
Model Checking Biological Systems described

using Ambient Calculus⋆

Radu Mardare, Corrado Priami, Paola Quaglia, and Oleksandr Vagin

Dipartimento di Informatica e Telecomunicazioni, Università di Trento, Italy

Abstract. We propose a way of performing model checking analysis for
biological systems. The technics were developed for a CTL* logic built
upon Ambient Calculus.
We introduce labeled syntax trees for ambient processes and use them
as possible worlds in a Kripke structure developed for a propositional
branching temporal logic. The accessibility relation over labeled syntax
trees is generated by the reduction over corresponding Ambient Calculus
processes.
Providing the algorithms for calculating the accessibility relation be-
tween states, we open the perspective of using model checking algorithms
developed for temporal logics in analyzing any phenomena described in
Ambient Calculus.

1 Introduction

Ambient Calculus [13] is a useful tool to construct mathematical models for
complex systems because of its facilities in expressing hierarchies of locations
and their mobility. At the same time properties as “the protein has split”, or
“there is a path of computation where the complexAB precedes the proteinA”
are not expressible inside the calculus. Only a logic built on top of it can handle
such properties.

Modal logics and especially temporal logics have emerged in many domains
as a good compromise between expressiveness and abstraction. Many of them
support useful computational applications as model checking. For the particular
case of temporal logics, these technics were developed up to the construction of
some tools able to perform such analysis (see, e.g. SMV [4], NuSMV [2], HyTech
[1], VIS [5]).

This paper presents a propositional branching temporal logic for Ambient
Calculus that is the representative calculus for the paradigm of calculi expressing
hierarchies of locations and their mobility. We believe that the same sort of logic
can be constructed for other calculi in this paradigm like, e.g., BioAmbients
Calculus [7], or Brane Calculi [9].

The main feature of our logic is that the final state of any computation can be
reconstructed by just having information about the initial state and the history

⋆ Work partially supported by the FET project IST-2001-32072 DEGAS under the
pro-active initiative on Global Computing.

of the computation. The spatial structure of a state is fully described by a set of
atomical propositions, while the possible states are described using, in addition,
a temporal modality. In this respect our approach is different from those used
in Ambient Logic [12, 11], or Spatial Logic [10], giving us the advantages of
simplicity and expressivity that a CTL* logic have w.r.t. the cited modal logics.

The rest of the paper is organized as follows. We first present a couple of
simple case studies coming from biology. They are used to comment on the ad-
vantages of applying temporal logics to the Ambient Calculus specification of
phenomena related to life sciences. Section 3 introduces the theoretical under-
pinning of our logic: labeled syntax trees. In Section 4 we define a branching
temporal logic for Ambient Calculus, and show how to run simple reachability
properties on our case studies. The final section concludes the presentation with
a description of an implementation of our logic. The platform actually consists
in the development of a suitable interface to NuSMV [2].

2 Case studies from biology

The advantage of using a temporal logic is relevant in the representation of bio-
logical phenomena because it gives us the power to predict over the future. Con-
sider the model of the trimetric GTP binding proteins (G-proteins) that plays
an important role in the signal transduction pathway for numerous hormones
and neurotransmitters [3, 6]. It consists of five processes: a regulatory molecule
RM , a receptor R, and three domains that are bound together composing the
protein α, β and γ. Data sent by RM to R determine a communication between
the receptor R and the protein that causes the breakage of the boundary of α, β
and γ. We ca express this in Ambient Calculus by the following specification:

RM
def
= open n.RM , R

def
= n[〈GTP 〉|R],

Protein
def
= (GDP)(α|β|γ), where GDP is a name that appear in α only,

bounded by the input prefix
RM |R|Protein ≡ open n.RM | n[〈GTP 〉|R] | (GDP)(α|β|γ) →

RM | R | 〈GTP 〉 | (GDP)(α|β|γ) →
RM |R|(α|β|γ)(GDP/GTP) →
RM |R|(α)(GDP/GTP)|β|γ

where we denoted by (α)(GDP/GTP) the process obtained by substituting
GDP with GTP inside α.

W.r.t the above example we are interested to express properties like, e.g.,
for all possible future paths, sometime in the future, we will have the interac-
tion that will generate the split of the protein. One could also want to express
that the protein will not be split before the interaction between R and RM
will be performed (a property will not be satisfied until an other one will be).
Both properties above are examples of ‘temporal’ properties which cannot be
expressed using other modal logics.

Consider now the interaction between a Virus and a Macrophage. The Macrophage
is recognizing the Virus by its characteristics. Once it is recognized, the Virus is

moved by Macrophage inside itself were it is destroyed. We decided to describe
the Macrophage as an ambient named n that contains a process Digest able
to destroy the virus; the virus is an ambient k′ that contains inside a process
Infect. The Macrophage recognizes the virus by the name k′ and by its structure
(i.e. Macrophage knows the names k, k′′ that define the structure of the virus).
Using these information, Macrophage manages to put in parallel the processes
Infect and Digest and in this way annihilates the action of the virus. We can
describe this action in Ambient Calculus in a way similar with the description
of the action of a firewall:

Macrophage
def
= n[k[out n.in k′.in n.0]|open k′.open k′′.Digest]

V irus
def
= k′[open k.k′′[Infect]]

V irus|Macrophage ≡
k′[open k.k′′[Infect]]|n[k[out n.in k′.in n.0]|open k′.open k′′.Digest]
→∗ k′[open k.k′′[Infect]]|k[in k′.in n.0]|n[open k′.open k′′.Digest]

→∗ k′[open k.k′′[Infect]|k[in n.0]]|n[open k′.open k′′.Digest]
→∗ k′[k′′[Infect]|in n.0]|n[open k′.open k′′.Digest]

→∗ n[k′[k′′[Infect]]|open k′.open k′′.Digest]
→∗ n[k′′[Infect]|open k′′.Digest]

→∗ n[Infect|Digest]

For this situation, we can be interested if our system succeeds, in all possible
time paths, to achieve the state where the processes Infect and Digest are in
parallel inside the ambient n (that represent the Macrophage), such that the
virus to be annihilated. If our system succeeds to do this, we can say that is an
appropriate one, otherwise we have to reconsider our approach. Such properties,
we will argue further, can be naturally expressed in a temporal logic.

