
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Model checking and validity in propositional and modal inclusion logics

Peer-reviewed author version

Hella, Lauri; Kuusisto, Antti; Meier, Arne & VIRTEMA, Jonni (2019) Model checking

and validity in propositional and modal inclusion logics. In: JOURNAL OF LOGIC

AND COMPUTATION, 29(5), p. 605-630.

DOI: 10.1093/logcom/exz008

Handle: http://hdl.handle.net/1942/28311

Model checking and validity in
propositional and modal inclusion logics

LAURI HELLA, Unit of Computing Sciences, Tampere University, 33100
Tampere, Finland.
E-mail: lauri.hella@tuni.fi

ANTTI KUUSISTO, Unit of Computing Sciences, Tampere University, 33100
Tampere, Finland.
E-mail: antti.kuusisto@tuni.fi

ARNE MEIER, Institut für Theoretische Informatik, Leibniz Universität Hannover,
30167 Hanover, Germany.
E-mail: meier@thi.uni-hannover.de

JONNI VIRTEMA, Department of Mathematics and Statistics, University of
Helsinki, 00014 Helsinki, Finland, and Faculty of Sciences, Hasselt University,
3500 Hasselt, Belgium.
E-mail: jonni.virtema@gmail.com

Abstract
Propositional and modal inclusion logic are formalisms that belong to the family of logics based on team semantics. This
article investigates the model checking and validity problems of these logics. We identify complexity bounds for both
problems, covering both lax and strict team semantics. By doing so, we come close to finalizing the programme that aims to
completely classify the complexities of the basic reasoning problems for modal and propositional dependence, independence
and inclusion logics.

Keywords: Inclusion logic, model checking, validity problem, complexity, team semantics,.

1 Introduction

Team semantics is the mathematical framework of logics of dependence and independence proposed
by Väänänen [39] and inspired by Hodges [21]. In Tarskian semantics, satisfaction of formulae is
defined with respect to single states of affairs; e.g. with respect to a single assignment in first-order
and propositional logic, and with respect to a single point of a Kripke structure in modal logic.
Team semantics is founded on the simple shift from single states of affairs to a collection of states
of affairs as the principal object associated with satisfaction. In the first-order setting, logics with
team semantics are very expressive. The so-called first-order independence logic is equi-expressive
with existential second-order logic and thus captures the complexity class NP [9]. On the other
hand, the so-called first-order inclusion logic has the same expressive power as positive greatest
fixed point logic GFP+ [10] and, by the Immermann-Vardi Theorem [22, 40], it captures P on

Vol. 00, No. 0, © The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please
e-mail: journals.permission@oup.com.

doi:10.1093/logcom/exz008

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz008/5427467 by Stockholm

 U
niversity Library user on 28 M

ay 2019

2 Model checking and validity in propositional and modal inclusion logics

ordered structures. In the modal setting, the expressive powers of related logics are characterized
by the so-called team k-bisimulation. During the past decade, the research on team semantics has
f lourished, many logical formalisms have been defined and surprising connections to other fields
have been identified. For instance, Krebs et al. [25] developed a team-based approach to linear
temporal logic for the verification of information flow properties. In applications to database theory,
a team corresponds exactly to a database table (see, e.g. the work of Hannula and Kontinen [14]).
Hannula et al. [15] introduced a framework that extends the connection of team semantics and
database theory to polyrelational databases and data exchange. The study of inclusion dependencies
in database theory is a highly relevant topic. The implication problem for inclusion dependencies
was axiomatized by Casanova, Fagin and Papadimitriou [3], and recently Koehler and Link [23]
gave a finite axiomatization for the so-called not null inclusion dependencies.

The high expressivity and complexity of logics with team semantics (see the survey of
Durand et al. [7]) have led the research community to consider weaker logics and weak fragments
of logics with team semantics. From this endeavour the study of propositional and modal team
semantics have risen as research topics of their own right. In contrast to their first-order counterparts,
propositional and modal logics with team semantics are decidable and enjoy finite axiomatizations
(for concrete axiomatizations, see e.g. [29, 33, 43]). A propositional team is a set of propositional
assignments with a common finite domain of variables. In the modal context, any subset of the
domain of a Kripke structure is a team. The most studied logics in the propositional and modal
team semantics contexts are propositional (modal, resp.) dependence, independence and inclusion
logics, and their extension with the contradictory negation. Here we concentrate on inclusion logics.
Propositional (modal, resp.) inclusion logic extends propositional (modal, resp.) logic with inclusion
atoms of the form

(p1, . . . , pn) ⊆ (q1, . . . , qn) (1)

with the semantics that a team X satisfies the atom in (1) if every tuple of truth values that occurs
in X for (p1, . . . , pn) also occurs as a truth value for (q1, . . . , qn) in X . In the extended propositional
(modal, resp.) inclusion logic, the variables in (1) are replaced by formulae of propositional (modal,
resp.) logic.

Due to very active research efforts, the complexity and definability landscape of propositional
and modal logics with team semantics is understood rather well, see the survey of Durand et al. [7]
and Tables 4–6 on page 23 of the current article. For basic properties of propositional and modal
inclusion logics, see the work by Yang and Väänänen [43] and the work by Hella and Stumpf [20],
respectively. One characteristic feature of inclusion logics is the following union closure property:
if teams X and Y both satisfy an inclusion logic formula ϕ, then also then the union X ∪ Y of
X and Y satisfies the formula ϕ. Hella and Stumpf [20] established that the expressive power of
modal inclusion logic can be exactly characterized by the union closure and the closure under the
so-called team k-bisimulation (the concept of team bisimulation is a straightforward generalization
of the notion of standard bisimulation of modal logic). As a consequence, it follows that the
expressive power of extended propositional inclusion logic is exactly characterized by the union
closure property. Sano and Virtema [34, 35] study (global) model definability and frame definability
of team-based modal logics. The authors show that, surprisingly, in both cases, extended modal
inclusion logic collapses to modal logic. This is surprising since, in contrast, the so-called extended
model dependence logic is shown to correspond to the extension of modal logic with the universal
modality defined using Tarski semantics.

In this paper, we study propositional and modal inclusion logic under both lax semantics
(i.e. the standard semantics) and strict semantics. The difference in strict and lax semantics can

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz008/5427467 by Stockholm

 U
niversity Library user on 28 M

ay 2019

Model checking and validity in propositional and modal inclusion logics 3

be seen in the semantic conditions for the disjunction and the diamond (see Sections 2 and 4 for the
technical details); the characterizations of expressive power, mentioned in the last paragraph, hold
only for lax semantics. Many of the desired properties that lax semantics satisfies fail when strict
semantics is considered. For instance, under strict semantics propositional and modal inclusion logic
do not satisfy the union closure property (see Example 5). What is worse, propositional inclusion
logic under strict semantics does not satisfy locality: satisfaction of an inclusion logic formula on
a team X is not determined alone by the restriction of X to the set of variables that occur in the
formula. These problems were already identified in the first-order setting. However, recent work on
multiteam semantics (a multiteam is a multiset analogue of a team) has revealed that the problems in
strict semantics are more subtle and context specific; many problems of strict semantics are solved
naturally in multiteams. In particular, under the so-called strict multiteam semantics inclusion logic
satisfies locality and union closure [6]. While the setting of [6] is first-order team semantics the
results and ideas there can be modified and transferred also to the propositional and modal settings.

We investigate the complexity of the model checking and the validity problem for propositional
and modal inclusion logic. Our aim is to completely determine the complexity landscape of
propositional and modal inclusion logics. By doing this, we come close to finalizing the programme
that aims to completely classify the complexities of the basic reasoning problems for modal and
propositional dependence, independence and inclusion logics (see the Tables 4–6 on page 23). The
complexity of the satisfiability problem of modal inclusion logic was studied by Hella et al. [18].
The study of the validity problem of propositional inclusion logic was initiated by Hannula et al.
[16], where the focus was on more expressive logics in the propositional setting. The current paper
directly extends the research effort initiated in these papers. It is important to note that, since the
logics studied in this paper are not closed under taking negations, the standard connection between
the satisfiability problem and the validity problem fails (i.e. a formula is unsatisfiable if and only if
its negation is a tautology). Hannula et al. [16] have shown that, under lax semantics, the validity
problem for propositional inclusion logic is coNP-complete. Here we obtain an analogous result for
the strict semantics. Curiously, for model checking the picture looks quite different. We establish
that whereas the model checking problem for propositional inclusion logic is P-complete under lax
semantics, the problem becomes NP-complete for the strict variant. Intriguingly, for model checking
in the modal setting, we obtain analogous results (as in the propositional setting): modal inclusion
logic is P-complete under lax semantics and NP-complete under strict semantics. Nevertheless, for
the validity problem, the modal variants are much more complex than the propositional ones: we
establish coNEXP-hardness for both strict and lax semantics. For an overview of the results of this
paper, see Table 1, and for an overview of the known complexity results from the literature, see
Tables 4–6 on page 23.

The structure of the paper is as follows: in Section 2 basic definitions and properties of
propositional inclusion logic are given. Section 3 concentrates on the model checking problem in
propositional setting. In Section 4 we shift to basic definitions and properties of modal inclusion

TABLE 1 Overview of the complexity results proven in the article. Complexity classes refer to
completeness results, ‘-h’ denotes hardness.

PInc Minc

Problem Strict Lax Strict Lax

Model checking NP [Thm. 17] P [Thm. 13] NP [Thm. 29] P [Thm. 28]
Validity coNP [Thm. 9] coNP [16] coNEXP-h [Cor. 36] coNEXP-h [Thm. 35]

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz008/5427467 by Stockholm

 U
niversity Library user on 28 M

ay 2019

4 Model checking and validity in propositional and modal inclusion logics

logic. In Section 5 the model checking and validity problems of modal inclusion logic are studied.
Section 6 concludes with some open problems and further directions of research.

This article is an extended version of the conference paper [17].

2 Propositional logics with team semantics

Let Φ be a finite nonempty set of proposition symbols. A function s : Φ → {0, 1} is called an
assignment. A set X of assignments s : Φ → {0, 1} is called a (propositional) team. The set Φ is the
domain of X . We denote by 2Φ the set of all assignments s : Φ → {0, 1}. If �p = (p1, . . . , pn) is a
tuple of proposition symbols and s is an assignment, we write s(�p) for (s(p1), . . . , s(pn)).

Let Φ be a set of proposition symbols. The syntax of classical propositional logic PL(Φ) is given
by the following grammar:

ϕ ::= p | ¬p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ), where p ∈ Φ.

As usual, we often omit Φ and write PL instead of PL(Φ).
We denote by |	PL the ordinary satisfaction relation of classical propositional logic defined via

assignments in the standard way. Next we give team semantics for the logic PL.

