Model Checking and the
State Explosion Problem

Edmund M. Clarke', William Klieber!, Milog Novaéek?, and Paolo Zuliani!

! Carnegie Mellon University, Pittsburgh, PA, USA
2 ETH Ziirich, Ziirich, Switzerland

Abstract. Model checking is an automatic verification technique for
concurrent systems that are finite state or have finite state abstractions.
It has been used successfully to verify computer hardware, and it is be-
ginning to be used to verify computer software as well. As the number of
state variables in the system increases, the size of the system state space
grows exponentially. This is called the “state explosion problem”. Much
of the research in model checking over the past 30 years has involved de-
veloping techniques for dealing with this problem. In these lecture notes,
we will explain how the basic model checking algorithms work and de-
scribe some recent approaches to the state explosion problem, with an
emphasis on Bounded Model Checking.

1 Introduction

Ensuring the correctness of software and hardware is an issue of great impor-
tance, as failures often cause considerable financial losses and can even have fatal
consequences in safety-critical systems. This has led to an increased interest in
applying formal methods and verification techniques in order to develop high-
assurance systems. Among the most successful techniques that are widely used
in both research and industry is model checking.

Model checking is a collection of automatic techniques for verifying finite-
state concurrent systems. This framework was developed independently in the
early 1980’s by Clarke and Emerson [7] and by Queille and Sifakis [21]. Tradi-
tionally, model checking has been mainly applied to hardware. However, thanks
to the tremendous progress that the research community has made over the past
three decades, model checking has been successfully applied to many aspects of
software verification. The main obstacle that model checking faces is the state
ezxplosion problem. The number of global states of a concurrent system with
multiple processes can be enormous; it is exponential in both the number of
processes and the number of components per process.

* This research was sponsored by the GSRC under contract no. 1041377 (Prince-
ton University), the National Science Foundation under contracts no. CNS0926181
and no. CNS0931985, the Semiconductor Research Corporation under contract
no. 2005TJ1366, General Motors under contract no. GMCMUCRLNV301, the Air
Force Office of Scientific Research (BAA 2011-01), and the Office of Naval Research
under award no. N000141010188.

In these lecture notes, we will explain how the basic model checking algo-
rithms work and describe some recent approaches to the state explosion problem,
focusing in particular on bounded model checking.

1.1 Organization of these Lecture Notes

The lecture notes are organized as follows. In Section 2 we describe how reactive
systems can be modeled as finite-state transition systems. Section 3 provides an
overview of temporal logic, the formal notation in which we specify the desired
behavior of a system. We concentrate on three main temporal logics: Linear
Temporal Logic (LTL), Computation Tree Logic (CTL), and CTL*. In Section
4 we define the model checking problem and provide an overview of a basic
model-checking algorithm for CTL. We also summarize the main advantages
and disadvantages of model checking. In Section 5 we introduce the main dis-
advantage of model checking — the state explosion problem. We will explain
what this problem is, what its implications are, and what key breakthroughs
have been made over the past three decades. Finally, in Section 6 we focus on
one such breakthrough: Bounded Model Checking (BMC). In particular, BMC
has overcome a number of issues from which model checking suffers, and it has
enabled the application of model checking techniques to a wide range of software
and hardware systems. Section 6 describes BMC and its application in greater
detail.

2 Modeling Concurrent Systems

In order to reason about the correctness of a system, one needs to specify the
properties that the system should satisfy, i.e., the intended behavior of the sys-
tem. Once we have such a specification we need to construct a formal model
for the system. Such a model should capture the basic properties that must be
considered in order to verify the behavioral specification (the so called atomic
propositions). Furthermore, to make the verification simpler, the model should
abstract away all the details that have no effect on the correctness with respect
to the specification.

In these notes we shall focus on concurrent (reactive) systems and their tem-
poral behavior. A reactive system may frequently need to interact with its envi-
ronment (including the user), and often do not terminate. A simple, functional
model is thus not adequate to model the behavior of a reactive system. Instead,
we use Kripke structures, a type of state-transition graphs.

A Kripke structure consists of a finite set of states, a set of state transitions
(i.e., a relation over the states), and a labeling function which assigns to each
state the set of atomic propositions that are true in this state. In such a model,
at any point in time the system is in one of the possible states, and the transition
relation describes how the system moves from a state to another over one time
step. The formal definition is the following.

Definition 1. A Kripke structure (or state transition system) M is a

quadruple M = (S, So, R, L) consisting of

1. a finite set of states S;

2. a set of initial states Sy C S;

3. a total transition relation R C S x S; that is, for every state s € S there
exists a state s' € S such that (s,s’) € R;

4. a set AP of atomic propositions (Boolean functions over S) and a labeling
function L : S — 247 that labels each state with the set of atomic proposi-
tions that hold in that state.

A path 7 in M from a state sy is an infinite sequence of states m = sgs1s3. ..
where for all ¢ > 0, (s, $;+1) € R.

3 Temporal Logic

Given a state transition system (Kripke structure) M, we would like to reason
about certain properties that the system should satisfy. For example, we might
want to ask the following questions:

— If we start from any initial state of M, is it possible to reach an error state!?
— Is every request eventually acknowledged?
— Can the system be always restarted??

In this section we describe several formalisms for specifying temporal prop-
erties of reactive systems. In particular, we focus on temporal logics, which can
be used to concisely describe properties of paths generated by Kripke structures.
For example, a temporal logic formula might specify that some particular state
is eventually reached in a path, or that an error state is mever reached in any
path. Such properties are specified using temporal operators. Here we will focus
on the following temporal logics:

— Linear Temporal Logic (LTL), in which temporal operators are provided for
describing events along a single computation path (linear time).

— Computation Tree Logic (CTL), in which the temporal operators quantify
over the paths that are possible from a given state (branching time).

— CTL", an extension of CTL that combines both branching-time and linear-
time operators.

We first describe CTL*, as it is the most expressive of the three temporal logics
mentioned above.

3.1 CTL”

CTL" [8] subsumes both LTL and CTL. Formulas in CTL" describe properties
of computation trees. The tree represents all the possible paths of a Kripke struc-
ture, and it is formed by infinitely unwinding the state transition graph from
the initial state as illustrated in Fig. 1.

! This is an example of a safety property.
2 This is an instance of a liveness property.

Fig. 1: Computation Tree. The initial state of the state transition system on the left is
the state labeled A.

CTL* formulas consist of atomic propositions, Boolean connectives, path
quantifiers, and temporal operators. There are two path quantifiers, A and E,
that describe the branching structure of the computation tree:

— Af (“for all computational paths”) is true iff the formula f holds along all
the paths in the computation tree;

— Ef (“for some computation path”) is true iff the formula f is true along
some path in the computation tree.

The path quantifiers A and E are dual, in fact:

Af =-E(~).
There are five basic temporal operators:

— X f (“next time”) is true iff the formula f holds in the second state of the
path.

— F f (“eventually”, “in the future” or “sometimes”) is true iff the formula f
will hold at some state on the path.

— G f (“always” or “globally”) is true iff the formula f holds at every state on
the path.

— f U g (“until”) is true iff there is a state on the path where g holds and at
every preceding state on the path, f holds.

There are two types of CTL* formulas: state formulas, whose truth is defined
over states, and path formulas, whose truth is defined over paths. We recall that
CTL* formulas are interpreted over a given Kripke structure (Definition 1).

