
Model Checking Epistemic and Probabilistic

Properties of Multi-agent Systems

Wei Wan1, Jamal Bentahar2, and Abdessamad Ben Hamza2

1 Department of Electrical and Computer Engineering, Concordia Univeristy
2 Concordia Institute for Information Systems Engineering, Concordia University

w wan@encs.concordia.ca, {bentahar,hamza}@ciise.concordia.ca

Abstract. Model checking, a formal automatic verification method, has
been widely used in multi-agent systems to verify specifications that con-
tain qualitative properties (e.g safety and liveliness) and quantitative
properties. Decision making processes based on inherent knowledge are
necessary for agents to act appropriately, particularly in uncertain set-
tings. In order to check epistemic (i.e knowledge) and measurable prop-
erties in multi-agent systems, we propose a new logic PCTLK, which
uses probabilistic, epistemic, and temporal modal operators. We exploit
Discrete-Time Markov Chains (DTMC), in which we are able to rep-
resent measurable properties with probability, to model uncertainty in
multi-agent systems. We extend the formalism of interpreted systems by
adding probabilistic features to suit DTMC models and to present the
model checking algorithm for our logic. At the end of this paper, we
simulate our algorithm using an example of online shopping.

Keywords: Probabilistic model checking, Discrete-Time Markov Chains
(DTMC), Epistemic logic, Probabilistic logic, Interpreted systems.

1 Introduction

Multi-agent systems are comprised of a set of intelligent agents interacting with
each other. In such systems, reasoning with uncertainty is an important feature.
Model checking, a well-designed formal technique for verifying if models satisfy
specific properties, is widely used to verify the epistemic properties of these
systems [9,10,13]. In the past two years, researchers in [3,4,7] have proposed
methods to model and check multi-agent systems using Markov chains, which
are stochastic processes behaving as transition systems extended by probabilistic
choices among successor states.

The reason why probabilistic model checking is gaining more and more interest
is that classical model checking techniques focus only on the absolute guarantee
of correctness and some assumptions are made world that systems run ideally.
However, in practice concrete scenarios are characterized by a degree of uncer-
tainty. For example, in multi-agent systems, because of the agents’ autonomous
reactivity, their actions are based on observing the environment changes, but
very often agents cannot observe the complete environment. Therefore, agents

K.G. Mehrotra et al. (Eds.): IEA/AIE 2011, Part II, LNAI 6704, pp. 68–78, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Model Checking Epistemic and Probabilistic Properties 69

must make estimations through the observable world as a part of their decision-
making processes. Considering probabilistic aspects when modeling the system
allows providing such estimations by assessing the likelihood of different events.

Two categories of properties exist [1]: immeasurable qualitative properties and
measurable quantitative properties. For qualitative properties, Boolean variables
(true or false) can be used to express whether a good event will happen or a bad
event will never happen. However, sometimes the likelihood of certain events
need to be considered. For example, we may want to know “after ordering, what
percentage of items will be successfully delivered”. In this case, qualitative prop-
erties cannot provide the precise probability required. Quantitative properties
are also necessary to accurately express the system requirements, and proba-
bilistic model checking seems to be appropriate.

Checking quantitative properties for knowledge-based multi-agent systems is
the main motivation of this paper. Because the majority of existing multi-agent
logics only consider certain knowledge, modeling and verifying uncertain knowl-
edge still need more investigation. Uncertain knowledge can be represented us-
ing probabilities and the multi-agent system can be modeled as a probabilistic
Kripke-like model. In this paper, we define a new logic called probabilistic tem-
poral logic of knowledge PCTLK, that extends PCTL, the probabilistic com-
putation tree logic proposed in [6], by the K operator of knowledge. We also
extend the classical interpreted systems used to model multi-agent systems [5]
by adding probabilistic transition functions. This extension allows us to model
interpreted systems as Discrete-Time Markov Chains (DTMC), which are tran-
sition systems with probability distributions. Two reasons are behind the use
of DTMC; first, DTMC is the underlying formal model of PCTL, and second,
DTMC are widely used to model systems with uncertain information. In order
to verify properties expressed with PCTLK, we put forward the model checking
algorithm for this new logic.