Another reason for using temporal logics to model Ambient Calculus is the
possibility of performing model checking for our calculus, by reusing some soft-
ware already developed for these logics such as SMV [4], NuSMV [2], HyTech
[1], VIS [5].

3 The construction of the labeled syntax trees

In order to define the temporal logic, we reorganize the spatio-temporal infor-
mation contained by an ambient process. This will be done by defining a special
labelling function for the syntax trees of Ambient Calculus.

A syntax tree S = (S,→S) for a process is a graph with S = Π ∪ Γ ∪ Ω =
(ΠP ∪ΠA) ∪ Γ ∪Ω where

Π is a set that contain all the unspecified process nodes (hereafter atomical
processes1 and collected in the subset ΠP) and the ambient nodes (collected
in the subset ΠA);

1 We use these to denote unspecified processes found inside an ambient process; this is
a necessary requirement in developing model checking for Ambient Calculus because
we have to recognize and distinguish, over time, unspecified processes inside the
target process. For instance P is an unspecified process in n[in m.P]

Γ is the set of capability nodes (we include here the input nodes and the nodes
of variables over capabilities as well); and

Ω is the set of syntactical operator nodes (this set contains the parallel op-
erators | and the prefix operators, •). We identify the subset Ω′ = {•1 ∈
Ω | •1 →S | } ⊆ Ω of the prefix nodes that are immediately followed in the
syntax tree by the parallel operator because they play an important role in
the spatial structure of the ambient process 2.

We consider also the possibility of having circular branches in our trees, when
recursive definitions are involved. All the further discussion is including these
cases as well.

The intuition behind the construction of a labeled syntax tree is to associate
to each node of the syntax tree some labeles by two functions: id that gives to
each node an identity, and sp that registers the spatial position of the node.

The identity function id associates a label (urelement or ∅):

1. to each unspecified process and to each ambient; this label will identify the
node and will help us further to distinguish between processes that have the
same name

2. to each capability, the identity of the process in front of which this capability
is placed

3. ∅, to each syntactical node

The spatial function sp associates:

1. to each ambient the set of the identities of its children3, while to unspecified
processes associates the id-label.

2. to each capability, a natural number that counts the position of this capa-
bility in the chain of capabilities (if any) belonging to the same process

3. to each syntactical node the spatial function associates 0, except for the
nodes in Ω′ to which the function sp will associate the set of identities
of the processes connected by the main parallel operator in the compound
process that this point is prefixing. For example in the situation c.(P |Q),
sp(•) = {id(P), id(Q)}.

We recall here some basic definitions of Set Theory and Graph Theory that
are needed to formally define the functions id and sp above.

We choose to work inside Zermelo-Fraenkel system of Set Theory ZFC with
the Foundation Axiom (FA), as being a fertile field that offers many tools for
analyzing structures, as argued in [8]. This approach allows us to describe the
spatial structure of ambient processes as equations in set theory, each such equa-
tion being then used as atomical proposition in our logic. In this way we will not

2 These point operators are those that connect a capability with a process formed by
a parallel composition of other processes bounded together by brackets, hereafter
complex processes, as in c.(P |Q)

3 We use the terms parent and child about processes, meaning the immediate parent
and immediate child in Ambient Calculus processes.

use a modality in describing the hierarchy of locations, but only in describing the
evolution of the hierarchy in time. Hereafter, we assume a class 0 of urelements,
set-theoretical entities which are not sets (they do not have elements) but can
be elements of sets. The urelements together with the empty set ∅ will generate
all the sets we will work with (sometimes sets of sets).

Definition 1. A set a is transitive if all the elements of a set b, which is an
element of a, also belong to a: ∀b ∈ a if c ∈ b then c ∈ a.
The transitive closure of a, denoted by TC(a) is the smallest transitive set in-
cluding a. The existence of TC(a) could be justified as follows:
TC(a) = ∪{a,∪a,∪ ∪ a, ...}

Definition 2. The support of a set a, denoted by supp(a) is TC(a) ∩ 0. The
elements of supp(a) are the urelements that are somehow involved in a.

Definition 3. If a ⊆ 0 then V (a)
def
= {b | b is a set and supp(b) ⊆ a}. V (a) is

the class of all sets in which the only urelements that are somehow involved are
the urelements of a.

Definition 4. Let SP = (S,→S) be the syntax tree associated with the ambient
process P . We call the structure graph associated with P , the graph obtained by
restricting the edge relation of the syntax tree to Π ∪ Ω′, i.e. the graph TP =
(Π ∪Ω′,→T) defined by:
for n,m ∈ Π ∪ Ω′ we have n →T m iff n →∗

S m and 6 ∃p ∈ Π ∪ Ω′ such that
n →∗

S p →∗
S m

Intuitively, the structure graph of a process is obtained by restricting the
edge relation of its syntax tree to Π.