The syntax of state formulas is defined as follows:

— an atomic proposition p € AP is a state formula,

— if f and g are state formulas, then —=f, f V g, and f A g are state formulas,
— if f is a path formula, then A f and Ef are state formulas.

The syntax of path formulas is defined as follows:

— if f is a state formula, then f is also a path formula,
— if f and g are path formulas, then =f, fVg, fAg, Xf,Ff, G f,and fUg
are path formulas.

We have the following formal definition. It is customary to assume that AP
contains true, the atomic proposition which identically holds.

Definition 2 (CTL*). The syntaz of CTL" is given by the grammar:

pu=p|-9|oVel| Ay | Ep (state formulas)
Yu=¢ | W[YVY [XY [Fy |Gy [Uy (path formulas)
where p € AP.

We now define the semantics of CTL*. Let 7% denote the suffiz of path 7
starting from the i-th state. Given a state transition M and a state formula
¢, the notation M, sg = ¢ is interpreted as “in M at state sg, the formula ¢ is
true”. Similarly, given a path formula 1, the notation M, 7 |= 1) is interpreted as
“in M, the formula % is true along the path 7”. Let ¢; and ¢5 be state formulas
and let 11 and 12 be path formulas. The semantics of CTL* is as follows:

M,skE=p & pe L(s)

M, s |E ¢y < M,s ¢

M,sE¢p1 Vs & M,skE ¢ or M,s = ¢y

M,sEdp1 NPy & M,skE ¢ and M, s = ¢o

M,s = E ¢ < there exists a path 7 from s such that M, 7 =
M,s E A Y < for all paths 7 from s, M, 7 |= ¢,

M, 7w = ¢y < M, s = ¢1, where s is the first state of 7
M, 7 = & M7 E Y

M,mE{1 VY & M,y or M,m 1
MmNy & M,mE=y; and M, 7 1y

M, 7 =Xy & M,7T1'=¢1

M, 7= F & there exists k > 0 such that M, 7% = ¢,
M, 7= Gy & foralli>0, M,7% =y

M,m =1, Uty < there exists k > 0 such that M, 7% |= 1),

and for all 0 < j < k, M, 7/ =1y
exists a k < j such 7% |= 1o
Note that we can define the temporal operators F and G using only U in the
following way (syntactic sugar):
Ff =trueUf
Gf = -F(f)

Also, one can show that any CTL" formula can be written by using the operators
-V, X, U, and E.

3.2 Linear Temporal Logic (LTL)

Pnueli was the first to use temporal logic for reasoning about concurrent pro-
grams [20]. In particular, Pnueli used linear temporal logic (LTL), a sublogic of
CTL*. Formulas in LTL are of the form A f, where f is a LTL path formula as
follows:

— if p € AP, then p is a path formula;
— if f and g are path formulas, then =f, fVg, fAg, Xf,Ff, G f,and fUg
are path formulas.

Therefore, LTL restricts state formulas to be just atomic propositions.

Definition 3 (LTL). Linear temporal logic formulas are of the form A, with
¥ given by the grammar:

Yu=p| [PV | Xy U
where p € AP.
The semantics of LTL formulas is the same as for CTL* path formulas.

Ezample 1 (LTL formulas). Note that since LTL formulas are always quantified
by an outer A, the LTL formula F G p is the same as A(F G p) in CTL*. We can
write G (req = F ack) for a property specifying that every request in execution is
eventually acknowledged. The formula (G F enabled) = (G F executed) specifies
that if an event is infinitely often enabled then it will be infinitely often ezecuted.
(The ‘implication’ operator = is defined by 11 = s = 1 V 1bs.)

3.3 Computation Tree Logic (CTL)

Another useful sublogic of CTL" is CTL [7,21]. In CTL, each basic temporal
operator must be immediately preceded by a path quantifier (i.e., either A or
E). In particular, CTL can be obtained from CTL* by restricting the form of
path formulas as follows:

— if f and g are state formulas, then X f, F f, G f, and f U g, are path
formulas.

Definition 4 (CTL). Computation tree logic formulas are inductively defined
as follows:
pu=p| 0| Vel Ay | Ey (state formulas)
YV:=Xo|Fod|God|opU¢ (path formulas)

where p € AP.

Ezample 2 (CTL formulas). We can write EF (W hiteWins) for a property spec-
ifying that there is a way for a white player to win, and AG (EF Restart) can
be written for a property specifying that it is always possible to restart from any
state.

It can be shown that any CTL formula can be written in terms of =, V, EX , EG,
and EU. The semantics of four widely used CTL operators is exemplified in
Fig. 2.

Fig. 2: Basic CTL operators.

Note that in CTL the equivalence A f = -E—f does not hold in general. The
equivalence does hold for X, G, and F. However, for U we have that:

A[fUg]=-E[~g U (=f A=g)] A "EG ~g .

3.4 Expressiveness of Temporal Logics

Even though it might seem that CTL is more expressive than LTL, it is not
the case. For example, the LTL formula A (F G p) cannot be expressed in CTL.
Similarly, the CTL formula AG (EF p) cannot be expressed in LTL. From these
examples it follows that CTL and LTL are incomparable. However, they are
both sublogics of CTL*, and in fact CTL* is strictly more expressive than both
LTL and CTL. For example, the CTL* formula A(F G p) vV AG (EF ¢) cannot
be expressed in either CTL or LTL. The expressiveness of these three logics is
illustrated in Fig. 3.

CTL*

Fig. 3: Expressiveness of CTL, LTL, and CTL".

4 Model Checking

Since its development in the early 1980’s, model checking has been applied to
a large number of problems, such as complex sequential circuit designs and
communication protocols. Model checking overcomes a number of problems that
other approaches based on simulation, testing, and deductive reasoning suffer
from. To mention a few, approaches based on testing are not complete, and
deductive reasoning using theorem provers is generally not fully automated since
it has much higher complexity. On the other hand, model checkers are ‘push-
button’ software tools, they do not require any proofs, and they can provide
diagnostic counterexamples when a universally path-quantified specification (i.e.,
a specification of the form A ¢ where ¢ is a CTL* formula) is found to be false.
Thanks to these and other features, model checkers have become very popular
for (hardware) verification, and are also often used for debugging purposes.
A model checker (see Fig. 4) is usually composed of three main parts:

1. a property specification language based on a temporal logic;

2. a model specification language — a formal notation for encoding the system
to be verified as a finite-state transition system, i.e., the model;

3. a verification procedure — an intelligent exhaustive search of the model state
space that determines whether the specification is satisfied or not. In the
latter case, the procedure provides a counterexample path exhibiting the
violation of the specification.

We can define the model checking problem as follows.

Definition 5. Let M be a state-transition graph and let f be a temporal logic
formula. The model checking problem is to find all the states s € S such that

M,skE=f.

In [7], Clarke and Emerson introduced CTL and presented a corresponding
verification procedure. In an independent work, Queille and Sifakis [21] intro-
duced similar ideas. We now briefly explain a CTL verification procedure more
efficient than the original one presented in [7].

