
Model Checking Algorithms for Analog Verification

Walter Hartong, Lars Hedrich, Erich Barke
Institute of Microelectronic Circuits and Systems, University of Hannover
Appelstrasse 4, 30167 Hannover, Germany, www.ims.uni-hannover.de

hartong, hedrich, barke@ims.uni-hannover.de

ABSTRACT
In this contribution we present the first method for model checking
on nonlinear analog systems. Based on digital CTL model check-
ing algorithms and results in hybrid model checking, we have de-
veloped a concept to adapt these ideas to analog systems. Using
an automatic state space subdivision method the continuous state
space is transfered into a discrete model. In doing this, the most
challenging task is to retain the essential nonlinear behavior of the
analog system. To describe analog specification properties, an ex-
tension to the CTL language is needed. Two small examples show
the properties and advantages of this new method and the capability
of the implemented prototype tool.

Categories and Subject Descriptors
I.6.m [Computer Methodologies]: Simulation and Modeling

General Terms
Algorithms, Language, Theory, Verification

Keywords
Model Checking, Formal Methods, Nonlinear Analog Systems

1. INTRODUCTION
In recent years formal methods, like equivalence checking and
model checking, have been successfully introduced into the digi-
tal design flow, indicated by the growing number of commercial
vendors. However, these methods are still almost unknown in ana-
log verification. Symbolic analysis is a promising technique but it
cannot cope with the power of formal methods in the digital world.
As far as we know, there has been only one approach published on
equivalence checking for analog circuits [5].
On the other hand, digital tools have been extended to special
hybrid systems, being digital systems connected to some analog
blocks or to an analog environment. These techniques are focused
on the digital part of the system. The analog behavior is mostly
restricted and the verification results are not appropriate to assess
the functionality of the analog part, because the analog behavior is
assumed to be correct during the verification process. The result

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2002, June 10-14, 2002, New Orleans, Louisiana, USA.
Copyright 2002 ACM 1-58113-297-2/01/0006 ...$5.00.

does therefore not include useful information for analog designers.
Furthermore, model checking languages used are not able to de-
scribe analog system properties. Thus, formal methods for analog
systems are still lagging far behind the digital tools.
In this contribution a discrete model for the nonlinear system will
be presented. Further, model checking algorithms known from dig-
ital model checking tools will be adapted to analog systems.
This paper is organized as follows. In Section 2 a general compar-
ison between digital, hybrid and analog systems is given. The next
two sections describe the main algorithms developed, namely the
generation of the discrete model and the model checking methods.
Finally, some experimental results are given, showing the use of the
developed prototype.

2. SYSTEM DESCRIPTION
The most general system class to be considered in this context is the
transition system. Most digital and hybrid model checking tools are
based on such systems.

Definition 1. A state transition system T = (Q,Q0,∑,R) con-
sists of

– a set of states Q and a set of initial states Q0,
– a set of generators or events ∑ and
– a state transition relation R ⊆ Q×∑×Q.

The state transition system is a suitable model for digital as well as
for analog systems [11]. In the analog case, the set of states Q can
be represented by an Euclidean space (state space) spanned by the
system’s state variables. The number of states is infinite, due to the
continuous definition of the state variables. The initial state Q0 is a
single point in the state space. Often, but not necessarily, it is the
DC operating point. There are only two generators ∑ causing state
transitions, namely, the time t and the input values u(t). The state
transition relation R is a continuous function with respect to time.
It can be visualized by a vector field in the state space.
Unfortunately, the representation of states and state transitions in
the discrete digital case is totally different. Published model check-
ing tools for hybrid systems, require discrete or discrete and partly
linear system descriptions [1]. Our focus is on nonlinear analog be-
havior, which cannot be described by these simple approximations.
Linear phase-portrait approximation [6] is an encouraging method,
but the calculation of proper state space intersection planes seems
to be complicated, especially for high dimensional and strongly
nonlinear problems. There are two aspects which make a differ-
ent approach necessary. Firstly, model checking for analog systems
requires extensions of the language to define analog system proper-
ties in a reasonable way. Secondly, the analog system model used
in the model checker needs to retain the essential analog dynamics
to get useful results.