Definition 5. A decoration of a graph G = (G,→G) is an injective function
e : G → V (0) ∪ 0 such that for all a ∈ G we have:

– if 6 ∃b ∈ G such that a →G b then e(a) ∈ 0

– if ∃b ∈ G such that a →G b then e(a) = {e(b)| for all b such that a →G b}.

We now introduce a set of auxiliary functions that are the building blocks
for id and sp (for the application of these and the following definitions see the
Appendix).

Definition 6. Let the next functions be defined on the subsets of nodes of the
syntax tree (S,→) as follows:

– Let spΠ : Π∪Ω′ → V (0)∪0 be a decoration of the structure graph associated
with our syntax tree.

– Let idΠ : Π → 0 be an injective function such that idΠ(P) = spΠ(P) for

all P ∈ ΠP . Consider UP
def
= idΠ(ΠP) ⊂ 0, UA

def
= idΠ(ΠA) ⊂ 0

– Let spΩ : Ω → 0∪ V (0)∪N defined by (N is the class of natural numbers)

spΩ(s) =

{

spΠ(s) iff s ∈ Ω′

0 iff s ∈ Ω \Ω′

Consider O
def
= spΩ(Ω

′) ⊂ V (0)
– Let idΩ : Ω → V (0) ∪ 0 defined by

idΩ(s) = ∅

– Let spΓ : Γ → N such that

spΓ (c) =

{

1 iff | → • → c or n → • → c with n ∈ Π
k + 1 iff •1 → •2 → c and •1 → c′ ∈ Γ with spΓ (c

′) = k

– Let idΓ : Γ → V (0) ∪ 0 defined for c ∈ Γ such that •c → c by

idΓ (c) =







idΠ(n) iff •c → n with n ∈ Π
idΓ (c

′) iff •c → •′ with •′ → c′

spΩ(•c) iff •c ∈ Ω′

Summarizing we can define the identity function id : Π ∪Γ ∪Ω → 0∪V (0)
and the spatial function sp : Π ∪ Γ ∪Ω → 0 ∪ V (0) ∪N by:

id(s) =







idΠ(s) iff s ∈ Π
idΓ (s) iff s ∈ Γ
idΩ(s) iff s ∈ Ω

sp(s) =







spΠ(s) iff s ∈ Π
spΓ (s) iff s ∈ Γ
spΩ(s) iff s ∈ Ω

Observe that while the range of id is 0∪V (0), the range of sp is 0∪V (0)∪N
(we consider here natural numbers as cardinals4 so that no structure anomaly
emerges as long as N ⊂ 0 ∪ V (0)). Hereafter, for the sake of the presentation,
we will still consider natural numbers and not cardinals.

We identify the sets UA of urelements chosen for ambients, UP of urelements
chosen for atomical processes, and the set of sets of urelements O that contain
all the addresses of the elements in Ω′.

We now define labeled syntax tree for a given syntax tree of an ambient
process.

Definition 7. Let SP = (S,→) be the syntax tree of the ambient process P .
We call the labeled syntax tree of it the triplet SlP = (S,→, φ) where φ is the
function defined on the nodes of the syntax tree by

φ(s) = 〈id(s), sp(s)〉 for all s ∈ S.

Remark 1. It is obvious the central position of the function id in the previous
definitions. For a particular ambient process, once we defined the function id,
all the construction, up to the labeled syntax tree, can be done inductively on
the structure of the ambient process. Because of this, our construction of the
labeled syntax tree is unique up to the choice of urelements (i.e. of UP and UA).

4 Informally, we treat 0 as ∅, 1 as {∅}, 2 as {∅, {∅}}, 3 as {∅, {∅}, {∅, {∅}}} and so on.

Definition 8. For a given labeled syntax tree Sl = (S,→, φ) we define the func-
tions:

– ur : Π ∪Ω′ → UP ∪ UA ∪O by:

ur(s) =

{

id(s) if s ∈ Π
sp(s) if s ∈ Ω′

This function associates to each node of the structure graph the set-theoretical
identity defined by the labeled syntax tree

– Let e : UP ∪ UA ∪O → 0 ∪ V (0) be the function defined by

e(ν) = sp(ur−1(ν))

It associates to each ambient and compound process the set of addresses of
its children.

– f : UP ∪UA∪O → Λ∪Π, where Λ is the set of names of ambients of Ambient
Calculus, and Π is the set of atomical processes. For each ν ∈ UP ∪UA ⊂ 0,
f(ν) is the name of the process with which ν is associated by id5, and f(ν) =
〈0, 0〉 if ν ∈ O. By the function f each urelement (or set of urelements) used
as identity will receive the name of the ambient or atomical process that it
is pointing to (the sets receive the name 〈0, 0〉).

– F : UP ∪UA∪O → Γ ∗ for each ν ∈ UP ∪UA∪O, F (ν) = 〈c1, c2, ...ck〉 where
ci ∈ Γ such that ∀i ∈ N, id(ci) = ν, sp(ci) = i and 6 ∃ck+1 ∈ Γ such that
id(ck+1) = ν and sp(ck+1) = k + 1. In the case that, for ν we cannot find
any such ci, we define F (ν) = 〈ε, ε, ...〉, ε being the null capability. We adopt
the following enrichment of the relation of equality on capability chains =Γ

defined by the next rules 6:

• 〈c1, c2, c3, ...cn〉 − 〈c1〉 =Γ 〈c2, c3, ...cn〉
• 〈ε, c1, ..., ck〉 =Γ 〈c1, c2, ..., ck, ε〉 =Γ 〈c1, ..., ct, ε, ct+1, ...ck〉 =Γ 〈c1, c2, ..., ck〉,
• 〈ε, ε, ...ε〉 =Γ ∅.