Recall that we are given a Kripke structure M = (S, Sy, R, L) and a CTL
formula f. Our task is to compute the set {s € S | M,s = f}. The CTL

%

| Program or Circuit | | True or Counterexamples |

' Model Checker

Fig.4: A Model Checker with Counterexamples

model checking algorithm works by computing for each state s the set label(s)
of subformulas of f that are true in s. When the computation of such sets is
finished, we will have that M,s |= f iff f € labels(s). To compute each set
label(s) we proceed as follows. Initially, every state is labeled with the atomic
propositions that hold in the state, i.e., label(s) = L(s), for all s € S. We
then proceed recursively to label each state with the subformulas of f that hold
in that state, starting from the most deeply nested subformulas, and moving
outward to finish with f itself. Since any CTL formula is expressible in terms of
-, V,EX ,EU, and EG, the verification procedure need only to consider these
types of CTL formulas.

The Boolean operators — and V are easily handled. For a formula of the type
—f, we label (by “—f”) the states that are not labeled by f. For a disjunction
f Vg, welabel (by “f V g”) the states that are labeled by f or by g. To han-
dle formulas of the form EX f, we label the states from which there exists a
transition to a state labeled by f.

For E[f U g], we first need to find all the states labeled by g. Then, from
those states we follow the transition relation backwards (i.e., using R~!) to find
all the states that can be reached by a path in which every state is labeled by
f. The states selected in this way are labeled by “E[f U g]”. In Fig.4 we give
pseudocode for a procedure CheckEU that implements the labeling for formulas
of the type E[f U g]. Of course, it assumes that the subformulas f and g have
been already processed, i.e., all the states satisfying either f or g have been
labeled accordingly.

The procedure for EG f is based on the decomposition of the state-transition
graph into strongly connected components, and it is slightly more complex. The
interested reader can find details in [11, Chapter 4].

It can be shown that the time complexity of the algorithm is O(| f|-(|S|+|R])),
where |f] is the number of different subformulas of f. Because the algorithm
explicitly accesses all the states of the transition system, this approach is also
known as explicit-state model checking.

10

function CheckEU(f, g) {
T := {s | g € label(s)};
for all s € T
label(s) := label(s) U {E[f U gl};
while T # 0 {
choose s € T;
T :=T)\ {s};
for all t such that R(t,s) {
if E[f U g] ¢ label(t) and f € label(t) {
label(t) := label(t) U {E[f U gl};
T :=T U {t};

Fig. 5: Explicit-state procedure for labeling the states satisfying E[f U g].

4.1 Pros and Cons

Model checking is a very powerful framework for verifying specifications of finite-
state systems. One of the main advantages of model checking is that it is fully
automated. No expert is required in order to check whether a given finite-state
model conforms to a given set of system specifications. Model checking also works
with partial specifications, which are often troublesome for techniques based on
theorem proving. When a property specification does not hold, a model checker
can provide a counterexample (an initial state and a set of transitions) that
reflects an actual execution leading to an error state. This is the reason why
tools based on model checking are very popular for debugging.

One aspect that can be viewed as negative is that model checkers do not
provide correctness proofs. Another negative aspect is that model-checking tech-
niques can be directly applied only to finite-state systems. An infinite-state sys-
tem can by abstracted into a finite model; however, this leads to a loss of preci-
sion. Perhaps the most important issue in model checking is the state-explosion
problem. It is apparent from the complexity of the CTL model checking algo-
rithm that its practical usefulness critically depends on the size of the state
space. Basically, if number of states grows too large, so does the complexity of
the verification procedure, possibly making the technique unusable. In the next
Section we focus on the state explosion problem and on several possible methods
to combat it.

5 State Explosion Problem

The number of states of a model can be enormous. For example, consider a
system composed by n processes, each having m states. Then, the asynchronous
composition of these processes may have m” states. Similarly, in a n-bit counter,

11

the number of states of the counter is exponential in the number of bits, i.e., 2™.
In model checking we refer to this problem as the state explosion problem. All
model checkers suffer from it. Using arguments from complexity theory, it can be
shown that, in the worst case, this problem is inevitable. However, researchers
have developed many techniques that address the state explosion problem. These
techniques are frequently used in industrial applications of model checking. In
this section, we will concentrate on key advances that make model checking a
practical technique in both research and industry.

There have been several major advances in addressing the state explosion
problem. One of the first major advances was symbolic model checking with bi-
nary decision diagrams (BDDs). In this approach, a set of states is represented
by a BDD instead of by listing each state individually. The BDD representation
is often exponentially smaller in practice. Model checking with BDDs is per-
formed using a fized point algorithm. Another major advance is the partial order
reduction, which exploits independence of actions in a system with asynchronous
composition of processes. A third major advance is counterexample-guided ab-
straction refinement, which adaptively tries to find an appropriate level refine-
ment, precise enough to verify the property of interest yet not burdened with
irrelevant detail that slows down verification. Finally, bounded model checking
exploits fast Boolean satisfiability (SAT) solvers to search for counterexamples
of bounded length. In this Section we give a brief overview of the first three
techniques, while bounded model checking is explained in greater detail in the
next Section.

5.1 Fixed-Point Algorithms

The symbolic model-checking algorithm is based on fixpoint characterizations of
the basic temporal operators. For simplicity, we will consider only CTL model
checking, although similar ideas can used for LTL model checking (see, e.g.,
Section 6.7 of [11]). Let M = (S, S, R, L) be a finite state-transition system.
The set P(S) of all subsets of S forms a lattice under the set inclusion ordering.
For convenience, we identify a state formula with the set of states in which it
is true. For example, we identify the formula false with the empty set of states,
and we identify the formula true with S (the set of all states). Each element of
P(S) can be viewed both as a set of states and as a state formula (a predicate).
A function 7 : P(S) — P(S) will be called a predicate transformer.

Definition 6. We say that a state formula f is the least fixzed point (or respec-
tively greatest fized point) of a predicate transformer 7 iff (1) f = 7[f], and (2)
for all state formulas g, if g = 7[g], then f C g (respectively f D g).

Definition 7. A predicate transformer 7 is monotonic iff for all f,g € P(S5)
f C g implies 7(f) C 7(g).

A monotonic predicate transformer on P(.S) always has a least fixed point and a
greatest fixed point (by Tarski’s Fixed Point Theorem [23]). The temporal oper-
ators AF, EF, AU, and EU can each be characterized as the least fixed point

12

function Lfp(7) { function Gfp(7r) {
Q := false; Q := true;
while (Q # 7(Q) { while (Q # 7(Q) {
Q :=7(@; Q :=7(@;
} }
return Q; return Q;
} }

Fig. 6: Procedures for computing least and greatest fixed points

of a monotonic transformer. Similarly, the temporal operators AG and EG can
each be characterized as the greatest fixed point of a monotonic transformer:

AF f is the least fixed point of 7[Z] = f V AX Z.

EF f is the least fixed point of 7[Z] = f VEX Z.

AG f is the greatest fixed point of 7[Z] = f A AX Z.

EG f is the greatest fixed point of 7[Z] = f ANEX Z.

A[f U g] is the least fixed point of 7[Z] =g V (f AN AX Z).
E[f U ¢] is the least fixed point of 7[Z] = g V (f NEX Z).

We can calculate the least fixed point of 7 as follows. We define Uy = () and
U; = 7(U;—1) for i > 1. We first compute Uy, then Us, then Us, and so on, until
we find a k such that Up = Uix_;1. It can be proved that the U, computed in
this manner is the least fixed point of 7. To compute the greatest fixed point, we
follow a similar procedure. Pseudocode for both procedures is shown in Fig. 6.
In Fig. 7 we illustrate the computation for EF p.