2.1 Analog System
An analog system description consists of a nonlinear first order dif-
ferential algebraic equation system

f (ẋ(t),x(t),u(t)) = 0 (1)

with the input variable vector u(t) and the vector x(t) of n sys-
tem variables. In general, the function f is arbitrarily nonlinear.
However, in practice the nonlinearities are restricted by the device
models used. There are several ways to build such equations from
a transistor netlist or a behavioral model, for example the modified
nodal analysis (MNA).
The number of state variables is less than or equal to the number
of energy storage elements (e.g. capacitors and inductors). The
definition of state variables spanning the state space depends on the
way to build up Equation (1) and is not unique for one system [4].
Moreover, the link between state variables and system variables is
not necessarily obvious. Mathematically, this is known as initial
value problem for differential algebraic equations [8]. However,
since we focus on basic model checking methods, these issues will
not be discussed here. To take the input values into account, the
state space can be extended by the number of inputs. We call this
extended state space. Since, the input values are not determined by
the system itself but rather by environmental conditions, it is not
possible to model their behavior within the state space.

3. DISCRETE MODEL GENERATION
Some of the following algorithms have been inspired by research
in the area of approximating dynamical behavior [3]. Despite the
similarities, there are a lot of differences, mainly caused by the
overall target of the algorithms. Therefore, the algorithms have not
been used, but some of the ideas have been adopted.
As we have seen, the continuous variables in an analog system -
state values and time - have to be transfered into a discrete state
space description and a state transition relation. The next three
sections illustrate this process.

3.1 Discrete Time Steps
The transition relation R for an analog system is given by the state
variables’ time derivation ẋ(t), which is a continuous function. The
actual state transition can be calculated by integrating this function.

x(t) = x0(t0)+

� t

t0
ẋ
(
x(t),u(t)

)
dt (2)

In practice ẋ(t) may possibly not be derived as explicit function,
however, the relation is given implicitly by Equation (1). In gen-
eral, x(t) can only be calculated using numerical integration. This
problem is well known in analog simulators, like Spice, Spectre,
Saber, etc. During transient simulation the differential equation
system is solved using discrete time steps. Given a small time step
∆t = t1 − t0, the transition between the actual state x(t0) and the
next state x(t1) is determined by a numerical integrator, using e.g.
the backward Euler formula:

x(t1) =

{
x

∣∣∣∣ f

(
x− x(t0)

t1− t0
,x,u(t1)

)
= 0

}
(3)

A step size control uses the second derivation with respect to time
for a local measurement of the integration error. If the given error
threshold is exceeded, step size is reduced otherwise the transient
step is accepted.
This method can be directly used in an analog model checking tool.
An arbitrary test point in the state space is mapped to its successor
state, depending on the actual ∆t used. In contrast to transient sim-
ulation, there is no temporal predecessor state for a test point. A

second time step has to be calculated for each point to determine
the second derivation, enabling a local error control.
In general, the time step ∆t will vary throughout the state space, due
to the step size control. As we will see later, this makes the check-
ing of explicit time dependencies difficult. To make this, easier the
time step is chosen to be equal for each test point within one state
space region (see Section 3.2). By this algorithm, every state space
point can be mapped to its successor point including a local step
length control. The resulting tuple of test and target point is rep-
resented by a successor-vector in the state space. Due to the error
control, the vector length is restricted to reasonable values in terms
of the second derivation. Thus, a time discrete transition relation
for single points is given: s(x(t)) = x(t + ∆t).

3.2 State Space Subdivision
To get a discrete and finite state description, the continuous and in-
finite state space has to be bounded and subdivided. The restriction
to a finite region is simply done by a user defined start area, com-
prising the considered system behavior. This causes special border
problems, which will be discussed later. However, it does not im-
pact the correctness of the model checking result because in real
world systems there is alway a natural bound for the state variable
values.
Since we do not have a digital environment, a natural subdivision
for the start area, given for example by threshold values of digital
state transitions, is missing [1]. Furthermore, to retain the analog
system’s behavior correctly, a sufficient number of subdivisions is
needed, especially in state space regions with highly nonlinear be-
havior. On the other hand, the number of discrete regions should
be as small as possible to reduce the total runtime.
The subdivision is done by rectangular boxes or hyper boxes, which
are not necessarily the best choice [6]. However, for implementa-
tion reasons boxes are the far most convenient data structure. Other
subdivision geometries might be considered during future improve-
ments.
At first, we start with a user controlled uniform subdivision in all
state space dimensions. Secondly, an automatic subdivision strat-
egy is used to react on different system dynamics, depending on
the actual state space region. The main target is to get a uniform
behavior in each state space box. The uniformity is measured by
the variation of the successor-vectors (sv(x) = s(x)− x), calculated
in the state space (Section 3.1). Namely, vector length lm and an-
gle am between different vectors are considered. Equations (4) and
(5) give the definition of these values. The function L(·) gives the
length of the delivered vector or vector component.