The function F associates with each of these the list of capabilities that exists
in front of the process they point to.

Definition 9. Let S = (S,→, φ) be a labeled syntax tree of the ambient process
P . We will call the canonical labeled syntax tree associated with P , denoted by
S+ = (S+,→+, φ+), the restriction of the labeled syntax tree to the set S+ =
{n| n ∈ S, f(n) 6= 0 and F (n) 6= 〈ε, ...ε〉}, where 0 is the null process and ε is
the null capability.

5 informally we could say that, on UA ∪ UP , we have f = id−1, but this is not exact
for the reason that id is an injective function while f is not. Because if we have two
processes named P , then, for both, the value by f will be P , but, by id−1, they point
to different nodes in the syntax tree.

6 these rules are allowed by the syntax of Ambient Calculus together with the rules of
structural congruence over processes

Further we will analyze only canonical labeled trees (by extension canonical
processes), these being those who evolves during the ambient calculus computa-
tions, so are those who really matters for our purpose.

Other aspects concerning the definition of the labeled syntax tree for situa-
tions that involves the new name operator, the replication operator, or recursive
processes can be found in [16]. Also we introduce an algebra of labeled trees in
order to analyze their composition.

In [16] we proved that the function that associates to each ambient process
the set 〈UP , UA, O, e, f, F 〉 is generating a sound model for Ambient Calculus.
Being this result we construct the logic as having these ordered sets as states.
We say that a process satisfies a formula of our logic, if its ordered set (as state)
satisfies it.

4 The Logic

The logic we construct is a branching propositional temporal logic, CTL∗7.
The requirements for such a construction [14] are to organize a structure M =
(S0, Σ,ℜ,L) where S0 is the initial state of our model, Σ is the class of all possi-
ble states in our model, ℜ is the accessibility relation between states, ℜ ⊆ Σ×Σ,
and L : Σ → P(A) is a function which associates to each state S ∈ Σ a set of
atomical propositions L(S) ⊆ P(A) - the set of the atomical propositions true
in the state S (A will be the class of atomical propositions and P the power-set
operator).

We propose to use the ordered sets S = 〈UA, UP , O, e, f, F 〉 as states in
our logic. The choice of the initial state should depend on the purpose of our
analysis. If we are interested in the future of an ambient calculus process P by
itself, then its ordered set will be the initial state. But if P will interact with
another process Q, or will become child of an ambient, or both like in m[P |Q],
then, even if we have a particular interest in P, the initial state should be the
ordered set of m[P |Q]. For this purpose we defined computation operations over
these ordered sets such that to be able, starting from the sets constructed for
some initial processes to obtain the sets for other processes constructed in top
of these, for more see [16].

The construction of Σ should be done in such a way to contain all the possible
future states of the initial state. For this reason we take

Σ = {Si = 〈U i
A, U

i
P , O

i, ei, fi, Fi〉 | U
i
A = U0

A, U i
P = U0

P , and Oi = O0}

where S0 = 〈U0
A, U

0
P , O0, e0, f0, F0〉 is the initial state. The intuition is that no

matter how the process will evolve, it is not possible to appear in it new elements
then those that already exist in the initial state8.

7 we choose CTL∗ because is more expressive then CTL, but a CTL is possible as well
8 we include here also the situations where some ambients were dissolved by consum-
ing, for example, open capability; we consider, in this case, that these ambients still
exist in our process but they have an ”empty position”.

Our main idea is to define the atomic propositions such that to express the
basic equations that defines the spatial relations between parts of our process.
So, we could define the set of atomical propositions as:

A = {xiny|x ∈ UP ∪ UA ∪O and y ∈ UA ∪O}.

In our logic we want xiny to be just an atomical proposition and x, y just
letters. The cardinality of A is card(UP ∪UA∪O)×card(UA∪O) which depends
(polynomial) on the number of atomical processes and ambients in the ambient
calculus process S0.

Further, the interpretation function L : Σ → P(A) is defined by:

L(S) = {xiny | x ∈ ey if x ∈ UP , or ex ∈ ey if x ∈ UA ∪O}

As it concerns the accessibility relation ℜ ⊆ Σ × Σ, following the previous
intuition we could define it for two states S0 and S1, constructed for the processes
P0 and P1, by 〈S0, S1〉 ∈ R iff P0 → P1 (i.e. P1 can be reached from P0 in one
step of ambient calculus reduction).

Further, we could introduce the syntax of the CTL* logic in the usual way
[14]. We inductively define a class of state formulae (formulae which will be
true or false of states) and a class of path9 formulae (true or false of paths),
starting from A. We accept, as basic operators the logical operators ∧ and ¬,
the temporal operators X (next time) and ∪ (until) and the path quantifier E
(for some futures). We will derive from them all the usual propositional logic
operators, the temporal operators G (always) and F (sometimes) and the path
quantifier A (for all futures).