U1 = pVEXUO
U2 = pVEXUl U3 = pVEXUZ

Fig. 7: Example of computing fixed point

13

5.2 Symbolic Model Checking with OBDDs

The main idea behind symbolic model checking is to represent and manipulate a
finite state-transition system symbolically as a Boolean function. In particular,
Ordered binary decision diagrams (OBDDs) [3] are a canonical form for Boolean
formulas. OBDDs are often substantially more compact than traditional normal
forms. Moreover, they can be manipulated very efficiently.

We consider Boolean formulas over n variables x1,...,x,. A binary decision
diagram (BDD) is a rooted directed acyclic graph with two types of vertexes,
terminal vertices’s and nonterminal verteres. Each nonterminal vertex v is la-
beled by a variable var(v) and has two successors, low(v) and high(v). Each
terminal vertex v is labeled by either 0 or 1 via a Boolean function value(v). A

BDD with root v determines a Boolean function f,(z1,...,2,) in the following
manner:

e If v is a terminal vertex then f,(x1,...,x,) = value(v).

e If v is a nonterminal vertex with var(v) = z; then f,(z1,...,x,) is given by

<_‘xi A flow(v) (xla e 7xn)> V (xz A fhigh(v) (xlv e 7xn)) .

Fig.8: OBDD for the formula (w A z) V (y A z), with ordering w < < y < z.

In an OBDD there is a strict total ordering of the variables z1,...,z, when
traversing the diagram from the root to the terminals. In Fig. 8 we illustrate the
OBDD for the formula (w A z) V (y A z), with variable ordering w < z < y < z.
Given an assignment to the variables w,z,y, and z, the value of the formula
can be decided by traversing the OBDD from the root to the terminals. At each
node, branching is decided by the value assigned to the variable that labels the
node. For example, the assignment (w = 0,2 = 1,y = 0,z = 1) generates in
the OBDD the traversal w — y RN 0, so the formula does not hold for this
assignment.

In practical applications, it is desirable to have a canonical representation for
Boolean functions. This simplifies tasks like checking equivalence of two formulas

14

and deciding if a given formula is satisfiable or not. Such a representation must
guarantee that two Boolean functions are logically equivalent if and only if they
have isomorphic representations. Two binary decision diagrams are isomorphic
if there exists a bijection H between the graphs such that

e terminals are mapped to terminals, and nonterminals to nonterminals,
e for every terminal vertex v, value(v) = value(H(v)), and
e for every nonterminal vertex v:

e var(v) = var(H(v)),

o H(low(v)) = low(H(v)), and

o H(high(v)) = high(H(v)).

A canonical representation for Boolean functions can be obtained by placing two
restrictions on binary decision diagrams [3]:

e The variables appear in the same order along each path from the root to a
terminal. (We write < y to denote that z is prior to y in this ordering.)
e There are no isomorphic subtrees or redundant vertexes in the diagram.

There exist efficient algorithms for operating on OBDDs. We begin with the
function that restricts some argument x; of the Boolean function f to a constant
value b. This function is denoted by f|,,—» and satisfies the identity

f|zi<—b(x17"' ,Z‘n) = f('r17"'7xi—1abaxi+la--- 7xn)~

If f is represented as an OBDD, the OBDD for the restriction f|;,.s is computed
by a depth-first traversal of the OBDD. For any vertex v which has an edge with
a vertex w such that var(w) = x;, we replace the edge by low(w) if b is 0 and by
high(w) if b is 1. If doing so renders vertex v redundant (i.e., if high(w) becomes
equal to low(w)), we must remove the redundancy to preserve canonicity. We
must also take care not to create a new vertex that is isomorphic to an existing
vertex.

All sixteen two-argument logical operations can be implemented efficiently on
Boolean functions that are represented as OBDDs. In particular, the complexity
of these operations is linear in the product of the size of the argument OBDDs.
The key idea for efficient implementation of these operations is the Shannon
expansion

=02 A flao) V(@A floet)-

Bryant [3] gives a uniform procedure called Apply for computing all 16 logical
operations. Let x be an arbitrary two-argument logical operation, and let f and
/' be two Boolean functions. To simplify the explanation of the algorithm we
introduce the following notation:

e v and v’ are the roots of the OBDDs for f and f;
e z =var(v) and 2’ = var(v').

We consider several cases depending on the relationship between v and v’.

e If v and v’ are both terminal vertexes, then f % f' = value(v) x value(v').

15

e If x = 2/, then we use the Shannon expansion

frf = (ﬁl'/\ (fle—o * f/|w<—0)) v (l‘/\ (flae1 * f/|w<—1))

to break the problem into two subproblems, which are solved recursively.
The root of the resulting OBDD will be a new node r with var(r) = z, while
low(r) will be the OBDD for (f|—o* f'|z—0) and high(r) will be the OBDD
for (fles * Flect).

o If v < &/, then f'|,0 = f'lo1 = f' since f’ does not depend on z. We
thus have that

fof = (2 A (floco * SV @A (Flaes * 1))

and the OBDD for f % f’ is computed recursively as in the second case.
e If 2/ < x, then the required computation is similar to the previous case.

The algorithm is made polynomial by using memoization:

e a hash table is used to record all previously computed subproblems;

e before any recursive call, the table is checked to see if the subproblem has
been solved. If it has, the result is obtained from the table; otherwise, the
recursive call is performed.

e The result must be reduced to ensure that it is in canonical form.

In Fig.9 we illustrate the construction of the canonical OBDD form for a simple
formula. It should be noted that the size of BDDs depends greatly on the chosen
variable order. For example, the BDD representing an n-bit comparator is linear
with a good ordering, but exponential with a bad ordering.

Symbolic Model Checking with BDDs. Ken McMillan implemented a version of
the CTL model checking algorithm using BDDs in the fall of 1987. Subsequently,
much larger concurrent systems could be handled than with explicit-state model
checking [5, 4]. State-transition graphs can be represented with BDDs as follows.
First, we must represent the states in terms of n Boolean state variables v =
(v1,va,...,vy,). Then, we express the transition relation R as a Boolean formula
in terms of the state variables:

fr(v1,. . vn, v, vh) =1 iff R(vy,...,v,, v],...,00)

where v, ... v, represents the current state and vf,...,v] represents the next
state. Finally, we convert fr to a BDD.

We define a procedure ToBDD that takes a CTL formula f(v) and returns
a BDD that represents exactly those states of the system that satisfy the CTL
formula. We define ToBDD inductively over the structure of CTL formulas. If
f(v) is an atomic proposition, then ToBDD(f(v)) is the BDD representing the
set of states satisfying the atomic proposition. If f(v) has the form g; xg, for some
Boolean operator %, then ToBDD(f(v)) = Apply(ToBDD(g1) x ToBDD(gs)).
Temporal operators are handled as follows:

16

(IV) Apply (WAX)V (yA2)

(D Apply(wAX)V (yA2)) |

(D Apply(WAx)V(yA2) |

O

Apply (wAX) | Apply(yAz)

V)

(1D Apply (WA x)V (yA2)) |

Fig. 9: Step-by-step construction of the canonical OBDD for the formula (wAz)V (yAz),
using ordering w < z < y < z.

e ToBDD(EX f(v)) = ToBDD(Fv'. fr(v,v') A f(v"))
e ToBDD(EF f(v)) = Lfp(\Z. ToBDD(f(v) v EX Z))
e ToBDD(E[f(v) U g(v)]) = Lfp(A\Z. ToBDD(g(v) V (f(v) A EX Z)))

If f(v) has the form Jv;.g, then ToBDD(f(v)) = ToBDD(glv,—0 V Glv,—1)-
Finally, to check whether a formula f(v) holds true in a set of initial states I(v),
we check whether the formula I(v) = f(v) holds.

