Thus, the classical logic operators are defined by:

MAS Eyc @V iff MAS e @ or MAS e v
MAS E=pyc —¢ iff MAS FEuc ¢.

The temporal formulz apply to runs of the programs in the JPF model checker. A run consists of a (possibly
infinite) sequence of program states MAS;, i > 0 where MASy is the initial state of the program (note,
however, that for model checking the number of different states in any run is assumed to be finite). Let P
be a multi-agent program, then

MAS Epyc oUWy iff in all runs of P there exists a state MAS; such that
MAS; =pc ¢ forall 0 <i < jand MAS; Eyc v
MAS Epc ORY iff either MAS; =pc @ for all i or there exists MAS; such
that MAS; =yc @ foralli € {0,...,j} and
MAS; Epc 9N Y

The common temporal operators < (eventually) and O (always) are derivable from U and R [33].

Typically, APLs do not fully implement logics of belief so, as mentioned above, we use shallow modal-
ities which are like special predicates — however, this does not preclude users, when implementing the
AJPF interfaces, from developing a more complex belief logic based on their agent state. The imple-
mentation of the modalities defines their semantics (e.g., for belief) in that specific language. The AIL
implements these interfaces and so defines an AIL specific semantics for the property specification lan-
guage; supported languages that use the AIL must ensure that their AIL-based interpreters are constructed
in a way that makes the AIL semantics of the properties consistent with the language’s individual semantics
for those modalities (otherwise they cannot use the AIL implementation and will need to override it using
the AJPF interface).

4.5 Heterogeneous Multi-Agent Systems

As stated above, the AJPF controller object accepts a set of AJPF agent objects and executes steps of their
reasoning cycles, followed by property checks. Since it simply accepts objects that satisfy its interfaces, it
is agnostic about the actual semantics of their reasoning cycles and does not require each agent to be using
the same semantics at all (although it is necessary for all the agents to interact with the same environment).
This makes it as simple to encode a heterogeneous multi-agent system as it is to encode a system using
only a single agent programming language.

In [29] we investigated a scenario comprising GWENDOLEN, GOAL and SAAPL agents working
together. We were able to successfully implement and verify this system within AJPF. In that work, AIL
was found to be appropriate for the three languages and we were able to implement interpreters for SAAPL

17

and GOAL with relative ease. The SAAPL interpreter took about a week to implement and debug while
the GOAL interpreter took about two weeks. Once correctly implemented, it was simple to incorporate,
run, and verify a heterogeneous multi-agent system.

4.6 Benefits of Using AIL and AJPF

The benefits of using the AIL are many, with the main incentives being verification via model checking and
the support for heterogeneous multi-agent systems. The flexibility of our approach arises from the fact that
the agents can be programmed in a variety of agent-oriented programming languages. This unifying ap-
proach to model checking and execution of (heterogeneous) agent systems is an important step towards the
practical use of verification techniques, which is essential as dependable systems are increasingly required
in many areas of applications of agent technology.

Previous approaches to model checking multi-agent programs focused on a specific APL, e.g. AgentS-
peak [7]. A language-specific translation of multi-agent systems into models written in the input language
of exiting model checkers, generating models that were very difficult to understand, had to be developed; it
should also be noted that there is an incredible number of different agent programming languages currently
in use in the Agents community. Conceiving and implementing such translations is a tedious, complicated
(given the restrictions of typical model checker input languages), and error-prone task that is avoided in
the present approach by using an intermediate agent representation that is tailored to multi-agent systems.
By lifting the implementation effort away from the model checker to AIL, we make it less tedious and
error-prone as we provide tools that are a good match to the operational semantics of agent programming
languages.

The architecture of the AIL and AJPF is much more flexible than previous approaches to model check-
ing for agent-based systems. Despite the greater flexibility, we have taken precautions in the construction
of the architecture and the internal optimisations of AJPF to ensure that it works relatively efficiently.

We have developed AIL so that new APLs can easily be incorporated into our framework. Even with-
out re-programming a language interpreter using the AIL classes, it is possible to integrate agent programs
written in a variety of languages into our verification and execution framework by interfacing their inter-
preters directly to AJPF. Property specification is uniform amongst all languages that use either the AIL
data structures or implement their own notions of belief, goal, action, etc.

4.7 Efficiency Issues

In general, model checking suffers from what is known as the state-space explosion problem, i.e., the
problem that the state space for search increases exponentially as the system increases in size. It is therefore
important to make sure that only essential information is stored in the states that constitute the system to
be checked. Using JPF means that the state space that is actually checked is the state space of the Java
program representing the AIL agent program. In the remainder, when speaking of the abstract state space,
we refer to the state space of the multi-agent system bar any additions to the state space that might have
been introduced by the translation and use of AIL classes. For efficiency it is, of course, desirable to
avoid as many additional states as possible that do not add to the overall behaviour, thus being theoretically
harmless.

In spite of this, AJPF is not fast. Partly, this is because JPF is itself not a particularly fast model checker
(though it is both flexible and appropriate) and partly it is because of the non-trivial additional semantic
layer that is added in AJPF. Interestingly recent work on the comparison of model checkers for the GOAL
language [49] concluded that all existing approaches to model-checking agent programming languages that
were based on pre-existing model checkers suffered from similar time inefficiencies.

In the following sections, we describe our efforts towards dealing with the issues of efficiency.

4.7.1 Atomic Execution

We employ atomic sections to reduce the state space of executions whose internal states are not relevant to
the execution of the multi-agent system. An atomic section excludes all backtracking within that section.

5An interpreter for GWENDOLEN had been developed while implementing the AIL.

18

We use this in a number of places where thread interaction is not relevant to the agent transition system.

For instance, using an atomic section for the initialisation phase of the agents and of the MAS leads
to a significant speed-up. This portion of the code is executed many times as JPF backtracks (thereby
initialising the agents in a different order) and substantial savings result from this. Further use of atomic
sections in the reasoning cycle also help improve efficiency.

4.7.2 State Matching

In model checking it is important to take care that, in the system to be verified, the states that are conceptu-
ally identical do not contain any components that would make the model checker distinguish between them.
It is therefore essential to restrict the data structures to the abstract agent system, hiding from the model
checker any components that might have been introduced for operational reasons or to provide statistics,
such as counters, that do not inherently belong to the agent state. JPF’s state matching is an important
mechanism to avoid unnecessary work. The execution state of a program mainly consists of heap and
thread-stack snapshots. During the execution of a program, JPF checks every state it reaches against its
history. If an equivalent state had been reached before, there is no need to continue along the current
execution path. In this case, JPF backtracks to the last unexplored non-deterministic choice.

JPF provides a means to tag variables or parts of data structures, so that the model checker ignores
them. This is essential to get state matching to work in the presence of counters, etc. JPF supports this
abstraction through the @FilterField annotation. Applying this to (part of) a data structure explicitly
declares the structure to be exempt from state matching.

JPF uses its own internal mechanisms for state matching based on Jenkins
hashes [47]. It is outside the scope of this work to discuss the implementation and the trade-offs involved
in the efficiency of compiling the hash. We have observed that, since execution of the Java engine is com-
paratively slow and is independent of the implementation of AIL, there are important efficiency gains to be
made if as many states can be matched as possible.

4.7.3 Property Checking

Checking temporal properties, as defined in our property specification language, can cause branches of
the search space where the property automaton branches. We therefore limit the places in which these
properties need to be checked. In general we only check properties at the end of the execution of a whole
reasoning cycle rather than, for instance, after the application of every operational semantic rule.

5 Evaluation

Having described both AIL and AJPF, we now provide a number of scenarios showing the whole system in
action. While these examples are relatively simple, they exhibit all the functionality of the MCAPL system.
In these examples we target one particular BDI language. Although this language is simple, it is
designed to exhibit many features common to BDI languages in general. Agents are represented as sets of
initial beliefs and goals together with a library of plans. A multi-agent system is a set of agents, together
with an environment, through which communication occurs and in which actions are performed.
Below, we first describe the various scenarios and then, in Section 5.2, discuss their verification.

5.1 Verified Scenarios
5.1.1 Contract Net Example

The Contract Net scenario [72] is a well-known, and widely used, model of cooperation in distributed
problem-solving. Essentially, a particular agent (the manager) broadcasts tasks (goals) to be accomplished,
and then agents capable of doing so bid for the contract. In real scenarios, the bidding, allocation, and
sub-contracting can be quite complex. However, we consider a very simple version: the manager does
not broadcast to all the agents in the system at once but instead contacts them in turn; there is no bidding

19

process nor sub-contracting; agents volunteer for a task if, and only if, they can perform it; and the manager
simply accepts the first proposal it receives.

We investigated the model checking of this scenario with up to six agents attempting to achieve either
one or two goals requested by the manager. The code for the version with two bidding agents and two goals
can be found in Appendix B.2.

5.1.2 Auction Scenarios

We also considered a simple auction example. The basic idea of an auction [73, 52] is at the heart of
many multi-agent scenarios [12]. Not only are auctions central to e-commerce applications [20, 37], they
are implicit within many market-based approaches to agent computation [75]. These include areas where
resource allocation or task allocation is required, for example in telecommunications [40, 39], electricity
supply management [21], agent mobility [15], logistics [23], and scheduling [65]. However, although much
work has been carried out on deep analysis of auction mechanisms, such as through formal mechanism de-
sign [80], the analysis of implementations of auction mechanisms has lagged behind. While there has been
some work on the formal verification of auction implementations, such as [31], this has lacked an agent
perspective. Thus, the more sophisticated agent aspects such as goals, intentions, beliefs, and deliberation
are not typically verified within an auction context.

The basic version of this study is initially very simple. We describe the basic scenario below and then,
in subsequent sections, we describe more sophisticated variants, each becoming increasingly realistic.

A Very Basic Auction The idea here is simple. A number of agents (in the diagram below, three) make
bids of some value to an auctioneer agent. The auctioneer agent then awards the resource to the highest
bidder and announces this. This cycle can then repeat, if necessary (note that, in our verified scenarios, the
bidding process does not cycle).

Auctioneer

bid_2 bid_4

Announce

Announce
Winner,

Winner

Versions of this scenario with increasing numbers of agents were implemented in GWENDOLEN. The code
for the four-agent version can be found in Appendix B.3.

Auction Coalition Scenario The above basic scenario was next extended to include the possibility of
coalitions [68, 54]. In our model, a coalition occurs when several agents collaborate by pooling their
bid resources in order to win the auction. For example, if three agents x,y, and z bid 100, 150, and 200
respectively, then z ought to win every time. However, if x and y form a coalition, their collective bid of
250 will be enough to win the auction.

