
http://www.diva-portal.org

Postprint

This is the accepted version of a paper presented at 26th Int. Conf. on Automated Software
Engineering (ASE 2011).

Citation for the original published paper:

Leungwattanakit, W., Artho, C., Hagiya, M., Tanabe, Y., Yamamoto, M. (2011)
Model Checking Distributed Systems by Combining Caching and Process Checkpointing.
In: Proc. 26th Int. Conf. on Automated Software Engineering (ASE 2011) (pp. 103-112).

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-199132



Model Checking Distributed Systems by Combining

Caching and Process Checkpointing

Watcharin Leungwattanakit∗, Cyrille Artho†, Masami Hagiya∗, Yoshinori Tanabe‡ and Mitsuharu Yamamoto§

∗Graduate School of Information Science and Technology

The University of Tokyo, Tokyo, Japan

Email: {watcharin, hagiya}@is.s.u-tokyo.ac.jp
†Research Center for Information Security, AIST, Tsukuba, Japan

Email: c.artho@aist.go.jp
‡National Institute of Informatics, Tokyo, Japan

Email: y-tanabe@nii.ac.jp
§Chiba University, Chiba, Japan

Email: mituharu@math.s.chiba-u.ac.jp

Abstract—Verification of distributed software systems by
model checking is not a straightforward task due to inter-
process communication. Many software model checkers only
explore the state space of a single multi-threaded process. Recent
work has proposed a technique that applies a cache to capture
communication between the main process and its peers, and
allows the model checker to complete state-space exploration.
Although previous work handles non-deterministic output in
the main process, any peer program is required to produce
deterministic output.

This paper introduces a process checkpointing tool. The com-
bination of caching and process checkpointing makes it possible
to handle nondeterminism on both sides of communication. Peer
states are saved as checkpoints and restored when the model
checker backtracks and produces a request not available in the
cache. We also introduce the concept of strategies to control
the creation of checkpoints and the overhead caused by the
checkpointing tool.

Index Terms—software model checking; caching; software
verification; distributed systems; checkpointing;

I. INTRODUCTION

Networked software is usually implemented as a concur-

rent program using multiple threads to handle connections.

Threads are execution units within a given process [1]. The

interleaving among threads, i.e. thread scheduling, is taken

care of by an operating system, thus it is beyond the con-

trol of programmers. As a result, software testing [2] may

miss some failures under a certain sequence of interleaving,

because it cannot cover all possible thread schedules in one

run. Chess [3] remedies this disadvantage by executing a

test case repeatedly to find concurrent failures and ensuring

that every run takes a different interleaving. More program

behaviors are tested by this technique. Model checking [4]

is a more powerful verification technique that takes every

possible schedule into account. Some software model checkers

such as Java PathFinder (JPF) [5] execute real application

code at runtime and are applied in the implementation phase

of a software development. In this paper, the main process

to be verified is called the system under test (SUT). The

system under test is backtracked by a model checker during

verification to analyze multiple outcomes of non-deterministic

decisions, such as thread scheduling and variable input data.

The combination of decisions increases exponentially over

the number of instructions. As a result, the program state

space is usually too large to be explored exhaustively within a

reasonable amount of time. This limitation is called the state

explosion problem, which is one of the fundamental problems

for model checking. Partial order reduction [6] is a technique

to relieve the state explosion by atomically executing a group

of program instructions that do not affect any other threads.

This method reduces the number of thread interleavings, and

thus the size of the state space.

Verifying a distributed system [7] with a model checker

is not a straightforward process. The distributed system is

composed of several computational entities that exchange data

and interoperate with one another through a network. Each

process may run on a different environment, increasing system

complexity. Most software model checkers only handle a

single process at a time and cannot be applied simulatenously

to all processes of the distributed system. When a process in

the system is executed, as the SUT, by the model checker, the

other processes are running as peer processes in the normal

execution environment. Since the peer processes are not under

model checker control, they cannot be backtracked in tandem

with the SUT. After the SUT backtracks, it may try to interact

with the peers, which are not in a state to respond correctly.

Several techniques [8], [9], [10] have been established to

automate the verification of such systems. Some of them are

briefly introduced in Section II. Our previous work [11], [12]

has shown that an I/O cache can interact with the SUT on

behalf of the peer.

A. Cache-based Verification

Fundamentally, dynamic software verification can be carried

out by two approaches: testing and model checking. Figures 1a

and 1b compare the configurations of both approaches in the

verification of a distributed application. Testing executes both

the SUT and peers in the normal execution environment. Only



SUT

Peer 1

Peer 2

(a) Software testing setup.

Model
Checker

Peer 1

Peer 2

C
a
c
h
e

SUT

(b) Cache-based model checking setup.

Model

Checker

Checkpointing Environment

Peer 1 Peer 2C
a
c
h
e

SUT

(c) Checkpointing support setup.

