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Abstract

Software testing becomes more complex, more time-consuming, and more expensive.
The risk that software errors remain undetected and cause critical failures increases.
Consequently, in safety-critical development, testing software is standardized and it re-
quires an engineer to show that tests fully exercise, or cover, the logic of the software.
This method often requires a trained engineer to perform manual test generation, is
prone to human error, and is expensive or impractical to use frequently in production.
To overcome these issues, software testing needs to be performed earlier in the devel-
opment process, more frequently, and aided by automated tools.

We devised an automated test generation tool called COMPLETETEST that avoids
many of those problems. The method implemented in the tool and described in this
thesis, works with software written in Function Block Diagram language, and can pro-
vide tests in just a few seconds. In addition, it does not rely on the expertise of a re-
searcher specialized in automated test generation and model checking. Although COM-
PLETETEST itself uses a model checker, a complex technique requiring a high level of
expertise to generate tests, it provides a straightforward tabular interface to the intended
users. In this way, its users do not need to learn the intricacies of using this approach
such as how coverage criteria can be formalized and used by a model checker to auto-
matically generate tests. If the technique can be demonstrated to work in production, it
could detect and aid in the detection of errors in safety-critical software development,
where conventional testing is not always applicable and efficient.

We conducted studies based on industrial use-case scenarios from Bombardier Trans-
portation AB, showing how the approach can be applied to generate tests in software
systems used in the safety-critical domain. To evaluate the approach, it was applied on
real-world programs. The results indicate that it is efficient in terms of time required
to generate tests and scales well for most of the software. There are still issues to re-
solve before the technique can be applied to more complex software, but we are already
working on ways to overcome them. In particular, we need to understand how its usage
in practice can vary depending on human and software process factors.
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Chapter 1

Introduction

To this day software testing is one of the biggest research directions in software
engineering. Wong et al. [28] indicated that for 37% of the top scholars in soft-
ware engineering, their research focus includes software testing. As time has
progressed software testing research provided a case for technologies, meth-
ods, and knowledge invoking changes in companies.

Technological, organisational and economic factors profoundly influence
the quality of software testing worldwide. Since the beginnings of software
testing, we have tried to address complexity, whilst improving productivity
through the use of more smarter techniques and tools. We have progressed from
testing software in terms of low-level functionality to automatically generating
tests for the system as whole. From structural testing, via data flow testing, to
model-based testing, automated test generation and mutation analysis: testing
software is arguably becoming more advanced than the software we produce.

1.1 Software Testing

Software testing is an engineering approach to quality assurance having the
purpose of analyzing and executing the software in order to find errors [16].
This method often requires a trained tester to perform manual test generation,
is prone to human error, and is expensive to use frequently in production. To
overcome some of these issues, software testing needs to be performed earlier
in the development process and aided by automated tools.

Obviously, the list of impediments and issues related to software testing

7
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is long. This thesis addresses some of these issues. It was conducted within
the ATAC (Advanced Test Automation for Complex and Highly-Configurable
Software-intensive Systems) project, started in 2012 by 15 European partners.
The project aim was to develop, enhance, and deploy high performance meth-
ods and tools for automated quality assurance of large and distributed software-
intensive systems. The results presented in this thesis were strongly related to
the ATAC project.

1.2 Model Checking
Like other engineering disciplines, today’s software testing is using models
of the system-under-test. Many notations are used for software models, from
formal - mathematical descriptions of the software to semi-formal notations
such as the Unified Modeling Language (UML). Historically using models to
aid software testing has played a minor role in software engineering practice.
Within the last decade model-checking has turned out to be a useful technique
for generation of test cases from models [10]. A model checker is a tool for
formal verification. There are many different efficient model checkers freely
available, therefore it is easy to experiment with such an approach. The several
different ways model checking has been used for test case generation illus-
trates its flexibility [26, 27]. Consequently, such an approach is also chosen
in this thesis. However, one of the problems in using model-checking for test-
ing industrial software systems is the limited application to domain-specific
languages used in practice.