DEFINITION 1.1 (Lax team semantics).
Let Φ be a set of atomic propositions and let X be a team of domain Φ. The satisfaction relation
X |	 ϕ for PL(Φ)-formulae ϕ is defined as follows:

X |	 p ⇔ ∀s ∈ X : s(p) = 1,

X |	 ¬p ⇔ ∀s ∈ X : s(p) = 0.

X |	 (ϕ ∧ ψ) ⇔ X |	 ϕ and X |	 ψ .

X |	 (ϕ ∨ ψ) ⇔ Y |	 ϕ and Z |	 ψ , for some Y , Z such that Y ∪ Z = X .

The lax team semantics is considered to be the standard semantics for team-based logics. In this
paper, we also consider a variant of team semantics called the strict team semantics. In strict team
semantics, the above clause for disjunction is redefined as follows:

X |	str (ϕ ∨ ψ) ⇔ Y |	 ϕ and Z |	 ψ , for some Y , Z such that Y ∩ Z = ∅ and Y ∪ Z = X .

When L denotes a team-based propositional logic, we let Lstr denote the variant of the logic with
strict semantics. Moreover, in order to improve readability, for strict semantics we use |	str instead
of |	. As a result lax semantics is used unless otherwise specified. The next proposition shows that
the team semantics and the ordinary semantics for classical propositional logic defined via single
assignments (denoted by |	PL) coincide. The proof is left to the reader.

PROPOSITION 2.2
Let ϕ be a PL-formula and let X be a propositional team. Then X |	 ϕ if and only if ∀s ∈ X : s |	PL
ϕ.

The syntax of propositional inclusion logic PInc(Φ) is obtained by extending the syntax of PL(Φ)

by the grammar rule

ϕ ::= �p ⊆ �q,

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz008/5427467 by Stockholm

 U
niversity Library user on 28 M

ay 2019

Model checking and validity in propositional and modal inclusion logics 5

FIGURE 1 Assignments for teams in Examples 2.5 and 2.8. Each row corresponds to a separate
assignment si setting variables p, q, r, t to truth values 0/1.

where �p and �q are finite tuples of proposition symbols of the same length. The semantics for
propositional inclusion atoms is defined as follows:

X |	 �p ⊆ �q iff ∀s ∈ X ∃t ∈ X : s(�p) = t(�q).

REMARK

Extended propositional inclusion logic is the variant of PInc in which inclusion atoms of the form
�ϕ ⊆ �ψ , where �ϕ and �ψ are tuples of PL-formulae, are allowed. Observe that this extension does
not increase the complexity of the logic and on that account, in this paper, we only consider the
non-extended variant.

Using a simple inductive argument, it is easy to see that the empty team satisfies every formula of
PInc under both strict and lax semantics.

PROPOSITION 2.3 (Empty team property).
For every formula ϕ ∈ PInc it holds that ∅ |	 ϕ and ∅ |	str ϕ.

A logic L is downward closed if X |	 ϕ and Y ⊆ X implies Y |	 ϕ, for every formula ϕ ∈ L
and teams X and Y . Note that PInc is not a downward closed logic. However, analogously to FO-
inclusion-logic [9], satisfaction of PInc-formulae is closed under taking unions of satisfying teams.

PROPOSITION 2.4 (Closure under unions).
Let ϕ ∈ PInc and let Xi, for i ∈ I , be teams. Suppose that Xi |	 ϕ for each i ∈ I . Then

⋃
i∈I Xi |	 ϕ.

Similarly as in first-order team semantics [9], also for propositional logic the strict and the lax
semantics coincide; meaning that X |	 ϕ iff X |	str ϕ for all propositional teams X and all formulae
ϕ ∈ PL. However, this does not hold for propositional inclusion logic, for the following example
shows that PIncstr is not union closed. Moreover, we will show that the two different semantics lead
to different complexities for the related model checking problems.

EXAMPLE 2.5
Let s1, s2 and s3 be assignments as defined in Figure 1 and define ϕ := (

p∧(p ⊆ r)
)∨(

q∧(q ⊆ r)
)
.

Note that {s1, s2} |	str ϕ and {s2, s3} |	str ϕ, but {s1, s2, s3} �|	str ϕ.

However, PIncstr satisfies a useful weaker form of union closure: it is straightforward to prove
by induction on the formula structure that satisfaction of PIncstr-formulae is closed under unions of
singleton teams.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz008/5427467 by Stockholm

 U
niversity Library user on 28 M

ay 2019

6 Model checking and validity in propositional and modal inclusion logics

LEMMA 2.6
Let X be a team and ϕ ∈ PIncstr. If {s} |	str ϕ for every s ∈ X , then X |	str ϕ.

PROOF. The proof is by induction on ϕ. The cases other than the one for disjunctions are immediate.
Assume then that {s} |	str (ψ1 ∨ ψ2) for every s ∈ X . By the semantics of the disjunction, for
every s ∈ X there is an i ∈ {0, 1} such that {s} |	str ψi. Let X1 be the set of those assignments in
X that satisfy ϕ1, and define X2 := X \ X1. By induction hypothesis, X1 |	str ψ1 and X2 |	str ψ2.
Consequently X |	str (ψ1 ∨ ψ2). �

One important difference between lax and strict semantics is that the former satisfies the following
locality property, whereas the latter does not. A propositional logic L with team semantics satisfies
locality if for every formula ϕ ∈ L and team X it holds that X |	 ϕ if and only if X � Prop(ϕ) |	 ϕ,
where Prop(ϕ) is the set of proposition symbols that occur in ϕ, and X � Prop(ϕ) denotes the set of
assignments obtained from X by restricting their domain to Prop(ϕ).

The fact that PInc satisfies locality is well known; the result follows by a straightforward inductive
argument.

PROPOSITION 2.7
PInc satisfies locality.

The following example shows that in contrast PIncstr does not satisfy locality.

EXAMPLE 2.8
Let s1, s2, s′

2 and s3 be assignments as defined in Figure 1 and ϕ as in Example 2.5. Note that
{s1, s2, s′

2, s3} |	str ϕ but {s1, s2, s′
2, s3} � {p, q, r} �|	str ϕ.

3 Complexity of propositional inclusion logic

We now define the model checking, satisfiability and validity problems in the context of team
semantics. Let L be a propositional logic with team semantics. A formula ϕ ∈ L is satisfiable, if
there exists a nonempty1 team X such that X |	 ϕ. A formula ϕ ∈ L is valid if X |	 ϕ for all teams
X such that the propositions in ϕ are in the domain of X . The satisfiability problem SAT(L) and the
validity problem VAL(L) are defined in an obvious way: given a formula ϕ ∈ L, decide whether
the formula is satisfiable (valid, respectively). For the model checking problem MC(L) we consider
combined complexity: given a formula ϕ ∈ L and a team X , decide whether X |	 ϕ. See Table 2 for
known complexity results for PL and PInc, together with partial results of this paper.

It was shown by Hannula et al. [16] that the validity problem of PInc is coNP-complete. Here we
establish that the corresponding problem for PIncstr is also coNP-complete. Our proof is similar to
theirs, except that instead of union closure we use Lemma 2.6.

THEOREM 3.1
The validity problem for PIncstr is coNP-complete w.r.t. ≤log

m .

PROOF. The coNP-hardness follows via Proposition 2.2 from the fact that the validity problem of
PL is coNP-hard. On the other hand, by Lemma 2.6, a formula ϕ ∈ PIncstr is valid if and only if it

1Many logics using team semantics have the empty team property and thus in the satisfiability problem it is customary to
ask about the existence of a nonempty team.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz008/5427467 by Stockholm

 U
niversity Library user on 28 M

ay 2019

Model checking and validity in propositional and modal inclusion logics 7

TABLE 2 Complexity of the satisfiability, validity and model checking problems for propositional
logics under both systems of semantics. The shown complexity classes refer to completeness results.
Whenever strict and lax semantics coincide, only a single complexity result is shown, which is
surrounded by dashes.

Satisfiability Validity Model checking

Strict Lax Strict Lax Strict Lax

PL ——– NP [5, 27] —— ——– coNP [5, 27] ——— ———– NC1 [2] ———–
PInc EXP [19] EXP [18] coNP [Th. 3.1] coNP [16] NP [Th. 17] P [Th. 3.5]

is satisfied by all singleton teams. It is easy to see that, over singleton teams, an inclusion atom ψ of
the form

p1, . . . , pn ⊆ q1, . . . , qn

is equivalent to a PL-formula

ψ∗ :=
∧

1≤i≤n

(pi ∧ qi) ∨ (¬pi ∧ ¬qi).

For each PIncstr-formula ϕ, let ϕ∗ denote the PL-formula obtained from ϕ by substituting each
inclusion atom ψ by its PL-translation ψ∗. Recall that on PL-formulae the strict and lax team
semantics coincide, and thus it follows from Proposition 2.2 that ϕ∗ is satisfied by every singleton
team if and only if ϕ∗ is valid with respect to |	PL. Since VAL(PL) is in coNP, the same is true for
VAL(PIncstr). �

3.1 Model checking in lax semantics is P-complete

In this section we construct a reduction from the monotone circuit value problem (MCVP) to the
model checking problem of PInc. For an in-depth introduction to circuits, see Vollmer [42].

DEFINITION 3.2
A monotone Boolean circuit with n input gates and one output gate is a 3-tuple C = (V , E, α), where
(V , E) is a finite, simple, directed, acyclic graph, and α : V → {∨, ∧, x1, . . . , xn} is a function such
that the following conditions hold:

1. Every v ∈ V has in-degree 0 or 2.
2. There exists exactly one w ∈ V with out-degree 0. We call this node w the output gate of C

and denote it by gout.
3. If v ∈ V is a node with in-degree 0, then α(v) ∈ {x1, . . . , xn}.
4. If v ∈ V has in-degree 2, then α(v) ∈ {∨, ∧}.
5. For each 1 ≤ i ≤ n, there exists exactly one v ∈ V with α(v) = xi.

Let C = (V , E, α) be a monotone Boolean circuit with n input gates and one output gate. Any
sequence b1, . . . , bn ∈ {0, 1} of bits of length n is called an input to the circuit C. A function β : V →
{0, 1} defined such that

β(v) :=

⎧
⎪⎨

⎪⎩

bi if α(v) = xi,

min
(
β(v1), β(v2)

)
if α(v) = ∧, where v1 �= v2 and (v1, v), (v2, v) ∈ E,

max
(
β(v1), β(v2)

)
if α(v) = ∨, where v1 �= v2 and (v1, v), (v2, v) ∈ E.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz008/5427467 by Stockholm

 U
niversity Library user on 28 M

ay 2019

8 Model checking and validity in propositional and modal inclusion logics

is called the valuation of the circuit C under the input b1, . . . , bn. The output of the circuit C is then
defined to be β(gout).

The MCVP is the following decision problem: given a monotone circuit C and an input
b1, . . . , bn ∈ {0, 1}, is the output of the circuit 1?