lm = 1− minx∈box L(sv(x))

maxx∈box L(sv(x))
(4)

am = max x∈box
i∈dim

L(sv(xi))

L(sv(x))
−min x∈box

i∈dim

L(sv(xi))

L(sv(x))
(5)

Box subdivision is continued recursively until lm and am drop under
a given threshold or a given subdivision depth is exceeded. Within
the expected accuracy, all boxes fulfilling the lm and am thresholds
do not contain fix points. This is, because fix points are always sur-
rounded by regions with ununiform behavior in terms of Equation
(4) and (5) (see midpoint in Figure 1). This information is stored
and used in the connection relation algorithm (Section 3.3).
Additional subdivisions are applied, if the successor-vectors in a
region are too short in relation to the box size. This occurs mainly
in regions where the system is strongly nonlinear, which implies
∆t to be very small. Each box in the state space will represent a
single state in the discrete model. Thus, the set of i states is given
by Q = {box1,box2, ...,boxi}.

Figure 1: Automatic state space subdivision.

The result of automatic subdivision for a simple example, given by
{ẋ1 = x1, ẋ2 = x2}, is shown in Figure 1. According to the unifor-
mity values, box size is getting smaller in the middle of the picture,
until the maximum subdivision depth is reached.

3.3 Connection Relation
The last step in getting a discrete system model is the connection
relation between state space regions. In Section 3.1 successor states
for single state space points have been defined (s(·)). Using this
point to point relation, the target region rtarget is given by the set of
all target points associated with a test point within the state space
region rtest (see Equation (6)), as illustrated by the gray regions in
Figure 2. We call this exact transformation T1(·).

rtarget1 = {s(y) | y ∈ rtest}= T1(rtext) (6)

Since it is not practical to calculate a huge or - mathematically -
infinite number of successor-vectors for each box, a good estima-
tion or inclusion of the target region is needed. Three different
approaches will be discussed.

x 2

x 1

1 2

43

5 6

r t e s t

r t a r g e t 1
R t a r g e t 1

Figure 2: State space connection relation using T1.

An inclusion rtarget2 can be calculated using interval analysis [10].
This approach provides an exact and overestimated solution. That
means, the correct solution rtarget1 is fully included in rtarget2.
However, rtarget2 might be much larger than rtarget1. This effect
is called overestimation and might be a serious problem for large
systems [5]. Moreover, this approach is very time consuming.

rtarget2 = Tinterval(rtest) = T2(rtest)⊇ rtarget1 (7)

A more practical but also less accurate way to approximate the tar-
get region is to choose a number of test points ptest within the test
region and to calculate the dedicated target points ptarget . The tar-
get region rtarget3 can be approximated using an appropriate inclu-
sion of these points. As we will see below, an inclusion operation
is also needed while expanding the target regions to the actual state
space regions. I.e. these two steps can be combined. Even only a

few test points may give a reasonable target approximation, but the
region rtarget3 might be under- or overestimated.

ptest3 = {s1,s2, ...,sn} , si ∈ rtest (8)

rtarget3 = {inclusion(s(y)) | y ∈ ptest3} (9)

= T3(rtest)' rtarget1 (10)

It is shown in [7] that T3 is surely overestimated if all corner values
are used as test points and if s(·) can be assumed to be monotonic.
Following the argumentation in [3], T3 can also be made rigorous
using Lipschitz constants L in each state space dimension. Using a
grid of test points, spaced by h, one can calculate a extension diam-
eter dex = Lh for the target points. Expanding each target point by
this diameter dex in each dimension gives a set of boxes. The union
of these boxes is an overestimated target approximation rtarget4.