1.3 Safety-Critical Software Development
In safety-critical software development as the complexity of the programs in-
creases, the importance of performing thorough testing and certification be-
comes evident [3]. Safety-critical and real-time software systems implemented
in Programmable Logic Controllers (PLCs) are used in many real-world in-
dustrial application domains. One of the programming languages defined by
the International Electrotechnical Commission (IEC) for PLCs is the Function
Block Diagram language. Programs developed in Function Block Diagram are
transformed into program code, which is compiled into machine code auto-
matically by using specific engineering tools provided by PLC vendors. The
motivation for using Function Block Diagram as the target language in this the-
sis comes from the fact that it is the standard in many industrial PLC systems,

1.4 Structural Testing 9

such as the ones in the railway transportation domain. According to a Sandia
National Laboratories study [23] from 2007, PLCs are widely used in a large
number of industries with a global market of approx. $ 8.99 billion.

1.4 Structural Testing

Depending on the type of software system to be developed, different testing
methods and strategies come in many different forms. In order to reason about
these techniques, test criteria are used for evaluating the adequacy reached by
a certain test. A test criterion is formulated using so called coverage items.
These items should be exercised during testing in order for the criterion to be
satisfied. For example, in statement coverage, statements are coverage items
[29]. Usually, testers describe the extent to which a criterion is exercised by
using the ratio between the number of coverage items exercised in testing and
the overall number of coverage items in the software under test.

A test criterion defined on the actual or abstract representation of the soft-
ware implementation is called a structural test criterion. Examples of structural
test criteria include exercising all execution paths or all variable definition-use
paths in the software.

In the software engineering process, testing is performed at different lev-
els, e.g., unit, integration and system testing [3]. Basically, testing is performed
from the lowest level of software development with functions tested in isolation
(Unit Testing) to system or subsystem integration testing of two or more units
(Integration Testing and System Testing), where the whole system configura-
tion is incorporated and executed on the intended target hardware. In general,
both structural and functional criteria is considered in lower levels of testing.
In system-level and integration testing mostly functional criteria are considered
because of the architectural-inherent problems for structural criteria.

Some of the structural test criteria investigated in practice with respect to
the coverage items are:

• Statement Coverage. The most fundamental and most widely used
structural test criterion. According to Zhu et al. [29] the statement cov-
erage is satisfied if ”for all nodes n in the flow graph, there is at least
one path p such that node n is on the path p“.

• Branch Coverage. Widely used because of the similarity to statement
coverage. Again, as defined by Zhu et al. [29] the branch coverage is
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satisfied if ”for all edges e in the flow graph, there is at least one path p
such that p contains the edge e“.

• Modified Condition/ Decision Coverage (MC/DC). Used because it
is a strict requirement in the safety-critical software development, espe-
cially in the railway industry. According to Chilenski and Miller [7], the
MC/DC criterion is satisfied if ”every point of entry and exit in the pro-
gram has been invoked at least one, every condition in a decision in the
program gas taken on all possible outcomes at least once, and each con-
dition has been shown to independently affect the decision’s outcome.“

1.5 Thesis Overview
In this thesis, our goal is to help testing practitioners to automatically generate
tests for safety-critical software systems developed in Function Block Diagram
language. One example of industrial application includes the use of structural
coverage which needs to be demonstrated on the developed programs. There
has been little research on using coverage criteria for Function Block Diagram
programs in an industrial setting. In some cases coverage is analyzed at the
code level [9]. Even if at the code level, coverage is used, there is no much
use of analysing the generated code because the code generation scheme is not
standardised and there is no direct mapping of the code structure to the orig-
inal Function Block Diagram program. Hence, it is advantageous to propose
and evaluate an automated test generation method tailored to Function Block
Diagram software.

The following research contributions were included in this thesis:

• A framework suitable for transforming Function Block Diagram pro-
grams to a formal representation of both its functional and timing be-
havior. For this, we implemented a transformation to timed automata,
a well known model introduced by Alur and Dill [1]. The choice of
timed automata as the target language is motivated primarily by its pre-
cise semantics and tool support for experimentation. The transforma-
tion reflects the characteristics of the Function Block Diagram language
by constructing a model which assumes a read-execute-write semantics.
The translation method consists of four separate steps. The first three
steps involve mapping all the interface elements and the existing tim-
ing annotations. The latter step produces a behavior for every block in
the program. These steps are independent of timed automata and thus

1.5 Thesis Overview 11

are generic in the sense that they could also be used when translating a
Function Block Diagram program to another target language. This al-
lowed us to investigate further a test case generation technique based on
model checking.