PROPOSITION 3.3 ([12]).
MCVP is P-complete w.r.t. ≤log

m reductions.

LEMMA 3.4
MC(PInc) under lax semantics is P-hard w.r.t. ≤log

m .

PROOF. We will establish a ≤log
m -reduction from MCVP to the model checking problem of PInc

under lax semantics. Since MCVP is P-complete, the claim follows. More precisely, we will show
how to construct, for each monotone Boolean circuit C with n input gates and for each input �b for
C, a team XC,�b and a PInc-formula ϕC such that

XC,�b |	 ϕC if and only if the output of the circuit C with the input �b is 1.

We use teams to encode valuations of the circuit. For each gate vi of a given circuit, we associate
an assignment si. The crude idea is that if si is in the team under consideration, the value of the
gate vi with respect to the given input is 1. The formula ϕC is used to quantify a truth value for
each Boolean gate of the circuit, and then for checking that the truth values of the gates propagate
correctly. We next define the construction formally.

Let C = (V , E, α) be a monotone Boolean circuit with n input gates and one output gate and let
�b = (b1 . . . bn) ∈ {0, 1}n be an input to the circuit C. We stipulate that V = {v0, . . . , vm} and that v0
is the output gate of C. Define

τC := {p0, . . . , pm, p�, p⊥} ∪ {pk=i∨j | i < j, α(vk) = ∨, and (vi, vk), (vj, vk) ∈ E}.

For each i ≤ m, we define the assignment si : τC → {0, 1} as follows:

si(p) :=

⎧
⎪⎨

⎪⎩

1 if p = pi or p = p�,

1 if p = pk=i∨j or p = pk=j∨i for some j, k ≤ m,

0 otherwise.

Furthermore, we define s⊥(p) = 1 iff p = p⊥ or p = p�. We note that the assignment s⊥ will be
the only assignment that maps p⊥ to 1. We make use of the fact that for each gate vi of C, we have
that s⊥(pi) = 0. We define

XC,�b := {
si | α(vi) ∈ {∧, ∨}} ∪ {

si | α(vi) ∈ {xi | bi = 1}} ∪ {s⊥},

i.e. XC,�b consists of assignments for each of the Boolean gates, assignments for those input gates that
are given 1 as an input, and of the auxiliary assignment s⊥.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz008/5427467 by Stockholm

 U
niversity Library user on 28 M

ay 2019

Model checking and validity in propositional and modal inclusion logics 9

Let X be any nonempty subteam of XC,�b such that s⊥ ∈ X . We have

X |	 p� ⊆ p0 iff s0 ∈ X

X |	 pi ⊆ pj iff (si ∈ X implies sj ∈ X) (2)

X |	 pk ⊆ pk=i∨j iff (i < j, (vi, vk), (vj, vk) ∈ E, α(vk) = ∨
and sk ∈ X implies that si ∈ X or sj ∈ X).

Recall the intuition that si ∈ X should hold iff the value of the gate vi is 1. Define

ψout=1 := p� ⊆ p0,

ψ∧ :=
∧

{pi ⊆ pj | (vj, vi) ∈ E and α(pi) = ∧},
ψ∨ :=

∧
{pk ⊆ pk=i∨j | i < j, (vi, vk) ∈ E, (vj, vk) ∈ E, and α(vk) = ∨},

ϕC := ¬p⊥ ∨ (ψout=1 ∧ ψ∧ ∧ ψ∨).

We claim that XC,�b |	 ϕC iff the output of C with the input �b is 1.
The idea of the reduction is the following: the disjunction in φC is used to guess a team Y for

the right disjunct that encodes the valuation β of the circuit C. The right disjunct is then evaluated
with respect to the team Y with the intended meaning that β(vi) = 1 whenever si ∈ Y . Note that
Y is always as required in (2). The formula ψout=1 is used to state that β(v0) = 1, whereas the
formulae ψ∧ and ψ∨ are used to propagate the truth value 1 down the circuit. The assignment s⊥
and the proposition p⊥ are used as an auxiliary to make sure that Y is nonempty and to deal with the
propagation of the value 0 by the subformulae of the form pi ⊆ pj.

Now observe that the team XC,�b can be easily computed by a logspace Turing machine that scans
the input for ∧-gates, ∨-gates and true input gates, and then outputs the corresponding team members
si in a bitwise fashion. The formula ϕC can be computed in logspace as well:

1. the left disjunct does not depend on the input,
2. for ψ∧ we only need to scan for the ∧-gates and output the inclusion-formulae for the

corresponding edges,
3. for ψ∨ we need to maintain two binary counters for i and j, and use them for searching for

those disjunction gates that satisfy i < j.

Consequently, the reduction can be computed in logspace. �
For the proof of the above lemma it is not important that lax semantics is considered; the same

proof works also for the strict semantics. However, as we will show in the next section, we can
establish a stronger result for the model checking problem of PIncstr; namely that it is NP-hard.
In Section 5.1 we will show that the model checking problem for modal inclusion logic with lax
semantics is in P (Lemma 5.2). Since PInc is essentially a fragment of this logic, by combining
Lemmas 3.4 and 5.2, we obtain the following theorem.

THEOREM 3.5
MC(PInc) under lax semantics is P-complete w.r.t. ≤log

m .

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz008/5427467 by Stockholm

 U
niversity Library user on 28 M

ay 2019

10 Model checking and validity in propositional and modal inclusion logics

3.2 Model checking in strict semantics is NP-complete

In this section we reduce the set splitting problem, a well-known NP-complete problem, to the model
checking problem of PIncstr.

DEFINITION 3.6
The set splitting problem is the following decision problem:

Input: A family F of subsets of a finite set S.
Problem: Do there exist subsets S1 and S2 of S such that

1. S1 and S2 are a partition of S (i.e. S1 ∩ S2 = ∅ and S1 ∪ S2 = S),
2. for each A ∈ F , there exist a1, a2 ∈ A such that a1 ∈ S1 and a2 ∈ S2?

PROPOSITION 3.7 ([11]).
The set splitting problem is NP-complete w.r.t. ≤log

m .

The following proof relies on the fact that strict semantics is considered. It cannot hold for lax
semantics unless P = NP.

LEMMA 3.8
MC(PIncstr) is NP-hard with respect to ≤log

m .

PROOF. We give a reduction from the set splitting problem to the model checking problem of PInc
under strict semantics.

Let F be an instance of the set splitting problem. We stipulate that F = {B1, . . . , Bn} and that⋃
F = {a1, . . . , ak}, where n, k ∈ N. We will introduce fresh propositions pi and qj for each point

ai ∈ ⋃
F and set Bj ∈ F . We will then encode the family of sets F by assignments over these

propositions; each assignment si will correspond to a unique point ai. Formally, let τF denote the set
{p1, . . . , pk , q1, . . . , qn, p�, pc, pd} of propositions. For each i ∈ {1, . . . , k}, we define the assignment
si : τF → {0, 1} as follows:

si(p) :=

⎧
⎪⎨

⎪⎩

1 if p = pi or p = p�,

1 if, for some j, p = qj and ai ∈ Bj,

0 otherwise.

We also define two auxiliary assignments sc : τF → {0, 1} and sd : τF → {0, 1} as follows: sc maps
p� and pc to 1 and everything else to 0, whereas sd maps p� and pd to 1 and everything else to 0.

Define XF := {s1, . . . , sk , sc, sd}, i.e. XF consists of assignments si corresponding to each of the
points ai ∈ ⋃

F and of two auxiliary assignments sc and sd . Note that the only assignment in XF
that maps pc (pd , resp.) to 1 is sc (sd , resp.) and that every assignment maps p� to 1. Moreover, note
that for 1 ≤ i ≤ k and 1 ≤ j ≤ n, si(qj) = 1 iff ai ∈ Bj. Now define

ϕF := (¬pc ∧
∧

i≤n

p� ⊆ qi
) ∨ (¬pd ∧

∧

i≤n

p� ⊆ qi
)
.

We claim that XF |	str ϕF iff the output of the set splitting problem with input F is ‘yes’.
The proof is straightforward. Note that XF |	str ϕF iff XF can be partitioned into two subteams

Y1 and Y2 such that

Y1 |	str ¬pc ∧
∧

i≤n

p� ⊆ qi and Y2 |	str ¬pd ∧
∧

i≤n

p� ⊆ qi.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz008/5427467 by Stockholm

 U
niversity Library user on 28 M

ay 2019

Model checking and validity in propositional and modal inclusion logics 11

Teams Y1 and Y2 are both nonempty, since sd ∈ Y1 and sc ∈ Y2. Also, for a nonempty subteam Y
of XF , we have that Y |	str p� ⊆ qj iff there exists si ∈ Y such that si(qj) = 1, or equivalently,
ai ∈ Bj.

It is now evident that if XF |	str ϕF then the related subteams Y1 and Y2 directly construct a
positive answer to the set splitting problem. Likewise, any positive answer to the set splitting problem
can be used to directly construct the related subteams Y1 and Y2.

In order to compute the assignments si and by this the team XF on a logspace machine, we need
to implement two binary counters to count through 1 ≤ i ≤ k for the propositions pi and 1 ≤ j ≤ n
for the propositions qi. The formula ϕF is constructed in logspace by simply outputting it step by
step with the help of a binary counter for the interval 1 ≤ i ≤ n. As a result the whole reduction can
be implemented on a logspace Turing machine. �

In Section 5.1, we establish that the model checking problem of modal inclusion logic with strict
semantics is in NP (Theorem 5.5). Since PIncstr is essentially a fragment of this logic, together with
Lemma 3.8, we obtain the following theorem.

THEOREM 3.9
MC(PIncstr) is NP-complete with respect to ≤log

m .

4 Modal logics with team semantics

Let Φ be a set of proposition symbols. The syntax of basic modal logic ML(Φ) is generated by the
following grammar:

ϕ ::= p | ¬p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ♦ϕ | �ϕ, where p ∈ Φ.

By ϕ⊥ we denote the formula that is obtained from ¬ϕ by pushing all negation symbols to the
atomic level using the standard duality between ∧ (�) and ∨ (♦). A (Kripke) Φ-model is a tuple
M = (W , R, V), where W , called the domain of M, is a nonempty set, R ⊆ W × W is a binary
relation, and V : Φ → P(W) is a valuation of the proposition symbols. By |	ML we denote the
satisfaction relation of basic modal logic that is defined via pointed Φ-models in the standard way.
Any subset T of the domain of a Kripke model M is called a (modal) team of M. Before we define
team semantics for ML, we introduce some auxiliary notations.

DEFINITION 4.1
Let M = (W , R, V) be a model and T and S teams of M. Define that

R[T] := {w ∈ W | ∃v ∈ T s.t. vRw} and R−1[T] := {w ∈ W | ∃v ∈ T s.t. wRv}.

For teams T and S of M, we write T[R]S if S ⊆ R[T] and T ⊆ R−1[S].