rtarget4 =
{

expand(Lh)(s(y)) | y ∈ grid(h,rtest)
}

(11)

= T4(rtest)⊇ rtarget1 (12)

All discussed target regions do not fit into the state space subdivi-
sions used. Therefore, a second step is needed to extend these re-
gions to legal sets of boxes. For example, region Rtarget1 (hatched
areas in Figure 2) is given by the set of all boxes having contact with
the target region rtarget1. Fortunately, this operations is always an
overestimation and does therefore not impact the correctness of the
above results. Until now, only the third operation T3(·) has been
implemented. It has been shown that a number of 5-8 random test
points are sufficient for the target box approximation.
Some additional steps are needed to optimize the connection rela-
tion for some corner cases. Namely, these are prevention of long
successor-vectors, resulting in a box over-jump, boxes with self-
connection and boxes with no connections to other boxes due to
short successor-vectors. The last two conditions are unphysical if
the box does not contain fix points (Section 3.2). As we have al-
ready mentioned in Section 3.1, no explicit time relations are con-
sidered. It might be useful or necessary in future implementations
to store not only the connection relation R⊆ Q×Q but rather this
relation combined with the related transition time delays.
Until now, we have not discussed how to model the input values
in the discrete extended state space. There are mainly two extreme
assumptions for the transition behavior: Firstly, the input values
do not change at all. That means, the model is build up as de-
scribed before for several constant input values. There will be no
connection between states with different input values. The second
assumption is that the input value can change instantaneously over
the whole input value range. A state space region has therefore not
only connections to regions at the same input level but additional
connections to the neighbor boxes in terms of input values. As we
will see later, both of these input models are useful for certain con-
ditions to be checked.

4. ANALOG CTL MODEL CHECKING
Given the subdivided state space and the connection relation, the
continuous problem has been transfered into a discrete model. In
this way, it is possibly treatable by digital model checking tools.
However, these tools and also the model checking languages are
not well suited for the generated models and the description of ana-
log properties. In particular, the intensively used BDD structures
are not helpful for this kind of models, because set of states can
not efficiently be described by binary state variable combinations.
Therefore, a modified model checker has been developed, based on
the basic CTL algorithms described in [2]. There are some algo-
rithmic modifications due to the special need of the analog model,

explained below. The language has been extended by a minimal set
of operations enabling the work on analog models. Additionally,
the results are visualized graphically. The meaning of the CTL op-
erators is the same as in digital model checkers. The following
table gives a syntax overview on the classical CTL language (13):

φ := a | φ◦φ | ¬φ | .� φ | .φ U φ (13)

φ := b∗ v | φ◦φ | ¬φ | .� φ | .φ U φ (14)

a boolean variable

b continuous variable
v real value
∗ analog > → greater

operators < → smaller

◦ boolean ∨ → or
operators ∧ → and

¬ ¬ → not
. path E → on some path

quantifiers A → on all paths
� temporal X → next-time

operators F → eventually
G → always

U U → until

For example the formula Θ = AF(state1) can be read as follows:
All paths starting in a state within Θ will eventually reach a state in
which state1 is true. It is obvious, that this language is not sufficient
for analog model checking, since it is not possible to describe sets
of states in a continuous state space. Therefore, the language has
been expanded (14) by operators to describe half planes in the state
space, e.g. (x1 >−13.2546). In combination with the boolean op-
erators this enables the definition of arbitrary Manhattan polytopes.
If the threshold values used in the CTL formula are not already
subdivision values in the state space, they have to be added before
executing the CTL formula. This makes the discrete model not
only depend on the analog system but also on the CTL formula
used, which is another difference to digital model checkers.
Some CTL operations are not clearly defined for analog systems.
For example, the time quantifier “X - at the next time step” depends
on the time step ∆t used. As we have seen in Section 3.1 the time
step is not always the same for the whole state space. Therefore,
this operation is not reasonable in analog model checking. The
other operations can be used in the same manner as in digital.
Obviously, this language is not very powerful describing analog
design specifications. This has two reasons. Firstly, we want to
follow the digital model checking ideas as far as possible without
major changes, secondly, useful or necessary expansions have not
been applied yet in the prototype tool. However, it will be shown
below that it is possible to check some analog properties even with
this minimal set of operations.