The structure of this paper is organized as follows. In Section 2, we explain
how we extend the normal interpreted systems to be modeled using DTMC. In
Section 3, we present the syntax and semantics of the PCTLK logic. The model
checking problem of PCTLK is described in Section 4. We provide an example,
customer online shopping, to simulate the model checking algorithm in Section
5. Finally, we summarize our work and list the future work in Section 6.

2 Interpreted Systems for DTMC

Probability is used in the design and analysis of an agent to measure the likeli-
hood that some specific events will occur. There are several methods of systems
modeling to express the probability attributes. One of the most popular op-
erational probabilistic models is Markov chain [1], which is a transition system
with probability distributions over the transitions. DTMC is one of three Markov
chain models, in which a system is in a given state at each “step”, with the state
changing randomly between steps.

70 W. Wan, J. Bentahar, and A.B. Hamza

In Markov chains, the process can only be in a finite set of states. Over a
set of atomic propositions AP , a model of DTMC can be expressed as a tuple
{S, P, Iinit, L}, where:

• S is a nonempty and finite set of states.
• P : S × S → [0, 1] is the transition probability function, such that for every

state s ∈ S, we have
∑

s′∈S P (s, s′) = 1.
• Iinit : S → [0, 1] is the initial distribution such that for all states s ∈ S,∑

s∈S Iinit(s) = 1.
• L : S → 2AP is a state labeling function.

For mathematics treatment purposes, the initial distribution Iinit can be
viewed as an ordered list of row vector (Iinit(s))s∈S , in which the value of every
row represents the initial probability from all states in the model. The transition
probability function P : S×S → [0, 1] is represented by the matrix (P (s, t))s,t∈S .
The probabilities of state s to its successors t are shown on the row of the matrix,
while the probabilities of entering state s from start t are shown on the column
of the matrix.

According to Fagin et al in [5], in order to model knowledge, we need a frame-
work based on a number of other possible states of affairs besides the true state
of affairs. The formalism of interpreted systems, which provides a well-defined
semantics to reason about time and knowledge in multi-agent systems, is fre-
quently used in epistemic model checkers, such as MCMAS [11] and MCK[13].
We extend Fagin et al.’s interpreted systems with probability attributes. We
then introduce our probabilistic model checking algorithm.

Let A = {1, . . . , n} be a set of n agents in the system. Every agent i ∈ A is
associated with its local state set Li, and possible actions set Acti. Besides Li

and Acti, there are also a set Le and a set Acte for the environment, a special
agent for providing global variables and actions that all agents are able to access.
Therefore, for the system, a set of global states G ⊆ L1× . . .×Ln×Le is the set
of all possible tuples (l1, . . . , ln, le), and each tuple represents a computational
state for the whole system. For each agent i, we also use a set of protocols Pi :
Li → 2Acti assigning a list of enabled actions to each local state. Associated with
the environment is a protocol Pe : Le → 2Acte that represents the functioning
behavior of the environment agent. The probabilistic transition function T for
the system can be defined as T : G × Act × PAct × G → [0, 1], where Act is
the set of joint actions Act ⊆ Act1 × . . . × Actn × Acte that are performed
by all the agents and environment respectively. Each agent is associated with
a local probabilistic transition function ti ⊆ T . PAct is a probability function
of the set of joint actions. For every global state g ∈ G, with transition to
state g′ ∈ G,

∑
g′∈G PAct(g, g′) = 1. PActi

is the local probability function
for each agent i. Given a global initial distribution Iinit, for all states s ∈ G,∑
Iinit(s) = 1. Given a set of atomic propositions AP and an interpretation

V ⊆ G × AP , an interpreted system over probabilistic transition function is a
tuple: IS =< (Li, Acti, ti, PActi , Pi)i∈A, Iinit, V >

Now, we need to associate DTMC, which is a Kripke-like structure extended
with probabilities, to our extended interpreted system in order to evaluate

Model Checking Epistemic and Probabilistic Properties 71

epistemic probabilistic properties. The resulting model is MIS = (W,Pt, I
′
init,∼1

, . . . ,∼n, V
′). The converting rules from Interpreted system IS to our DTMC

interpreted system MIS are described as follow.

• W ⊆ G is the set of reachable states. The state is reachable if and only if
the probability is greater than 0 from initiation distribution via T .