Accordingly, T[R]S if and only if for every w ∈ T , there exists some v ∈ S such that wRv, and for
every v ∈ S, there exists some w ∈ T such that wRv. We are now ready to define team semantics
for ML.

DEFINITION 4.2 (Lax team semantics).
Let M be a Kripke model and T a team of M. The satisfaction relation M, T |	 ϕ for ML(Φ) is

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz008/5427467 by Stockholm

 U
niversity Library user on 28 M

ay 2019

12 Model checking and validity in propositional and modal inclusion logics

defined as follows.

M, T |	 p ⇔ w ∈ V(p) for every w ∈ T .

M, T |	 ¬p ⇔ w �∈ V(p) for every w ∈ T .

M, T |	 (ϕ ∧ ψ) ⇔ M, T |	 ϕ and M, T |	 ψ .

M, T |	 (ϕ ∨ ψ) ⇔ M, T1 |	 ϕ and M, T2 |	 ψ for some T1 and T2 s.t. T1 ∪ T2 = T .

M, T |	 ♦ϕ ⇔ M, T ′ |	 ϕ for some T ′ s.t. T[R]T ′.

M, T |	 �ϕ ⇔ M, T ′ |	 ϕ, where T ′ = R[T].

Analogously to the propositional case, we also consider the strict variant of team semantics for
modal logic. In the strict team semantics, we have the following alternative semantic definitions for
the disjunction and diamond (where W denotes the domain of M).

M, T |	str (ϕ ∨ ψ) ⇔ M, T1 |	 ϕ and M, T2 |	 ψ

for some T1 and T2 such that T1 ∪ T2 = T and T1 ∩ T2 = ∅.

M, T |	str ♦ϕ ⇔ M, f [T] |	 ϕ for some f : T → W s.t. ∀w ∈ T : wRf (w).

Here f [T] denotes the image of T under f .

When L is a team-based modal logic, we let Lstr denote its variant with strict semantics. As in
the propositional case, for strict semantics we use |	str instead of |	. The formulae of ML have the
following flatness property, independent of the considered semantics (see, e.g. the survey of Durand
et al. [7]). The proof is left to the reader.

PROPOSITION 4.3
Let M be a Kripke model and T be a team of M. Then, for every formula ϕ of ML(Φ): M, T |	
ϕ ⇔ ∀w ∈ T : M, w |	ML ϕ ⇔ M, T |	str ϕ.

Note, that the law of excluded middle for modal formulae follows from the flatness property.
The syntax of modal inclusion logic Minc(Φ) and extended modal inclusion logic EMinc(Φ) is

obtained by extending the syntax of ML(Φ) by the following grammar rule for each n ∈ N:

ϕ ::= (ϕ1, . . . , ϕn) ⊆ (ψ1, . . . , ψn),

where ϕ1, ψ1, . . . , ϕn, ψn ∈ ML(Φ). Additionally, for Minc(Φ), we require that ϕ1, ψ1, . . . , ϕn, ψn
are proposition symbols. The semantics for these inclusion atoms is defined as follows:

M, T |	 (ϕ1, . . . , ϕn) ⊆ (ψ1, . . . , ψn) ⇔
∀w ∈ T∃v ∈ T : (M, {w} |	 ϕi ⇔ M, {v} |	 ψi) is true for every 1 ≤ i ≤ n.

Using a simple inductive argument, it is easy to see that the empty team satisfies every formula of
Minc under both strict and lax semantics.

PROPOSITION 4.4 (Empty team property).
For every formula ϕ ∈ Minc and Kripke model M it holds that M, ∅ |	 ϕ and M, ∅ |	str ϕ.

The following proposition is proven in the same way as the analogous results for first-order
inclusion logic [9]. A modal logic L is union closed if M, T |	 ϕ and M, S |	 ϕ implies that
M, T ∪ S |	 ϕ, for every ϕ ∈ L.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz008/5427467 by Stockholm

 U
niversity Library user on 28 M

ay 2019

Model checking and validity in propositional and modal inclusion logics 13

FIGURE 2 Kripke model for Example 4.7. The upper worlds have the name wi, whereas for the lower
worlds the symbols p, q, r denote which propositions are labelled in that respective world.

PROPOSITION 4.5 (Union Closure).
The logics ML, Minc, EMinc are union closed.

Analogously to the propositional case, it is easy to see that, for ML-formulae, the strict and lax
semantics coincide. Again, as in the propositional case, this does not hold for Minc or EMinc. Note
that since PIncstr is not union closed, neither is Mincstr nor EMincstr.

A modal logic L with team semantics satisfies locality if for every set of proposition symbols Φ,
formula ϕ ∈ L(Φ), Kripke structure M = (W , R, V) and team T of M it holds that M, T |	 ϕ if and
only if M′, T |	 ϕ, where M′ = (W , R, V ′) and V ′ = V � Prop(ϕ).

In contrast to the propositional case, Mincstr and EMincstr satisfies locality. This holds, since
insisting locality in modal setting does not yield any collapse of the size of the team under
consideration; this kind of collapse is the real culprit of Example 2.8. The following proposition
follows by a straightforward inductive argument

PROPOSITION 4.6
Minc, EMinc, Mincstr and EMincstr all satisfy locality.

In contrary to the propositional case, Lemma 2.6 fails in the modal case as the following example
illustrates.

EXAMPLE 4.7
Let M be as depicted in Figure 2 and define

ϕ := �
((

p ∧ (p ⊆ r)
) ∨ (

q ∧ (q ⊆ r)
))

.

Now M, {wi} |	str ϕ, for i ∈ {1, 2, 3}, but M, {w1, w2, w3} �|	str ϕ.

5 Model checking and validity in modal team semantics

The model checking, satisfiability and validity problems in the context of team semantics of modal
logic are defined analogously to the propositional case. Let L(Φ) be a modal logic with team
semantics. A formula ϕ ∈ L(Φ) is satisfiable, if there exists a Kripke Φ-model M and a nonempty2

team T of M such that M, T |	 ϕ. A formula ϕ ∈ L(Φ) is valid, if M, T |	 ϕ for every Φ-model
M and every team T of M. The satisfiability problem SAT(L) and the validity problem VAL(L)

are defined in the obvious way: given a formula ϕ ∈ L, decide whether the formula is satisfiable
(valid, respectively). For model checking MC(L) we consider combined complexity: given a formula

2Many logics using team semantics have the empty team property and thus in the satisfiability problem it is customary to
ask about the existence of a nonempty team.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz008/5427467 by Stockholm

 U
niversity Library user on 28 M

ay 2019

14 Model checking and validity in propositional and modal inclusion logics

TABLE 3 Complexity of satisfiability, validity and model checking for modal logics under both
strict and lax semantics. The given complexity classes refer to completeness results and ‘-h.’
denotes hardness. The complexities for Minc and EMinc coincide, see Theorems 5.4, 5.5 and 5.13.
Whenever strict and lax semantics coincide, only a single complexity result is shown, which is
surrounded by dashes.

Satisfiability Validity Model checking

Strict Lax Strict Lax Strict Lax

ML — PSPACE [26]— ——– PSPACE [26] ——– ——– P [4, 36] ——–
Minc EXP [19] EXP [18] coNEXP-h. [C. 5.12] coNEXP-h. [Th. 5.11] NP [Th. 5.5] P [Th. 5.4]

ϕ ∈ L, a Kripke model M and a team T of M, decide whether M, T |	 ϕ. See Table 3 for known
complexity results on ML and Minc, together with partial results of this paper.

5.1 Complexity of model checking

Let M be a Kripke model, T be a team of M and ϕ be a formula of Minc. By maxsub(T , ϕ),
we denote the maximum subteam T ′ of T such that M, T ′ |	 ϕ. Since Minc is union closed (by
Proposition 4.5), such a maximum subteam always exists.

LEMMA 5.1
If ϕ is a proposition symbol, its negation, or an inclusion atom, then maxsub(T , ϕ) can be computed
in polynomial time with respect to |T | + |ϕ|.
PROOF. If ϕ is a proposition symbol or its negation, the claim follows from flatness in a
straightforward way. Assume then that T = {w1, . . . wn} and ϕ = p1, . . . , pk ⊆ q1, . . . , qk . Let
G = (V , E) be a directed graph such that V = T and (u, v) ∈ E iff the value of pi in u is the same as
the value of qi in v, for each 1 ≤ i ≤ k.

The graph G describes the inclusion dependencies between the points in the following sense: if
w ∈ maxsub(T , ϕ), then there exists some v ∈ maxsub(T , ϕ) such that (w, v) ∈ E. Clearly G can
be computed in time O(n2k). In order to construct maxsub(T , ϕ), we, round by round, delete all
vertices from G with out-degree 0. Formally, we define a sequence G0, . . . , Gn of graphs recursively.
We define that G0 := G and that Gj+1 is the graph obtained from Gj by deleting all of those vertices
from Gj that have out-degree 0 in Gj. Let i be the smallest integer such that Gi = (Vi, Ei) has no
vertices of out-degree 0. Clearly i ≤ n, and moreover, Gi is computable from G in time O(n3). It is
easy to check that Vi = maxsub(T , ϕ). �

For the following lemma it is crucial that lax semantics is considered. The lemma cannot hold for
strict semantics unless P = NP.

LEMMA 5.2
MC(Minc) under lax semantics is in P.

PROOF. We will present a labelling algorithm for model checking M, T |	 ϕ. Let subOcc(ϕ)

denote the set of all occurrences of subformulae of ϕ. Below we denote occurrences as if they
were formulae, but we actually refer to some particular occurrence of the formula.

A function f : subOcc(ϕ) → P(W) is called a labelling function of ϕ in M. We will next give an
algorithm for computing a sequence f0, f1, f2, . . ., of such labelling functions.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz008/5427467 by Stockholm

 U
niversity Library user on 28 M

ay 2019

Model checking and validity in propositional and modal inclusion logics 15

• Define f0(ψ) = W for each ψ ∈ subOcc(ϕ).
• For odd i ∈ N, define fi(ψ) bottom up as follows:

1. For literal ψ , define fi(ψ) := maxsub(fi−1(ψ), ψ).
2. fi(ψ ∧ θ) := fi(ψ) ∩ fi(θ).
3. fi(ψ ∨ θ) := fi(ψ) ∪ fi(θ).
4. fi(♦ψ) := {w ∈ fi−1(♦ψ) | R[w] ∩ fi(ψ) �= ∅}.
5. fi(�ψ) := {w ∈ fi−1(�ψ) | R[w] ⊆ fi(ψ)}.

• For even i ∈ N larger than 0, define fi(ψ) top to bottom as follows:
1. Define fi(ϕ) := fi−1(ϕ) ∩ T .
2. If ψ = θ ∧ γ , define fi(θ) := fi(γ) := fi(θ ∧ γ).
3. If ψ = θ ∨ γ , define fi(θ) := fi−1(θ) ∩ fi(θ ∨ γ) and fi(γ) := fi−1(γ) ∩ fi(θ ∨ γ).
4. If ψ = ♦θ , define fi(θ) := fi−1(θ) ∩ R[fi(♦θ)].
5. If ψ = �θ , define fi(θ) := fi−1(θ) ∩ R[fi(�θ)].