A simple coalition scenario was implemented in GWENDOLEN with an auctioneer and a variable num-
ber of bidders. A version of the code for this scenario with 4 agents is shown in Appendix B.4. In that

20

version, all but one of the bidders bid straight away, but one of the agents attempts to form a coalition
by communicating with one of the other bidders. The contacted bidder agrees to form the coalition, and
informs the coalition former of its bidding amount. The coalition instigator then combines its own bidding
amount with that of its coalition partner and submits this bid to the auctioneer. Then, having received all
of the bids, the auctioneer announces the winner.

Below, Agent 3 instigates the coalition:

Auctioneer

bid_4

Announce Announce

Winner,

Winner

combine?

The main difference in the implementation of this scenario, as compared with our earlier one, is that
one agent, Agent 3, has a goal to form a coalition. Agent 3 then contacts Agent 2 and proposes a coalition.
If Agent 2 agrees then Agent 3 can now bid a winning 250 (i.e., 100 4 150). Clearly, we would like to
verify that this approach does, indeed, lead to Agent 3 winning the auction. This is one of the properties
we verify in Section 5.2.

Dynamic Auction Coalition Scenario A further variant on the auction coalition scenario was imple-
mented. In this case, a round of bidding takes place in which all agents bid. Then, after an agent discovers
that it has lost the auction, it sends a message to another agent (excluding the previous winner) to form a
coalition. Then, the agents bid again. Sample code can be found in Appendix B.5.

Coalition Trust Scenario This auction scenario is similar to that described in Section 5.1.2, except the
coalition forming agent now has a belief about which other agent(s) it can trust, i.e., the other agents with
which it would prefer to form a coalition. This trust aspect is static, that is, the coalition-forming agent
starts the auction with belief(s) about which agents it can trust, and these do not change during the auction.
Sample code for this scenario can be seen in Appendix B.6.

Dynamic Trust Scenario This final auction scenario builds upon the previous one. Here, if the coalition-
forming agent loses the auction, it tries to form a coalition with an agent it trusts. Then, if its coalition is
successful in winning the auction, it stops. However, if its coalition is unsuccessful then it no longer
believes that it can trust the other agent in the coalition, and will try to form another coalition with another
agent it trusts (excluding the winner). Again, sample code for this scenario can be seen in Appendix B.7.

5.1.3 Trash Collection Robots

Our last example is based on the garbage collection agents reported in [11, 7]. This example was previously
written in AgentSpeak and then verified in both the Spin [46] and JPF model checkers. This work was the
immediate precursor of the work reported here that represents an attempt to re-engineer the model checking
system to make it more generic. In our previous examples, we were interested in the effects on the system
of adding more agents to it. Here, our intention was to gain some idea of the cost of the more generic

21

architecture. The scenario investigated involved two robots (theoretically on Mars) detecting and burning
two pieces of garbage placed at random on a 5 by 5 grid. The first robot searches for garbage, picks it
up and takes it to the second robot. The second robot then picks up the garbage and incinerates it. We
translated the original AgentSpeak code directly into GWENDOLEN. This code is shown in Appendix B.8.

5.2 Results

We investigated a number of aspects of the verification of our case studies, as reported in the sections
below.

5.2.1 Effect of Scaling the Program

We started by investigating the effect of the complexity of the program on the size of the state space. As a
crude measure of an increase in the program complexity we investigated the effect of adding an additional
agent into the contract net and auction scenarios. We did not investiage the trash collection robot scenario in
this way since this scenario involved no communication between the agents and was developed primarily in
order to provide a comparison with previous work. In the contract net scenario, we verified that eventually
the manager believed all its goals were achieved. In the auction scenario, we verified that eventually the
agent making the highest bid believed it had won.

The effects of adding additional agents on the state space are shown in Fig. 2. As can be seen, the

State Space Increase against Number of Agents
1e+06 T T

T
Contract Net with 1 Goal —+—
Basic Auction ---x---
Coalition Auction ---*--- .-
Dynamic Coalition Auction &+
100000 - Trust Auction .~~~ -
Dynamic Trust Auctioh ---o---

10000 |

1000 |

Number of States

100 |

10 £

1 1 1 1 1
2 3 4 5 6 7
Number of Agents

Figure 2: State Space Increase as Number of Agents Increases

size of the state space increases exponentially as more agents are added into a scenario. This represents a
typical result for a model checking exercise.

Although less informative since execution time can easily be affected by factors other than the program
under consideration, we also investigated the effect of extra agents against the time taken for a program to
be verified. The results of this are shown in Fig. 3. As can be seen, although we have comparatively few
states in our space compared to many model checking systems, we nevertheless take considerable time to
verify a program. This is because each transition in the state graph of the model checker takes significant
time to execute as the JPF JVM processes many bytecode instructions.

22

Time Increase against Number of Agents

T m

d Contract Net with 1 Goal —+——
1day Basic Auction ---x==- 7
Coalition Auction .-~ ---
Dynamic Coalition Auction ---&---
Trust Auction —-=— ¢
Dynamic TrustAuction ---&-+

1 hour

Time Taken

1 min

1 1 1 1
2 3 4 5 6 7
Number of Agents

Figure 3: Time Taken as Number of Agents Increases

5.2.2 Effect of the Property Size

As well as checking properties about the beliefs of the agents, we also checked properties related to their
goals, actions, intentions, etc. In theory, since the BDI modalities of the property specification language
are treated as propositions by the property automata, the effect of the property on the model checking state
space should be the same as for standard LTL model checking [46].

In the Contract Net scenario, on a system consisting of three agents bidding to perform one goal, we
checked the validity of the properties shown in Fig. 4 with their resulting state space size. As predicted,
the size of the state space appears primarily to depend upon the LTL elements with disjunctions involving
eventualities creating the largest state spaces.

Property No. of States
OB(agl,g) 152

OP(g) 106
0(G(ag2,g) — ©A(ag2,g)) 281
O(G(ag2,g) vV G(ag3,g)) 79
O(I(ag2,g) VI(ag3,g)) 79
O(G(ag3,respond(g,agl)) — <>(B(ag2,award(g)) V A(ag3,a))) | 294

Figure 4: Varying the Property Checked

5.2.3 Comparison with Previous Work

Lastly, we compared the performance of our model checking system against the previous work for model
checking AgentSpeak systems. Bordini et al. [11, 7] reported that verifying the property < (I(r1, continue(check)) A
B(r1,checking(slots)) took 333,413 states and 65 seconds to verify in Spin and 236,946 states and 18 hours
to verify in JPF. In our (JPF-based) system the verification of the same property used 23,655 states and took
9 hours. Clearly the Spin based system remains vastly superior in terms of efficiency. It is hard to accu-

23

rately compare the results for the JPF based systems since JPF itself has been the subject of continuous
development. However, it is clear that the generic approach is unlikely to be worse in terms of efficiency
than the language-specific approach taken previously, although it is known that JPF is currently much faster
than it used to be.

6 Conclusions

6.1 Summary

In this paper we have described the development of the MCAPL framework, incorporating the AIL interme-
diate semantic layer and the AJPF enhanced model checker. We have seen that the AIL semantic structures
are sufficiently expressive to allow developers to capture a range of BDI programming languages and that
the semantic rules fit well with the modified AJPF model checker. The efficacy and generality of the
AIL toolkit has also been established by the implementation of a variety of different agent programming
languages and the verification of multi-agent systems implemented in those languages. Interpreters have
been implemented for GWENDOLEN [27], GOAL [1], SAAPL [78], and ORWELL [25]. Interpreters for
AgentSpeak [10] and 3APL [24] are also being developed. Importantly, the MCAPL framework is also
appropriate for verifying heterogeneous multi-agent systems, as well as homogeneous ones.

The overall approach has been designed and implemented. It has also been tested on some small multi-
agent programs: variations of the contract net protocol [71] and auction systems, but with five or fewer
agents [76]. Specifically, we have focused on a series of scenarios of increasing complexity in order to
demonstrate that, although the difficulty of the model checking task increases with each scenario, it is
nevertheless realistic to model-check the properties of interesting multi-agent implementations within a
reasonable time.

Thus, the MCAPL framework provides a generic harness for automatically verifying agent software.
Clearly, for bigger scenarios, improved efficiency will be required (see the discussion in the next section),
but the examples implemented and verified in this paper demonstrate that simple properties of multi-agent
systems can already be tackled.

6.2 Efficiency Problems

A typical problem in model checking, particularly of concurrent systems (where various entities have
independent, yet interacting, behaviour), is that of state space explosion. The model checker needs to build
an in-memory model of the states of the system, and the number of such states grows exponentially for
example in the number of different entities being modelled.

Even with refined representation techniques, such as the BDDs used in symbolic model checking [16],
the formula/structures required to represent the state spaces of realistic systems are huge. JPF is an explicit-
state, on-the-fly model checker, and a further problem is that the underlying JPF virtual machine is rather
slow. Thus, our current verification system is also slow (although recent work shows that its performance
is comparable to a similar system implemented in Maude [49]). Although speed is the main problem, space
required can also be problematic [5] (though note that the slow examples above actually explore fewer than
500,000 states in total). We should also note that the success of program model checking relies a great deal
on state-space reduction techniques, which we have also adapted for agent verification in [8], but have not
yet implemented to work at the AIL level.

However, our approach is no less efficient than the language-specific work reported in [7]. Thus, it is
our belief that the generic design principles embodied in the MCAPL framework could be transported to
other model checking systems and it is not the generality of the framework which is the main issue in terms
of efficiency.

6.3 Future Work

Our proposed future work falls into three main areas.

24

Firstly, we would like to extend the agent programming languages available within the system to in-
clude, at the least, the Jason [9, 10] implementation of AgentSpeak and 3APL [43, 24]. At the same time
we would like to improve the support for the languages we already have implemented in terms of supplying
more complete parsers and translators for them so that programs written for other implementations of those
languages can be easily imported into our system and run.

Secondly, we intend to improve the model checking aspects of the framework. In particular, we would
like to investigate the use of “mixed execution” in JPF [22]. This would allow us to delegate the operation
of parts of the Java code to the native, efficient Java Virtual Machine rather than using the JPF virtual ma-
chine. This involves identifying appropriate methods and data structures which are irrelevant to the correct
storage of the system state for backtracking. We have made some initial, inconclusive, investigations into
delegating the unification algorithm in this way, but work elsewhere suggests that we should be able to
achieve significant time improvements.

Lastly, we are interested in replacing the JPF back end to the system with a different model checker
such as Spin [46] or NuSMV [17]. Previous work [11, 7] suggests that a considerable speed up may be
possible in another model checker but that more work would be required in creating a framework in which
the model checker could simply tackle a range of different agent programming languages. It is our belief
that much of the design work reported here could be adapted to an alternative system.