4.1 Semantics

Now we define |= inductively. We write M, S0 |= p to mean that the state
formula p is true at state S0 in the model M, and M, x |= p to mean that the
path formula p is true for the fullpath x in the structure M. The rules are:

M, S0 |= P iff P ∈ L(S0), where P ∈ A
M, S0 |= p ∧ q iff M, S0 |= p and M, S0 |= q
M, S0 |= ¬p iff it is not the case that M, S0 |= p
M, S0 |= Ep iff ∃ fullpath x = (S0, S1, ...) in M with M, x |= p
M, S0 |= Ap iff ∀ fullpath x = (S0, S1, ...) in M with M, x |= p
M, x |= p iff M, S0 |= p
M, x |= p ∧ q iff M, x |= p and M, x |= q
M, x |= ¬p iff it is not the case that M, x |= p
M, x |= p ∪ q iff ∃i

(

M, xi |= q and ∀j
(

j < i implies M, xj |= p
))

M, x |= Xp iff M, x1 |= p

9 A fullpath is an infinite sequence S0, S1, ... of states such that (Si, Si+1) ∈ ℜ for all
i. We use the convention that if x = (S0, S1, ...) denotes a fullpath, then xi denotes
the suffix path (Si, Si+1, Si+2, ...).

Definition 10. A state formula p (resp. path formula p) is valid provided that
for every structure M and every state S (resp. fullpath x) in M we have M, s |=
p (resp. M, x |= p). A state formula (resp. path formula) p is satisfiable provided
that for some structure M and some states S (resp. fullpath x) in M we have
M, S |= p (resp. M, x |= p).

4.2 Describing the state of a system

Consider the example of the interaction between the Virus and Macrophage
discussed before. If the mathematical model chosen to describe the interaction
is appropriate, then our system should have the property that, independently
of the path of time that it will choose, always we will meet, in the future, the
situation n[Infect|Digest]. Our logic allows us to formulate all these as a logical
statement. We have:

u[k′[open k.k′′[Infect]]|n[k[out n.in k′.in n.0]|open k′.open k′′.Digest]] (1)

For 1 we choose the urelements: α for u, β for n, o for 0, κ for k, κ′ for k′,
κ′′ for k′′, p for Infect and q for Digest with α, β, κ, κ′, κ′′, p, q, o ∈ 0. So,
UA = {α, β, κ, κ′, κ′′}, UP = {q, p, o}, O = ∅; f is defined by: f(α) = u, f(β) = n,
f(o) = 0, f(κ) = k, f(κ′) = k′, f(κ′′) = k′′, f(q) = Infect, f(p) = Digest and
e is defined by:

e(α) = {e(κ′), e(β)} =⇒

{

e(κ′) ∈ e(α)
e(β) ∈ e(α)

=⇒

{

κ′inα is true
βinα is true

e(κ′) = {e(κ′′)} =⇒ { e(κ′′) ∈ e(κ′) =⇒ { κ′′inκ′ is true

e(β) = {e(κ), p} =⇒

{

e(κ) ∈ e(β)
p ∈ e(β)

=⇒

{

κinβ is true
pinβ is true

e(κ′′) = {q} =⇒ { q ∈ e(κ′′) =⇒ { qinκ′′ is true
e(κ) = {o} =⇒ { o ∈ e(κ) =⇒ { oinκ is true

The property we are interested in could be expressed as

Macrophage|V irus |= AF (βinα
∧

qinβ
∧

pinβ)

It says that in all time paths exists at least a reachable state for which n is a
child of the master ambient u = f(α), Infect = f(q) and Digest = f(p) are
children of the Macrophage ambient n = f(β). Further, for checking the truth
value of this statement, a model checker could be used. Proving that our logical
formula is true it finally means that our mathematical model for describing our
problem is a correct one. Vice versa, if is not valid, the model checker will give
us a counter example that will show the conflict in our model.

4.3 Algorithms for the accessibility relation

The accessibility relation computation is based on analysis of the initial state
structure and all its possible derivatives. What basically defines the possible

evolutions (in time) are the prefixes of the processes involved. For every type of
Ambient Calculus reduction (i.e. for each type of capability, c, and for communi-
cation) we construct an algorithm able to verify if the conditions of reduction are
fulfilled (c-condition algorithm) and an algorithm which computes the final state
of the system (c-reduction algorithm). These algorithms are then used within a
more general procedure (the general algorithm) that handles the full structure
of the initial state.

In order to perform the analysis it is useful to arrange the information in the
initial state in two matrices. Consider the following example:

u [m [in n.P] | n [Q]]

If we choose f(α) = u, f(β) = m,f(γ) = n,f(p) = P , and f(q) = Q, then
the two functions and the matrix are:

matrix T1 matrix T2

T1 α β γ p q
α 0 1 1 0 0
β 0 0 0 1 0
γ 0 0 0 0 1
p 0 0 0 0 0
q 0 0 0 0 0

T2 f F
α u ε
β m ε
γ n ε
p P in m
q Q ε

Example (*)

The functions F and f are bundled into T2 matrix, while the matrix T1 has
one line for each element of UP ∪UA∪O, one column for each element of UA∪O,
and is made by setting the entry of column x and row y to 1, if the proposition
xiny is true. All the empty entries are set to 0.

In what follows we present the general algorithm and the algorithms for
in-capability only, the rest of the cases being similar.

General algorithm Assume that the initial state S1 is described by T1 and T2

matrices. The first step in the algorithm is to pick the first column of the F -part
in T2 matrix. For the Example (*) it would be Row = {in m}, just one element.

Now specific c-condition algorithm checks the possibility of using reduction
rules of the ambient calculus semantics, and if all the necessary conditions hold
then the specific c-reduction part is performed to compute the next state (by
updating T1 and T2 matrices). In the other case another capability might be
chosen in the cycle until either c-reduction algorithm is finally performed or
the Row set is empty. The algorithm computes exact one state on-forward. See
Algorithm1.