By a straightforward induction on i, we can prove that fi+1(ψ) ⊆ fi(ψ) for every ψ ∈ subOcc(ϕ).
The only nontrivial induction step is that for fi+1(θ) and fi+1(γ), when i+1 is even and ψ = θ∧γ . To
deal with this step, observe that, by the definition of fi+1 and fi, we have fi+1(θ) = fi+1(γ) = fi+1(ψ)

and fi(ψ) ⊆ fi(θ), fi(γ). Note also that for even i+1 the direction of the proof is from larger formulae
to subformulae; in particular we may assume that fi+1(ψ) ⊆ fi(ψ). Now by connecting the previous
observations, we obtain that fi+1(θ) = fi+1(ψ) ⊆ fi(ψ) ⊆ fi(θ) and fi+1(γ) = fi+1(ψ) ⊆ fi(ψ) ⊆
fi(γ).

It follows that there is an integer j ≤ 2 · |W | · |ϕ| such that fj+2 = fj+1 = fj. We denote this fixed
point fj of the sequence f0, f1, f2, . . . by f∞. By Lemma 5.1 the outcome of maxsub(·, ·) is computable
in polynomial time with respect to its input. That being, clearly fi+1 can be computed from fi in
polynomial time with respect to |W | + |ϕ|. On that account f∞ is also computable in polynomial
time with respect to |W | + |ϕ|.

We will next prove by induction on ψ ∈ subOcc(ϕ) that M, f∞(ψ) |	 ψ . Note first that there is
an odd integer i and an even integer j such that f∞ = fi = fj.

1. If ψ is a literal, the claim is true since f∞ = fi and fi(ψ) = maxsub(fi−1(ψ), ψ).
2. Assume next that ψ = θ ∧ γ , and the claim is true for θ and γ . Since f∞ = fj, we have

f∞(ψ) = f∞(θ) = f∞(γ), as a result, by induction hypothesis, M, f∞(ψ) |	 θ ∧ γ .
3. In the case ψ = θ ∨ γ , we obtain the claim M, f∞(ψ) |	 ψ by using the induction hypothesis,

and the observation that f∞(ψ) = fi(ψ) = fi(θ) ∪ fi(γ) = f∞(θ) ∪ f∞(γ).
4. Assume then that ψ = ♦θ . Since f∞ = fi, we have f∞(ψ) = {w ∈ fi−1(ψ) | R[w] ∩ f∞(θ) �=

∅}, as a consequence f∞(ψ) ⊆ R−1[f∞(θ)]. On the other hand, since f∞ = fj, we have f∞(θ) =
fj−1(θ) ∩ R[f∞(ψ)], for this reason f∞(θ) ⊆ R[f∞(ψ)]. Thus f∞(ψ)[R] f∞(θ), and using the
induction hypothesis, we see that M, f∞(ψ) |	 ψ .

5. Assume finally that ψ = �θ . Since f∞ = fi, we have R[f∞(ψ)] ⊆ f∞(θ). On the other hand,
since f∞ = fj, we have f∞(θ) ⊆ R[f∞(ψ)]. This shows that f∞(θ) = R[f∞(ψ)], that being
the case by the induction hypothesis, M, f∞(ψ) |	 ψ .

In particular, if f∞(ϕ) = T , then M, T |	 ϕ. Consequently, to complete the proof of the lemma, it
suffices to prove that the converse implication is true, as well. To prove this, assume that M, T |	 ϕ.
Then for each ψ ∈ subOcc(ϕ), there is a team Tψ such that

1. Tϕ = T .
2. If ψ = θ ∧ γ , then Tψ = Tθ = Tγ .
3. If ψ = θ ∨ γ , then Tψ = Tθ ∪ Tγ .

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz008/5427467 by Stockholm

 U
niversity Library user on 28 M

ay 2019

16 Model checking and validity in propositional and modal inclusion logics

4. If ψ = ♦θ , then Tψ [R]Tθ .
5. If ψ = �θ , then Tθ = R[Tψ].
6. If ψ is a literal, then M, Tψ |	 ψ .

We prove by induction on i that Tψ ⊆ fi(ψ) for all ψ ∈ subOcc(ϕ). For i = 0, this is obvious, since
f0(ψ) = W for all ψ . Assume next that i + 1 is odd and the claim is true for i. We prove the claim
Tψ ⊆ fi(ψ) by induction on ψ .

1. If ψ is a literal, then fi+1(ψ) = maxsub(fi(ψ), ψ). Since M, Tψ |	 ψ , and by induction
hypothesis, Tψ ⊆ fi(ψ), the claim Tψ ⊆ fi+1(ψ) is true.

2. Assume that ψ = θ ∧ γ . By induction hypothesis on θ and γ , we have Tψ = Tθ ⊆ fi+1(θ) and
Tψ = Tγ ⊆ fi+1(γ). For this reason, we get Tψ ⊆ fi+1(θ) ∩ fi+1(γ) = fi+1(ψ).

3. The case ψ = θ ∨ γ is similar to the previous one; we omit the details.
4. If ψ = ♦θ , then fi+1(ψ) = {w ∈ fi(ψ) | R[w]∩ fi+1(θ) �= ∅}. By the two induction hypotheses

on i and θ , we have {w ∈ Tψ | R[w] ∩ Tθ �= ∅} ⊆ fi+1(ψ). The claim follows from this, since
the condition R[w] ∩ Tθ �= ∅ is true for all w ∈ Tψ .

5. The case ψ = �θ is again similar to the previous one, so we omit the details.

Assume then that i + 1 is even and the claim is true for i. This time we prove the claim Tψ ⊆ fi(ψ)

by top to bottom induction on ψ .

1. By assumption, Tϕ = T , whence by induction hypothesis, Tϕ ⊆ fi(ϕ) ∩ T = fi+1(ϕ).
2. Assume that ψ = θ ∧ γ . By induction hypothesis on ψ , we have Tψ ⊆ fi+1(ψ). Since Tψ =

Tθ = Tγ and fi+1(ψ) = fi+1(θ) = fi+1(γ), this implies that Tθ ⊆ fi+1(θ) and Tγ ⊆ fi+1(γ).
3. Assume that ψ = θ ∨ γ . Using the fact that Tθ ⊆ Tψ , and the two induction hypotheses on

i and ψ , we see that Tθ ⊆ fi(θ) ∩ Tψ ⊆ fi(θ) ∩ fi+1(ψ) = fi+1(θ). Similarly, we see that
Tγ ⊆ fi+1(γ).

4. Assume that ψ = ♦θ . By the induction hypothesis on i, we have Tθ ⊆ fi(θ), and by the
induction hypothesis on ψ , we have Tθ ⊆ R[Tψ] ⊆ R[fi+1(ψ)]. Accordingly, we see that
Tθ ⊆ fi(θ) ∩ R[fi+1(ψ)] = fi+1(θ).

5. The case ψ = �θ is similar to the previous one; we omit the details.

It follows now that T = Tϕ ⊆ f∞(ϕ). Since f∞(ϕ) ⊆ f2(ϕ) ⊆ T , we conclude that f∞(ϕ) = T . This
completes the proof of the implication M, T |	 ϕ ⇒ f∞(ϕ) = T . �

The following lemma then follows, since in the context of model checking, we may replace modal
formulae that appear as parameters in inclusion atoms by fresh proposition symbols with the same
extension.

LEMMA 5.3
MC(EMinc) under lax semantics is in P.

PROOF. The result follows by a polynomial time reduction to the model checking problem of Minc:
let (W , R, V), T be a team pointed Kripke model and ϕ be a formula of EMinc. Let ϕ1, . . . , ϕn
be exactly those subformulae of ϕ that occur as a parameter of some inclusion atom in ϕ and let
p1, . . . , pn be distinct fresh proposition symbols. Let V ′ be a valuation defined as follows:

V ′(p) :=
{

{w ∈ W | (W , R, V), w |	ML ϕi} if p = pi,

V(p) otherwise.

Let ϕ∗ denote the formula obtained from ϕ by simultaneously substituting each ϕi by pi. It is easy
to check that (W , R, V), T |	 ϕ if and only if (W , R, V ′), T |	 ϕ∗. Moreover, ϕ∗ can be clearly

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz008/5427467 by Stockholm

 U
niversity Library user on 28 M

ay 2019

Model checking and validity in propositional and modal inclusion logics 17

computed from ϕ in polynomial time. Likewise, V ′ can be computed in polynomial time; since each
ϕi is a modal formula, the truth set of that formula in (W , R, V) can be computed in polynomial
time by the standard labelling algorithm used in modal logic (see e.g. [1]), and the number of
such computations is bounded above by the size of ϕ. As a consequence the result follows from
Lemma 5.1. �

By combining Lemmas 3.4, 5.2 and 5.3, we obtain the following theorem.

THEOREM 5.4
MC(Minc) and MC(EMinc) are P-complete w.r.t. ≤log

m .

THEOREM 5.5
MC(Mincstr) and MC(EMincstr) are NP-complete w.r.t. ≤log

m .

PROOF. The NP-hardness follows from the propositional case, i.e. from Lemma 3.8.
In order to establish inclusion, we note that the obvious brute force algorithm for model checking

for EMinc works in NP: for disjunctions and diamonds, we use nondeterminism to guess the correct
partitions or successor teams, respectively. Conjunctions are dealt with sequentially and for boxes
the unique successor team can be computed by brute force in quadratic time. Checking whether a
team satisfies an inclusion atom or a (negated) proposition symbol can be computed by brute force
in polynomial time (this also follows directly from Lemma 5.1). �

5.2 Dependency quantifier Boolean formulae

Deciding whether a given quantified Boolean formula (qBf) is valid is a canonical PSPACE-
complete problem. Dependency quantifier Boolean formulae introduced by Peterson et al. [32] are
variants of qBfs for which the corresponding decision problem is NEXP-complete. In this section,
we define the related coNEXP-complete complementary problem. For the definitions related to
dependency quantifier Boolean formulae, we follow Virtema [41].

QBfs extend propositional logic by allowing a prenex quantification of proposition symbols.
Formally, the set of qBfs is built from formulae of propositional logic by the following grammar:

ϕ ::= ∃p ϕ | ∀p ϕ | θ ,

where p is a propositional variable (i.e. a proposition symbol) and θ is a formula of propositional
logic. The semantics for qBfs is defined via assignments s : PROP → {0, 1} in the obvious way.
When C is a set of propositional variables, we denote by �c the canonically ordered tuple of the
variables in the set C. When p is a propositional variable and b ∈ {0, 1} is a truth value, we denote
by s(p �→ b) the modified assignment defined as follows:

s(p �→ b)(q) :=
{

b if q = p,

s(q) otherwise.