Acknowledgements The authors would like to thank Berndt Farwer for help in initial stages of this work.

References

[1] de Boer, E.S., Hindriks, K. V., van der Hoek, W., Meyer, J.J.C.: A Verification Framework for Agent
Programming with Declarative Goals. Journal of Applied Logic 5(2), 277-302 (2007)

[2] Bond, A.H., Gasser, L. (eds.): Readings in Distributed Artificial Intelligence. Morgan Kaufmann
(1988)

[3] Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.): Multi-Agent Programming:
Languages, Platforms and Applications. Springer-Verlag (2005)

[4] Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.): Multi-Agent Programming:
Languages, Tools and Applications. Springer, 2009.

[5] Bordini, R.H., Dennis, L.A., Farwer, B., Fisher, M.: Automated Verification of Multi-Agent Pro-
grams. In: Proc. 23rd IEEE/ACM International Conference on Automated Software Engineering
(ASE), pp. 69-78. 2008 (2008)

[6] Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: Model Checking Rational Agents. IEEE Intell.
Syst. 19(5), 46-52 (2004)

[7] Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: Verifying Multi-Agent Programs by Model
Checking. Journal of Autonomous Agents and Multi-Agent Systems 12(2), 239-256 (2006)

[8] Bordini, R.H., Fisher, M., Wooldridge, M., Visser, W.: Property-Based Slicing for an Agent-Oriented
Programming Language. J. Logic and Comput. pp. exp029+ (2009)

[9] Bordini, R.H., Hiibner, J.E,, Vieira, R.: Jason and the Golden Fleece of Agent-Oriented Programming.
In: Bordini et al. [3], chap. 1, pp. 3-37

[10] Bordini, R.H., Hiibner, J.F., Wooldridge, M.: Programming Multi-Agent Systems in AgentSpeak
Using Jason. Wiley Series in Agent Technology. John Wiley & Sons (2007)

[11] Bordini, R.H., Visser, W., Fisher, M., Wooldridge, M.: Verifiable multi-agent programs. In: First
International Workshop on Programming Multiagent Systems: Languages, Frameworks, Techniques
and Tools (ProMAS-03), Lecture Notes in Artificial Intelligence, vol. 3067. Springer (2003)

25

[12] Boutilier, C., Shoham, Y., Wellman, M.P.: Economic Principles of Multi-Agent Systems. Artif. Intell.
94(1-2), 1-6 (1997)

[13] Bratman, M.E.: Intentions, Plans, and Practical Reason. Harvard University Press: Cambridge, MA
(1987)

[14] Bratman, M.E., Israel, D.J., Pollack, M.E.: Plans and Resource-Bounded Practical Reasoning. Com-
putational Intelligence 4, 349-355 (1988)

[15] Bredin, J., Kotz, D., Rus, D., Maheswaran, R.T., C. Imer, Basar, T.. Computational Markets to
Regulate Mobile-Agent Systems. Journal of Autonomous Agents and Multi-Agent Systems 6(3),
235-263 (2003)

[16] Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic Model Checking: 10%°
States and Beyond. Inf. Comput. 98(2), 142-170 (1992)

[17] Cimatti, A., Clarke, E.M., Guinchiglia, E., Guinchiglia, F., Pistore, M., Roveri, M., Sebastiani, R.,
Tacchella, A.: NuSMV 2: An OpenSource Tool for Symbolic Model Checking. In: Proc. Interna-
tional Conference on Computer-Aided Verification (CAV 2002), Lecture Notes in Computer Science.
Springer, Copenhagen, Denmark (2002)

[18] Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)

[19] Cohen, PR., Levesque, H.J.: Intention is Choice with Commitment. Artificial Intelligence 42, 213—
261 (1990)

[20] Collins, J., Faratin, P., Parsons, S., Rodriguez-Aguilar, J.A., Sadeh, N.M., Shehory, O., Sklar, E.
(eds.): Agent-Mediated Electronic Commerce and Trading Agent Design and Analysis (AMEC/-
TADA), Lecture Notes in Business Information Processing, vol. 13. Springer (2009)

[21] Corera, J.M., Laresgoiti, 1., Jennings, N.R.: Using Archon, Part 2: Electricity Transportation Man-
agement. IEEE Intelligent Systems 11(6), 71-79 (1996)

[22] D’Amorim, M.: Efficient Explicit-state Model Checking for Programs with Dynamically Allocated
Data. Ph.D. thesis, University of Illinois at Urbana-Champaign, Champaign, IL, USA (2007).
Adviser-Marinov, Darko

[23] Dash, R.K., Vytelingum, P., Rogers, A., David, E., Jennings, N.R.: Market-Based Task Allocation
Mechanisms for Limited-Capacity Suppliers. IEEE Trans. Systems, Man, and Cybernetics, Part A
37(3), 391405 (2007)

[24] Dastani, M., van Riemsdijk, M.B., Meyer, J.J.C.: Programming Multi-Agent Systems in 3APL. In:
Bordini et al. [3], chap. 2, pp. 39-67

[25] Dastani, M., Tinnemeier, N.A.M., Meyer, J.J.C.: A programming language for normative multi-agent
systems. In: Dignum, V. (ed.) Multi-Agent Systems: Semantics and Dynamics of Organizational
Models, chap. 16. IGI Global (2009)

[26] Davis, R., Smith, R.G.: Negotiation as a Metaphor for Distributed Problem Solving. Artificial Intel-
ligence 20(1), 63—-109 (1983)

[27] Dennis, L.A., Farwer, B.: Gwendolen: A BDI Language for Verifiable Agents. In: Lowe, B. (ed.)
Logic and the Simulation of Interaction and Reasoning. AISB, Aberdeen (2008). AISB’08 Workshop

[28] Dennis, L.A., Farwer, B., Bordini, R.H., Fisher, M., Wooldridge, M.: A Common Semantic Basis
for BDI Languages. In: Proc. 7th International Workshop on Programming Multiagent Systems
(ProMAS), Lecture Notes in Artificial Intelligence, vol. 4908, pp. 124—-139. Springer Verlag (2008)

26

[29] Dennis, L.A., Fisher, M.: Programming Verifiable Heterogeneous Agent Systems. In: Proc. 6th
International Workshop on Programming in Multi-Agent Systems (ProMAS), LNCS, vol. 5442, pp.
40-55. Springer Verlag (2008)

[30] Dennis, L.A., Hepple, A., Fisher, M.: Language Constructs for Multi-Agent Programming. In:
Proc. 8th International Workshop on Computational Logic in Multi-Agent Systems (CLIMA), Lecture
Notes in Artificial Intelligence, vol. 5056, pp. 137—-156. Springer (2008)

[31] Doghri, I.: Formal Verification of WAHS: an Autonomous and Wireless P2P Auction Handling Sys-
tem. In: Proc. 8th International Conference on New Technologies in Distributed Systems (NOTERE),
pp- 1-10. ACM, New York, NY, USA (2008)

[32] Durfee, E.H., Lesser, V.R., Corkill, D.D.: Trends in Cooperative Distributed Problem Solving. IEEE
Trans. Knowledge and Data Engineering 1(1), 63-83 (1989)

[33] Emerson, E.A.: Temporal and Modal Logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical
Computer Science, pp. 996-1072. Elsevier (1990)

[34] Fisher, M., and Hepple, A: Executing Logical Agent Specifications. In Bordini et al. [4], pages 1-27.

[35] Fisher, M., and Ghidini, C: Executable Specifications of Resource-Bounded Agents. Journal of Au-
tonomous Agents and Multi-Agent Systems, 21(3):368-396, 2010.

[36] Fisher, M., Singh, M.P., Spears, D.F., Wooldridge, M.: Logic-Based Agent Verification (Editorial).
Journal of Applied Logic 5(2), 193-195 (2007)

[37] Fortnow, L., Riedl, J., Sandholm, T. (eds.): Proc. 9th ACM Conference on Electronic Commerce
(EC). ACM (2008)

[38] Gabbay, D., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-Dimensional Modal Logics: Theory
and Applications. No. 148 in Studies in Logic and the Foundations of Mathematics. Elsevier Science
(2003)

[39] Gibney, M.A., Jennings, N.R., Vriend, N.J., Griffiths, J.M.: Market-Based Call Routing in Telecom-
munications Networks Using Adaptive Pricing and Real Bidding. In: Proc. 3rd International Work-
shop on Intelligent Agents for Telecommunication Applications (IATA), Lecture Notes in Computer
Science, vol. 1699, pp. 46-61. Springer (1999)

[40] Haque, N., Jennings, N.R., Moreau, L.: Resource Allocation in Communication Networks using
Market-based Agents. Knowledge-Based Systems 18(4-5), 163—170 (2005)

[41] Hierons, R.M., Bogdanov, K., Bowen, J.P., Cleaveland, R., Derrick, J., Dick, J., Gheorghe, M., Har-
man, M., Kapoor, K., Krause, P, Liittgen, G., Simons, A.J.H., Vilkomir, S.A., Woodward, M.R.,
Zedan, H.: Using Formal Specifications to Support Testing. ACM Comput. Surv. 41(2), 1-76 (2009)

[42] Himoff, J., Skobelev, P., Wooldridge, M.: MAGENTA Technology: Multi-agent Systems for Indus-
trial Logistics. In: Proc. 4th International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pp. 60-66. ACM Press, New York, NY, USA (2005)

[43] Hindriks, K., de Boer, F., van der Hoek, W., Meyer, J.J.: Formal Semantics for an Abstract Agent
Programming Language. In: Intelligent Agents I'V: Proc. 4th International Workshop on Agent The-
ories, Architectures and Languages, Lecture Notes in Artificial Intelligence, vol. 1365, pp. 215-229.
Springer-Verlag (1998)

[44] Hindriks, K., de Boer, F., van der Hoek, W., Meyer, J.J.: Agent Programming with Declarative Goals.
In: Intelligent Agents VII — Proc. 6th International Workshop on Agent Theories, Architectures, and
Languages (ATAL), Lecture Notes in Artificial Intelligence, vol. 1986, pp. 228-243. Springer-Verlag
(2001)

27

[45] Hirsch, B., Fricke, S., Kroll-Peters, O., Konnerth, T.: Agent Programming in Practise — Experiences
with the JIAC IV Agent Framework. In: Proc. Workshop “From Agent Theory to Agent Implemen-
tation” (AT2AI) (2008)

[46] Holzmann, G.J.: The Spin Model Checker: Primer and Reference Manual. Addison-Wesley (2003)
[47] Jenkins, B.: Hash Functions. Dr. Dobbs Journal, September 1997.