While the empty place ε is excluded from the set Row for the obvious rea-
son, the output action is not accepted for avoiding overlapping actions with the
accepted input action.

Algorithm 1 General form of the accessibility algorithm

1: Row ⇐ {c | c is the first column of F -part of the T2 matrix }\{ε, output}
2: while Row 6= ∅ do

3: choose c ∈ Row

4: c-condition
5: if condition then

6: c-reduction
7: Row ⇐ ∅
8: else

9: Row ⇐ Row\{c}
10: end if

11: end while

where c can be In, Out, Open or Communication in c-condition and c-reduction,
which depends on chosen capability at the third line.

The notation S1 |=alg S2 denotes that S2 state is obtained from S1 in one step
using algorithm 1 instantiated with suitable c-condition and c-reduction parts.
We can prove that the accessibility relation between states fulfill the condition:

S1ℜS2 iff S1 |=alg S2.

In-condition, In-reduction algorithms

n [in m.P | Q] | m [R] −→ m [n [P | Q] | R]

The representation of the initial state of the process is the following:

matrix T1 matrix T2

T1 α β p q r
α 0 0 1 1 0
β 0 0 0 0 1
p 0 0 0 0 0
q 0 0 0 0 0
r 0 0 0 0 0

T2 f F
α n ε
β m ε
p P in m
q Q ε
q R ε

The In-condition and In-reduction algorithms implement the in-reduction
rule of Ambient Calculus semantics.

The In-condition algorithm checks if there is an ambient with the same name
as the one in-capability refer to (m in the particular case), at the same nested
level as the parent process of the capability owner process; it checks also if there
is no prefix in front of either ambient processes that will be involved in the
reduction. If all the conditions hold then the In-reduction will be performed. It
consists in updating T1 and T2 such that to represent the final state.

The Out-, Open- and Communication- condition/reduction algorithms differ
from the above w.r.t. the Ambient Calculus reduction rules they describe. For
the sake of space, we not discuss them here (for complete details, the reader is
referred to [15]).

Algorithm 2 In-condition

condition ⇐ false

UrBundle ⇐ f−1

S1
(m)

while UrBundle 6= ∅ do

choose ν ∈ UrBundle

if parent(parent(p)) = parent(ν) AND
FS1

(parent(p)) = ε AND
FS1

(ν) = ε AND
∀µ ∈ f−1

S1
(〈0, 0〉), ν ∈ µ ⇒ FS1

(µ) = ε then

condition ⇐ true

UrBundle ⇐ ∅
else

UrBundle ⇐ UrBundle\{ν}
end if

end while

Algorithm 3 In-Reduction

{update T2}
FS2

(p) ⇐ FS1
(p)− 〈in m〉

FS2
(x) ⇐ FS1

(x) for all x 6= p

fS2
(x) ⇐ fS1

(x)
if fS2

(p) = 〈0, 0〉 ∧ FS2
(p) = ε then

∀µ ∈ p, FS2
(µ) ⇐ FS2

(µ)− 〈⋆〉
end if

{update T1}
βinα ⇐ 0
βinγ ⇐ 1
if fS2

(p) = 〈0, 0〉 ∧ FS2
(p) = ε then

∀µ ∈ p, µinp ⇐ 0
end if

5 Implementation Details

We present here the details of the implementation we developed for this logic
in order to perform model checking analysis for Ambient Calculus. We use the
NuSMV model checker for analyzing CTL* logic. Anyway, having the CTL*
logic developed for Ambient Calculus, we can use for our purpose any model
checker able to analysis temporal logics.

The implementation consists in the construction of a translator (in top of the
algorithms presented before) that accepts as input a mobile ambient process and
gives, as output, a model specification file for NuSMV model checker. Hereafter
we sketch this construction.

The translator assigns to each atomical process or ambient (to each urele-
ment), to each capability and to each ambient process name a natural number,
and so it generates the constant definitions for the NuSMV model.

In order to adapt our approach to the requirements of the NuSMV software,
we had to represent the matrices T1 and T2 by means of arrays.

For the matrix T1, representing the urelements by natural numbers and using
the function parent we obtain the representation in NuSMV model as follows:

matrix T1 representation of T1

T1 α β γ δ
α 0 1 1 0
β 0 0 0 1
γ 0 0 0 0
δ 0 0 0 0

parent[α] parent[β] parent[γ] parent[δ]
< no parent > α α β

In this case the translator converted the 4 × 4 matrix having 0 or 1 as entries
into an array of 4 elements where each of them can have one of the values 0, 1,
2 or 3 (these values represent the identities of the processes and play the same
role as the urelements).

For the representation of the matrix T2, the translator generates the next
arrays (functions):

cap2proc: Nc → Np

cap2order: Nc → Nc

nextCap: Np → Nc

cap2name: Nc → Nn

proc2name: Np → Nn

enabled: Np → boolean

where Nc, Np and Nn are integers used to identify, respectively, a capability
(Nc), a process (Np) or a name (Nn).

The array cap2proc stores the information that the capability with identity
Nc is prefixing the process with identity Np.

The array cap2order points out the order in which the capabilities prefixing
the same process can be used for reductions. For example, cap2order[in γ] =
out γ means that out γ might be used only after in γ was used.

The array nextCap associates to a process the leftmost capability that prefix
it. For instance, nextCap[δ] = in γ means that the capability in γ is enabled in
the process δ.