Figure 1: Three configurations: testing, cache-based model

checking, and model checking with checkpointing support.

one execution path of the SUT is exercised for each run in this

configuration. On the other hand, model checking executes

the SUT inside an environment where the program state may

be rolled back. Thus, the SUT can be systematically driven

through every possible execution path. In case of a multi-

process application, the I/O cache is required to interact with

the SUT on behalf of the peers [11], [12]. The I/O cache

intercepts every request packet, a data packet sent by the

SUT, and stores it in an internal data structure. Similarly,

response packets coming back from the peers are stored in

the I/O cache as well. Each request packet is matched with

its corresponding response packet, if any. The I/O cache uses

this information to imitate peer behaviors. As a result, the SUT

experiences the same interaction with the I/O cache that would

encounter with the actual peers. The single-process model

checker then can complete the exploration of the SUT state

space. In doing so, it avoids an expensive analysis of the full

state space of each peer. Similar to a partial-order reduction,

this reduces the state space significantly. By analyzing the full

state space of the SUT combined with only a few (rather than

all) peer executions, cache-based verification allows systems

to be analyzed that were previously out of reach for model

checking [11], [12].

In this research, determinism of programs is defined to be

based on the output they produce with respect to input on

a communication channel. Note that multithreaded programs

whose thread schedules are non-deterministic can still produce

deterministic output by this definition. We do not impose a

restriction on “internal” non-determinism of programs. Fur-

thermore, the term “deterministic output” means that the

output solely depends on the input trace of the communication

peer. A program with deterministic output may still produce

a different output pattern if it receives a different input trace.

The initial implementation of the I/O cache assumed deter-

minism of the SUT output [11]. However, this assumption is

not always true. Some kinds of programs serve clients with

dynamic data, e.g. web servers and database servers. Their

outcomes do not only depend on the response from a peer but

also on their internal state. Therefore, the I/O cache may ob-

serve multiple patterns of request packets from such programs

running as SUT. We can say that the SUT behaves in a non-

deterministic way from the perspective of the I/O cache. To

handle programs with non-deterministic output, the I/O cache

creates, for each distinct request pattern, a new instance of the

peer. Each instance of the peer is responsible for one request

pattern. While non-determinism on the SUT side is taken

into account, previous work [12] assumes deterministic output

from peers. Previous work restores a peer state by replaying

previously recorded communication to a new instance of the

peer [12]; non-deterministic peer systems cannot be handled

in this way.

B. Extension for Non-deterministic Peers

This paper proposes a method to support non-deterministic

output from both SUT and peers with the help of process

checkpointing. Process checkpointing is a technique that runs

a group of processes in an environment that keeps track of

the process states. This environment is called a checkpointing

environment. Figure 1c shows the configuration of cache-

based model checking with a checkpointing environment. The

checkpointing environment creates a checkpoint of the peers

when requested by the I/O cache. When the I/O cache needs to

synchronize the state of the SUT and peers, the checkpointing

environment restarts the peers from an appropriate checkpoint.

This avoids replaying peer actions that may cause the pre-

viously executed non-deterministic transition to be repeated.

Thus, the SUT only observes one peer behavior for each SUT

output trace. This method eliminates false positives caused by

different instances of peers interacting with the SUT under

one execution path.

Nondeterminism inside a peer can be divided into two types

by its source: thread scheduling and external input. Thread

scheduling is controlled by an operating system. Even though

a peer is loaded from a checkpoint, there is no guarantee

that the peer will execute under the same thread schedule.

Accordingly, we assume peer output of each communication

channel is independent of thread scheduling.

Checkpointing a process is an expensive operation. Doing

it naively would incur extremely high overhead. We propose

strategies to prevent the model checker from creating unneces-

sary checkpoints. The contribution of this work is as follows:

• The application of process checkpointing to software

model checking.

• Support for distributed applications that produce non-

deterministic output.

2



• Introducing checkpointing strategies.

• A model checker extension that implements the proposed

algorithm.1

C. Outline

Section II shows related work to verify distributed appli-

cations. Section III presents how to make use of process

checkpointing in software model checking. Section IV gives

the implementation details of the model checker extension

that supports peers with non-deterministic output. Section V

presents and analyzes experimental results of the checkpoint-

supported I/O cache on several systems under test. Section VI

concludes the paper and proposes future work.

II. RELATED WORK

Several approaches have been presented to automate verifi-

cation of distributed systems. The Centralization technique [8],

[9] offers automatic unification of processes. It collects all

processes in an application and transforms each process to a

thread. All threads start inside a process called a centralized

process, which can be automatically generated by a tool. A

single-process model checker runs the centralized process,

which starts all threads at the beginning, and verifies the

entire system at once. Since all processes must be wrapped

into one process, they must be written in the same pro-

gramming language and be compiled on the same platform.

These requirements are not always fulfilled. The centralization

approach does not scale well since exploring the interleavings

of all processes in the system yields very large state space.

Implementing a multi-process model checker is one of the

solutions. This idea was proposed in [13]. The extension of

User-mode Linux [14] called ScrapBook can save and restore

the state of a system running inside a virtual environment. A

SUT is executed inside the virtual environment. Note that there

is no peer process in this approach, because every process is

inside the virtual environment. Each process of the application

is controlled by an instance of GDB (GNU Debugger) [15].

Given a set of breakpoints, GDB suspends the process. A user

specifies these breakpoints beforehand. ScrapBook works as

a model checker in the sense that it can save and revert the

system state. Since the state of the entire system must be saved

and restored during verification, this approach is not scalable

as well.

Verisoft [16] is another model checking tool that verifies

concurrent processes. It deals directly with the implementation

of a target system, which may comprise multiple processes.