[48] Jennings, N.R., Wooldridge, M.: Applications of Agent Technology. In: Agent Technology: Founda-
tions, Applications, and Markets. Springer-Verlag, Heidelberg (1998)

[49] Jongmans, S.S., Hindriks, K., van Riemsdijk, M.: Model checking agent programs by using the
program interpreter. In: Dix, J., Leite, J.a., Governatori, G., Jamroga, W. (eds.) Computational
Logic in Multi-Agent Systems, Lecture Notes in Computer Science, vol. 6245, pp. 219-237. Springer
Berlin / Heidelberg (2010). URL http://dx.doi.org/10.1007/978-3-642-14977-1_
17. 10.1007/978-3-642-14977-1_17

[50] Java PathFinder (2009). http://javapathfinder.sourceforge.net

[51] Kacprzak, M., Lomuscio, A., Penczek, W.: Verification of Multiagent Systems via Unbounded Model
Checking. In: Proc. 3rd International Joint Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS), pp. 638-645. IEEE Computer Society (2004)

[52] Klemperer, P.: Auctions: Theory and Practice. Princeton University Press, Princeton, USA (2004).
See also http://www.nuff.ox.ac.uk/users/klemperer/VirtualBook/VBCrevisedv%2.
asp

[53] Kliigl, F., Bazzan, A., Ossowski, S. (eds.): Applications of Agent Technology in Traffic and Trans-
portation. Whitestein Series in Software Agent Technologies and Autonomic Computing. Birkhduser
(2005)

[54] Konishi, H., Ray, D.: Coalition Formation as a Dynamic Process. Journal of Economic Theory 110(1),
1 -41(2003)

[55] Ljunberg, M., Lucas, A.: The OASIS Air Traffic Management System. In: Proc. 2nd Pacific Rim
International Conference on AI (PRICAI) (1992)

[56] Luck, M., McBurney, P., Shehory, O., Willmott, S.: Agent Technology: Computing as Interaction (A
Roadmap for Agent Based Computing). AgentLink (2005)

[57] Moreno, A., Garbay, C.: Software Agents in Health Care. Artificial Intelligence in Medicine 27(3),
229-232 (2003)

[58] Muscettola, N., Nayak, P.P.,, Pell, B., Williams, B.: Remote Agent: To Boldly Go Where No Al
System Has Gone Before. Artificial Intelligence 103(1-2), 5-48 (1998)

[59] Owre, S., Shankar, N.: A brief overview of pvs. In: Proc. 21st International Conference on Theorem
Proving in Higher Order Logics (TPHOLS), Lecture Notes in Computer Science, vol. 5170, pp. 22-27.
Springer (2008)

[60] Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A BDI Reasoning Engine. In: Bordini et al. [3],
pp. 149-174

[61] Raimondi, F., Lomuscio, A.: Automatic Verification of Multi-agent Systems by Model Checking via
Ordered Binary Decision Diagrams. Journal of Applied Logic 5(2), 235-251 (2007)

[62] Rao, A.: AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Language. In: Proc.
7th European Workshop on Modelling Autonomous Agents in a Multi-Agent World (MAAMAW),
Lecture Notes in Computer Science, vol. 1038, pp. 42-55. Springer (1996)

28

[63] Rao, A.S., Georgeff, M.: BDI Agents: From Theory to Practice. In: Proc. 1st International Confer-
ence on Multi-Agent Systems (ICMAS), pp. 312-319. San Francisco, USA (1995)

[64] Rao, A.S., Georgeff, M.P.: An Abstract Architecture for Rational Agents. In: Rich, C., Swartout, W.,
Nebel, B. (eds.) Proceedings of Knowledge Representation and Reasoning (KR&R-92), pp. 439-449
(1992)

[65] Reeves, D.M., Wellman, M.P., MacKie-Mason, J.K., Osepayshvili, A.: Exploring Bidding Strategies
for Market-based Scheduling. Decision Support Systems 39(1), 67-85 (2005)

[66] van Riemsdijk, B., van der Hoek, W., Meyer, J.J.: Agent Programming in Dribble: from Beliefs to
Goals with Plans. In: Proc. 2nd International Joint Conference on Autonomous Agents and Multia-
gent Systems (AAMAS), pp. 393-400. ACM (2003)

[67] Rimassa, G., Burmeister, B.: Achieving Business Process Agility in Engineering Change Manage-
ment with Agent Technology. In: Proc, 8th AI*IA/TABOO Joint Workshop "From Objects to Agents"
— Agents and Industry: Technological Applications of Software Agents (WOA), pp. 1-7. Seneca
Edizioni Torino (2007)

[68] Sandholm, T., Lesser, V.R.: Coalitions Among Computationally Bounded Agents. Artificial Intelli-
gence 94(1-2), 99-137 (1997)

[69] Shoham, Y.: Agent-Oriented Programming. Artificial Intelligence 60(1), 51-92 (1993)

[70] Sistla, A.P., Vardi, M., Wolper, P.: The Complementation Problem for Biichi Automata with Applica-
tions to Temporal Logic. Theor. Comput. Sci. 49, 217-237 (1987)

[71] Smith, R.G.: A Framework for Distributed Problem Solving. UMI Research Press (1980)

[72] Smith, R.G., Davis, R.: Frameworks for Cooperation in Distributed Problem Solving. IEEE Transac-
tions on Systems, Man, and Cybernetics 11(1), 61-70 (1980)

[73] Vickrey, W.: Counterspeculation, Auctions, and Competitive Sealed Tenders. The Journal of Finance
16(1), 8-37 (1961)

[74] Visser, W., Havelund, K., Brat, G.P., Park, S., Lerda, F.: Model Checking Programs. Automated
Software Engineering 10(2), 203-232 (2003)

[75] Walsh, W.E., Wellman, M.P.: A Market Protocol for Decentralized Task Allocation. In: Proc. 3rd
International Conference on Multiagent Systems (ICMAS), pp. 325-332. IEEE Computer Society
(1998)

[76] Webster, M.P., Dennis, L.A., Fisher, M.: Model-Checking Auctions, Coalitions and Trust.
Tech. Rep. ULCS-09-004, Department of Computer Science, University of Liverpool (2009).
http://www.csc.liv.ac.uk/research

[77] M. Winikoff. JACK™ intelligent agents: An industrial strength platform. In Bordini et al. [3],
chapter 7, pages 175-193.

[78] Winikoff, M.: Implementing Commitment-Based Interactions. In: Proc. 6th International Joint Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 1-8. ACM, New York, USA
(2007)

[79] Winikoff, M., Padgham, L., Harland, J., Thangarajah, J.: Declarative and Procedural Goals in Intelli-
gent Agent Systems. In: Proc. 8th International Conference on Principles of Knowledge Representa-
tion and Reasoning (KR), pp. 470-481. Morgan Kaufmann (2002)

[80] Wooldridge, M., Agotnes, T., Dunne, PE., van der Hoek, W.: Logic for Automated Mechanism
Design - A Progress Report. In: Proc. 22nd National Conference on Artificial Intelligence (AAAI),
pp- 9—. AAAI Press (2007)

29

APPENDIX

A AIL Operational Semantics Rules

A.1 Introduction and Notation

The purpose of this chapter is to provide a reference for the presupplied rules that may be used in the
operational semantics of a language implemented in the AIL. We have tried to present these in as clear a
fashion as possible excluding implementation details where possible.

An agent can be viewed as a large tuple consisting of the fields of the AILAgent class. Writing out
every element of this tuple makes the presentation largely unreadable, therefore we restrict outselves to
including only those elements of the tuple that are relevant to the rule itself. These can be identified by
the naming conventions shown below and, where there is a possibility of ambiguity we will indicate these
with equalities — i.e. i = (a,€) indicates that the current intention is (a,€). Where a value is changed by
the transition it will often be primed to indicate the new value - e.g. i’ = null shows that the new value of

the current intention is null.
ag The name of the agent.

B The agent’s Belief base.

i The current intention.

1 The agent’s other intentions.

Pi The agent’s applicable plans.

A The agent’s queue of pending actions.

In The agent’s inbox.
Out The agent’s outbox.
¢ The agent’s environment.
Many of the operational rules make a check on a deed to see what type it is (e.g. the addition of a belief,
the deletion of a goal). We represent these checks implicitly using notatation as follows:

a An AIL data structure of action type.

b An AIL data structure of belief type.

+b A belief addition.

—b A belief removal.

b{source} A belief, from source source.

28 A goal of type 7.

+!:g A goal addition.

-8 A goal drop.

xlrg A goal there is a problem with.

lock An AIL lock structure.

unlock An AIL unlock structure.

198 m A message m sent to ag.

1% m A message m received from ag.

T An AIL structure who’s logical content is trivially true.
£ A special marker indicating that some event has no plan yet.

Many of the rules make reference to methods that exist in the AILAgent class. Obviously subclassing
these methods potentially changes the semantics of the rule. This is intentionally the case.

30

Notation Method Name Description

allsuspended allintentionssuspended All the intentions in the
agent are suspended.

consistent(b) consistent(b) b is consistent with the be-
lief base (defaults to true).

appPlans(i) appPlans(i)) Generate application plans

filter(PI) filterPlans(PI) Filter plans from the set (de-
faults to none).

ag =gu,0 0 =logicalconsequence(gu) The agent believes the guard
gu given unifier 0. .

relevant(s,s’) relevant(s, s') s and " are sources of infor-

mation relevant to each other
(defaults to true).

ineI) selectIntention(/) Select an intention from the
set /.
plan(PI) selectPlan(Pl) Select a plan from the set PL.

Rules that specifically deal with accessing information from the environment, £, refence methods speci-
ficed in the AILEnv interface that have to be implemented by any environment. Again this means the
semantics of the rules will depend upon the environment used.

Notation Method Name Description

&.do(a) executeAction Executing an action in the environ-
ment.

& .getMessages() getMessages Returns new messages.

& Percepts(ag) getPercepts Returns new perceptions.

Many of the rules also manipulate, or check information about single intentions. Again these reference
methods in the Intention class.

31

Notation Method Name Description

Ug compose Compose the unifier with the top
unifier on the intention.

drop(g) dropGoal Drop all rows from the intention un-
til one is reached with +!;g as it’s
event.

drop,(N,i) dropP Drop N rows from the top of the in-
tention.

empty (i) empty The deed stack of the intention is
empty.

events(i) events The set/stack of events associated
with the intention.

hd, (i) hdD The top deed on the intention.

hd, (i) hdE The top event on the intention.

hd, (i) hdG The top guard on the intention.

ghd(d) hdU The top unifier on the itnention.

@ iConcat Add a new event, deed stack, guard
stack and unifier to the top of the
inention.