• I ′init ⊆ Iinit is the initial distribution of the model.
• Pt : W ×W → [0, 1] is a probability relation, which is obtained by protocols
Pi and the probabilistic functions ti, which are subsets of the transition
probability function T ;

• ∼i is the epistemic relations, one for each agent. It is a subset of W ×W for
i ∈ A, such that for two global states, (l1, . . . , ln) ∼i (l′1, . . . , l

′
n) if and only

if li = l′i;
• V ′ ⊆ V is the valuation function V ′ : W ×AP → {true, false}.

3 PCTLK Logic

The language we will use to specify properties is called Probabilistic Compu-
tation Tree Logic of Knowledge or PCTLK. This branching-time logic extends
Computation Tree Logic (CTL) proposed by Clark et al. in [2] by adding epis-
temic and probabilistic operators. Thus this language combines CTL logic, epis-
temic logic [5], and probabilistic logic [1,6].

3.1 Syntax of PCTLK

PCTLK supports two kinds of formulae: state formulae φ and path formulae ψ.
We use p, p1, p2, . . . to range over the set of atomic propositions Φp. Given a set
of agents A = 1, . . . , n, the syntax of this logic is as follows:

φ ::= true | p | φ ∧ φ | ¬φ | Kiφ | Pr�b(ψ)
ψ ::= ©φ | φ ∪≤n φ | φ ∪ φ

where b ∈ [0, 1] is an interval giving rational boundary for the path, � ∈ {<,≤
,≥, >} is a relational operator indicating the kind of relationship boundary of
the probability, and n ∈ N is an integer indicating the maximum steps to achieve
a specific state. There are no universal (∀) and existential (∃) path quantifiers
in PCTLK. Instead, the linear temporal operators © (next) and ∪ (until) are
required to follow the probabilistic operator Pr immediately. By removing Kiφ
from this logic we obtain PCTL [1,6] and by removing φ ∪≤n φ from PCTLK
and introducing the ∃ quantifier we obtain CTLK [5].

Three fragments, a temporal logic, an epistemic logic, and a probabilistic
logic, are defined for PCTLK in addition to the standard Boolean connectives.
The propositional temporal fragment has the same meaning as in CTL. For
example, the formula ©φ has the meaning of “next step φ holds”. φ1∪φ2 means
“φ1 holds until φ2”. A new step-bounded variant of φ1∪≤n φ2 is added, meaning
that φ2 will hold within at most n steps while φ1 holds in all states before φ2

72 W. Wan, J. Bentahar, and A.B. Hamza

state has been reached. The step-bounded until is necessary in probabilistic logic
because the probability for at most n steps to reach φ2 may be different from
at most n + 1 steps to reach φ2. As in CTL, temporal operators © and ∪ are
required to be immediately preceded by a path quantifier; in PCTLK, they must
follow the operator Pr immediately. Other Boolean connectives and operators
are derived in the same way as in CTL, for example, ♦φ = true ∪ φ (in the
future φ). The step-bounded future can be similarly obtained by step-bounded
until: ♦≤nφ = true ∪≤n φ. The always operator can be derived by formula:
Pr≤b(�φ) = Pr≥(1−b)(♦¬φ). The details can be found in [1].

The probabilistic operator Pr�b(ψ) expresses that “ψ is true with probability
�b”. For illustration, Pr≥0.9(©message receive) asserts that “with probability
at least 0.9, the next step message will be received”.

The epistemic operator Ki is a S5 modality [10], which means knowledge
is reflexive and Euclidean [12]. Kiφ represents “agent i knows that φ”. There
are some important properties of the epistemic operator. For examples, Kiφ ∧
Ki(φ ⇒ ψ) ⇒ Kiψ means when an agent knows that φ and knows that φ ⇒
ψ, the agent knows ψ as well. Agents also know what they know and what
they do not know. These properties can be expressed as Kiφ ⇒ KiKiφ and
¬Kiφ⇒ Ki¬Kiφ. More properties and their proof can be found in [5]. We have
also interesting properties combining knowledge and probabilities, for example:
Ki(Pr≥0.5 © φ) ⇒ Pr≥0.5 © φ.