• A test generation technique based on model-checking, tailored for logic
coverage of Function Block Diagram programs. There have been a num-
ber of testing techniques using model-checkers, e.g., [5, 20, 21]. How-
ever, these techniques are not directly applicable to Function Block Di-
agram programs. Our main goal with this contribution was to show
evidence that logic coverage can be used on Function Block Diagram
programs based on the transformed timed automata model. This copes
with both functional and timing behavior of an Function Block Diagram
program. We showed how a model-checker can be used to generate test
cases for covering a Function Block Diagram program.

• A testing tool for safety critical applications and its application on a
large scale case study. The method implemented in the tool and de-
scribed in this thesis can automatically provide tests and it does not rely
on the expertise of a researcher specialized in model checking. The tool
provides a straightforward tabular interface to the intended users.

We used the tools and methods included in this thesis in a large case study
based on industrial use-case scenarios from Bombardier Transportation AB,
showing how the approach can be applied to generate tests. To evaluate the
approach, it was applied on real-world programs.
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Chapter 2

Research Summary

This chapter presents the research problem tackled in this thesis and lists the
research goals relevant to the problem while pointing out the scientific con-
tributions of the thesis including the published papers. To provide a quick
overview of the most common topics included in this thesis, Figure 2.1 con-
tains a word cloud that we generated using all scientific papers contributing to
this thesis.

2.1 Problem Statement and Research Goals

In software development, test engineers are required to validate the software
against their specifications as well as to show that tests exercise, or cover, the
structure of the software. Consequently, the use of automated test generation
techniques has been proposed by several researchers [18]. The past years have
witnessed increasing research within software testing, especially in the auto-
matic creation and analysis of tests given a model and a set of testing goals
(i.e., structural or functional). The limited application to real-world industrial
projects, however, impacts the transfer of test generation technologies. Thus,
there is a need to validate these approaches against relevant industrial systems
such that more knowledge is built on how to efficiently use them in practice.

The approach considered in this thesis is the usage of model-checking for
automated test generation. Specifically, we focus on testing Function Block
Diagram software because it is the standard in many industrial software sys-
tems, such as in the railway domain. Although this was considered before by
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Figure 2.1: Word cloud generated using the contributions included in this thesis

researchers [10], there are a few practical solutions that can generally be ap-
plied and used in an industrial setting.

Based on the above discussion, we identify our general research problem
as: The need to address both structural and functional testing of Function Block
Diagram software in an applicable and efficient way.

In order to refine this general problem, we narrow our focus based on dif-
ferent perspectives. Firstly, we consider that in order to use model-checking
for testing, practitioners needs to employ a testing framework equipped with
efficient and effective model-checking methods and tools that can be applied
for various test purposes. Secondly, software systems, such as in the railway
domain, typically require a certain degree of structural coverage which must
be demonstrated on the developed software [6].

Therefore, we specify our research problem as an overall goal of our re-
search efforts:

Overall Goal. To enable the usage of an applicable automated test generation
framework for Function Block Diagram software.

Since this goal is too abstract to be directly addressed, we have further
divide it into three more concrete research goals. In order to be able to provide
a framework for testing Function Block Diagrams, one needs an expressive
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and well-defined technique that would support both structural and functional
testing of Function Block Diagrams. A formalization of the Function Block
Diagram software is then needed, in order to achieve an unambiguous model
that can be formally analyzed. This motivation justifies our first research goal:

RG 1. Develop a transformation to a formal description of a model for Func-
tion Block Diagram software.

The first research goal is the basis for the next two research goals, in that it
provides a model of the Function Block Diagram programs that can be formally
analyzed. The next step is to propose and demonstrate the use of a model-
checker for testing of Function Block Diagrams, which gives rise to the second
research goal as follows:

RG 2. Develop a model-checking based technique and associated tool support
for functional and structural testing of Function Block Diagram software.