The arrays cap2name and proc2name handle the storing information about
names that are used in a process formula. For instance, cap2name[in γ] = m
express that in γ can only be applied in the case of an ambient with the name
m, while cap2name[γ] = m is used to express the fact that γ was chosen to name
a process with the name m.

The array enabled is used to block the action of some capabilities. For exam-
ple, it is syntactically possible that the use of a capability to be conditioned by
the use of another one which do not belong to the same process (so cap2order
is not enough). This is the case for c1.(P |c2.Q), where c2 cannot be consumed
before c1, but this case can arise in presence of communications as well. So,
enabled[in γ] = 1 allows the capability to be used while enabled[in γ] = 0 forbid
the use of the capability.

Using the procedure described above the translator is able to encode the
information behind each state of the system. Further it generates the model
for the initial state and for the possible next states using the functions already
presented. The initial state consists in an assignment of values for variables.
Then using the general algorithm it computes the models of the possible next
states.

Fairness constraints generated by the syntactical structure of the ambient
process are defined by the translator in order to avoid the stuck of the system
and to prevent the appearance of impossible paths.

Finally the translator converts the property we want to verify in a form
consistent with the one of the system. In this way the interface with NuSMV is
complete.

6 Conclusions

The logic we constructed in top of Ambient Calculus opens the perspective of
using model checking algorithms (or software) developed for temporal logics in
analyzing mobile computations and, in this way, to predict over the future of
the systems (biological systems) described using the calculus.

Having the description of the states, together with the algorithms for acces-
sibility relation, all we have to do for having model checking for mobile compu-
tations, is to use, further, the algorithms for model checking CTL* (or the tools
already constructed for this purpose). Here we presented the possibility of using
NuSMV model checker.

Our ongoing research makes us confident in the possibility to construct such
a logic for other calculi used for describing biological systems, e.g. BioAmbients
Calculus, or Brane Calculi. In such a way, we could move towards predictions
about the future of (the structures of) biological systems that can be described
using these calculi.

References

1. HyTech: The HYbrid TECHnology Tool. http: // www-cad. eecs. berkeley. edu/

~ tah/ HyTech/ .
2. NuSMV: A new symbolic model checker. http: // nusmv. irst. itc. it/ .
3. Receptors directly activating trimetric g proteins. http: // courses. washington.

edu/ conj/ gprotein/ trimericgp. htm .
4. The SMV system. http: // www-2. cs. cmu. edu/ ~ modelcheck/ smv. html .
5. VIS homepage. http: // www-cad. eecs. berkeley. edu/ ~ vis/ .
6. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molecular

Biology of the Cell. Garland Publishing, Inc., fourth edition, 2002.
7. A.Regev, E.M.Panina, W.Silverman, L.Cardelli, and E.Shapiro. Bioambients: An

abstraction for biological compartments. http: // www. luca. demon. co. uk/ , to
appear in Theoretical Computer Science, 2003.

8. J. Barwise and L. Moss. Vicious Circles. On the Mathematics of Non-Wellfounded
Phenomena. CLSI Lecture Notes Number 60 Stanford: CSLI Publication, 1996.

9. L. Cardelli. Brane calculi. http://www.luca.demon.co.uk/.
10. L. Cardelli and L. Caires. A spatial logic for concurrency (part i). Information

and Computation, Vol.186/2, pages:194-235, 2003.
11. L. Cardelli and A.D. Gordon. Ambient logic. http://www.luca.demon.co.uk/, to

appear in Mathematical Structures in Computer Science.
12. L. Cardelli and A.D. Gordon. Anytime, anywhere. modal logics for mobile am-

bients. Proceedings of the 27th ACM Symposium on Principles of Programming
Languages, pages 365–377, 2000.

13. L. Cardelli and A.D. Gordon. Mobile ambients. Theoretical Computer Science,
Special Issue on Coordination, D. Le Metayer Editor, pages 177–213, June 2000.

14. E. A. Emerson. Temporal and modal logic. Handbook of Theoretical Computer
Science, B: Formal Models and Sematics:995–1072, 1990.

15. R. Mardare and C. Priami. Computing the accessibility relation for ambient cal-
culus. Technical report, Dipartimento di Informatica e Tlc, University of Trento,
2003. Available at http://www.dit.unitn.it following the link Publications.

16. R. Mardare and C. Priami. A propositional branching temporal logic for the am-
bient calculus. Technical report, Dipartimento di Informatica e Tlc, University of
Trento, 2003. Available at http://www.dit.unitn.it following the link Publica-
tions.

A The construction of a labeled syntax tree

We present further the construction of a labeled syntax tree. Consider the am-
bient calculus program:

m[open n.Q|s[out m.in m.n[open t.(out s.(open s.P |R)|K)]]] |n[P]. (2)

As a general rule, we embed our program into a master ambient10 (the master
ambient will have a fresh name). Our program becomes:

u[m[open n.Q|s[out m.in m.n[open t.(out s.(open s.P |R)|K)]]] |n[P]] (3)

The syntax tree of this process is in Figure A.
For constructing the labeled syntax tree we will define φ. We define the

identity function id as:
id(u) = α, id(m) = β, id(n) = γ (the child of u), id(s) = δ, id(n) = µ,

id(Q) = q, id(P) = p′ (the child of that n which have γ as identity),
id(P) = p (the child of that n which have µ as identity), id(R) = r, id(K) = k,
where {α, β, γ, δ, µ, p, q, p′, r, k} ⊂ 0.