However, it could not handle multi-threaded processes and did

not maintain states of file descriptors for files and sockets

that the system would open. Therefore, modern applications

composed of multiple threads cannot be directly verified by

the tool.

1http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/net-iocache

III. PROCESS CHECKPOINTING SUPPORT

This section explains how process checkpointing is applied

to verification of distributed systems. This idea is built on the

concept of the I/O cache, which is reviewed in Section III-A.

Some checkpointing tools are briefly introduced in Sec-

tion III-B. We use process checkpointing to capture consistent

behaviors of peer processes. Without process checkpointing,

the I/O cache may store inconsistent data, which causes the

model checker to report false positives. Such a situation is

shown in Section III-C. We propose an optimization method

in Section III-D in order to reduce the number of checkpoints

and control the overhead caused by the checkpointing tool.

A. Fundamentals of the I/O Cache

The I/O cache is a software module that controls data

packets transferred between a SUT and a peer. It captures

the messages sent by the SUT and matches them to the

corresponding messages from the peer. A message from the

SUT is called a request message while one from the peer is

called a response message. A request message will be stored

in an internal data structure if the I/O cache receives it for

the first time. In this case, the I/O cache will poll the peer

process for a response message. If a response message is

available, the I/O cache will match it with the most-recent

request message [11]. On the other hand, if the I/O cache

receives a request message it has received before, it will send

the response message associated with that request message to

the SUT.

Figure 2 demonstrates how the I/O cache works on a

two-thread SUT. Let W and R be threads that produce an

output trace and receive an input trace, respectively. Thread

W randomly produces string ‘01’ or ‘02’. In the first schedule,

Thread W writes ‘0’, denoted by W (0). The cache memorizes

the data block transferred and shades the block to indicate that

the SUT has passed through. Then, the I/O cache sends the

request message to the peer and polls a response message.

The response message is saved in the next block (Figure 2a).

Note that the response message is not shaded, because the

SUT has not read it yet. In the next step, thread R attempts to

read a message and receives the previously cached response

message. The I/O cache shades the read block to mark that the

SUT has already received this message (Figure 2b). Suppose

that thread W produces ‘1’ in the next step, the I/O cache

becomes like Figure 2c. When the SUT backtracks to state 2,

the I/O cache restores the shade position, but the cached data

remains permanent (Figure 2d). The model checker executes

another possibility in which W produces ‘2’. At this time,

the peer is restarted from the beginning to handle the new

request messages ‘02’ (Figure 2e). The SUT backtracks to

state 1. Thread W may execute at this point with two options,

writing ‘1’ or ‘2’. Suppose that it writes ‘1’, the I/O cache

in fact does not write this message to the peer since the

message is already in the cache. Instead, it only shades the

associated data block to remember the state of the data stream

(Figure 2f). The model checker continues running until the

3



0

1

2

end

3

W(0)

W(1)

R(B)

R(A)

4

W(2)

R(C)

5

W(1)

0

1

2

end

3

(c) (d)

(e) (f)

0

1

W(0)

ROOT

A

(a)

0

1

2

ROOT

(b)

0
W(0)

R(A)

W(0)

W(1)

R(B)

0

A

R(A)

ROOT

A

0

1

B

0

1

2

end

3

W(0)

W(1)

R(B)

R(A)

4

W(2)

ROOT

A

0

1

B

0

1

2

end

3

W(0)

W(1)

R(B)

R(A)

4

W(2)

R(C)

ROOT

A

0

1

B

2

C

ROOT

A

0

1

B

2

C

Figure 2: Evolution of the partial state space and cached traces. Two different communication traces are represented by solid

lines and dashed lines. Rectangular nodes represent request messages. Circled nodes represent response messages.

whole state space is explored with the help of the I/O cache,

which interacts with the SUT as a peer.

B. Checkpointing Environments

Process checkpointing is a technique to create a snapshot

of a group of processes. The snapshot stored in non-volatile

memory is referred to as a checkpoint. A checkpoint can be

loaded later on to recreate the process group in a certain state.

After checkpointing, the recreated processes can continue

running from where they were suspended as if they had not

stopped running.

Most virtualization tools [17], [18], [19] provide check-

pointing functions save and restore. However, virtual-

ization consumes a large amount of system resources since

it applies those functions on the entire system. Initially, we

implemented our approach by using Kernel-based Virtual

Machine (KVM) [18]. It took a few seconds merely to create

one snapshot of a system, rendering it impractical.

A lightweight checkpointing package such as MTCP [20]

can be used as a replacement in certain circumstances where

a peer is a single-process program. The checkpointing package

takes care of the state of a single process, unlike the virtual-

ization tools. It approximately takes 200-300 milliseconds on

average in order to create a checkpoint, which is acceptable.

Distributed MultiThreaded CheckPointing (DMTCP) [21] is

an extended version of MTCP, which manages a group of

processes connected by network connections or parent-child

relations. This work employs DMTCP as the checkpointing

environment to support the I/O cache. All peer processes are

controlled by DMTCP.

Checkpointing environments introduce a new method to

synchronize a SUT and a peer. Model checkers save SUT

states in order to backtrack it to any previously visited point

in the state space. A checkpointing tool can do the same

with peer processes. When the I/O cache has detected a new

communication trace from the SUT, it restores the peer process

from a checkpoint saved prior to the equivalent state instead

of restarting the peer from the beginning. In the extreme

case, we may create a peer checkpoint for each SUT state. In

practice, the peer does not have to be checkpointed as often

as the SUT. Some peer checkpoints may be omitted under

a certain condition. An optimization method is discussed in

Section III-D.