5.3 Partial Order Reduction

As we have already mentioned, asynchronous composition of processes in a con-
current system may cause exponential blow-up of the system state space. This
is an even bigger problem in software verification than in hardware verification.
The reason is that software tends to be less structured than hardware. Hence, the
state explosion problem has been the main obstacle in applying model checking
to software.

One of the most successful techniques for dealing with asynchronous systems
is the partial order reduction. This technique is based on the observation that
many events are independent of each other, and can be executed in arbitrary
order without affecting the outcome of the computation. This means that it is
possible to avoid exploring certain paths in the state-transition system. In Fig. 10
we show an example of two independent paths, (s — sg — §') and (s — 51 — &),

17

assuming that the variables x and y are not aliases. Therefore, it is enough to
explore only one of the two paths.

®
N
\ /@
y++ @ X++

Fig. 10: Partial order reduction and independent events.

One of the big challenges for the partial order reduction is that the reduction
must be on the fly and we must locally decide which transitions can be safely
ignored, as it is not feasible to construct the whole transition system first and
then prune it.

5.4 Counterexample-Guided Abstraction Refinement (CEGAR)

If the model state space is very large, or even infinite, performing an exhaustive
search of the entire space is not feasible. Therefore, when building the model we
should try to abstract only the relevant information from the (concrete) state-
transition system. The counterexample-guided abstraction refinement (CEGAR)
[9] technique uses counterexamples to refine an initial abstraction.

Let M = (S, so, R, L) be a Kripke structure. We write M, = (S, 5§, Ra, La)
to denote the abstraction of M with respect to an abstraction mapping o. We
assume that the states of both M and M, are labeled with atomic propositions
from a set AP. A function « : S — S, is an abstraction mapping from M to
M, with respect to a set of atomic propositions A, C AP iff the following three
conditions hold true:

1. a(so) = s§

2. If there is a transition from s to ¢ in M, then there is a transition from «(s)
to a(t) in M,.

3. For all states s, L(s) N Ay = Lao(a(s)).

In Fig. 11 we illustrate a concrete system and its abstraction. The key theorem
relating abstract and concrete systems was proved by Clarke, Grumberg, and
Long [10]: an abstraction preserves all the true formulas of a certain fragment
of CTL".

Theorem 1 (Property Preservation Theorem). If a universal CTL* prop-
erty holds on the abstract model, then it holds also on the concrete model.

A universal CTL* formula must not contain existential path quantifiers (E) when
written in negation normal form. For example, AG f is a universal formula, while
EG f is not.

18

It is easy to show that the converse of the Property Preservation Theorem is
not true, i.e., there are universal properties which holds in the concrete system
but fail in the abstract system. Therefore, a counterexample to the property
in the abstract system may not be a counterexample in the concrete system.
Such counterexamples are called spurious. Given a counterexample in the ab-
stract system, we can decide whether it is spurious or not simply by executing
it on the concrete system. If the counterexample checks on the concrete system,
i.e., it is not spurious, then we have found an actual violation of the property
and thus a bug in the system. If the counterexample is spurious, then we use
it to refine the abstraction mapping, and we check again the property on the
more precise abstraction. We continue this process until there are no spurious
counterexamples.

In general, the presence of spurious counterexamples cannot be avoided, since
the abstract model over-approximates the state space of the concrete system.
This is due to the loss of information caused by the abstraction mapping. How-
ever, the state space of the abstract system is usually much smaller than that of
the concrete system, making the abstract system amenable to model checking.

Fig. 11: A concrete system M and its abstraction M.

6 Bounded Model Checking

Bounded Model Checking (BMC) [1] is the method used by most industrial-
strength model checkers today. Given a finite state-transition system, a temporal
logic property, and a bound k, BMC generates a propositional formula that is
satisfiable if and only if the property can be disproved by a counterexample of
length k. This propositional formula is then fed to a Boolean satisfiability (SAT)
solver. If no counterexample of length k is found, then we look for longer coun-
terexamples by incrementing the bound k. For safety properties (i.e., checking
whether a “bad” state is unreachable), it can be shown that we only need to
check counterexamples whose length is smaller than the diameter of the system
— the smallest number of transitions to reach all reachable states. Alternatively,

19

BMC can be used for bug catching (rather than full verification) by simply run-
ning it up to a given counterexample length or for a given amount of time. BMC
has several advantages over symbolic model checking with BDDs:

1. BMC finds counterexamples faster than BDD-based approaches.

2. BMC finds counterexamples of minimal length.

3. BMC uses much less memory than BDD-based approaches.

4. BMC does not require the user to select a variable ordering and does not
need to perform costly dynamic reordering.

In BMC, the states of the model are represented as vectors of Booleans. For ex-
ample, in a hardware circuit, the state of each flip-flop would be usually encoded
as a single Boolean variable. A state transition system is encoded as follows:

e the set of initial states is specified by a propositional formula I(s) that holds
true iff s is an initial state;

e the transition relation is specified by a propositional formula R(s,s’) that
holds true iff there exists a transition from s to s';

e for each atomic proposition p, there is a propositional formula p(s) that holds
true iff p is true in state s.

Definition 8. A sequence of states (s, ..., k) is a valid path prefix iff:
1. I(so) holds true (sg is an initial state); and
2. /\i:o1 R(si, si+1) holds true (for alli < k there exists a transition s; — S;+1)

For simplicity, we first describe BMC for LTL safety properties of the form G p,
where p is an atomic proposition.

6.1 Safety Properties

The property G p asserts that p holds true in all reachable states (remember that
LTL formulas are implicitly quantified by an outer A path operator.) We wish
to determine whether there exists a counterexample whose length is no larger
than a fixed bound k. In other words, we wish to determine whether there exists
a valid path prefix (sg, ..., sx) in which p fails for some state s;, with ¢ < k. Thus,
we have that a sequence (sg, ..., Sk) is a counterexample to G p iff the following
formula is satisfiable:

k—1 k
I(So) A /\ R(Si,SH_l) A \/ —\p(si) (1)
i=0 =0

(50-+,51,) valid path prefix p fails in (so,...,5%)
Ezample 3. We write s[i] to denote bit ¢ of the state s = (s[0]... s[n]). Consider
a 3-bit state transition system defined by
I(s) = =s[0] A =s[1] A —s]2]
R(s,s") = (s[2] & $'[1]) A (s[1] & §'[0])
p(s) = —s[0].

20

We want to model check the property G p. First we try to find a counterexample
of length &k = 0. (We measure length of a path prefix by the number of transitions
between states, not the number of states; a counterexample of length 0 is a
sequence of exactly one state.) Substituting into formula (1), we obtain:

I(so) N —p(sg) = (—s0[0] A —sp[1] A —s0[2]) A so[0]

which is clearly unsatisfiable, so no counterexample of length 0 exists. It turns
out that the shortest counterexample is of length 3. In fact, for £ = 3 we have
that formula (1) becomes

(=50[0] A =s0[1] A =s0[2])

which is satisfiable by the states (so,s1,s2,53) = ({(000), (001), (011), (111)).
Therefore, the sequence of state transitions sy — s; — ss — s3 is a coun-
terexample to G p.