Observe that in our situation Ω′ = {•′, •′′} (see Figure A). The space function
sp for Π ∪Ω′ will be defined starting from the values of id for atomic processes
and following the definition of decoration:

sp(u) = {sp(m), sp(n)} (here n is the child of u), sp(m) = {sp(s), q},
sp(n) = {p′} (the child of u), sp(s) = {sp(n)}, sp(n) = {sp(•′)},

sp(•′) = {k, sp(•′′)}, sp(•′′) = {p, r}.

For capabilities the identity function have the values:

id(open n) = q, id(out m) = µ, id(in m) = µ, id(open t) = {k, {p, r}},
id(out s) = {p, r}, id(open s) = p

and the spatial function:

sp(open n) = 1, sp(out m) = 1, sp(in m) = 2, sp(open t) = 1, sp(out s) = 1,
sp(open s) = 1

Concluding, the function φ will be defined as (we will denote sp(x) by spx):

φ(u) = 〈α, {spm, spn}〉, φ(m) = 〈β, {sps, q}〉,
φ(n) = 〈γ, {p′}〉,(the child of u) φ(P) = 〈p′, p′〉(the child of n),
φ(open n) = 〈q, 1〉, φ(Q) = 〈q, q〉,
φ(s) = 〈δ, {spn}〉, φ(out m) = 〈µ, 1〉,
φ(in m) = 〈µ, 2〉, φ(n) = 〈µ, sp•′〉,
φ(•′) = 〈∅, {sp•′′}〉, φ(open t) = 〈{k, {p, r}}, 1〉,
φ(•′′) = 〈∅, {p, r}〉, φ(K) = 〈k, k〉,
φ(out s) = 〈{p, r}, 1〉, φ(R) = 〈r, r〉,
φ(open s) = 〈p, 1〉, φ(P) = 〈p, p〉,
for all • ∈ Ω \Ω′, φ(•) = 〈∅, 0〉, for all | ∈ Ω, φ(|) = 〈∅, 0〉,

u[]

|

m[]

|

•

open n Q

s[]

•

out m •

in m n[]

•′

open t |

•′′

out s |

•

open s P

R

K

n[]

P

Fig. 1. Syntax tree of the process 3.

The labeled syntax tree is in Figure A.
We can define now the functions ur, e, f and F .

ur(u) = α, ur(m) = β, ur(n) = γ (the child of u), ur(s) = δ, ur(n) = µ,
ur(Q) = q, ur(P) = p′ (the child of n), ur(P) = p, ur(R) = r, ur(K) = k,

ur(•′) = {k, {p, r}}, ur(•′′) = {p, r}

We can define now the function f :

f(α) = u, f(β) = m, f(γ) = n, f(δ) = s, f(µ) = n, f(q) = Q, f(p) = P ,
f(p′) = P , f(r) = R, f(k) = K, f({p, r}) = 〈0, 0〉, f({k, {p, r}}) = 〈0, 0〉

10 This is a technical trick that is not disturbing our analysis because of the rule
(RedAmb): P → Q ⇒ n[P] → n[Q], [13], but it helps to treat the processes as a
whole from the spatial point of view.

u[]
φ
→ 〈α, {spβ , spγ}〉

|
φ
→ 〈∅, 0〉

m[]
φ
→ 〈β, {spδ, q}〉

|
φ
→ 〈∅, 0〉

•
φ
→ 〈∅, 0〉

open n
φ
→ 〈q, 1〉 Q

φ
→ 〈q, q〉

s[]
φ
→ 〈δ, {spµ}〉

•
φ
→ 〈∅, 0〉

out m
φ
→ 〈µ, 1〉 •

φ
→ 〈∅, 0〉

in m
φ
→ 〈µ, 2〉 n[]

φ
→ 〈µ, {sp•′}〉

•′
φ
→ 〈∅, {sp•′′}〉

open t
φ
→ 〈{k, {p, r}}, 1〉 |

φ
→ 〈∅, 0〉

•′′
φ
→ 〈∅, {p, r}〉

out s
φ
→ 〈{p, r}, 1〉 |

φ
→ 〈∅, 0〉

•
φ
→ 〈∅, 0〉

open s
φ
→ 〈p, 1〉 P

φ
→ 〈p, p〉

R
φ
→ 〈r, r〉

K
φ
→ 〈k, k〉

n[]
φ
→ 〈γ, {p′}〉

P
φ
→ 〈p′, p′〉

Fig. 2. Labeled syntax tree of 3.

We define, as before, UA = {u ∈ 0 | f(u) ∈ Λ} and UP = {u ∈ 0 | f(u) ∈ Π},
which in our example became:
UP = {p, q, r, k, p′}, UA = {α, β, γ, δ, µ} and O = {{k, {p, r}}, {p, r}}.

The function e (as before, we denote e(x) by ex):

eα = {eβ , eγ} , eβ = {eδ, q}, eγ = {p′} , eδ = {eµ}, eµ = {e{k,{p,r}}},
e{k,{p,r}} = {k, e{p,r}}, e{p,r} = {p, r}.

The function F :

F (α) = 〈ε, ε, ...〉, F (β) = 〈ε, ε, ...〉, F (γ) = 〈ε, ε, ...〉 F (δ) = 〈ε, ε, ...〉
F (µ) = 〈out m, in m, ε〉, F (q) = 〈open n, ε〉, F (p) = 〈ε, ε, ...〉,

F (p′) = 〈open s, ε〉, F (r) = 〈ε, ε, ...〉, F (k) = 〈ε, ε, ...〉, F ({p, r}) = 〈out s, ε〉,
F ({{p, r}, k}) = 〈open t, ε〉.