4



ROOT

0

A

1 2

C F

S0

0/A

0/B

1/C,
2/E

1/D,
2/F

S

S

1

2

B

?

ROOT

0

A

1 2

C E

Figure 3: (Left) State transition diagram of a peer that produces

non-deterministic output. (Middle) One possibility of incorrect

cached data. (Right) Correct cached data.

C. Support for Non-deterministic Peer Output

In this paper, we propose an approach to cope with non-

deterministic peer output. An example of such a peer is shown

in Figure 3 (left). The peer may change state and produce

output differently (‘A’ and ‘B’) in each run, although it receives

the same data ‘0’ as shown in the transitions from S0 to

S1 and S2. The I/O cache approach without checkpointing

restarts the peer process when the SUT produces a different

trace after backtracking [12]. This technique does not work if

the peer also produces non-deterministic output, which may

cause inconsistency in the cached data. Suppose that the peer

moves from S0 to S1, the I/O cache receives ‘A’ and ‘C’

from the peer. After backtracking the SUT produces a new

trace (‘02’), request message ‘2’ is added into a new branch,

forcing the peer to restart. The new peer may move from state

S0 to state S2 after receiving message ‘0’. The transition to

S2 emits ‘B’, which differs from the existing cache content

‘A’. The I/O cache may handle a mismatch by: (1) aborting the

process, or (2) giving a warning and continuing. If it continues,

it will receive ‘F’ as a response for ‘2’. The cache contents

in Figure 3 (middle) indicate that the SUT receives response

message ‘AF’ for request message ‘02’, which is an incorrect

behavior. According to the state transition diagram in Figure 3

(left), the peer obviously never produces ‘A’ and ‘F’ in the

same run. The I/O cache may return an incorrect response

message, because the new peer does not stay in the same state

as its previous instance did. As a result, the model checker

would report a false positive due to the communication trace

that the SUT never receives in a normal environment.

This inconsistency can bring about a serious problem if the

communication between two programs depends on the results

of non-deterministic peer operations. For example, a SUT and

a peer may perform key exchange [22] by generating random

values required to build a shared secret key. If the I/O cache

restarts the peer later, the peer will generate a new random

value for building the key. The key obtained from the new

random value is different from what the SUT is holding. As

a result, both programs cannot decrypt messages from the

opponent after the peer has restarted.

This issue can be solved by running a peer in a checkpoint-

ing environment, which can save and revert the peer state. A

S0

1

2 3

4

65

C

S S

S S S S

0

C C C2 3 6C5

C1
C4

Figure 4: (Left) SUT state space. Dashed lines represent

transitions without network I/O operations. (Right) Peer check-

point space. Solid-line circles represent physical checkpoints.

Dashed-line circles represent logical checkpoints.

peer checkpoint is created as the SUT changes state. States

S0 and S1 are saved for the example in Figure 3. When the

SUT needs the peer in a certain state, the peer is restarted in a

way that it will produce outcomes consistent with the cached

contents. In this case, the peer is restarted from state S1. The

peer continues running from that point and correctly sends

response message ‘E’ for request message ‘2’. The correct

cache contents are shown in Figure 3 (right). By this method,

only one behavior of the peer is revealed to the SUT as if the

peer produced deterministic output.

D. Checkpointing Strategies

Checkpointing every single peer state is not always neces-

sary and not efficient since the I/O cache can replay cached

messages in most cases. Instead, we introduce a concept of

logical checkpoints, which do not occupy disk space. They

are created as the model checker discovers new states of a

SUT. Figure 4 shows checkpoint space as compared to SUT

state space. State Si associates with logical checkpoint Ci.

A checkpointing strategy defines how to maintain the bal-

ance of the checkpoint creation overhead with the possibility

of restoring a previous state directly. It decides whether to

create a physical checkpoint, which occupies storage space,

over the corresponding logical checkpoint. When the SUT

needs the peer at a specific state, the model checker restores

the corresponding logical checkpoint. If it lacks a physical

checkpoint, the peer will be instead restored from the most-

recent physical checkpoint on a path to that logical checkpoint.

After that the model checker must replay communication data

from there, up to the designated logical checkpoint.

Generally, creating two identical checkpoints is pointless.

We assume that a peer does not change state significantly

if it performs no network I/O operation, e.g. connect,

accept, send, and recv. Following this assumption, the

peer should be checkpointed only after a network I/O operation

is performed. Using this strategy, an example of the resulting

checkpoint space is shown in Figure 4. States S1, S4, and

S5 come from transitions without network I/O operations, so

physical checkpoints are not created at C1, C4, and C5. If

the SUT needs the peer at C5, we must start from physical

checkpoint C0 and replay network I/O operations, by using the

cache contents, until it reaches C5. A variant of this strategy

is to only checkpoint after operation connect or accept.

5



S2

t1

Loading checkpoint Peer restart

S3

t2

t 0

S

S

C

t

1

0

3

2

C1

C3

t2

C1

t0

C0

Figure 5: Two options : loading a checkpoint or starting a new

peer.