3p iCons Add a new event, deed, guard and
unifier as the top row of the inen-
tion.

new(e) Intention Create a new intention from the
event e.

new(e,source) Intention Create a new intention from the
event e and the source source..

new(e,Gs,Ds, 0,source) Intention Create a new intention from an
event, guard stack, deed stack, uni-
fier and source..

lock(i) lock Mark the intention as locked.

locked(i) locked The intention is locked.

noplan(i) noplan The intention has not been planned
(i.e. the deed stack is empty or con-
tains only the € “no plan yet” deed).

suspend(i) suspend Mark the intention as suspended.

t1;(i) tlI Drop the top deed (with associated
event, guard and unifier) from the
intention.

unlock(i) unlock Mark the intention as unlocked.

Lastly we use a few functions as shorthand for more complex processes with the AIL toolkit.
oldPercepts()(P) Any beliefs in an agent’s belief base which are marked as per-

cepts (i.e. their source is percept) which are not in the set P.

Unset any flags telling the agent to sleep it’s thread next oppor-

tunity.

Unify the two Unifiable structures /; and /5. This generally cre-

ates an empty unifier and then calls its unifies method.

wake(ag)

Lti’llfy(lhlz)

unsuspend(I) Unsuspend all the intentions in I.

T.(a) Returns the “type” of action, a. Useful when a semantics wants
to separate actions into categories and treat them differently.

do Represents the application of a unifier, 8, to some data structure,

d. d may be an action, a belief, a goal, a message, an event, a
guard or a deed.

32

A.2 The Rules

ApplyApplicablePlans

PI#0 (0,e,8:G,Ds,0) = Spian(Pl) g# T
(i,Pl) — (i’ = new(+state(g), T;G,Ds,0,self),Pl = 0)

C))

PI#0 (N,e,g:G,Ds,0) = Syan(Pl) N>0Vg=T
(i,Pl) — (i’ = (e,g;G,Ds, 0) e drop,(N,i),Pl' = 0)

(10)

Notes: This rule selects a plan from the agent’s applicable plans. The plan is represented as a tuple of the
number of rows to be dropped, the trigger event, the plan’s guard stack, deed stack and unifier.

If it is a reactive plan then N is equal to 0. In this case a new trigger is created +stare(g) where g is the
top guard on the plan’s guardstack. This is supposed to represent the state of the world that triggered the
plan. A new intention is created from the applicable plan.

Otherwise the applicable plan is “glued” to the top of the current intention.

DirectPerception

P = & Percepts(ag)
(ag,B,In) —
wake({(ag, B’ = BU P\oldPercepts()(P),In' = InU & .getMessages()))

an

Notes: A simple perception rule. It adds all percepts to the belief base and removes all beliefs no longer
perceived. It also add all messages to the inbox. A key part of the working of the rule depends on AIL’s
annotation of all beliefs in the belief base with a source and its use of a special annotation for beliefs whose
source is perception.

DirectPerceptionwEvent
P =& Percepts(ag) P~ = oldPercepts()(P)
I = {new(+b)|bc P} L ={new(-b)becP }
(ag,B,1,In) —
wake({ag,I' =1ULUL,B' = BUP\P~ ,In' = InU & .getMessages()))

12)

Notes: Similar to DirectPerception this rule also creates new intentions triggered by the addition (or re-
moval) of all the beliefs allowing the agent to react to the changes.

DoNothing

A—A (13

Notes: The DoNothing rule, as its name suggests, makes no changes to the state of the agent. This is
intended as a default rule that can be used in a reasoning cycle stage to do nothing if none of the other rules
in the stage apply but nevertheless still allow the stage to progress.

DroplIntention
1£0 Fiwll) = (0,1

(ag,iT) — (ag. 0,1 (9

33

Notes: DropIntention is really intended for sub-classing. It simply drops the current intention, i,
and selects a new one from the intention set. A sub-class would be expected to place extra conditions on i
to make sure they are only dropped in very specific circumstances. See DropIntentionIfEmpty for
an example.

DropIntentionIfEmpty
i#null empty(i) I#0 Fnd=(T)
(ag,i,I) — {(ag,i,I")

5)

Notes: DropIntentionIfEmpty drops the intention i if it is empty and selects a new current inten-
tion from the intention set. The additional i # null is necessary since a few rules can leave the agent state
with no current intention.

GenerateApplicablePlans
(16)

(ag,i,Pl) — (ag,i,Pl' = filter(appPlans(i)))

Notes: This rule considers all the plans in the agent’s plan library and examines all possible instantions
of these plans, if there is more than one. It converts these instantiated plans to Applicable Plans, filters
them according to any language specific heuristics (as defined by over-riding of the filterPlans method),
and places them in the agents Applicable Plan list. The rule is primarily indended for subclassing by more
sophisticated rules.

GenerateApplicablePlansEmpty
filter(appPlans(i)) =0 noplan(i)
(ag,i,Pl) — <ag7i7Pl/ = [(1,hd. (i),], [],0)])

filter (appPlans(i)) =0 —noplan(i)
(ag,i,Pl) — (ag,i,PI' = [(0,nd.(i), [},], 0)])

a7

(18)

Notes: This is a special case of the GenerateApplicablePlans rule for when the set of applicable plans is
empty. It does two different things depending on whether or not the current intention has a plan at the top.
If it does then the rule provides an applicable plan that will leave the intention unchanged allowing the plan
to continue processing. If not it provides a plan that will drop the top row of the intention (for instance if
the intention indicates a belief change event then the absense of a plan means that the system has no need
to respond to that event. This rule will thus cause that belief change notification to be dropped).

GenerateApplicablePlansEmptyProblemGoal
filter(appPlans(i)) =0 noplan(i) hd.(i) =+!cg

(ag.i.Pl) — {ag.1.PI = [0.xlcg. €], [T]. 007)

filter(appPlans(i/)) =0 noplan(i) —hd.(i)=g¢g 20)
(ag,i,Pl) — (ag,i,PI' = [(1,hd(i), [},] 0)])

filter(appPlans(i)) =0 —noplan(i) —hd.(i)=g¢g @1

(ag,i7Pl> - <ag7i7Pl/ = [(Oahde(i)7ﬂv[]7®)]>

Notes: This is a further specialisation of GenerateApplicablePlansEmpty. In this case if the current intention
has no plan and the trigger event at the top of the intention is a goal then, instead of simply dropping that
row (as GenerateApplicablePlansEmpty does) it adds a new row triggered by a “problem goal” event. The
agent can then react to that problem goal if it has an appropriate plan..

34

GenerateApplicablePlansIfNonEmpty
filter (appPlans(i)) # 0

22
(ag,i,Pl) — (ag,i,Pl' = filter(appPlans(i))) 22)
Notes: As GenerateApplicablePlans except with a check for non-emptiness.
HandleAction
ag = hdg(1)0™0, 0, hdy(i)8™) =a &.do(aby) =6, 23)
(ag,i) — (ag,i’ = t1;(i)Ug (64 U G,))
ag = hd, ()00 9, hd,(i)6™) =a —&.do(abp) o

(ag,i) — (ag, i’ = t1;(i)Ug (D))

Notes: This is a basic action handling rule. It attempts to execute the action in the environment (do). If
this succeeds it gets a unifier which is handed back to the intention. If the action fails it is simply ignored.
Most languages will want to explicitly handle action failure in some way, possibly by sub-classing this rule.

HandleA ctionwProblem
ag |=hdg(1)0™1, 6, hd,(i)6™0) =a &.do(ay) = 6,
(ag,i) — (ag,i' = t1;(i)Up (6™ U G,))

(25)

ag = hdg(l-)ehd(i)7 05 hdd(i)ehd(i) =a =—&.do(ab,) hd.(i)= +!r,8
(ag,i) — (ag,i' = (X!ng76hd(i) U 6,);pi)

(26)

Notes: This extends HandleAction with some failure handling. If the action appears on the deed
stack because of a goal commitment then the intention gets a new intention noting there is a problem with
the goal. The agent can then react to this — e.g. by attempting the action again or dropping the goal or in
some other fashion.

HandleAddA chieveTestGoal
ag = hdg(i)ehd<i>, 6, hdy(i)@r) = +l,8 Ta=aVT,=t agl=gb,6,
(ag,i) — (ag,i" = t1;(i)Ug (62 UG, U B,))

27

ag): hdg(i)Ghd(i),eh hdd(i)ehd(i) = _|_!ng To=aVTg=t ag b& g6,
(ag,i) = (ag,i’ = (874, 046,);,i)

(28)

Notes: This rule handles the commitment to an achieve or test goal. These are detected in the condition
Tg = aV Ty = t. An achieve or test goal is one that triggers a plan if it not already believed but does no more
than set a unifier if it is. If it is to trigger a plan then we register the commitment to planning the goal as an
event on the top of the intention stack.

HandleAddBelief
ag |=hdg(1)0™") 6, hd,(i)6™(") = +b consistent(B,b)
(ag,B.i,I) —
(ag,B' = BUb{src(i)},i = t1;(i)Us (6" U ,),I' = unsuspend(I))

(29)

Notes: A Basic rule for adding a new belief to the belief base. It assigns a source to the belief, which is
the source of the intention. As a side effect it “unsuspends” all intentions.

35

HandleAddBeliefwEvent
ag = hdg(1)0™"), 6, hd,(i)0™) UG, =+b consistent(B,b)
(ag,B,i,I) —
(ag,B' = BUb{src(i)},
i =t1;(i)Ug (6™) U By),I' = unsuspend(I) Unew(+b,src(self)))

(30)

Notes: A modification of the basic add belief rule which also generates an event noting the belief change.
Note here that the new intention is given the source “self” not the source of the original intention - this is
because any further changes triggered by the belief change are dependent on the agent’s internal reasoning
and not on the original source of the belief change.

HandleAddGoal (Abstract)

ag = hdg(i)0M") 6, hd,(i)0™D U6, = +1rg
undefined

3D

Notes: Sets up the necessary preconditions for handling an event involving the addition of a goal but
doesn’t define any transition.

HandleAddPerformGoal
ag =hdg(i)0M" 6, hd,(i)0™D U6, = +1rg
(ag,i) — (ag,i" = (+!q,8, ord() U 6);p(+!hd,, null, Bhd(i));pi>

(32)

Notes: Commit to a perform goal. Unlike HandleAddAchieveTestGoal there are no checks for
whether we believe the goal. We leave a null action on the stack though so we don’t loose track of the
previous event (which can happen if that event was planned with only one perform goal).

HandleBelief (Abstract)

ag |=hdg(1)0™"), 0, hd,(i)0™) U6, =2
undefined

(33)

Notes: Sets up the necessary preconditions for handling a belief (either addition or deletion) but doesn’t
define the transition. The preconditions are that the top guard on the intention is believed and that the top
deed is off belief type. We use ? here to show that the abstract rule does not differentiate between adding
and removing a belief.