A formula that does not have any free variables is called closed. We denote by QBF the set of
exactly all closed qBfs.

PROPOSITION 5.6 ([38]).
The validity problem of QBF is PSPACE-complete w.r.t. ≤log

m .

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz008/5427467 by Stockholm

 U
niversity Library user on 28 M

ay 2019

18 Model checking and validity in propositional and modal inclusion logics

A simple qBf is a closed qBf of the type ϕ := ∀p1 · · · ∀pn∃q1 · · · ∃qkθ , where θ is a propositional
formula and the propositional variables pi, qj are all distinct. Any tuple (C1, . . . , Ck) such that
C1, . . . , Ck ⊆ {p1, . . . , pn} is called a constraint for ϕ. We identify such a constraint Ci via a
vector �ci ∈ {0, 1}n in the obvious way: the jth position of �ci is 1 iff pj ∈ ci. Intuitively, a constraint
Cj = {p1, p3} can be seen as a dependence atom dep

(
p1, p3, qj

)
3. A constraint Cj = {p1, p3} can be

also interpreted to indicate that the semantics of ∃gj is defined, if skolemised, via a Skolem function
fj(p1, p3).

DEFINITION 5.7
A simple qBf ∀p1 · · · ∀pn∃q1 · · · ∃qkθ is valid under a constraint (C1, . . . , Ck), if there exist
functions f1, . . . , fk with fi : {0, 1}|Ci| → {0, 1} such that for each assignment s : {p1, . . . , pn} →
{0, 1}, s(q1 �→ f1(s(�c1)), . . . , qk �→ fk(s(�ck))) |	 θ .

A dependency quantifier Boolean formula is a pair (ϕ, �C), where ϕ is a simple qBf and �C is a
constraint for ϕ. We say that (ϕ, �C) is valid, if ϕ is valid under the constraint �C. Let DQBF denote
the set of all dependency quantifier Boolean formulae.

PROPOSITION 5.8 ([32, 5.2.2)).
The validity problem of DQBF is NEXP-complete w.r.t. ≤log

m .

DEFINITION 5.9
Given a simple qBf ∀p1 · · · ∀pn∃q1 · · · ∃qkθ , we say it is non-valid under a constraint (C1, . . . , Ck),
if for all functions f1, . . . , fk with fi : {0, 1}|Ci| → {0, 1}, there exists an assignment s : {p1, . . . , pn} →
{0, 1} such that s(q1 �→ f1(s(�c1)), . . . , qk �→ fk(s(�ck))) �|	 θ .

It is straightforward to see that non-validity problem of DQBF is the complement problem of the
validity problem of DQBF. Accordingly, the following corollary follows.

COROLLARY 5.10
The non-validity problem of DQBF is coNEXP-complete w.r.t. ≤log

m .

5.3 Complexity of the validity problem is coNEXP-hard

In this section we give a reduction from the non-validity problem of DQBF to the validity problem
of Minc.

THEOREM 5.11
VAL(Minc) under lax semantics is coNEXP-hard w.r.t. ≤log

m .

PROOF. We provide a ≤log
m -reduction from the non-validity problem of DQBF to the validity problem

of Minc.
Recall Definition 5.9 and consider the simple qBf ∀p1 · · · ∀pn∃q1 · · · ∃qkθ with constraint

(C1, . . . , Ck). In our reduction we will encode all the possible modified assignments, as required
by Definition 5.9, by points in Kripke models. First we enforce binary (assignment) trees of
depth n in our structures. The leafs of a binary tree will correspond to the set of assignments
s : {p1, . . . , pn} → {0, 1}. The binary trees are forced in the standard way by modal formulae: the
formula branchpi := ♦pi ∧ ♦¬pi forces that there are ≥ 2 successor states that disagree on a

3See Section 6 for a definition.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz008/5427467 by Stockholm

 U
niversity Library user on 28 M

ay 2019

Model checking and validity in propositional and modal inclusion logics 19

proposition pi. The formula storepi := (pi → �pi) ∧ (¬pi → �¬pi) is used to propagate chosen
values for pi to successors in the tree. Now define

treep̄,n := branchp1 ∧
n−1∧

i=1

�i
(
branchpi+1 ∧

i∧

j=1

storepj

)
,

where �iϕ :=
i many

︷ ︸︸ ︷
� · · ·�ϕ is the i-times concatenation of �. The formula treep̄,n forces a complete

binary assignment tree of depth n for proposition symbols p1, . . . , pn. More precisely, each of the
nodes in the tree of depth n is labelled by some subset of the propositions {p1, . . . , pn}, and each
subset of {p1, . . . , pn} is the label of some such node. Notice that treep̄,n is an ML-formula and
consequently f lat (see Proposition 4.3). Let � := max{|C1|, . . . , |Ck |}. Then define

ϕstruc :=treep̄,n ∧ �n(treet̄,�
) ∧ �n+�

(
(pθ ↔ θ) ∧ p� ∧ ¬p⊥

)

∧ �n
(∧

1≤i≤�

�i(
∧

1≤j≤n

storepj ∧
∧

1≤r≤k

storeqr

))
.

The formula ϕstruc enforces the full binary assignment tree w.r.t. the pis, enforces in its leaves trees
of depth � for variables ti, identifies the truth of θ by a proposition pθ at the depth n + � as well as
1 by p� and 0 by p⊥ and then stores the values of the pjs and qrs consistently in their subtrees of
relevant depth. The points at depth n are used to encode the modified assignments of Definition 5.9.

Now consider some particular Kripke model with the structural properties described above. Shift
your attention to those points in the enforced tree that are in depth n. Note first, all assignments
for proposition symbols p1, . . . , pn are present. In fact, the number of points corresponding to some
particular assignment can by anything ≥ 1. Values for the proposition symbols qj and consequently
for the functions fj arise from the particular model; essentially, since we are considering validity,
all possible values will be considered. In fact, in some particular models, the values of qjs are not
functionally determined according to the related constraint Cj. We will next define a formula that
will deal with those models in which, for some j, the values for qj do not give rise to a function fj as in
Definition 5.9. These unwanted models have to be ‘filtered’ out by the formula through satisfaction.
This violation is expressed via ϕcons defined as follows. Below we let nj = |Cj|.

ϕcons :=
∨

1≤j≤k,
Cj={pi1 ,...,pinj

}

(
(t1 · · · tnj p⊥ ⊆ pi1 · · · pinj

qj) ∧ (t1 · · · tnj p� ⊆ pi1 · · · pinj
qj)

)
. (3)

Assume that p� and p⊥ correspond to the constant values 1 and 0, respectively. Moreover, for the
time being, suppose that the values for the proposition symbols ti have been existentially quantified
(we will later show how this is technically done). Now the formula ϕcons essentially states that there
exists a qj that does not respect the constraint Cj.

Finally define

ϕnon-val := ϕ⊥
struc ∨

(
ϕstruc ∧ �n(♦�(ϕcons ∨ p⊥ ⊆ pθ

))
. (4)

By ϕ⊥
struc, we denote the negation normal form of the ML-formula ¬ϕstruc. An important

observation is that since ϕstruc is an ML-formula, it is f lat. Now the formula ϕnon-val is valid if

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz008/5427467 by Stockholm

 U
niversity Library user on 28 M

ay 2019

20 Model checking and validity in propositional and modal inclusion logics

and only if

M, T |	 �n(♦�(ϕcons ∨ p⊥ ⊆ pθ)
)

(5)

for every team pointed Kripke model M, T that satisfies the structural properties forced by ϕstruc.
Let us now return to the formula (3). There, we assumed that the proposition symbols ti had been
quantified and that the symbols p� and p⊥ correspond to the logical constants. The latter part we
already dealt with in the formula ϕstruc. Recall that ϕstruc forces full binary assignment trees for
the tis that start from depth n. The quantification of the tis is done by selecting the corresponding
successors by the diamonds ♦� in the formula (4). If M, T is such that, for some j, qj does not
respect the constraint Cj, we use ♦� to guess a witness for the violation. It is then easy to check that
the whole team obtained by evaluating the diamond prefix satisfies the formula ϕcons. On the other
hand, if M, T is such that for each j the value of qj respects the constraint Cj, then the subformula
p⊥ ⊆ pθ forces that there exists a point w in the team obtained from T by evaluating the modalities in
(5) such that M, {w} �|	 pθ . In our reduction this means that w gives rise to a propositional assignment
that falsifies θ as required in Definition 5.9.

It is now quite straightforward to show that a simple qBf ∀p1 · · · ∀pn∃q1 · · · ∃qkθ is non-valid
under a constraint (C1, . . . , Ck) iff the Minc-formula ϕnon-val obtained as described above is valid.

In the following we show the correctness of the constructed reduction. By the observation made
in (5) it suffices to show the following claim:

CLAIM ∀p1 · · · ∀pn∃q1 · · · ∃qkθ is non-valid under (C1, . . . , Ck) iff M, T |	 �n
(
♦�(ϕcons ∨ p⊥ ⊆

pθ)
)

for every team pointed Kripke model M, T that satisfies the structural properties forced by
ϕstruc.

�
PROOF OF CLAIM ‘⇒’: assume that the formula ϕ := ∀p1 · · · ∀pn∃q1 · · · ∃qkθ is non-valid under the
constraint (C1, . . . , Ck). As a consequence, for every sequence of functions f1, . . . , fk of appropriate
arities there exists an assignment s : {p1, . . . , pn} → {0, 1} such that

s(q1 �→ f1
(
s(�c1)), . . . , qk �→ fk(s(�ck))) �|	 θ . (6)

We will show that

M, T |	 �n(♦�(ϕcons ∨ p⊥ ⊆ pθ)
)
, (7)

for each team pointed Kripke model M, T that satisfies the structural properties forced by ϕstruc.
Let M, T be an arbitrary team pointed Kripke model that satisfies the required structural

properties. Denote by S the team obtained from T after evaluating the first n �-symbols in (7).
Note that each tuple of values assigned to �p := (p1, . . . , pn) is realized in S as the tree structure
enforces all possible assignments over �p. Due to the forced structural properties, S and any of the
teams obtainable from S by evaluating the k ♦-symbols in (7) realize exactly the same assignments
for {p1, . . . , pn, q1, . . . qk}. Let Sk denote the set of exactly all points reachable from S by paths of
length exactly k. For each point w denote by w(�q) the value of �q in the world w. Note that for every
�-tuple of bits �b and every point w ∈ S there exists a point v ∈ Sk such that v(p1, . . . , pn, q1, . . . qk) =
w(p1, . . . , pn, q1, . . . qk) and v(t1, . . . , t�) = �b. Moreover, for any fixed �b, the team

{w ∈ Sk | w(t1, . . . , t�) = �b}
is obtainable from S by evaluating the k ♦-symbols in (7). We have two cases:

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz008/5427467 by Stockholm

 U
niversity Library user on 28 M

ay 2019

Model checking and validity in propositional and modal inclusion logics 21

1. There exists a constraint Ci, 1 ≤ i ≤ k, and points w, w′ ∈ S with w(�ci) = w′(�ci) but w(qi) �=
w′(qi). Now let S′ be a team obtained from S by evaluating the k ♦-symbols in (7) such that,
for every w′ ∈ S′, w(t1, . . . , t�) is an expansion of w(�ci). Now clearly M, S′ |	 ϕcons and as a
consequence M, S |	 ♦�(ϕcons ∨ p⊥ ⊆ pθ). From this (7) follows.