In this case, the I/O cache must replay I/O operations from

the beginning of the connection up to point where the peer is

synchronized with the SUT again.

A checkpointing strategy takes effect after each SUT state

transition to decide whether the current peer state should

be saved. In addition to that, if the I/O cache receives a

notification from the checkpointing environment about a non-

deterministic operation, it will always saves the state of the

peer. The I/O cache must do this in order to preserve the result

of the non-deterministic operation. This method requires a

way to detect non-deterministic peer “actions” at runtime. Our

solution is to build wrapper functions for standard functions

that may cause non-determinism such as time and read;

see Section IV. When one of these functions is called with a

certain argument, the wrapper function sends a notification to

the I/O cache. Receiving the notification, the I/O cache saves

the peer state after the current SUT transition is completed.

Note that we must wait until the transition is completed in

order to create a checkpoint synchronized with the SUT state

as shown in Figure 4.

When a SUT needs a peer in one of the previous states, the

I/O cache may either restore a peer from a checkpoint or start a

new peer from the beginning. Figure 5 compares these options.

The SUT moves from state S1 to S3, producing a hitherto

unseen request message. Ci is the peer state associated with

SUT state Si. Loading a checkpoint takes time in creating

a process and the execution of transition t2. Restarting the

peer takes time in creating a new process and the execution of

transitions t0 and t2. Checkpointing strategies should provide a

way to estimate and compare cost in each choice. In the current

implementation, the model checker always restores the peer

from a checkpoint, assuming that loading the program space

from a checkpoint is faster. In this case, the initial peer state

(C0) must always have a physical checkpoint since it can be a

starting point to go to any logical checkpoints. Implementation

of other checkpointing strategies constitutes future work.

E. Restrictions

A checkpointing tool cannot force a peer process to produce

output in a specific non-deterministic branch. The I/O cache

uses the checkpointing tool only to make sure that the SUT

receives peer output from a certain branch. However, the peer

output captured by the I/O cache may be different in each

run. As a result, only part of the SUT state space of the

SUT is checked. In Figure 3, once the peer moves to state

s1, the SUT will never receive message ‘BD’ or ‘BF’ during

the verification, although these messages are possible in a real

run.

The introduction of checkpointing technology intervenes in

the execution of a peer process in the sense that the peer

must run in a special environment. In contrast to the pure

cache-based approach, the behavior of the peer process in the

new environment may differ from the original behavior. This

limitation also implies that one must have a permission to set

up a checkpointing environment on the machine that runs the

peer process.

IV. IMPLEMENTATION ARCHITECTURE

Java PathFinder (JPF) [5] is a model checker for programs

written in Java. It is used as the model checker and the

run-time environment for SUT in this work. The pure I/O

cache approach without checkpointing functions was devel-

oped as an extension of JPF called net-iocache [11], [23]

for verifying networked applications. This work introduces

process-checkpointing support by applying the tool called

DMTCP [21] to suppress non-deterministic behaviors of peer

processes. DMTCP runs a group of connected nodes, i.e.

peer processes, in a special environment where some standard

functions are wrapped in order to gain information to create

system checkpoints. DMTCP has the DMTCP coordinator

process that manages the execution of all nodes and handles

external commands. When the DMTCP coordinator receives

a checkpoint command, it captures the state of each node

in the group, including connection information, in checkpoint

files. One checkpoint file represents the state of one node, so

for each checkpoint command, the number of checkpoints

created is equal to the number of nodes currently running.

The checkpoint files contain sufficient information to restart

the group of processes at a state where each process is

communicating with one another. In order to make DMTCP

work with the I/O cache, we modify some part of DMTCP

and register callback functions to capture the events inside the

peer process.

A. Connection with the Model Checker

DMTCP is a checkpointing tool for a group of connected

processes. Users can add a process into the group by starting it

with command dmtcp_checkpoint. Another way to add a

process into the process group is creating a new process using

the fork-family functions. Every child created by a process

in the group automatically becomes a member of the group.

DMTCP saves the entire state of the process group including

connections among the internal processes when receiving the

checkpoint command. Similarly, it restarts all processes in

a group from a given checkpoint when receiving the restart

command. The SUT state is controlled by JPF while the peer

state is controlled by DMTCP as shown in Figure 6. Since the

6



DMTCP
Model
Checker

checkpoint

restart

Figure 6: The state of a SUT and a group of peers is managed

by the model checker and DMTCP, respectively, but the

connection between them is not subject to checkpointing.

DMTCP

Model
Checker

ProxyC
a
c
h
e

DMTCP Wrapper Functions

ND Notification

Command

Result (+ FD)

Proxy Command Channel

ND Notification Channel
SUT

Peer

Peer

Peer

Figure 7: The proxy process represents the SUT inside the

DMTCP environment. The I/O cache has two communication

channels connected to DMTCP.

SUT is not a process in the group, the connection between the

SUT and peers is not subject to checkpointing. As a result,

the connection is closed when the I/O cache kills the group

of peers before loading a new one from a checkpoint. When

restarting, the I/O cache must provide a way to restore this

connection so that the SUT and peer can communicate with

each other again.