In practice, the formulas obtained by expanding (1) can be very large. Never-
theless, BMC remains useful because modern SAT solvers can efficiently handle
formulas with millions of clauses.

6.2 Determining the Bound

We now discuss two methods for determining the counterexample length when
verifying a safety property such as G p. Let d be the diameter of the system, i.e.,
the least number of steps to reach all reachable states. Alternatively, d is the
least number for which the following holds: for every state s, if there exists a valid
path prefix that contains s (i.e., s is reachable), then there exists a valid path
prefix of length at most d that contains s. Clearly, if property p holds for all valid
path prefixes of length k, where k > d, then p holds for all reachable states. So,
we only need to consider counterexamples of length at most d. However, finding
d is computationally hard.

Given a bound k, we can decide whether k > d by solving a quantified Boolean
formula. In particular, if every state reachable in k + 1 steps can also be reached
in up to k steps, then &k > d. More formally, let reach—, and reach<, be the
predicates defined over the state space S as follows:

n—1
reach—n(s) = 3s0,....,sn I(s0) A /\ R(S;,8i41) N5 = sp,
i=0

n—1 n
reach<y(s) = 3so,...,sn I(s0) A /\ R(si, 8i+1) A (\/ s = 81')
i=0

i=0

21

The predicate reach—,(s) holds iff s is reachable in ezactly n transitions, while
reach<, holds iff s can be reached in no more than n transitions. Then, k£ > d iff

Vse S reach=iy1(s) = reach<i(s) . (2)

The above method of bounding the counterexample length is of limited value
due to the difficulty of solving the quantified Boolean formula (2). Another way
of using BMC to prove properties (i.e., not merely for bug-finding) is k-induction
[22]. With k-induction, to prove a property G p, one needs to a find an invariant
q such that:

1. q(s) = p(s), forall s € S.

2. For every valid path prefix (sg, ..., %), ¢(s0) A ... A ¢(sg) holds true.

3. For every state sequence (S, ..., Sk+1), if /\f:0 R(s;,8;+1) holds true then
(g(s0) A ... Aq(sk)) = q(sk+1) holds true.

Other techniques for making BMC complete are cube enlargement [17], circuit
co-factoring [13], and Craig interpolants [18].

6.3 BMC for General LTL Properties: Original Encoding

In this Section we present the BMC encoding for full LTL, as originally proposed
by Biere et al. [1]. A counterexample to F p can only be an infinite path. In order
to use a finite path prefix to represent an infinite path, we consider potential back-
loops from the last state of a finite path prefix to an earlier state, as illustrated
in Fig. 12. More precisely, a valid path prefix (so, ..., S¢, ..., Sx) has a back-loop
from k to £ iff the transition relation R contains the pair (s, s¢).

SN

*—— 0——b 06— 00— ¢
Sy Sk

Fig. 12: A lasso-shaped path

Note that an LTL formula is false iff its negation is true. So, the problem of
finding a counterexample of an LTL formula f is equivalent to the problem of
finding a witness to its negation —f. In this section, we will follow this approach.

Given a state transition system M, an LTL formula f, and a bound k, we
will construct a propositional formula [M, f], that holds true iff there exists
a path prefix (so,...,sx) along which f holds true. We assume that all nega-
tions in f have been pushed inward so that they occur only directly in front
of atomic propositions. First we define a propositional formula [M] that con-
strains (s, ..., Sx) to be a valid path prefix:

22

k-1

HM]]k = I(SQ) A\ /\ R(Si,8i+1) . (3)

=0

Now, we have to consider two cases, depending on whether the sequence
(80, .-, Sk) has a back-loop or not. First we consider the case without a back-loop.
We introduce a bounded semantics, employing the following identities (similar
to those used in the fixed-point characterizations of CTL discussed in Section
5.1):

eFf = fVXFf
e Gf = fAXGS
e [fUg] = gV (fAX[fUyg])

Definition 9 (Bounded Semantics without a Back-Loop). Given a bound
k and a finite or infinite sequence 7™ whose first k states are (so, ..., Sk), we say
that an LTL formula f holds true along © with bound k iff =) is true, where
7 =L is defined recursively as follows for i € {0, ..., k}:

=L p iff atomic proposition p is true in state s;
T |:f€ —p iff atomic proposition p is false in state s;
TEL fVyg iff (7=, f) or (7 9)

TEL fAg iff (7=, f) and (7 5 9)

s X f iff i<kand(rEL"f)

=y Ff iff 7L fVXFSf

Tl Gf iff ©ELfAXGS

T fUyg iff 7 gV (fAX[fUg))

Note that the recursion is well-founded, since 7 =% X f is false if ¢ > k. This
also means that formulas of the type G f do not hold true for any bound.

It is easily seen that = =} f implies 7 |= f for any infinite path 7 and
LTL formula f. Given a bound k, an LTL formula f, and a valid path prefix
(50, .., Sk), We construct a propositional formula [f]9 that is true iff = =9 f.

23

Definition 10 (Original translation of LTL formula without a loop).
[p]i := p(si) where p is an atomic proposition
[-p]i := —p(si) where p is an atomic proposition
[fvgli =11k VvIglk
[f Agli = [0k A L9k
(X f] = {[[f]];’jl ifi<k

false otherwise

[Ffl, == [fI,VIXF £l
[GfI = [fI NIXG I
[fUglk = lgliVv ([fI A IX(f UL

The translations for F and G are easily expanded:

k
[F /1= VI
[G f]i = false .

For [f U g]i, we write a propositional formula that requires that g holds for
some path suffix 77 (where i < j < k) and that f holds on all path suffixes in
the set {7 | i <n < j}, as illustrated in Fig. 13:

[fUgl = \7([[9]]%K[[fﬂ2) .

Jj=1 n=t

J
\//HJ

fholds gholds

Fig. 13: Translation of [f U g]i for a loop-free path prefix.

Now consider a path prefix (s, ..., s) with a back-loop from k to ¢. Define an
infinite lasso path 7 as shown in Fig. 12: 7 = (sg, ..., Se—1, Sty ...k, Sty -ees Sky --v)-
We construct a propositional formula ¢ f]2 that holds iff f holds on 7 (in the
usual LTL semantics).

24

Definition 11 (Original translation of LTL formula with a loop).
([r]i == p(s;) where p is an atomic proposition
[—p]i == —p(s;) where p is an atomic proposition
A Vgli =l FLVelgli
L f Agli o= el f T A ellgli
JAFIE ifi<k

XS = {e[[fﬂﬁ ik

k
dAGIT = N fN
j=min(s,£)
ARl =\ SR
j=min(z,£)
) k - i—1
JAfUgly =\ (z[[g]]k/\ /\d[fﬂk) vV <£|Igﬂj A /\l[[f]]k A /\ E[[f]]k)
j=i = j=t = n=~{
Similar to loop-free case See Fig. 14

The translation for ([f U g]% deserves some explanation. The translation is
a disjunction of two parts. The first part is similar to the loop-free case. The
second part is illustrated in Fig. 14. It handles the case where f holds on all
path suffixes from 7 through 7%, continues holding for 7 through 77~!, and
then ¢ holds on 7/. (Note that 7! = 7¢, since 7 has infinite length.)