2. For each Ci, 1 ≤ i ≤ k and every w, w′ ∈ S, if w(�ci) = w′(�ci) then w(qi) = w′(qi). Let f1, . . . , fk
be some functions that arise from the fact that the constraints (C1, . . . , Ck) are satisfied in S.
Since, by assumption, ϕ is non-valid under the constraint (C1, . . . , Ck), it follows that there
exists an assignment s : {p1, . . . , pn} → {0, 1} such that (6) is true. Now recall that each tuple
of values assigned to �p := (p1, . . . , pn) is realized in S. Accordingly, in particular, s and s(q1 �→
f1(s(�c1)), . . . , qk �→ fk(s(�ck))) are realized in S. For this reason M, S |	 ♦�(p⊥ ⊆ pθ), from
which (7) follows in a straightforward manner.

‘⇐’: Assume that M, T |	 �n
(
♦�(ϕcons ∨ p⊥ ⊆ pθ)

)
for every team pointed Kripke model M, T

that satisfies the structural properties forced by ϕstruc. We need to show that ϕ is non-valid under the
constraint (C1, . . . , Ck). In order to show this, let f1, . . . , fk be arbitrary functions with arities that
correspond to the constraint (C1, . . . , Ck). Let M, T be a team pointed Kripke model and S a team
of M such that

a) M, T satisfies the structural properties forced by ϕstruc,
b) S is obtained from T by evaluating the n �-symbols,
c) fi

(
w(�ci)

) = w(qi), for each w ∈ S and 1 ≤ i ≤ k.

It is easy to check that such a model and teams always exist. From the assumption we then obtain
that

M, S |	 ♦�(ϕcons ∨ p⊥ ⊆ pθ). (8)

But since the values of qis, by construction, do not violate the constraint (C1, . . . , Ck), we obtain,
with the help of the structural properties, that for (8) to hold is must be the case that M, Sk |	 p⊥ ⊆
pθ , where Sk is some team obtained from S by evaluating the k ♦-symbols in (8). But this means that
there exists an assignment s : {p1, . . . , pn} → {0, 1} such that

s(q1 �→ f1
(
s(�c1)), . . . , qk �→ fk(s(�ck))) �|	 θ . (9)

Consequently, the claim is true. �
In order to compute ϕnon-val two binary counters bounded above by n+k+� need to be maintained.

Note that log(n + k + �) is logarithmic with respect to the input length. That being the case, the
reduction is computable in logspace and the lemma applies.

The construction in the previous proof works also for strict semantics. In the proof of the claim
a small adjustment is needed to facilitate the strict semantics of diamond. As a result we obtain the
following.

COROLLARY 5.12
VAL(Minc) under strict semantics is coNEXP-hard w.r.t. ≤log

m .

PROOF OF SKETCH We discuss the proof of Theorem 5.11 regarding the effect of shifting from lax
to strict semantics with respect to ♦ and ∨:

• For ML-subformulae strict and lax semantics coincide (Proposition 4.3).
• ϕcons: no change is needed.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz008/5427467 by Stockholm

 U
niversity Library user on 28 M

ay 2019

22 Model checking and validity in propositional and modal inclusion logics

• ϕnon-val: the outermost disjunction is always a partition enforced by the formula ϕstruc and its
negation, and hence this disjunction behaves exactly the same under strict semantics and lax
semantics.

• Regarding equation (5), in the case some constraint is violated, strict diamonds will find
a witness for the violation (under lax semantics, multiple violations can be found but one
suffices).

• In the proof of the claim on page 20, in general, the set S∗ := {w ∈ Sk | w(t1, . . . , t�) = �b} is
not obtainable from S using strict diamonds. However, a subset H ⊆ S∗ of size |S| such that
{w(�p, �q,�t) | w ∈ S∗} = {w(�p, �q,�t) | w ∈ H} is reachable, and that suffices. �

While the exact complexities of the problems VAL(Minc) and VAL(EMinc) remain open, it is
straightforward to establish that the two complexities coincide. In the proof of the theorem below,
we introduce fresh proposition symbols for each modal formula that appears as a parameter for an
inclusion atom. We then replace these formulae by the fresh proposition symbols and separately
force, by using an ML-formula, that the extensions of the proposition symbols and modal formulae
are the same, respectively.

THEOREM 5.13
Let C be a complexity class that is closed under polynomial time reductions. Then VAL(Minc) under
lax (strict) semantics in complete for C if and only if VAL(EMinc) under lax (strict) semantics in
complete for C.

PROOF. Let ϕ be a formula of EMinc and k the modal depth of ϕ. Let ϕ1, . . . , ϕn be exactly those
subformulae of ϕ that occur as a parameter of some inclusion atom in ϕ and let p1, . . . , pn be distinct
fresh proposition symbols. Define

ϕsubst :=
⎛

⎝
∧

0≤i≤k

�i
∧

1≤j≤n

(pj ↔ ϕj)

⎞

⎠ ,

ϕ∗ := ϕ⊥
subst ∨ (ϕsubst ∧ ϕ+),

where ϕ⊥
subst denotes the negation normal form of ¬ϕsubst and ϕ+ is the formula obtained from ϕ by

simultaneously substituting each ϕi by pi. It is easy to check that ϕ is valid if and only if the Minc
formula ϕ∗ is. Clearly ϕ∗ is computable from ϕ in polynomial time. �

6 Conclusion

In this paper, we investigated the computational complexity of model checking and validity for
propositional and modal inclusion logic with the aim to eventually complete the complexity
landscape of the basic decision problems of the most prominent propositional and modal logics
in the team semantics setting. Tables 4–6 give an overview of the current state of research for the
most important decision problems in both strict and lax semantics setting. Furthermore, we identify
the left open cases for further research. In the tables, ATIME-ALT(exp, poly) refers to alternating
exponential time with polynomially many alternations, and TOWER(poly) refers to the class of
problems that can be decided by a deterministic Turing machine with runtimes that can be described
by an exponential tower of 2s of polynomial height.

As the tables also mention atoms that have not been considered elsewhere in this paper, we
introduce them shortly:

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz008/5427467 by Stockholm

 U
niversity Library user on 28 M

ay 2019

Model checking and validity in propositional and modal inclusion logics 23

TABLE 4 Complexity of model checking. All results are completeness results. Whenever strict and
lax semantics coincide, only a single complexity result is shown which is surrounded by dashes.

PL model checking ML model checking

Operator Strict Lax Strict Lax

∅ —————— NC1 [2] ———— ————– P [4, 36] —————–
dep(·) —————– NP [8] ————— —————– NP [8] —————–
⊆ NP [Thm. 17] P [Thm. 13] NP [Thm. 29] P [Thm. 28]
⊥ NP� NP [16] NP� NP [24]
∼ PSPACE� PSPACE [16, 31] PSPACE� PSPACE [31]
�: Proof for lax semantics works also for strict semantics.

TABLE 5 Complexity of satisfiability. Complexity classes refer to completeness results; ‘-h’
denotes hardness. Whenever strict and lax semantics coincide, only a single complexity result is
shown, which is surrounded by dashes.

PL satisfiability problem ML Satisfiability Problem

Operator Strict Lax strict lax

∅ ————– NP [5, 27] ————– ———— PSPACE [26] ———–
dep(·) ————— NP [28] ————— ————– NEXP [37] ————–
⊆ EXP [19] EXP [18] EXP [19] EXP [18]
⊥ NP� NP [16] NEXP� NEXP [24]
∼ ATIME-ALT

(exp, poly)�
ATIME-ALT

(exp, poly) [16]
TOWER(poly)-h� TOWER(poly) [30]

�: Proof for lax semantics works also for strict semantics.

TABLE 6 Complexity of validity. Complexity classes refer to completeness results, ‘-h’ denotes
hardness and ‘∈’ denotes containment. Whenever strict and lax semantics coincide, only a single
complexity result is shown, which is surrounded by dashes.

PL validity problem ML validity problem

Operator Strict Lax Strict Lax

∅ ————– coNP [5, 27] ————– —————– PSPACE [26] ————–
dep(·) ————— NEXP [41] ————– —————– NEXP [13] —————–
⊆ coNP [Thm. 3.1] coNP [16] coNEXP-h

[Cor. 5.12]
coNEXP-h
[Thm. 5.11]

⊥ ∈ coNEXPNP� ∈ coNEXPNP [16] ? ?
∼ ATIME-ALT

(exp, poly)�
ATIME-ALT

(exp, poly) [16]
TOWER(poly)-h� TOWER(poly) [30]

�: Proof for lax semantics works also for strict semantics. ?: No nontrivial result is known.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz008/5427467 by Stockholm

 U
niversity Library user on 28 M

ay 2019

24 Model checking and validity in propositional and modal inclusion logics

Let �p, �q and �r be tuples of proposition symbols and q a proposition symbol. Then dep(�p, q) is a
propositional dependence atom and �q ⊥�p �r is a conditional independence atom with the following
semantics:

X |	 dep(�p, q) ⇔ ∀s, t ∈ X : s(�p) = t(�p) implies s(q) = t(q).

X |	 �q ⊥�p �r ⇔ ∀s, t ∈ X : if s(�p) = t(�p), then ∃u ∈ X : u(�p�q) = s(�p�q) and u(�r) = t(�r).
Intuitively, �q ⊥�p �r states that �q and �r are informationally independent for any fixed value for �p. We
also consider the contradictory negation ∼ in our setting. The semantics of ∼ is defined as follows:

X |	∼ϕ if and only if X �|	 ϕ.

The semantics for these atoms and for the contradictory negation in the modal setting is defined
analogously. When C is a set of atoms, we denote by PL(C) and ML(C) the extensions of PL and ML,
in the team semantics setting, by the atoms in C, respectively.

As depicted in Tables 4 and 5, the model checking and satisfiability problems for our logics have
been completely characterized. The last open case, the complexity of satisfiability of ML(∼), was
recently solved by Lück [30]; there, only lax semantics is considered, but the proof of the hardness
result works directly also for strict semantics. Concerning the validity problem, the major open
problem is the complexity of logics with ⊥; here, only a partial result in the propositional setting is
known. We conclude with a list of open problems:

• It is known that the complexity of validity of PL(⊥) is between NEXP and coNEXPNP. What
is the precise complexity?