3.2 PCTLK Semantics

Let s ∈ S be a state, π a given path, a ∈ AP an atomic proposition, φ a PCTLK
state formula, and ψ a PCTLK path formula. A path is an infinite sequence of
states related by transitions, i.e., π = s0, s1, s2, . . . The (i + 1)th state in π is
denoted π(i) i.e., π(i) = si. s |= φ denotes “s satisfies φ” or “φ is true in s”.
π |= ψ denotes “π satisfies ψ” or “ψ is true in π”. The semantics of PCTLK is
as follows.

• For a state s

s |= a iff V (s, a) = true
s |= φ1 ∧ φ2 iff s |= φ1 and s |= φ2

s |= ¬φ iff s � φ

• For a path φ:

π |= ©φ iff π(1) |= φ
π |= φ1 ∪≤n φ2 iff ∃0 ≤ k ≤ n, π(k) |= φ2 and ∀0 ≤ i < k π(i) |= φ1

π |= φ1 ∪ φ2 iff ∃k ≥ 0, π(k) |= φ2 and ∀0 ≤ i < k π(i) |= φ1

• For the epistemic operator

s |= Kiφ iff ∀s′ ∈ W if s ∼i s
′ then s′ |= φ

For the probabilistic operator, s |= P�b(ψ) means that “the probability, from
state s that ψ is true for an outgoing path satisfies �b”. For example, s |=

Model Checking Epistemic and Probabilistic Properties 73

P<0.25(true ∪≤5 φ) asserts that “the probability that the system reaches a φ
being true within 5 steps of outgoing paths from state s is less than 0.25”. Given
Prop to represent the probability, semantics of the probabilistic operator Pr is
given as follows:

• For probabilistic operator
s |= Pr�b(ψ) iff Prop(s |= ψ) is in the range of �b

where: Prop(s |= ψ) = Prop{π ∈ Path(s)| π |= ψ}

4 PCTLK Model Checking

4.1 Overview

Modeling, specification, and verification are three steps in the model checking
process. In our approach, DTMC are used to describe the system models; then
we convert DTMC models into interpreted systems for DTMC. PCTLK is used
as our specification language to state the properties that the system must satisfy.
The model checking algorithm for PCTLK is introduced in this section. The
structure of our model checking approach is shown in Fig 1.

Fig. 1. verification work flow for PCTLK

4.2 SAT-Based Model Checking

Given a DTMC model M , we can generate an extended interpreted system MIS .
Given a state s in MIS and a PCTLK state formula φ, the model checking
determines if s |= φ. Due to existing quantitative properties, the computing
result of probabilities is also needed in some cases. In fact, our PCTLK language
can be seen as a variant of CTLK [12] by replacing the path quantifiers ∃ and ∀
by the probabilistic operator Pr. The MCMAS [11] model checker can be used
to verify the properties expressed with CTLK. PCTLK provides possibility
b for path formulas to specify the likelihood of the path. The critical values,
0 and 1, state two specific situations: Pr≥1(ψ) stands for the path formula ψ
happens all the time; while Pr≤0(ψ) represents the negation of the path formula
ψ. Therefore, when we constrain that the probabilistic relation can only be “≥ 1”

74 W. Wan, J. Bentahar, and A.B. Hamza

Fig. 2. Structure of PCTLK

or “> 0”, PCTLK turns into CTLK: Pr≥1 is equivalent to ∀ and Pr>0 is
equivalent to ∃. PCTLK also is an extension of PCTL [1,6] as it includes the
epistemic operator Ki. The properties expressed using PCTL can be checked by
the PRISM model checker [8]. Therefore, based on PCTLK syntax, a formula
can be a CTL formula, a CTLK but not PCTL formula, a PCTL but not
CTLK formula, a conjunction of CTLK and PCTL like Kiφ∧Pr>0.5(ψ), or a
pure epistemic probabilistic formula under the form Ki(Pr�b(ψ)). The structure
of PCTLK is shown in Fig. 2.