HandleDelayedAction

ag = hdg(i)ehd(i)’ 6, hdy(i)6*) =g

- 34
(ag,i,A) — (ag,i = t1;(i)Ug (824 U B,),A’ = A;a) (34

Notes: This rule is intended for use in languages which use an action queue to store actions as they are
processed, but delay their actual execution in the environment until some later point. This rule is untested.

HandleDropBelief
ag =hdg(i)6*") 6, hd,(i)6™0) = —p
B' = {V'|b € B Aunify(t',b) Arelevant(src(b'),sTc(b))}

- 35
<ag,B,i,I> — (ag,B’ ZB\Bl,i/ :tlj(i)UQ(ehd(l>Ue/J),l> (33)

36

Notes: This is the basic rule for dropping beliefs from the belief base. If the deed, —b is on top of the
current intention all beliefs that unify with b are removed from the belief base.

HandleDropBeliefwEvent
ag |=hdg(1)0™"), 6, hd,(i)6™") = —b
B' = {V'|b' € B Aunify(b',b) Arelevant(src(b'),src(b))}
(ag,B.i,I) —
wake((ag,B' = B\B',i’ = t1;(i)Ug (6" U 6,),I' = I Uneu(—b,src(i))))

(36)

Notes: This rule drops a belief from the belief base (providing the source of the instruction to drop the
belief is deemed “relevant” to the source of the belief). At the same time it generates a new intention
containing the event that the belief has been dropped. Appropriate handling of this event can allow the
agent to form plans in reaction to it.

HandleDropGeneralGoal

ag = hd,(1)0™"), 6, hd, (i)™ U, = —!7,8 Ty & Exclusions
Je € events(i).unify(e,+!c,g)

37
(ag,1) — (ag, 7 = i-dropy (€)) G

ag = hd, (i) 6™ @, hdy(i)6™) U, = —!7,8 Ty & Exclusions
—3Je € events(i).unify(e, +!r,g) 11 = {i'|i' €IAN3e’ € i unify(e',+'7,8)} (38)

(ag,I) — (ag,I' =1U{i"|3i' € L N\i" =i .dropg(e) }\]1)

Notes: This rule can be parameterised by a set of excluded goal types (Exclusions) above. This allows it
to act as a default rule for handling “drop goal” instructions. It does this by searching the current intention
for the most recent add goal event that unifies with the goal to be dropped and then deletes all rows on the
intention above that. dropy isn’t a built-in AIL function but is created by recursing through the intention’s
events. The second rule drops the event from all the intentions that contain it, assuming the goal doesn’t
occur in the current intention.

HandleDropGoal (Abstract)

ag =hd, ()0, 6, hdy (i)™ UG, = —1;g

undefined (39)

Notes: Sets up the necessary preconditions for handling a drop goal event but doesn’t define the transi-
tion.

HandleEmptyDeedStack

empty(i)

e A A7 S 40
(ag,i) — (ag,i) @0

Notes: Does nothing if the current intention’s deed stack is empty.

37

HandleGeneralAction
ag = hdg (i)™, 0, hd, (i)™ =a E.do(aby) =6, Tu(a) & Excluded

- 41
(ag,i) — (ag,i' = t1;(i)Ug (624 U G,)) “h
ag = hdg(i)ehd(i)7 05 hdd(i)ehd(i) =a -—€&.do(ab,) hd.(i) = +!r,8
1,(a) & Excluded “2)
(ag,i) — (ag,i = new(x!fgg,ehd(i) U6,);pi))
ag = hdg(i)ehdw, 05 hdd(i)ehd(i) =a —£.do(aby) —hd.(i)= +1g,8
1,(a) & Excluded 43)

(ag,i) — (ag, i’ = t1;(i)UgO(0)

Notes: HandleGeneralAction extends HandleActionwProblem. The rule is parameterized by a set of action
types that are “Excluded” — for instance the GWENDOLEN implementation handles “send” actions differ-
ently to other types of action so these are excluded from consideration by this particular rule.

HandleGeneralDelayedAction

ag = 1d, ()00 6, hd(i)6") =a 1,(a) & Excluded
(ag,i,A) — (ag,i’ = t1;(i)Us(024() U B,),A’ = A;a)

(44)

Notes: This extends HandleDelayedAction in the same way that HandleGeneral Action extends HandleActionwProblem.
That is the rule can be parameterized with a list of “Excluded” action types which are to be handled by
alternative rules.

HandleGoal (Abstract)

ag =hd, (i)™, 6, hdy(i)6™) U6, = g
undefined

(45)

Notes: Sets up the necessary preconditions for handling an event involving a goal but doesn’t define any
transition.

HandleGuardNotSatisfied
ag I~ hdg (i) ™0

A—A (46)

Notes: The agent does nothing if the guard on an intention can not be satisfied. Should be used with
caution since it can cause programs to loop.

HandleLockUnlock
ag =hd,(i)6™) 6, hd (i)™ U6, = lock
(ag,i) — (ag,i’ = 1lock(t1;(i)Uq (024 U By)))

(47)

ag = hdg(1)0™0. 60, hd,(i)6") U@, = unlock
(ag,i) — (ag,i’ = unlock(t1;(i)Ug (6 UGy)))

(48)

Notes: This allows an intention to be “locked” as the current intention, for instance to allow a complete
sequence of belief changes be processed before any other reasoning takes place. Once finished the intention
has to be unlocked. See the SelectIntention rule to see how this works. In languages without the lock
construct locking isn’t used, obviously, and so doesn’t affect intention seletion..

38

HandleMessages

(ag,I,In) — @)

(ag,I' = 1U{new(+received(m),src(ag)) | |* m € In,In’ = []})

Notes: This rule does not poll the environement for messsages. It takes all messages currently in an
agent’s inbox and converts them to intentions (triggered by a perception that the message has been re-
cieved), emptying the inbox in the process. It should be noted that it does not store the message anywhere
once the inbox is emptied. It assumes that some plan will act appropriately to the message received event.
If this does not happen then the message content may be lost.

HandleNull
ag |=hd,(i)0™W 6, hd,(i)8") U6y, = null
(ag,i) — (ag,i’ = t1;(i)Ug (624 U By))

(50)

Notes: The null action is used as a place holder to preserve, in some situations, a record of an event in an
intention stack. This rule simply ignores the null action when it is encountered.

HandleSendA ction
ag = hd, ()00, 6, hd, ()6 =19 m &.do((1% m)6,) = 6,

- (51)
(ag,i,1,0ut) —
(ag,i = t1;(i)Ue (6™ UB,),I'l U {new(+1% m,src(self))},
Out' = Out U {m})
ag -0, (1)0°%0.0, b0 = 1% ~Edo((1%mB) Ba) =g o

(ag,i,1,0ut) —
(ag,i" = (x!,g, 014 U y);,i,I' = 1 U {new(+1% m,src(self))},
Out’ = OutU{m})

Notes: This rule is implemented as an extension of HandleActionwProblem. As well as executing a send
action it also adds a record the message has been sent to the outbox and generates an intention from the
message sending event.

HandleTopDeed (Abstract)

ag |=hd,(i)8™0) g,

undefined (53)

Notes: Sets up the necessary preconditions for handling the top of the deed stack but doesn’t define the
transition.

HandleWaitFor

ag |=hdg(i)0™) 6, hdy(i)o™) = «b
P = & Percepts(ag) OP = oldPercepts()(P) b€ BUP\OP
(ag,B,i,I,In) —
wake({ag,B' = BUP\OP,i' = t1,(i)Ug (6™ U §;),
I'=1U{new(+b") | b € PAb & B}U{neu(-b') | b' € OP},
In' = InU & .getMessages()))

(54)

39

ag = hdg(1)0™) 9, hd,(i)o™) = «b
P =& Percepts(ag) OP = oldPercepts()(P) b ¢ BUP\OP
(—allsuspended VP # 0)
(ag,B,i,1,In) —
wake({ag,B' = BUP\OP,i’ = suspend (i)
I'=1U{new(+b') | b' € PAb & B} U{neu(-b') | b € OP}
In' = InU € .getMessages()))

(55)

ag = hdg(1)0™0) 6, hd,(i)6™) = xb
b¢ B allsuspended & .Percepts(ag) =0
(ag, B, In,i) —
sleep((ag, B,InU & .getMessages(), suspend(i)}))

(56)

Notes: Because sleeping and waiting behaviour is critical to model checking with JPF we found it nec-
essary to introduce new syntax which allows an intention to wait until the agent holds a certain belief. This
syntax is *b. If the relevant belief is not held then that intention is suspended and if all intentions are sus-
pended then the agent is told to sleep at the next opportunity. This rule for handling the waiting behaviour
is actually implemented as an extension to perception and so makes the decision to suspend the intention
based on the most recent information available to the agent. It should be noted that several other rules, e.g.
ones that add new beliefs to the belief base automatically unsuspend all intentions allowing the wait for
deed to be rechecked.

HandleWaitForDirect

ag |=hdg(i)0™) . 6, hd,(i)6™) = xb
P =& Percepts(ag) OP = oldPercepts()(P) b€ BUP\OP

(ag,B,i,In) — (57)
wake({ag,B' = BUP\OP,i' = t1,(i)Ug (6™ U 6;),
In' = InU& .getMessages()))
ag = hdg(1)0™) 9, hdy(i)o™) = xb
P = & Percepts(ag) OP = oldPercepts()(P) b ¢ BUP\OP
(—allsuspended \V P £ 0)
X (58)
(ag,B,i,In) —
wake({ag,B' = BUP\OP,i’ = suspend (i)
In' = InU& .getMessages()))
ag = hdg(1)0™0) 6, hdy(i)o™) = «b
b¢ B allsuspended & .Percepts(ag) =0 (59)

(ag,B,In,i) —
sleep({ag,B,InU& .getMessages(), suspend(i)}))

Notes: This rule is essentially the same as HandleWaitFor. The only difference is that it sub-classes
DirectPerception rather than Perceive. This means it does not create new intentions from incoming belief
changes.

IgnoreUnplannedProblemGoal
hd, (i) =x!g,g hdg(i) =€
(ag,i) — (agi)

(60)

40

Notes: This rule ignores an unplanned problem goal. It simply does nothing but allows the reasoning
cycle of the agent to continue processing on the assumption that planning of the goal may become possible
later.

MatchDropGoal

deeds(i) =[€] hd, = x!z,g
I'={({l",0) |i' e IN3+!g € events(i').unify(g',g) = 0 Asrc(i’) = src(i)}
I"={(',88&T,0);,i| (i,0) €I'} Fn(I\NI'UI") = (i1, 11)
(ag,i, 1) — (ag,i' =i1,I' =1))

(61)

Notes: If an intention consists only of a single unplaned problem goal event then this should be matched
with and placed as a row on the top of all intentions containing that goal. The intention is then removed
and a new current intention selection. This is intended to assist in dealing with requests to drop goals that
come from some external source.