• What is the complexity of validity of ML(⊥)?
• We showed that the validity problem for Minc and EMinc are coNEXP-hard for both lax and

strict semantics. Can we show a corresponding upper bound?
• Tables 4–6 indicate that complexities of lax and strict semantics coincide above the complexity

class P. Can we discover a meta theorem from this observation?

References
[1] P. Blackburn, M. de Rijke and Y. Venema. Modal Logic. Cambridge University Press, 2001.
[2] S. R. Buss. The Boolean formula value problem is in ALOGTIME. In Proc. 19th STOC, pp.

123–131, 1987.
[3] M. A. Casanova, R. Fagin and C. H. Papadimitriou. Inclusion dependencies and their

interaction with functional dependencies. Journal of Computer and Systems Sciences, 28, 29–
59, 1984. doi:10.1016/0022-0000(84)90075-8.

[4] E. Clarke, E. A. Emerson and A. Sistla. Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM ToPLS, 8, 244–263, 1986.

[5] S. A. Cook. The complexity of theorem proving procedures. In Proc. 3rd STOC, pp. 151–158,
1971.

[6] A. Durand, M. Hannula, J. Kontinen, A. Meier and J. Virtema. Approximation and dependence
via multiteam semantics. Annals of Mathematics and Artificial Intelligence, 83, 297–320, 2018.
doi:10.1007/s10472-017-9568-4.

[7] A. Durand, J. Kontinen and H. Vollmer. Expressivity and complexity of dependence logic. In
Dependence Logic: Theory and Applications, S. Abramsky, J. Kontinen, J. Väänänen, and H.
Vollmer, eds, pp. Birkhäuser, Basel, 5–32, 2016.

[8] J. Ebbing and P. Lohmann. Complexity of model checking for modal dependence logic. In 38th
Proc. SOFSEM , pp. 226–237, 2012.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz008/5427467 by Stockholm

 U
niversity Library user on 28 M

ay 2019

10.1016/0022-0000(84)90075-8
10.1007/s10472-017-9568-4

Model checking and validity in propositional and modal inclusion logics 25

[9] P. Galliani. Inclusion and exclusion dependencies in team semantics—on some logics of
imperfect information. Annals of Pure and Applied Logic, 163, 68–84, 2012.

[10] P. Galliani and L. Hella. Inclusion logic and fixed point logic. In Proc. 22nd CSL, LIPIcs, pp.
281–295, 2013.

[11] M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to the Theory of NP-
Completeness. Freeman, New York, 1979.

[12] L. M. Goldschlager. The monotone and planar circuit value problems are log-space complete
for P. SIGACT News, 9, 25–29, 1977.

[13] M. Hannula. Validity and Entailment in Modal and Propositional Dependence Logics. In
Valentin Goranko and Mads Dam, eds, 26th EACSL Annual Conference on Computer Science
Logic (CSL2017), vol. 82 of Leibniz International Proceedings in Informatics (LIPIcs), pp.
28:1–28:17, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.
URL: http://drops.dagstuhl.de/opus/volltexte/2017/7669, doi:10.4230/LIPIcs.CSL.2017.28.

[14] M. Hannula and J. Kontinen. A finite axiomatization of conditional independence and inclusion
dependencies. Information and Computation, 249, 121–137, 2016. doi:10.1016/j.ic.2016.04.
001.

[15] M. Hannula and J. Kontinen., and J. Virtema. Polyteam semantics. In Logical Foundations of
Computer Science—International Symposium, LFCS2018, Deerfield Beach, FL, USA, January
8–11, 2018, Proceedings, pp. 190–210, 2018. doi: 10.1007/978-3-319-72056-2_12.

[16] M. Hannula, J. Kontinen, J. Virtema and H. Vollmer. Complexity of propositional logics
in team semantic. ACM Transactions on Computational Logic, 19, 2:1–2:14, 2018. doi:
10.1145/3157054.

[17] L. Hella, A. Kuusisto, A. Meier and J. Virtema. Model Checking and Validity in Propositional
and Modal Inclusion Logics. In Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin,
eds, 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS
2017), vol. 83 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 32:1–32:14,
Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. URL: http://
drops.dagstuhl.de/opus/volltexte/2017/8100, doi:10.4230/LIPIcs.MFCS.2017.32.

[18] L. Hella, A. Kuusisto, A. Meier and H. Vollmer. Modal inclusion logic: being lax is simpler
than being strict. In Proc. 40th MFCS, pp. 281–292, 2015.

[19] L. Hella, A. Kuusisto, A. Meier and H. Vollmer. Satisfiability of modal inclusion logic: lax and
strict semantics. CoRR, 2015. arXiv: 1504.06409.

[20] L. Hella and J. Stumpf. The expressive power of modal logic with inclusion atoms. In Proc. 6th
GandALF, pp. 129–143, 2015.

[21] W. Hodges. Compositional semantics for a language of imperfect information. Logic Journal
of the IGPL, 5, 539–563, 1997.

[22] N. Immerman. Relational queries computable in polynomial time (extended abstract). In
Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing, STOC ‘82,
147–152, New York, NY, USA, 1982. ACM . doi: 10.1145/800070.802187.

[23] H. Köhler and S. Link. Inclusion dependencies and their interaction with functional dependen-
cies in SQL. Journal of Computer and Systems Sciences, 85, 104–131, 2017. doi: 10.1016/j.
jcss.2016.11.004.

[24] J. Kontinen, J.-S. Müller, H. Schnoor and H. Vollmer. Modal independence logic. Journal of
Logic and Computation, 27, 1333–1352, 2017. URL, https://doi.org/10.1093/logcom/exw019.

[25] A. Krebs, A. Meier, J. Virtema and M. Zimmermann. Team Semantics for the Specification
and Verification of Hyperproperties. In Igor Potapov, Paul Spirakis, and James Worrell, eds,
43rd International Symposium on Mathematical Foundations of Computer Science (MFCS

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz008/5427467 by Stockholm

 U
niversity Library user on 28 M

ay 2019

http://drops.dagstuhl.de/opus/volltexte/2017/7669
https://dx.doi.org/10.4230/LIPIcs.CSL.2017.28
10.1016/j.ic.2016.04.001
10.1016/j.ic.2016.04.001
10.1007/978-3-319-72056-2_12
https://dx.doi.org/10.1145/3157054
http://drops.dagstuhl.de/opus/volltexte/2017/8100
http://drops.dagstuhl.de/opus/volltexte/2017/8100
https://dx.doi.org/10.4230/LIPIcs.MFCS.2017.32
1504.06409
10.1145/800070.802187
10.1016/j.jcss.2016.11.004
10.1016/j.jcss.2016.11.004
https://doi.org/10.1093/logcom/exw019

26 Model checking and validity in propositional and modal inclusion logics

2018), vol. 117 of Leibniz International Proceedings in Informatics (LIPIcs), 10:1–10:16,
Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. URL: http://
drops.dagstuhl.de/opus/volltexte/2018/9592, doi:10.4230/LIPIcs.MFCS.2018.10.

[26] R. Ladner. The computational complexity of provability in systems of modal propositional
logic. SIAM Journal on Computing, 6, 467–480, 1977.

[27] L. A. Levin. Universal sorting problems. Problems of Information Transmission, 9, 265–266,
1973.

[28] P. Lohmann and H. Vollmer. Complexity results for modal dependence logic. Studia Logica,
101, 343–366, 2013.

[29] M. Lück. Axiomatizations of team logics. Annals of Pure and Applied Logic, 169, 928–969,
2018. doi: 10.1016/j.apal.2018.04.010.

[30] M. Lück. Canonical models and the complexity of modal team logic. In D. R. Ghica and A.
Jung, eds, 27th EACSL Annual Conference on Computer Science Logic, CSL 2018, September
4–7, 2018, Birmingham, UK, vol. 119 of LIPIcs, pp. 30:1–30:23. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.CSL.2018.30.

[31] J.-S. Müller. Satisfiability and Model Checking in Team Based Logics. PhD Thesis, Leibniz
University of Hannover, 2014.

[32] G. Peterson, J. Reif and S. Azhar. Lower bounds for multiplayer noncooperative games of
incomplete information. Computers & Mathematics With Applications, 41, 957–992, 2001.

[33] K. Sano and J. Virtema. Axiomatizing propositional dependence logics. In Stephan Kreutzer,
ed, 24th EACSL Annual Conference on Computer Science Logic, CSL 2015, September 7–10,
2015, Berlin, Germany, vol. 41 of LIPIcs, pp. 292–307. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2015. doi:https://doi.org/10.4230/LIPIcs.CSL.2015.292.

[34] K. Sano and J. Virtema. Characterizing frame definability in team semantics via the universal
modality. In Proc. of WoLLIC, 2015, pp. 140–155, 2015.

[35] K. Sano and J. Virtema. Characterizing relative frame definability in team semantics via the
universal modality. In Proc. of WoLLIC, 2016, pp. 392–409, 2016.

[36] P. Schnoebelen. The complexity of temporal logic model checking. In Proc. 4th AiML, pp.
393–436. 2002.

[37] M. Sevenster. Model-theoretic and computational properties of modal dependence logic.
Journal of Logic and Computation, 19, 1157–1173, 2009.

[38] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time (preliminary
report). In Proc. 5th STOC, pp. 1–9, New York, NY, USA, ACM, 1973.

[39] J. Väänänen. Dependence Logic. Cambridge University Press, 2007.
[40] M. Y. Vardi. The complexity of relational query languages (extended abstract). In Proceedings

of the Fourteenth Annual ACM Symposium on Theory of Computing, STOC ‘82,137–146,
ACM, New York, NY, USA, 1982. doi:10.1145/800070.802186.

[41] J. Virtema. Complexity of validity for propositional dependence logics. Information and
Computation, 253224–236, 2017. doi:10.1016/j.ic.2016.07.008.

[42] H. Vollmer. Introduction to Circuit Complexity—A Uniform Approach. Texts in Theoretical
Computer Science. Springer, Berlin Heidelberg, 1999.

[43] F. Yang and J. Väänänen. Propositional team logics. Annals of Pure and Applied Logic, 168,
1406–1441, 2017. doi: 10.1016/j.apal.2017.01.007.

Received 19 March 2019

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/advance-article-abstract/doi/10.1093/logcom
/exz008/5427467 by Stockholm

 U
niversity Library user on 28 M

ay 2019

http://drops.dagstuhl.de/opus/volltexte/2018/9592
http://drops.dagstuhl.de/opus/volltexte/2018/9592
https://dx.doi.org/10.4230/LIPIcs.MFCS.2018.10
10.1016/j.apal.2018.04.010
10.4230/LIPIcs.CSL.2018.30
https://doi.org/10.4230/LIPIcs.CSL.2015.292
10.1145/800070.802186
10.1016/j.ic.2016.07.008
10.1016/j.apal.2017.01.007