To address the second research goal, we developed a testing technique
based on the UPPAAL model checker. Many benefits emerge from developing
this method, including the ability to automatically generate test cases for real
industrial software systems described in Function Block Diagram language.

To support testers and developers when testing Function Block Diagram
programs we have formulated the third research goal as follows:

RG 3. Evaluate the applicability and usefulness of the proposed framework by
testing a real-world software system in an industrial context.

The last research goal is based on the proposed framework for testing Func-
tion Block Diagrams and aims at providing evidence on the efficiency and ap-
plicability of the proposed framework.

2.2 Research Methodology
Perkman et al. [19] is distinguishing between three types of collaborative
research methodologies between industry and academia: opportunity driven,
commercialization-driven and research-driven. In 2012, a research-driven col-
laboration was established between Bombardier Transportation AB, a large
manufacturer of trains and Mälardalen University both located in Västerås,
Sweden. As shown in Figure 2.2 this cooperation is driven by a methodology
encapsulating our common research opportunities. The vision of this method-
ology is to improve the state of the practice in automated test generation and
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Common Objectives:
- Industrial Need

- Research Problem

Collaborative Approach:
- Meetings
- Agreement
- Management

- Internal communication

University Company

Collaboration Outcomes:
- Tools

- Research Results

Figure 2.2: Model of Collaborative Research Methodology

evaluation through design, implementation and conduct of relevant research
that could be translated into software testing policy and practice. A major
emphasis was made on using available research in the area of automated test
generation.

As shown in Figure 2.2 the research was build upon common objectives.
Both partners were keen to demonstrate the industrial efficacy of the new and
uncertain automated test generation technology. The collaborative approach
demonstrates that the university and the company can together obtain tools and
applied research results which they could not achieve independently.

Our research starts with finding a problem or opportunity, and ends with
proposing a solution for that problem while building knowledge in the area of
software testing. We identify a general research problem from software test-
ing and provide a solution to it by refining and narrowing down the general
problem. First the overall goal is decomposed into clearer research goals. The
research is performed by giving clear descriptions, using prototype implemen-
tations, and evaluating the framework on industrial examples.

2.3 Contributions

In this section, we map the contributions of the thesis to the goals formulated
earlier. The relation between each contribution and the research questions is
presented in Table 2.1.

2.3 Contributions 17

RG 1 RG 2 RG 3
Paper A � �
Paper B �
Paper C �
Paper D � � �

Table 2.1: Contribution of the individual papers to the research goals

2.3.1 Paper A
Model-based Test Suite Generation for Function Block Diagrams using
the UPPAAL Model Checker.
Eduard Paul Enoiu, Daniel Sundmark, and Paul Pettersson. In the Sixth In-
ternational Conference on Software Testing, Verification and Validation Work-
shops (ICSTW), pages 158 - 167, ISBN: 978-1-4799-1324-4, 2013, IEEE.
Summary. In the first paper, we propose a framework for test generation using
a model checker and by that we address RG 1 and RG 2. We propose a trans-
lation of FBD programs into timed automata models. We present in detail this
approach using the UPPAAL model-checker in the context of a model-based
approach towards unit testing. For the translation of a program into timed au-
tomata, a set of rules are presented. On the basis of this model, a model checker
has been used for generating test suites.
My contribution. The development of the concept was done by the first author.
I implemented the models, prototype tools, and performed the experiments.

2.3.2 Paper B
MOS: An Integrated Model-based and Search-based Testing Tool for Func-
tion Block Diagrams.
Eduard Paul Enoiu, Kivanc Doganay, Markus Bohlin, Daniel Sundmark, Paul
Pettersson. Published in the 1st International Workshop on Combining Mod-
elling and Search-Based Software Engineering (CMSBSE), pages 55 - 60,
ISBN: 978-1-4673-6284-9, 2013, IEEE.
Summary. Based on Paper A and aimed at increasing confidence on the results
for RG 3, this paper presents a combined model and search-based approach to
testing Function Block Diagrams in practice, as well as several specific im-
plications. The approach is aimed at safety critical applications described in
Function Block Diagram language, and supports both a model-based and a
search-based approach. In Paper B, and to achieve RG 3, we describe the ar-
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chitecture of the tool, its workflow process, and a small descriptive case study
in which the tool has been applied in a real industrial setting to test a train
control management system.
My contribution. The first two authors are the main contributors of the pa-
per focusing on model-based and search-based approach respectively, with the
other co-authors having academic advisory role.