4.1 Border Problems
Due to the restricted state space, the border boxes get a special
status, because at least one box face is connected to the outside area.
Since this area is not considered in the system model, there are no
connections from or to the outside area in the connection relation,
even if there should be some in the none restricted case. During the
CTL evaluation, the border boxes will behave incorrectly.
Consider for example differential equation (15) and CTL formula
(16) in the restricted state space (x = ([−5 .. 5], [−5 .. 5])).

{ẋ1 = 1, ẋ2 = 0} (15)

EG((x2 > 1.0) & (x2 < 2.0)) (16)

Theoretically, the region defined in (16) is not restricted in dimen-
sion x1, but in our case it is, due to the given state space area. The
theoretical result of (16) is ((x2 > 1.0) & (x2 < 2.0)) whereas we
get /0 in the restricted case, because some border boxes have no suc-
cessor box. To avoid these problems, the border boxes are treated
specially, depending on the CTL formula. As a result, the border
boxes are not part of the model checking result and have to be omit-
ted during interpretation.

4.2 Experimental Results
Three small nonlinear examples are used to show the capability of
the proposed tool. The first one in a simple Schmitt trigger circuit.
Secondly, a Biquad lowpass filter including two state variables is
shown and the last example is a tunnel diode oscillator.

4.2.1 Schmitt Trigger Example
The inverting Schmitt trigger consists of an opamp behavioral mod-
el, two resistors, and an output capacitance shown in Figure 3. The
opamp has an open loop gain of 10000. The output voltage restric-
tion is ±5 V and the maximum output current is 80 mA.

R 2

R 1

V i n V o u t

C 1

Figure 3: Schmitt trigger circuit.

Resistors R1 and R2 are both set to 10 kΩ. Thus, the switching
threshold is about±2.5 V and the output voltage varies between +5
V and -5 V. This circuit has only one state, namely, the output volt-
age. Additionally, it has one input signal Vin. To consider all states
that might occur in the circuit, the extended state space is chosen to
be Vout = [−7.7 .. 7.7] and Vin = [−7.7 .. 7.7]. The most interesting
feature of the Schmitt trigger function are the switching properties
for one output state to the other. Formulating this by CTL results
in: Φ1 = EF(Vout < −4.5). Φ1 is the set of states in which a path
exists that will eventually reach the region Vout <−4.5. We choose
the constant input value model for this calculation. The collection
of boxes fulfilling this condition is shown in Figure 4 in light gray.

0 1 2 3 4 5 6 7 V

1

2

3

4

5

6

7

Vin

out

Figure 4: Schmitt trigger model checking result.

It is clearly seen, that above Vin ' 2V the circuit always switches to
the negative output state. Below this point the switching depends
on the output state Vout , but since this will be either 5 V or -5 V
there will occur no switching in this region. An equivalent formula
can be applied to find the positive switching conditions.

For analog designers such graphical output might be useful. In
general however, one would expect only true or f alse as output
for a CTL formula. To derive this, the checking condition can be
expanded by an additional statement. For example

Φ2 = EF(Vout <−4.5) & ((Vout >−1) & (Vin <−1)). (17)

In this case the output is an empty set, which means there is no
path form region ((Vout >−1) & (Vin <−1)) to the negative output
state. CTL formula (17) is f alse for the whole state space. Every
CTL formula can be changed in the same manner to get a binary
result. However, for this contribution we prefer graphical results
since they gives more insight into the algorithms.

4.2.2 Biquad Lowpass Filter
The second example is a 2nd order Biquad lowpass filter, shown
in Figure 5. The opamp model is the same as in the Schmitt trig-
ger example but the maximum output voltage range is restricted to
±1.5 V. This circuit has two state variables, namely the capacitor
voltages Vc1 and Vc2. Using a charge oriented capacitor model will
normally lead to the two charges as state variables. We changed
this, because it seems us more convenient to think in voltages than
in charges. The corner frequency ωc and the damping factor d are
given by Equations (18) and (19).