Perceive
ag = hd,(i)0™("), 6, P = E.Percepts(ag) OP = oldPercepts()(P)
(ag,B,1,In) —
wake({ag,B' = BUP\OP,
IU{new(+b) | b e P)ANb¢&B}U{neu(—b) | b € OP},
InU & .getMessages()))

(62)

Notes: This is a complex perception rule. It adds all percepts to the belief base and removes all beliefs
no longer perceived. It also add all messages to the inbox. It then creates new intentions, each triggered
by the events of acquiring or losing one of the percepts. A key part of the working of the rule depends on
AIL’s annotation of all beliefs in the belief base with a source and its use of a special annotation for beliefs
whose source is perception.

ProcessDelayedA ction

&.do(a)

(ag,A = a;A") — (ag,A")

(63)

Notes: This rule executes the top action on the agent’s action queue. The assumption is that a (FIFO)
queue of actions has been created which the agent will execute in order at some point. During planning
actions are put on the queue but not actually executed. This rule is untested.

SelectIntention
—empty(i) —locked(i) “n(IU{i})=(/,I') -—allsuspended o4
<ag,i,l >—><ag,i", I > (64
—empty(i) locked(i) —allsuspended
empty (i) locked(i) p 65)

<ag,i,l >—<ag,i,] >
Notes: This is the the basic rule for intention selection. It works by calling the agent method selectIntention

(%nt) Which is expected to be a common candidate for over-riding. The only situation in which .% is not
called is if the current intention is locked in which case that intention is selected again.

41

SelectIntentionNotUnplannedProblemGoal
—empty(i) —locked(i) F(IU{i})=(,I")
hd, (i) # —!r,g V ~noplan(i) —allsuspended
<ag,i,l >—<ag,i",I' >

(66)

—empty(i) locked(i) hd,(i')# —!¢,gV —mnoplan(i’) -—allsuspended
<ag,i,l >—<ag,i,] >

(67)

Notes: This rule extends SelectIntention with one additional condition which is that the top event on the
selected intention is not a problem or drop goal event which has no associated plan. We assume that, where
this rule is used, another rule (e.g. MatchDropGoal) is employed to handle these intentions.

SleepIfEmpty
(i = null vV empty(i) Vis_suspended(i)) A (I = @ V allsuspended)
(ag,i,1) — sleep((ag,i,I))

(68)

Notes: This rule sleeps an agent thread in a controlled fashion if all its intention are empty or suspended.
It is quite important to include this rule, or one similar to it, into a language semantics even if one isn’t
there. The JPF model checker does not assume a fair JAVA scheduling algorithm so unless a multi-agent
system forces agents (and so their threads) to sleep it will investigate runs in which one agent executes
continuously and none of the others do so. Note that this does not immediately sleep the thread. It sets a
flag that the agent wishes to sleep. The agent controller then decides when this should happen.

42

B Sample GWENDOLEN Code for the Verified Scenarios

B.1 Notation

GWENDOLEN uses the AIL’s plan mechanisms “off the shelf”. It makes no use of prefix matching in plan
execution and only has plans whose prefix is €. Similarly, it is assumed that the guard stacks for plans
are all T except for the very top guard that governs the plan applicability. Plans are therefore a triple
of a triggering event (if relevant), a guard, and a body of deeds to be performed. We therefore represent
GWENDOLEN'’s version of the plan

trigger | +!;clean ()

prefix [e]

guard dirty (Room)
T

body +!l,goto (Room)
+!,vacuum (Room)

that appeared in Section 3.1.8 as
+!clean() : dirty(Room) <- +!,g0to(Room);+!,vacuum(Room) (69)

GWENDOLEN agents also distinguish two sorts of goals. Achievement goals, !,g, make statements about
beliefs the agent wishes to hold. They remain goals until the agent gains an appropriate belief. Perform
goals, ! ,g, simply state a sequence of deeds to be performed and cease to be a goal as soon as that sequence
is complete. When an agent takes an action, it executes code specific to that action in the environment.
Typically, this code alters the set of propositions that agents are able to perceive. It may also cause messages
to be added to an agent’s inbox. Agents go through a specific perception phase when they check their
beliefs against the environment’s percepts and modify them accordingly. At this point, agents also handle
the messages currently in their inbox.

1 (a,p,m) indicates the sending of a message m, with performative, p, to agent a, and | (p,m) indicates
the receipt of a message m with performative p. Since guards may also refer to sent and received messages,
the syntax 1 (a,p,m) is also used in plan guards, as is | (p,m). In the following examples, the relevant
performatives are p (for perform the message content) and b (for believe the message content).

9D is used in plan guards to indicate the condition that the agent believes . The lock, unlock, and
xb deeds (see Section 3.1.7) appear as such in the code.

Throughout this section, we will use ‘,” to indicate concatenation of deeds on a stack. We follow the
Prolog convention of representing variables as starting with upper-case letters, while constants start with
lower-case letter. The belief rules used for Prolog-style reasoning in guards are represented in a Prolog
styleas 11 :— 12, 13, 14;

B.2 Contract Net Code

Action a makes fact g true in the environment. Similarly, action a2 makes the g2 true. These facts can then
be perceived by all agents.

Code Example 2.1 Contract Net

‘name: agl

: Initial Beliefs :
—cando(g2)
ag(ag?)

ag(ag3)

1
2
3
4
—cando(g) 5
6
7
8
my_name(agl) 9

: Initial Goals: 1

43

lag
lag2

:Plans:

+1, g {# cando(g)} « a;

+1, 22 {% cando(g2)} < a2;

+!q Gl: {# —cando(Gl)} « +!,, cfp(Gl);

+!p cfp(G) :
{2 ag(Al), # my_name(Name), =T (Al, p, respond(G, Name)), =% proposal (Ag, G)}
— T(Al, p, respond(G, Name));

+!, cfp(Gl) : {# proposal (A, G1)} «— *Gl;

+proposal(A, G4) : {# —cando(G4), =% awarded(G4)} «— T(A, b, award(G4)),
+awarded(G4);

+l(p, Ga) : {T} « +!, Ga;

+|(b, B): {T} « +B;

+!, respond(G2, Name) : {# cando(G2), % my_name(A)} « T(Name, b, proposal(A, G2));

+!,, respond(G3, Name) : {# —cando(G3), % my_name(A)} « T(Name, b, sorry(A, G3));

+award(G5): {T} «— +!, G5

+!p cfp(G6) : {T} «— *G6;

‘name: ag2
: Initial Beliefs :

my_name(ag2)
cando(g)
—cando(g2)

:Plans:

+lyg 1 {Z% cando(g)} < a;

+!, 82 : {Z# cando(g2)} «— a2;

+!4 Gl : {# —cando(Gl)} « +!;, cfp(Gl);

+!p cfp(G) :
{# ag(Al), # my_name(Name), =T (Al, p, respond(G, Name)), =% proposal (Ag, G)}
— T(Al, p, respond(G, Name));

+!p cfp(Gl) : {# proposal (A, G1)} «— *Gl1;

+proposal(A, G4) : {# —cando(G4), = A awarded(G4)} — T(A, b, award(G4)),
+awarded(G4);

+l(p, Ga) : {T} « +!, Ga;

+|(b, B): {T} « +B;

+!, respond(G2, Name) : {# cando(G2), % my_name(A)} « [(Name, b, proposal(A, G2));

+!, respond(G3, Name) : {# —cando(G3), % my_name(A)} < T(Name, b, sorry(A, G3));

+award(GS5): {T} «— +!, G5

+!p cfp(G6) : {T} « *G6;

‘name: ag3

: Initial Beliefs :
my_name(ag3)

cando(g2)

—cando(g)

:Plans:

+lyg 1 {% cando(g)} < a;
+1, 22 : {Z cando(g2)} «— a2;

+!4 Gl : {# —cando(Gl)} « +!, cfp(Gl);
+!p cfp(G) :

{# ag(Al), # my_name(Name), =T (Al, p, respond(G, Name)), =% proposal (Ag, G)} —

T(Al, p, respond(G, Name));

+!, cfp(Gl) : {# proposal (A, G1)} « *Gl;

+proposal(A, G4) : {# —cando(G4), = £ awarded(G4)} — T(A, b, award(G4)),
+awarded(G4);

+l(p, Ga) : {T} « +!, Ga;

44

+|(b, B): {T} «— +B;

+!, respond(G2, Name) : {# cando(G2), % my_name(A)} « [(Name, b, proposal(A, G2));
+!, respond(G3, Name) : {# —cando(G3), % my_name(A)} « T(Name, b, sorry(A, G3));
+award(G5): {T} «— +!,G5;

+!p cfp(G6) : {T} « *G6;

B.3 Basic Auction Code

Code Example 2.2 Basic Auction

:name: agl

: Initial Beliefs :

:Plans:

+[(b, B): {T} « +B;

+bid(Z, A) : {# bid(X1, ag2), # bid(X2, ag3), £ bid(X3, ag4), % bid(200, Ag)} —
T(Ag, b, win);

‘name: ag2

: Initial Beliefs :

my_name(ag2)

: Initial Goals:

!, bid

:Plans:

+|(b, B): {T} « +B;
+!, bid : {# my_name(Name), ~T(agl, b, bid(100, Name))} < T(agl, b, bid(100, Name));

Agents 3 and 4 are identical to agent 2 except for the amount they bid.

B.4 Auction Coalition Code

The code for agent 1 is the same as in the Basic Auction example.

Code Example 2.3 Auction Coaltion

‘name: ag2

: Initial Beliefs :

my_name(ag2)

: Initial Goals:

!p coalition

:Plans:

+l(b, B): {T} <« +B;

+!, bid : {# my_name(Name), ~T(agl, b, bid(250, Name))} < T(agl, b, bid(250, Name));
+!, coalition : {# my_name(Ag), — T(ag3, b, coalition (Ag))} «— T(ag3, b, coalition (Ag));
+agree(A, X) : {T} < +!, bid;

‘name: ag3

: Initial Beliefs :

my_name(ag3)

45

: Initial Goals: 24

!pbid 26

27
:Plans: 28

29
+[(b, B): {T} « +B; 30
+!p _pbid : {# my_name(Name), —T(agl, b, bid(150, Name))} < T(agl, b, bid(150, Name)); 31
+ coalition (A) : { # my_name(Name), =T(A, b, agree(Name, 150))} < T(A, b, agree(Name, 150)); 3

The code for agent 4 is the same as for agent 3 except with a different bid amount.