2.3.3 Paper C

Using Logic Coverage to Improve Testing Function Block Diagrams.
Eduard Paul Enoiu, Daniel Sundmark, Paul Pettersson. Published in Testing
Software and Systems, Proceedings of the 25th IFIP WG 6.1 International Con-
ference ICTSS 2013, volume 8254, pages 1 - 16, Lecture Notes in Computer
Science, 2013, Springer.
Summary. As a direct result of Paper A, we address RG 2 in order to improve
testing of Function Block Diagrams. We generate tests that cover the structure
of Function Block Diagrams by using logic coverage criteria. One way of
dealing with structural testing is to approach it as a model checking problem,
such that model checking tools automatically create tests. We start from the
framework introduced in Paper A and we show how logic coverage criteria can
be formalised and used by a model checker to provide tests.

Not suprisingly, we observe that for more complicated logic coverage cri-
teria, test cases result in longer tests than for simpler logic coverage criteria.
Further, we note that the use of timer elements in the language is influencing
the test generation efficiency in terms of generation time and used memory.
My contribution. I am the main author of the paper, with my co-authors
having academic and industrial advisory role. I implemented the models, the
concept, and performed the experiments.

2.3.4 Paper D

Automated Test Generation using Model-Checking: An Industrial
Evaluation
Eduard Paul Enoiu, Adnan Čaušević, Elaine Weyuker, Tom Ostrand, Daniel
Sundmark and Paul Pettersson. Accepted for Publication in the International
Journal on Software Tools for Technology Transfer, 2014, Springer.
Summary. We continue this collection of papers with a paper detailing the
development of a tool used in practice for automatic test generation and a large

2.3 Contributions 19

case study with more elaborate empirical evaluation of the use of model check-
ing for testing. To address RG 3 we measure the efficiency of using logic cov-
erage for Function Block Diagram programs. In Paper D, we further show
how a tool for test case generation that aims to satisfy logic coverage on Func-
tion Block Diagrams can be eficiently implemented using a model checker. To
further address RG 1 and RG 2 we describe improvements to the technique
proposed in Paper B and present a toolbox in which logic coverage criteria can
be formalized and used by a model-checker to generate test cases. We carried
out an extensive empirical study of the method by applying the toolbox to 157
real-world industrial programs developed at Bombardier Transportation AB.
The results indicate that model checking is suitable for handling logic cover-
age for real-world Function Block Diagram programs, but also revealed some
potential limitations of the toolbox when used for test generation such as the
usage of manual expected outputs. The evaluation showed that the toolbox is
efficient in terms of time required to generate tests that satisfy logic coverage
and that it scales well for most of the programs.
My contribution. The first author is the main contributor of the paper focusing
on both theoretical and experimental results, with the other co-authors having
academic and industrial advisory role.
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Related Work

3.1 Function Block Diagrams and IEC 61131-3
PLCs are widely used in different control systems from nuclear power plants to
traffic control systems. A PLC is an industrial real-time computer, integrated
with a processor, a main memory, linked together by a common bus. Pro-
grams running on a PLC execute in a loop, in which the iteration follows the
“read-execute-write” semantics. This ensures that the PLC reads all inputs,
executes the computation, and then writes to its output, all without interrup-
tion. Function Block Diagram, a PLC programming language standardized by
IEC 61131-3, is popular because of its graphical notations and its usefulness in
applications with a high degree of data flow between control components.

The IEC 61131-3 standard proposes a hierarchical software architecture
for structuring and running any Function Block Diagram program. This archi-
tecture specifies the syntax and semantics of a unified control software based
on a PLC configuration, resource allocation, task control, program definition,
function and function block repository, and program code [11, 17, 25].