/\

\//

fholds gholds f holds

{.
‘
-

{

Fig. 14: Translation of ([f U g% for a path prefix with a back-loop.

Having defined the translation for paths both with and without back-loops,
we are now almost ready to define the final translation into SAT. But first
we need two auxiliary definitions. We define ,L; to be true iff there exists a
transition from si to sy, and we define Ly to be true if there exists any possible
back-loop in (sg, ..., Sk)-

25

Definition 12 (Loop Condition). For | < k, let ;Lx := R(sg,s¢), and let
Lk = \/?:0 sz.

Now we are ready to state the final translation into SAT, which we denote by
“[[Mv f Hk” :

k
[M, fle = [M]x A ((ﬂLkA[[fl]g) vV (L M[[fﬂi)) -
Y (=0
valid prefix
loop-free case case with loop

Theorem 2. Given a LTL formula f, there exists a path m that satisfies f iff
there exists a k such that [M, f]i is satisfiable. Equivalently, M = A-f iff
[M, f], is unsatisfiable for all k.

6.4 Improved Encoding for General LTL Properties

The translations that we have given above in Definitions 10 and 11 are not
the most efficient, although they have the benefit of being relatively straight-
forward. More efficient translations are given in [15, 16, 2]; these translations have
the benefit of having size linear in &k (the unrolling depth) for the U operator,
compared to size cubic in k (or quadratic in k, if certain optimizations [6] are
used) for the translations in Definitions 10 and 11.

We use the same formula [M] as the original encoding (defined in Equa-
tion 3 on page 22) to constrain the path to be a valid prefix. In addition, we
define formulas for loop constraints, which are used to non-deterministically se-
lect at most one back-loop in the path prefix (s, ..., sx). We introduce k+1
fresh loop selector variables, lg, ..., [, which determine which possible back-loop
(if any) to select. If I; is true (where 1 < j < k), then we select a back-loop
from k to j. The state s;_; is constrained to be equal to the state s, and we
consider an infinite path 7 = (so, ..., 8j-1, Sj, ..., Sk, S5, ..., Sk, -..). If none of the
loop selector variables are true, we use the bounded semantics (Definition 9 on
page 22).

We introduce auxiliary variables InLoop, through InLoop,, which will be
constrained so that InLoop; is true iff position ¢ is in the loop part of the path.
In other words, InLoop, should be true iff there exist a position j < ¢ such
that I; is true. To ensure that at most one of {ly,...,l;} is true, we require
that /; must not be true if there exists an earlier position j < 4 such that I; is
true. Let |[LoopConstraints]|; be the conjunction of the following formulas for
ie{l,..k}:

lp & false
li = (Sifl = Sk)
InLoop, <« false
InLoop; < InLoop;_; V;
InLoop,_; = —l;

26

In Fig. 15, we define a function |[f]|o that translates an LTL formula f into a
Boolean formula that indicates whether the path prefix (sq, ..., sx) is a witness
for f. If none of the loop selector variables are true, then |[f]|x+1 simplifies to
false, in accord with the bounded semantics. If a single loop selector variable /;
is true, we consider an infinite path @ = (s0,...,5j-1, Sj,...; Sk, Sjs o0y Sky o).
Note that the infinite path suffix 7%%! is equal to 77. Thus, the translation for
I[fNlx+1 simplifies to [[f];, except in the case of the U operator.

For |[f U g]|;, we make two passes through the loop part of path prefix. On
the first pass, we consider path suffixes 7° through 7% (see Fig. 16). If f holds
true for all these path suffixes, but g never holds true, then we need to make a
second pass and continue checking at the start of the back-loop (7). If we reach
position k£ on the second pass without g ever being true, then we know that g is
never true at any position in the loop, so f U g is false. The auxiliary definition
{f U g)) handles the second pass. The final encoding for Kripke structure M,
LTL formula f, and bound k is given by |[M, f, k]|:

M, £, k]l = [[M]lx A |[LoopConstraints]|x A |[f]lo

Formula Translation for 7 <k Translation for i =k +1

[plls p(si)

=plls —p(si)

ILf A glli LAYl A Mgl

ILf v glli L1l v gl

X f1l: IS i

LFOglli | gl v (LN AL U glliva)
(FUghi | lalliv (ILFNli ALS U ghiva) | false

Fig. 15: Improved BMC Translation

More compact translations are possible using Quantified Boolean Formulas
(QBF) [14], although such translations generally cannot be solved faster (with
existing QBF solvers) than SAT translations.

6.5 SAT Solvers

In this Section we discuss Boolean satisfiability (SAT) solvers, the key tool in
bounded model checking. We begin with a few basic definitions.

27

/\

\//

fholds gholds f holds

o
&

{

Fig. 16: Translation for a path prefix with a back-loop.

Definition 13. A formula is satisfiable iff there exists an assignment to the
variables of the formula that makes the formula true.
Definition 14. A formula is in negation-normal form (NNF) iff:

e all negations are directly in front of variables, and
e the only logical connectives are conjunction (“A”), disjunction (“V”), and
negation (“=7).

Definition 15. A literal is a variable or its negation.

Definition 16. A formula is in disjunctive normal form (DNF) iff it is a
disjunction of conjunctions of literals.

For example, the below formula is in DNF:
(ﬁl /\62/\63) V(£4/\£5 /\E@) V (£7/\£g/\£9) .

Note that every formula in DNF is also in NNF. A simple (but inefficient) way
to convert an arbitrary formula ¢ to DNF is to make a truth table for ¢. Every
row in the truth table where ¢ is true corresponds to a conjunct in this DNF
representation. For example, consider the truth table below.

Tyl z (]5(.%',}/,2)
0{0]0 0
0101 1
0]1]0 1
01|1 0
110|0 1
1]0/1 0
1110 0
1]1]1 0

A DNF representation of the formula specified by the truth table is
(rxA-yA2)V(mz AyA-z)V (e A—yA-z) .

Definition 17. A clause is a disjunction of literals.

28

Definition 18. A formula is in conjunctive normal form (CNF) iff it is a
conjunction of clauses (disjunctions of literals).

For example, the below formula is in CNF:
(b1 VLoV L3) ALy VU5V lg) A (b7 V UV by) .

Modern SAT solvers require their input to be in CNF. An arbitrary formula can
be converted to CNF in a manner similar to the above-described method for
DNF. However, the resulting CNF formula can be exponentially larger than the
original formula. A better way of converting to CNF is to use the Tseitin trans-
formation [24], which produces an equisatisfiable formula that is only linearly
larger than the original formula. Two formulas are equisatisfiable when either
they are both satisfiable or they are both unsatisfiable.