ωc =
1√

R1R2C1C2
(18)

d = 0.5C1ωc(R1 + R2) (19)

R 2R 1

V i n V o u t
C 1

C 2

Figure 5: 2nd order Biquad lowpass filter.

We use two different value sets for the resistors and capacitors, one
with ωc = 100 s−1 and d = 0.5 and the second at the same fre-
quency but with d = 2. The property to be checked in this ex-
ample is the occurrence of overshooting in the two filters. Since
these properties should be proved for arbitrary input signals, the
appropriate input value model is chosen. The input signal range is
Vin = [−2 .. 2], so that the nonlinearity due to the restricted output
voltage will effect the system behavior. The state space is restricted
to Vc1 = [−4 .. 4] and Vc2 = [−2.5 .. 2.5].
The initial state in this example is assumed to be the DC operat-
ing point at Vin = 0. The question is, which states are reachable
from this point for arbitrary input signals within the given range?
Directly transfered to CTL the question reads as Equation (20). In-
stead of a single start point a start area is used, that is for example
a box surrounding the initial point. Next, operation EF is used
to check which states have a path that will eventually reach this
starting area. However, the direction of this operation is wrong.
Inverting time (iv) gives the correct formula (Equation (20)).

Φ3 = iv(EF((Vc2 < 0.5) & (Vc2 >−0.5) & (Vc1 < 0.5) &

(Vc1 >−0.5) & (Vin < 0.5) & (Vin >−0.5)))
(20)

This equation is applied to both circuits. The results are shown
in Figure 6 and Figure 7. The black box indicates the state space
borders. The input voltage axis is perpendicular to the paper. As
expected, in the highly damped circuit state Vc1 remains within a

range of ±2 V whereas it reaches higher levels in the less damped
case. It turns out that the opamp output restriction of ±1.5 V does
not have an impact on this result. This is because states Vc1 and Vc2
are not restricted by the opamp output.

Figure 6: Result of Equation (20) for the highly damped circuit.

Figure 7: Result of Equation (20) for the less damped circuit.

To check the situation in more detail, one might be interested in the
circuit’s fix points. This is achieved by formula Φ4 = iv (EG(1)) ,
where 1 denotes the whole state space.
To achieve the requested result, the input model has to be changed
to constant input values, because it does not make sense to look
for fix points while the input value may change arbitrarily. The
graphical result is shown in Figure 8. The turning point due to the
output voltage saturation is clearly visible.

Figure 8: Fix points in the highly damped lowpass circuit.

The calculation of the discrete model in this example takes about
three hours on a Sun ULTRA-II 300 MHz. Once the model is gen-
erated the calculation of CTL formulas is quite fast. It takes only
seconds or a few minutes. Most of the runtime is spent in the nu-
merical equation solver. Until now, a self written Newton solver

is used, so that a large improvement can be expected by using a
commercial analog simulator for this task.
However, due to the n-dimensional subdivision algorithm, the to-
tal runtime complexity is exponential in the number of state vari-
ables, which is a serious problem for all state space exploration
algorithms. Exponential runtime complexities are also known from
digital model checking tools, but the use of efficient algorithms
and data structures (e.g. BDDs) has extended the applicability for a
wide range of circuits. Since similar techniques have not been uti-
lized in the presented tool, a successful use of analog model check-
ing in the future is likely, especially because the size of analog parts
in todays designs is small compared to digital modules.

4.3 Tunnel Diode Oscillator
The analog system used in our third example is a simple tun-
nel diode oscillator circuit shown in Figure 9. The input volt-
age Vin is set to 2.6 V. In this operating point the circuit starts
an oscillation automatically. The bounded state space is given by
VC = [−0.2 .. 4.4] and IL = [−0.2 .. 4.0].

R L

C
V CV i n

I L

Figure 9: Tunnel diode oscillator circuit.

In a digital system a stable oscillation might be proved by AG(AF
(state1)) & AG(AF(state1)) [9]. This means: “On every compu-
tational path state1 is true at some future time (AF(state1)). This
condition is true for all future time (AG(·)). Simultaneously, this
expression holds for state1”. By this, the expression states that
state1 switches between true and f alse for all future time. The
model checking algorithm will find all points in the state space
which fulfill this condition. We choose the same expression for
the analog verification tool, except of the inner terms. They are re-
placed by a translation to the analog world, that is, the current IL is
larger or smaller than some value.