3.2 Model Checking-Based Test Generation
A model checker has been used to find test cases to various criteria and from
programs in a variety of formal languages [5, 12]. In addition, Black et al.
[2] discuss the problems encountered in using a model-checker for test case
generation for full-predicate coverage and explain why logic coverage criteria

21
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is not directly applicable for model-checking. Rayadurgam et al. [20] present
an alternative method that modifies instead the system model and are obtaining
MC/DC adequate test cases using a model-checking approach. Similarly to
our work, the system model is annotated and the properties to be checked are
expressible as a single test sequence. However, this technique is not coping
with the timing behavior of a Function Block Diagram program as we do and
only MC/DC criteria is investigated. We provide an approach to generate test
cases for different logic criteria that are directly applicable to Function Block
Diagram programs.

Similar to this work, Rayadurgam and Heimdahl [21] have defined a com-
plete formal framework that can be used for coverage based test-case gener-
ation using a model checker. For a detailed overview of testing with model
checkers we refer the reader to Fraser et al. [10].

The idea of using model-checkers for verifying and testing Function Block
Diagram programs is not new [24, 8]. These two approaches use the UPPAAL
model checker and UPPAAL TRON for verification of Function Block Diagram
programs, however they translate their model for functional verification. Soli-
man et al. [24] provide an automatic transformation to timed automata and
their verification methodology is used to check the model against safety re-
quirements. In contrast to the online model-based testing approach used in [8]
we generate test suites for offline execution.

3.3 Testing Function Block Diagram Software

Previous contributions in testing of Function Block Diagram programs range
from a simulation-based approach [22] to verification of the actual Function
Block Diagram program code [4, 13]. The technique in [4] is based on Petri
Nets models. In comparison to our work, they are not coping with the internal
structure of the PLC logical and timing aspects. It is our opinion that testing
Function Block Diagram programs can be complemented by using a model-
checker as presented in this thesis.

Similar to our work there have been some attempts to focus on Function
Block Diagram testing [14, 13]. These works are focusing on structural testing
techniques and are proposing a solution based on the logical aspects of the
Function Block Diagram. The criteria used in this thesis is tailored for the
usage of a model checker and is complementing previous work in this area.

Related to this work but outside the PLC testing community, the most no-
table efforts have been focusing on test coverage for data flow languages. For

3.3 Testing Function Block Diagram Software 23

example, for the Lustre language there are contributions [15] describing an ac-
tivation condition concept that can be used when data flows from an input edge
to an output edge. While this approach studied the effect of structural coverage
criteria on the overall program, we study the ability to generate test cases and
its effect on the test artifacts, i.e., predicates and clauses, tailored for Function
Block Diagram programs.
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Conclusions and Future
Work

To our knowledge, not much theoretical work and experimental data is avail-
able regarding testing for Function Block Diagrams. In our work we have
defined a model-based test generation method tailored for Function Block Di-
agram programs and demonstrated how to use a tool for model checking the
implementation in order to ensure compliance to quality requirements includ-
ing unit testing. As a consequence of these results we have developed our own
framework to support both a model and search-based testing approach which
can include specific coverage measurements. One way of dealing with test
case generation for ensuring program coverage is to approach it as a model-
checking problem, such that model-checking tools automatically create test
cases. We showed how logic coverage criteria can be formalized and used by a
model-checker to provide test cases for ensuring this coverage on safety-critical
software described in Function Block Diagram language.

The testing framework presented in this thesis is based on both our previ-
ous work and the related work in this field. It is an attempt to automatically
compute tests using a model checker for Function Block Diagrams. We pro-
vide evidence for the usage of logic coverage as an improvement to testing of
Function Block Diagrams.

There are still issues to resolve before the technique can be applied to more
complex programs and in production for different companies, but we are al-
ready working on ways to overcome them. In particular, we need to understand
how its usage in practice can vary depending on technological and human fac-
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vide evidence for the usage of logic coverage as an improvement to testing of
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complex programs and in production for different companies, but we are al-
ready working on ways to overcome them. In particular, we need to understand
how its usage in practice can vary depending on technological and human fac-
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tors. In addition we are currently investigating this approach on a larger case
study. In addition, we want to extend the evaluation to measure both efficiency
and effectiveness of our approach.
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