In our implementation, we create a proxy process that

represents a SUT in the DMTCP environment. The proxy

process runs similar to other peer processes as shown in

Figure 7. When the SUT performs an operation that establishes

a connection, the I/O cache sends the corresponding com-

mand to the proxy process. Currently, the proxy supports five

commands: create_socket, connect, accept, bind,

and close. Table I shows a mapping between the network

operations called by SUT and the proxy commands. The proxy

performs the requested operation and sends the result back to

the I/O cache. Some operations may return a file descriptor

that represents a network socket. The I/O cache can use the file

descriptor it receives to communicate with the peer directly. In

order to transfer file descriptors between processes, the SUT

and proxy use a pair of Unix domain sockets to communicate

with each other.

Table I: Supported Java methods and their associated proxy

commands.
Java Method Proxy Command FD

Returned?

new Socket() create_socket yes

Socket.connect() connect no

Socket.close() close no

new ServerSocket() bind no

ServerSocket.accept() accept yes

B. DMTCP Modification

Our checkpointing-based approach requires a mechanism

that notifies the I/O cache whenever a peer executes an

instruction that causes non-deterministic behaviors. In order to

implement such a mechanism, we need to watch calls to some

functions of the peer program. In the current implementation,

functions time and read are specially treated as they may

produce non-deterministic results. Function time may be

called obtain the current time, which varies across executions.

This value is often used as a seed to generate a sequence of

pseudo-random numbers such as function srand. When func-

tion time is called, the I/O cache is notified. As for function

read, the I/O cache will be notified if the file descriptor argu-

ment is associated with the system random number generator

device /dev/random or /dev/urandom. These devices

are non-deterministic data sources supplied by the operating

system.

DMTCP provides a set of wrapper functions that collects

necessary information for checkpointing before calling the real

version of the functions. The wrapped functions include both

standard C libraries and system calls. In a similar way, we

add one wrapper function (time) and modify an existing

one (read). When either of these functions detects non-

determinism (ND), it sends a ND notification to the I/O cache.

C. Cache-DMTCP Private Communication

During verification, the I/O cache and DMTCP must have

a way to communicate with each other. The I/O cache sends

commands to the proxy process inside the DMTCP environ-

ment, as mentioned in Section IV-A. In addition to that, it

must be ready to receive a notification when a peer process

performs a non-deterministic operation.

We set up two communication channels between the I/O

cache and DMTCP: the proxy command channel and the

non-determinism notification channel, illustrated in Figure 7.

When verification starts, the proxy process connects to the I/O

cache using a Unix-domain socket, which allows the proxy to

transfer file descriptors to the I/O cache. This connection is

called the proxy command channel. It must be cut off before

checkpointing, otherwise DMTCP will try to save the state of

the process at the other side of the connection, i.e., the model

checker. JPF does not run inside the DMTCP environment and

should never be dumped into a checkpoint. The proxy com-

mand channel is re-established after checkpointing/restarting.

We register the pre/post-checkpoint callback functions to

DMTCP that are responsible for cutting off and repairing this

connection, respectively.

The I/O cache recognizes non-deterministic operations on

the peers by creating a worker thread that waits for ND

notifications. The worker thread binds a TCP server socket

to a fixed port number. Every time a peer executes a non-

deterministic function, the corresponding DMTCP wrapper

function asynchronously sends a ND notification packet to

the worker thread as shown in Figure 7. If the I/O cache

receives a notification during a transition, it will create a peer

checkpoint at the end of the transition. Note that we must wait

7



Group of
Peers

(1)
(2)

(4) (3)

Pipe

I/O Cache
Shell
Script

DMTCP
Coordinator

Figure 8: Communication between the model checker and

DMTCP during checkpointing and restarting.

until the current transition is completed in order to generate

the checkpoint state space that maps on the SUT state space

one-to-one as shown in Figure 4.

When the I/O cache dispatches the checkpoint/restart com-

mand to DMTCP, it must be blocked until the peers are ready

again. In the current implementation, the proxy process notifies

the I/O cache via a named pipe (FIFO) as shown in Figure 8.

The I/O cache executes a shell script (1) that dispatches a

command to the DMTCP coordinator, an interface of the

peer processes (2). After the operation has been completed,

DMTCP notifies the I/O cache by putting a message in

a pipe (3). Waiting on the pipe, the shell script receives

the message and returns the control to the I/O cache (4).

This procedure makes sure that the I/O cache only continues

running when the peer side is ready. All processes must run

on the same Linux machine in order to use the named pipe.

Otherwise, another synchronization method must be provided.

Currently, DMTCP supports only Linux-based operating sys-

tems, so our implementation adds no extra limitation.

V. EXPERIMENTS AND DISCUSSION

This section compares the time and the number of states

generated in the model checking process between the pure I/O

cache approach and the checkpointing approach with several

checkpointing strategies. The experiment was run on an 8-core

Mac Pro workstation with 24GB of physical memory, running

Ubuntu 8.04, JPF 6 (changeset 382:4f9c3fc91a2f), and

DMTCP (revision 967). The time limit for each case was set

to one hour. Table II shows the experimental results2. Column

“no CP” denotes the I/O cache approach with no checkpointing

support. Three checkpointing strategies were applied in the

experiment.

1) always save: Create a checkpoint if the peer is alive.

2) after I/O: Create a checkpoint after a transition involved

a networked I/O operation.

3) after ND: Create a checkpoint after a transition during

which a ND notification is received.