B.5 Dynamic Auction Coalition Code

The action win(Z,A) makes the fact that agent A has won with amount Z available to all agents by percep-
tion.

Code Example 2.4 Dynamic Auction

:name: agl 1
2

: Initial Beliefs : 3
4

my_name(agl) 5
6

: Belief Rules: 7
8

A allbids :— A bid_processed(ag2), # bid_processed(ag3), % bid_processed (ag4); 9
10

:Plans: 1
12

+|(b, bid(D, From)) : {# bid(E, From)} «+ —bid(From, E), 13
+bid(From, D); 14
+|(b, bid(D, From)) : {—~% bid(E, From)} « +bid(From, D); 15
+bid(Z, A) : {Z# current_winner (Agl, Amw), Amw < A, Zallbids} «— lock, 16
—current_winner(Agl, Amw), 17
+ann_winner, 18
+current_winner(Z, A), 19
win(Z, A), 20
unlock; 21
+bid_processed(Ag) : {Z# current_winner (Agw, Amw), Z allbids, =% ann_winner} < lock, 2
+ann_winner, 23
win(Agw, Amw), 24
unlock; 25
+bid(Ag, Am) : { = A current_winner (Ag2, Amw)} «— 26
+current_winner(Ag, Am), 27
+bid_processed (Ag); 28
+bid(Ag, Am) : {# current_winner (Agw, Amw), - (Am < Amw), =4 allbids } « lock, 29
+current_winner (Ag, Am), 30
+bid_processed(Ag), 31
—current_winner(Agw, Amw), 32
unlock; 33
+bid(Ag, Am) : {# current_winner (Agw, Amw), Am < Amw, ~Zallbids} « +bid_processed(Ag); 34
35
:name: ag2 36
37

: Initial Beliefs : 38
39
my_name(ag2) 40
collaborator (ag3) 41
cash(150) 4
43
: Initial Goals: 44
45
!pbid 46

46

:Plans: 48

+|(b, B): {T} « +B; 50
+!, bid : {# my_name(Name), Zcash(C), - T(agl, b, bid(C, Name))} < T(agl, b, bid(C, Name)); 51
+agree(A, X): {Z cash(C), # my_name(Name)} «— T(agl, b, bid((C + X), Name)); 52
+win(Ag, X): {# my_name(Name), ~#win(Name, Any), % collaborator (Coll)} « 53
+!, coalition (Coll) ; 54
+!, _p coalition (Coll) : {# my_name(Ag), — T(Coll, b, coalition (Ag))} «— 55
T(Coll, b, coalition (Ag)), 56

+ coalition (Coll); 57

58

‘name: ag3 59
60

: Initial Beliefs : 61
62

my_name(ag3) 63
cash(150) 64
65

: Initial Goals: 66
67

!, bid 68
69

:Plans: 70
71

+l(b, B): {T} « +B; 7
+!, bid : {# my_name(Name), Zcash(C), - T(agl, b, bid(C, Name))} « T(agl, b, bid(C, Name)); 73
+ coalition (A) : { & my_name(Name), Zcash(C), — T(A, b, agree(Name, C))} «— 74
T(A, b, agree(Name, C)); 75

The code for agent 4 is the same as for agent 3 except with a different bid amount.

B.6 Auction Trust Code

The action win(A,Z) makes the fact that agent A has won with amount Z available to all agents by percep-
tion.

Code Example 2.5 Trust Auction

‘name: agl 1
2

: Initial Beliefs : 3
4

:Plans: 5
6

+|(b, bid(D, From)) : {# bid(From, E)} « —bid(From, E), 7
+bid(From, D); 8
+](b, bid(D, From)) : {—% bid(From, E)} < +bid(From, D); 9
+bid(Z, A) : {Z£ bid(ag2, X1), £ bid(ag3, X2), &£ bid(agd, X3), 10
-4 winning_amount(Am), X2 < X1, X3 < X1} «— 11
+winning_amount(X1), 12
win(ag2, X1); 13
+bid(Z, A) : {£ bid(ag2, X1), £ bid(ag3, X2), £ bid(agd, X3), 14
— % winning_amount(Am), X1 < X2, X3 < X2} «— 15
+winning_amount(X2), 16
win(ag3, X2); 17
+bid(Z, A) : {Z bid(ag2, X1), & bid(ag3, X2), £ bid(agd, X3), 18
- 4% winning_amount(Am), X2 < X3, X1 < X3} «— 19
+winning_amount(X2), 20
win(ag4, X3); 21
+bid(Z, A) : {Z% winning_amount(Am), Am < A} < —winning_amount(Am), 2
+winning_amount(A), 23
win(A, Z); 24

25

‘name: ag2 26

47

: Initial Beliefs :

my_name(ag2)
trust (ag3)

: Initial Goals:

!pbid

:Plans:

+|(b, B): {T} « +B;

+!p _pbid : {# my_name(Name), =T(agl, b, bid(150, Name))} < T(agl, b, bid(150, Name));

+win(A, X) : {£ my_name(Name), ~Awin(Name, Y), Z trust (Ag), = T(Ag, b, coalition (Name))}
— T(Ag, b, coalition (Name));

+agree(A, X) : {T} < T(agl, b, bid(300, ag2));

‘name: ag3

: Initial Beliefs :

my_name(ag3)

: Initial Goals:

1, bid

:Plans:

+|(b, B): {T} « +B;

+!p bid : {# my_name(Name), -T(agl, b, bid(150, Name))} < T(agl, b, bid(150, Name));
+ coalition (A) : { & my_name(Name), =T(A, b, agree(Name, 150))} < T(A, b, agree(Name, 150));

The code for agent 3 is the same as for agent 4 except with a different bid amount.

B.7 Auction Dynamic Trust Code

Code Example 2.6 Dynamic Trust Action

:name: agl
:Plans:

+|(b, bid(D, From)) : {Z bid(From, E)} « —bid(From, E),
+multiple_bidder (From),
+bid(From, D);
+|(b, bid(D, From)) : {—% bid(From, E)} < +bid(From, D);
+bid(Z, A) : {£ bid(ag2, X1), £ bid(ag3, X2), £ bid(agd, X3), A bid(ag5, X4),
— % winning_amount(Am), X2 < X1, X3 < X1, X4 < X1} «
+winning_amount(X1),
win(ag2, X1);
+bid(Z, A) : {£ bid(ag2, X1), £ bid(ag3, X2), &£ bid(agd, X3), & bid(ag5, X4),
-4 winning_amount(Am), X1 < X2, X3 < X2, X4 < X2} «—
+winning_amount(X2),
win(ag3, X2);
+bid(Z, A) : {Z£ bid(ag2, X1), £ bid(ag3, X2), £ bid(agd, X3), A bid(ag5, X4),
-2 winning_amount(Am), X2 < X3, X1 < X3, X4 < X3} «
+winning_amount(X3),
win(ag4, X3);
+bid(Z, A) : {£ bid(ag2, X1), £ bid(ag3, X2), £ bid(agd, X3), A bid(ag5, X4),
-4 winning_amount(Am), X2 < X4, X1 < X4, X3 < X4} «—
+winning_amount(X4),
win(ag5s, X4);
+bid(Z, A) : {Z% winning_amount(Am), Am < A} < —winning_amount(Am),
+winning_amount(A), win(A, Z);
+bid(Z, A) : {# multiple_bidder (Z), % winning_amount(Am), A < Am} < 1(Z, b, failed_bid);

48

‘name: ag2 29

: Initial Beliefs : 31
32

my_name(ag2) 33
trust (ag3) 34
trust (ag4) 35
36

: Initial Goals: 37
38

!pbid 39
40

:Plans: 41
42

+|(b, B): {T} « +B; 43
+!p bid : {# my_name(Name), -T(agl, b, bid(150, Name))} < T(agl, b, bid(150, Name)); 44
+win(A, X) : {# my_name(Name), ~Zwin(Name, Y), # trust (Ag), 45
- % formed_coalition (AgB), = T(Ag, b, coalition (Name))} « 46

T(Ag, b, coalition (Name)), 47
+formed_coalition (Ag); 48
+failed_bid : {Z# my_name(Name), ~Awin(Name, Y), 49
A trust (Ag), A formed_coalition (AgB), = T(Ag, b, coalition (Name))} «— 50

T(Ag, b, coalition (Name)), 51
+formed_coalition (Ag), 52
—trust (AgB); 53
+agree(A, X) : {T} « T(agl, b, bid((X + 150), ag2)); 54
55

‘name: ag3 56
57

: Initial Beliefs : 58
59

my_name(ag3) 60
61

: Initial Goals: 62
63

!pbid 64
65

:Plans: 66
67

+|(b, B): {T} « +B; 68
+!, bid : {# my_name(Name), ~T(agl, b, bid(25, Name))} < T(agl, b, bid(25, Name)); 69
+ coalition (A) : { & my_name(Name), ~T(A, b, agree(Name, 25))} < T(A, b, agree(Name, 25)); 70

The code for agents 4 and 5 are the same as for agent 3 except with a different bid amount.

B.8 Cleaning Robot Code

The action next(slot) moves the robot to the next space on the grid and updates all perceivable facts accord-
ingly (e.g., whether the agent can see any garbage etc.). The action drop(garb) makes garbage perceiv-
able in that grid slot (assuming the agent was holding garbage). The action moveTowards(X1,Y 1) makes
the agent move one square towards the coordinates (X1,Y1). The action burn(garb) destroys a piece of
garbage.

Code Example 2.7 Cleaning Robots

:name: rl
: Initial Beliefs :

pos(r2, 2, 2)
checking(slots)

:Plans:

© ® 9 U AW —

+pos(rl, X1, Y1) : {Z£ checking(slots), —.Z garbage(rl)} « next(slot); 10

49

+garbage(rl) : {% checking(slots)} « +!, stop(check),
+!, take(garb, r2),
+!, continue (check);
+!, stop(check) : {T} « +!; pos(rl, XI, Y1),
+pos(back, X1, Y1),
—checking(slots);
+!p take(S, L) : {T} < +!, ensure_pick(S),
+!p go(L),
drop(S);
+!, ensure_pick(S) : {# garbage(rl)} « pick(garb),
+!, ensure_pick(S);
+!,, ensure_pick(S) : {T} « donothing;
+!, continue (check) : {T} « +!, go(back),
—pos(back, X1, Y1),
+checking(slots),
next(slot);
+!p go(L) : {# pos(L, X1, Y1), & pos(rl, X1, Y1)} < donothing;
+!p go(L) : {T} < +!y pos(L, X1, Y1),
moveTowards(X1, Y1),
+!) go(L);

:name: r2
:Plans:

+garbage(r2) : {T} < burn(garb);

50