The Tseitin transformation introduces new variables to represent subformulas
of the original formula. The technique is perhaps best illustrated by considering
a formula as a combinational circuit. A new variable is introduced to represent
the output of each logic gate in the circuit. Let g¢op be the variable corresponding
to the top-level gate (i.e., the gate whose output is the output of the circuit). We
create the CNF formula by conjoining the unit clause (giop) With clauses that
relate each newly introduced gate variable to the inputs of the corresponding
logic gate. For example, consider the circuit for (A V (B A C)) represented in
Fig. 17. To obtain the clauses that define g;, we start with the equivalence

A Circuit
Output

g2

AND

gl

Fig. 17: Circuit representation of (A V (B A C))

g1 < (B A C). Then we break the equivalence into two implications, and then
we convert the implications to clauses using the fact that (X = Y) is logically
equivalent to (=X VY'). Therefore, we have
(1 & (BAC)) = (91 = (BACO)AN((BAC) = 1)
=(n=B)A (1= C)AN(BAC)=gq1)
= (1 VB)A (g1 VC) A (=BV~CVg) .
Note that since the Tseitin transformation introduces new variables, the re-

sulting formula is not strictly equivalent to the original formula. Instead, it is
equisatisfiable with the original formula.

29

We now briefly describe the main principles followed by SAT solvers. A CNF
formula is represented by a set of clauses, and a clause is represented by a set of
literals.

Definition 19. A unit clause is a clause that contains exactly one literal.

Almost all modern SAT solvers use a variant of the DPLL algorithm [12]. This
algorithm uses a backtracking search. The solver picks a variable in the input
formula and decides a value for it. It then performs unit propagation: If the for-
mula has a clause with exactly one literal, then the solver assigns that literal true
and simplifies the formula under that assignment. Unit propagation is repeated
until there are no more unit clauses. If a satisfying assignment is discovered,
the solver returns true. If a falsifying assignment is discovered, the solver back-
tracks, undoing its decisions. High-level pseudocode of the DPLL algorithm is
shown in Fig. 18.

Great improvements to SAT solvers have been made beginning in the mid-
1990s. GRASP [12] introduced a powerful form of conflict analysis that enables
(1) non-chronological backtracking, allowing the solver to avoid considering un-
fruitful assignments, and (2) learning of additional implied clauses, which enables
to solver to discover more implied literals via unit propagation. When unit prop-
agation forces a literal to be assigned a certain value, GRASP records the set of
literals responsible. When a conflict is discovered, GRASP uses this information
to derive a new clause. The learned clause is logically redundant, but it enables
unit propagation to be more effective.

Another major breakthrough is the two watched literals scheme introduced
by Chaff [19]. SAT solvers spend most of their time doing unit propagation, and
the watched-literals scheme makes unit propagation significantly more efficient.

function Solve(¢) {
¢ := Propagate(¢);
if (¢ = true) {return true;}
if (¢ = false) {return false;}
x := (pick a variable in ¢);
return (Solve(¢[x/true]) or Solve(¢p[x/false]));

Fig. 18: DPLL pseudocode; ¢[x/c] denotes syntactic substitution of ¢ for z in ¢.

7 Conclusion

The state explosion problem has been, and is likely to remain, the main challenge
faced by model checking. Of the techniques developed to combat the state explo-
sion problem, bounded model checking is one of the most successful. In practice,

30

bounded model checking can often find counterexamples in circuits with thou-
sands of latches and inputs. Armin Biere reported an example in which the
circuit had 9510 latches and 9499 inputs. This resulted in a propositional for-
mula with 4 million variables and 12 million clauses. The shortest bug of length
37 was found in only 69 seconds! Many others have reported similar results.

There are many directions for future research, including software model

checking, hybrid-systems model checking, compositional model checking, sta-
tistical model checking, combining model checking with theorem proving, and
scaling up even more!

References

1.

10.

11.

12.

13.

14.

15.

A. Biere, E. M. Clarke, R. Raimi, and Y. Zhu. Verifying Safety Properties of
a Power PC Microprocessor Using Symbolic Model Checking without BDDs. In
CAV, 1999.

. A. Biere, K. Heljanko, T. A. Junttila, T. Latvala, and V. Schuppan. Linear En-

codings of Bounded LTL Model Checking. Logical Methods in Computer Science,
2(5), 2006.

R. E. Bryant. Graph-based Algorithms for Boolean Function Manipulation. I[EEFE
Trans. Comput., C-35(8):677-691, 1986.

J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and D. L. Dill. Sym-
bolic model checking for sequential circuit verification. IEEE Trans. on CAD of
Integrated Circuits and Systems, 13(4):401-424, 1994.

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
Model Checking: 10%° States and Beyond. Inf. Comput., 98(2):142-170, 1992.

A. Cimatti, M. Pistore, M. Roveri, and R. Sebastiani. Improving the Encoding of
LTL Model Checking into SAT. In VMCAI 2002.

E. M. Clarke and E. A. Emerson. Design and Synthesis of Synchronization Skele-
tons Using Branching-Time Temporal Logic. In Logic of Programs, Workshop,
pages 52-71, London, UK, 1981. Springer-Verlag.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Verification of Fi-
nite State Concurrent Systems Using Temporal Logic Specifications: A Practical
Approach. In POPL, pages 117-126, 1983.

E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement for symbolic Model Checking. J. ACM, 50(5):752-794, 2003.
Originally presented at CAV’00.

E. M. Clarke, O. Grumberg, and D. E. Long. Model Checking and Abstraction.
ACM Trans. Program. Lang. Syst., 16(5):1512-1542, 1994.

E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,
1999.

M. Davis, G. Logemann, and D. W. Loveland. A machine program for theorem-
proving. Commun. ACM, 5(7):394-397, 1962.

M. K. Ganai, A. Gupta, and P. Ashar. Efficient SAT-based unbounded sym-
bolic Model Checking using circuit cofactoring. In International conference on
Computer-aided design (ICCAD’04), pages 510-517, 2004.

T. Jussila and A. Biere. Compressing BMC Encodings with QBF. FElectr. Notes
Theor. Comput. Sci., 174(3):45-56, 2007.

T. Latvala, A. Biere, K. Heljanko, and T. A. Junttila. Simple Bounded LTL Model
Checking. In FMCAD, pages 186200, 2004.

16.

17.

18.

19.

20.

21.

22.

23.

24.

31

T. Latvala, A. Biere, K. Heljanko, and T. A. Junttila. Simple Is Better: Efficient
Bounded Model Checking for Past LTL. In VMCAI, pages 380-395, 2005.

K. L. McMillan. Applying SAT Methods in Unbounded Symbolic Model Checking.
In Computer-Aided Verification (CAV’02), LNCS 2404, pages 250264, 2002.

K. L. McMillan. Interpolation and SAT-Based Model Checking. In Computer-
Aided Verification (CAV’08), LNCS 2725, pages 1-13, 2003.

M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engi-
neering an Efficient SAT Solver. In DAC, pages 530-535. ACM, 2001.

A. Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, pages 46-57, Washington, DC,
USA, 1977. IEEE Computer Society.

J.-P. Queille and J. Sifakis. Specification and verification of concurrent systems
in CESAR. In Proceedings of the 5th Colloquium on International Symposium on
Programming, pages 337351, London, UK, 1982. Springer-Verlag.

M. Sheeran, S. Singh, and G. Stalmarck. Checking Safety Properties Using In-
duction and a SAT-Solver. In Formal Methods in Computer-Aided Design (FM-
CAD’02), LNCS 1954, pages 108-125, 2000.

A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific J.
Math., 5(2):285-309, 1955.

G. S. Tseitin. On the complexity of derivations in the propositional calculus.
Studies in Constructive Mathematics and Mathematical Logic, Part II, ed. A.O.
Slisenko, 1968.