In the alphabet application, a multi-threaded client sends num-

ber n to the server and receives the nth letter of the English

alphabet as a response, for a specified number of times. The

alphabet client randomly sends a number of messages from set

{0, 1, . . . , 9} while the alphabet server randomly sends either

small or capital letters. Deterministic versions of the peers

2The verification time and the number of states are higher than the results
in a previous publication [12] due to a change in JPF to cover more thread
schedules.

were used in the “no CP” case. Non-deterministic versions

were used in the other cases. Note that the number of states

explored by JPF is the same, regardless of determinism of

peer output, since our approach captures one of the possible

responses of the peer. The model checking process then runs

as if the peer produced deterministic output.

The HTTP client simply requests a file from a server via

HTTP. It generates worker threads to request multiple files in

parallel. thttpd [24] is a small-size HTTP server, used in the

experiment without modification. It sends static contents, thus

deterministic output, according to client requests. Jget [25]

creates multiple threads that each download a portion of a file

in parallel from a server.

ScpTo is an example program in the Java Secure Channel

(JSch) package [26], which copies a local file to a remote host

via a secure channel. Both the client and server can produce

non-deterministic output. ScpTo and the server generate a

random value in the process of building a secret shared

key [22]. As explained in Section III, checkpointing support

is essential in this case. The GUI code in the program is

removed before doing the experiment with Dropbear [27], a

SSH server. The I/O cache with checkpointing has found a

fault in ScpTo that involves a race condition. ScpTo creates

a session thread to receive packets from the server while the

main thread sends packets to the server. Both threads are not

synchronized properly so that a race condition happens under

a certain thread schedule. If the main thread makes progress

much faster than another thread and reaches the point where a

required packet has not been received, it throws an exception3.

Another version of ScpTo is bug-fixed and further abstracted

in order to finish the verification within reasonable time. An

abstract SSH server runs as a peer for this version of ScpTo.

Both versions were verified in the experiment together with

other applications.

The performance of the checkpointing approach with the

“ND” strategy is not much different from the pure cache

approach (no CP) since it only creates a checkpoint if nec-

essary. It also provides support for non-deterministic peers,

making it more powerful than the previous version of the

I/O cache. The “I/O” strategy is slightly slower than “ND”,

because it creates more checkpoints. However, it would be

useful when the peer takes a long time in I/O operations since

it prevents re-execution of those operations. The “always”

strategy excessively creates checkpoints, so its performance

is not practically useful. Its results are presented for the sake

of comparison.

VI. CONCLUSIONS AND FUTURE WORK

Software model checkers cannot be applied directly to a

program that interacts with external processes. Cache-based

model checking allows a single-process model checker to ver-

ify such a program against an external process. This approach

scales well, but imposes some requirements on the target

system. In particular, previous work required peer processes to

3This bug has been acknowledged by the developer.

8



Table II: Experimental results

SUT Peer #conn #msg time (mm:ss) #states #checkpoints
always I/O ND no CP always I/O ND

2 27:45 0:11 0:10 0:05 7572 3438 6 4
2 3 > 1h 0:26 0:24 0:14 33.3K - 12 7

ND alphabet ND alphabet 4 - 1:18 1:12 0:53 147.5K - 24 13
client server 2 - 4:22 4:20 4:08 525.3K - 10 6

3 3 - 33:40 33:22 32:38 4581.9K - 20 11
4 > 1h

2 2:14 0:11 0:10 0:01 299 277 9 8
2 3 3:55 0:16 0:16 0:02 499 491 15 14

4 5:53 0:21 0:20 0:03 747 739 20 19
2 33:59 0:18 0:18 0:04 4269 4241 15 13

ND alphabet ND alphabet 3 3 > 1h 0:28 0:27 0:07 8775 - 24 22
server client 4 - 0:37 0:37 0:10 15.5K - 32 30

2 - 0:48 0:47 0:29 57.8K - 21 18
4 3 - 1:35 1:34 1:05 143.1K - 33 30

4 - 2:50 2:48 2:09 295.2K - 44 41
2 - 7:06 7:06 6:34 746.4K - 27 23

5 3 - 20:07 19:59 18:59 2209.1K - 42 38
4 - 47:08 47:03 44:58 5295.8K - 56 52

2 2:57 0:05 0:04 0:02 415 415 3 1
HTTP 3 46:42 0:51 0:50 0:48 6675 6675 4 1
client thttpd 4 > 1h 23:12 23:07 22:10 112.5K - 5 1

5 > 1h
Jget 2 N/A 41:54 0:15 0:15 0:11 5984 5984 4 3

3 > 1h 45:48 45:48 45:43 839.8K - 6 4

ScpTo1 Dropbear 1 7:56 0.15 0:15 8 1027 1026 9 9
ScpTo Abstract 1 1:15 0:05 0:05 8 167 167 6 2

(bug fixed) SSH Server 2 > 1h 9:21 9:19 8 557.7K - 8 3

8: The I/O cache without checkpointing does not support these cases.
1A bug is found in this case.

be deterministic. In this work, the class of verifiable programs

has been expanded to cover non-deterministic peers, which

are controlled by process checkpointing. Our extension creates

checkpoints of a peer program according to a checkpoint

strategy. The experiment has shown that the overhead caused

by the checkpointing tool is acceptable if an appropriate

strategy is used.