Φ5 = {AG(AF(IL > 2.2)) & AG(AF(IL < 1.6))} (21)

The collection of boxes fulfilling this condition is shown in Fig-
ure 10 in light gray. Except of some border boxes and the middle
region, the whole state space fulfills formula (21).

0 1 2 3

0

1

2

3

I

U

L

C

Figure 10: Model checking results Φ5 and Φ6.

We can conclude that nearly the whole plane will float into an stable
orbit. The next question might concern the possible orbit geometry.
We generate this by applying Φ6 = iv (EG(Φ5)) ;. By inverting the
time, we exclude all points floating out of the orbit region. Since

the orbit is stable, there is always a way out of the orbit at negative
time. Therefore, operator EG is used instead of AG (resulting in an
empty plane). The result Φ6 contains the whole orbit calculated by
an ordinary simulation (black line in Figure 10).

5. CONCLUSION
To apply digital model checking ideas to analog systems a discrete
system model is needed. The main algorithmic task is to develop
a state transition model in such a manner that the main nonlinear
and dynamic properties of the analog system are retained. This
is done using an automatic state space subdivision method and an
algorithm developing the connection relation.
The implemented CTL model checker is based on digital algo-
rithms, but it is extended by some operations, enabling the defi-
nition of analog properties in CTL. The capability of this language
is shown by two experimental results. However, it is clear that the
language is not sufficient for all analog properties. Especially, ex-
plicit time dependent properties, like slew rates or delays, are not
covered until now.
The nonlinear examples show the use of the tool in analog design.
However, applying CTL to analog systems, seems even more un-
common than doing so in digital. The result of CTL formulas can
either be shown graphically or - even more formally - as a binary
true/ f alse decision. The runtime is quite high for the discrete
model generation, but there is a big optimization potential due to
the prototype implementation.
As far as we know, the presented tool is the first approach to model
checking for nonlinear analog systems. That opens a wide range
of possibilities in applying formal methods not only to digital and
hybrid systems but also to analog systems. Therefore, it is a step
towards a more formalized analog design flow.

6. REFERENCES
[1] R. Alur, T. Henzinger, G. Lafferriere, and G. Pappas. Discrete

abstractions of hybrid systems. Proceedings of IEEE, (88):971–984,
2000.

[2] J. Burch, E. Clarke, D. Long, K. McMillian, and D. Dill. Symbolic
model checking for sequential circuit verification. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems,
13(4):401–424, 1994.

[3] M. Dellnitz, G. Froyland, and O. Junge. The algorithms behind gaio -
set oriented numerical methods for dynamical systems. In B. Fiedler,
editor, Ergodic Theory, Analysis, and Efficient Simulation of
Dynamical Systems, pages 145–174. Springer-Verlag, Berlin, 2001.

[4] M. Günther and U. Feldmann. Cad-based electric circuit modeling in
industry, part i: Mathemetical structure and index of network
equations. Suveys on Mathematics for Industry, 8(2):97–129, 1999.

[5] L. Hedrich and W. Hartong. Approaches to formal verification of
analog circuits. In P. Wambacq, editor, Low-Power Design
Techniques and CAD Tools for Analog and RF Intergrated Circuits,
pages 155–191. Kluwer Academic Publishers, Boston, 2001.

[6] T. Henzinger and P.-H. Ho. Algorithmic analysis of nonlinear hybrid
systems. CAV ’95: International Conference on Computer-Aided
Verification, LNCS, 939(7):225–238, 1995.

[7] R. Kurshan and K. McMillan. Analysis of digital circuits trough
symbolic reduction. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 10(11):1356–71, 1991.

[8] R. März. Numerical methods for differential algebraic equations.
Acta Numerica, pages 141–198, 1991.

[9] K. McMillian. Symbolic model checking. Kluwer Academic
Publishers, Boston, 1993.

[10] A. Neumaier. Interval methods for systems of equations. Cambridge
University Press, Cambridge, 1990.

[11] A. Puri. Theory of hybrid systems and discrete event systems.
Dissertation, University of California ar Berkeley, 1995.