Future work includes development and analysis of check-

pointing strategies. The shell scripts that communicate with

DMTCP will be replaced with a library in the I/O cache to

eliminate the platform dependency. We also have a plan to run

each peer process under a model checker. The model checker

could be modified so that it controls low-level peer behaviors

such as thread scheduling. Furthermore, the model checker

may store peer states in memory rather than non-volatile

storage, reducing the I/O operation overhead. Being able to

control thread scheduling, we could analyze the peer behaviors

and selectively perform the ones that would potentially reveal

faults in the SUT. We will consider how the model checker

engines communicate with each other as well.

Acknowledgment

This work was supported by KAKENHI (23300004 and

23240003).

REFERENCES

[1] A. Tanenbaum, Modern operating systems. Prentice-Hall, 1992.
[2] G. J. Myers, The art of software testing. New York : Wiley, 1979.

[3] T. Ball, S. Burckhardt, K. E. Coons, M. Musuvathi, and S. Qadeer,
“Preemption sealing for efficient concurrency testing,” in TACAS’ 10,
2010, pp. 420–434.

[4] E. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT Press,
1999.

[5] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda, “Model checking
programs,” Automated Software Engineering Journal, vol. 10, no. 2, pp.
203–232, 2003.

[6] P. Godefroid, Partial-Order Methods for the Verification of Concurrent

Systems: An Approach to the State-Explosion Problem, J. van Leeuwen,
J. Hartmanis, and G. Goos, Eds. Secaucus, NJ, USA: Springer-Verlag
New York, Inc., 1996.

[7] S. Ghosh, Distributed Systems: an Algorithmic Approach. Boston:
Twayne Publishers, 2006.

[8] S. D. Stoller and Y. A. Liu, “Transformations for model checking
distributed Java programs,” in SPIN ’01: Proceedings of the 8th in-

ternational SPIN workshop on Model checking of software. NY, USA:
Springer-Verlag New York, Inc., 2001, pp. 192–199.

[9] C. Artho and P. Garoche, “Accurate centralization for applying model
checking on networked applications,” in Automated Software Engineer-

ing Conf., Tokyo, Japan, 2006, pp. 177–188.
[10] E. D. Barlas and T. Bultan, “NetStub: A framework for verification of

distributed Java applications,” in Automated Software Engineering Conf.,
Georgia, USA, 2007, pp. 24–33.

[11] C. Artho, W. Leungwattanakit, M. Hagiya, and Y. Tanabe, “Efficient
model checking of networked applications,” in Proc. TOOLS EU-
ROPE 2008, ser. LNBIP, vol. 19. Zurich, Switzerland: Springer, 2008,
pp. 22–40.

[12] C. Artho, W. Leungwattanakit, M. Hagiya, Y. Tanabe, and M. Ya-
mamoto, “Cache-based model checking of networked applications: From
linear to branching time,” in Proceedings of the 2009 IEEE/ACM

International Conference on Automated Software Engineering, ser. ASE
’09. Washington, DC, USA: IEEE Computer Society, 2009, pp. 447–
458.

[13] Y. Nakagawa, R. Potter, M. Yamamoto, M. Hagiya, and K. Kato, “Model
checking of multi-process applications using SBUML and GDB,” in
Workshop on Dependable Software: Tools and Methods, Yokohama,
Japan, 2005, pp. 215–220.

9



[14] J. Dike, User Mode Linux. Prentice Hall PTR, 2006.
[15] R. Stallman, R. Pesch, and S. Shebs, Debugging with GDB : the GNU

source-level debugger, 9th ed. Boston, MA : Free Software Foundation,
2002.

[16] P. Godefroid, “Software model checking: The VeriSoft approach,” Form.
Methods Syst. Des., vol. 26, no. 2, pp. 77–101, 2005.

[17] “OpenVZ documentation,” http://wiki.openvz.org.
[18] Red Hat, Inc., “KVM,” http://www.linux-kvm.org.
[19] Oracle, “Virtualbox,” http://www.virtualbox.org/.
[20] M. Rieker and J. Ansel, “Transparent user-level checkpointing for the

native POSIX thread library for Linux,” in In Proc. of PDPTA-06, 2006,
pp. 492–498.

[21] J. Ansel, K. Aryay, and G. Coopermany, “Dmtcp: Transparent check-
pointing for cluster computations and the desktop,” in Proceedings of

the 2009 IEEE International Symposium on Parallel & Distributed

Processing. Washington, DC, USA: IEEE Computer Society, 2009,
pp. 1–12.

[22] W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE

Transactions on Information Theory, vol. 22, no. 6, pp. 644–654,
November 1976.

[23] W. Leungwattanakit, C. Artho, M. Hagiya, Y. Tanabe, and M. Ya-
mamoto, “Verifying networked programs using a model checker exten-
sion,” in ICSE Companion proceedings, Vancouver, Canada, 2009, pp.
409–410.

[24] ACME Laboratories, “thttpd - tiny/turbo/throttling HTTP server,” http:
//www.acme.com/software/thttpd/.

[25] S. Paredes, “Jget,” http://www.cec.uchile.cl/~sparedes/jget/.
[26] JCraft, Inc., “JSch - Java Secure Channel,” http://www.jcraft.com/jsch/.
[27] M. Johnston, “Dropbear SSH server and client,” http://matt.ucc.asn.au/

dropbear/dropbear.html.

10