In order to calculate the set of states Sat(φ) satisfying a formula φ in PCTLK,
we first need to decompose down the formula φ into sub-formulae φ′, and com-
pute recursively Sat(φ′). This is done using a bottom-up traversal of the parse
tree of φ. For example, the conjunction Kiφ ∧ Pr�b(ψ) is decomposed into a
sub-formula of CTLK (Kiφ) and a sub-formula of PCTL (Pr�b(ψ)). Based
on an interpreted system MIS = (W,Pt, I

′
init,∼1, . . . ,∼n, V

′), the algorithm for
computing Sat(Φ) is shown in Table 1.

Proof. The validity of case a through c is straightforward. The proof of cases d
and e can be found in [10] and [1]. We only prove the case f .

Proof of f consists of two parts:

1. Show that if s ∈ Sat(Ki(Pr�b(φ1))), s will satisfies Ki(Pr�b(φ1).
s ∈ Sat(Ki(Pr�b(φ1))) ⇒ s �∈ Y ⇒ {s ∈ W |¬((∃s′ ∈ X) ∧ (s ∼i s

′))}
⇒ {s ∈W |¬∃s′ ∈ X ∨ ¬(s ∼i s

′)} ⇒ {s ∈ W |∀s′ �∈ X ∨ ¬(s ∼i s
′)}

⇒ {s ∈W |∀s′ �∈ X} ⇒ {s ∈ W |∀s′ �∈ Sat(¬Pr�b(φ1))}
⇒ {s ∈W |∀s′ ∈ Sat(Pr�b(φ1)} ⇒ s′ � Pr�b(φ1) ⇒ s � KiPr�b(φ1)

2. Show that for any state s, properties φ1 is true and outgoing path satisfies
�b, it belongs to Sat(Ki(Pr�b(φ1))) set, s ∈ Sat(Ki(Pr�b(φ1))).
s � Ki(Pr�b(φ1)) ⇒ {s ∈W |∀s′ ∈W ((s ∼i s

′) → s′ � (KiPr�b(φ1))}
⇒ {s ∈W |∀s′ ∈ W (¬(s ∼i s

′) ∨ s′ � (KiPr�b(φ1)))}
⇒ s �∈ Y ⇒ s ∈ Sat(Ki(Pr�b(φ1)))

The algorithm for the calculation of the set of states SatCTLK(φ) can be found
in [10]. For PCTL, to determine if s ∈ SatPCTL(φ), where φ = Pr�bψ, we need
to compute the probability Prob(s |= ψ) for the event specified by ψ. Then the
set SatPCTL(φ) can be calculated by Sat(Pr�bψ) = {s ∈ W |Prob(s |= ψ)�p}
(� ∈ {<,≤,≥, >}). The details of the algorithm are discussed in [1].

To compute the probability for “next” operator (Pr�b[©φ]), first we need
to compute Sat(φ), then we sum all the states in Sat(φ) :

∑
s′∈Sat(φ) Pt(s, s′).

Model Checking Epistemic and Probabilistic Properties 75

Table 1. Algorithm for PCTLK model checking

Input:MIS = (W, Pt, Iinit, ∼1, . . . , ∼n, V), PCTLK formula φ
Output: Sat(φ) set of states satisfying φ

1. Decompose the parse tree of formula φ
2. For all the sub-formula φ′ in φ

{
Case φ′

{
a. φ′ is an atomic formula: return {g|V (g, a) = true};
b. φ′ is ¬φ1: return W − Sat(φ1);
c. φ′ is φ1 ∧ φ2: return Sat(φ1) ∩ Sat(φ2);
d. φ′ is in PCTL: return SatPCTL(φ′);
e. φ′ is in CTLK: return SatCTLK(φ′);
f. φ′ is Ki(Pr�b(φ1)):
{

X = Sat(¬Pr�b(φ1));
Y = {s ∈ W |∃s′ ∈ X and s ∼i s′};
return W − Y ;

}
}

}

Therefore, we will obtain a vector by multiplying probability relation
−→
Pt with a

bit vector
−→
bs for Sat(φ), in which bs = 1 when s ∈ Sat(φ), otherwise, bs = 0.

In order to compute SatPCTL(Pr�b[φ1 ∪≤k φ2]), we first need to compute
Sat(φ1) and Sat(φ2). Then we can identify the states that are for sure in
the satisfaction set SIN = Sat(φ2), and for sure not in the satisfaction set
SOUT = W \ (Sat(φ1) ∪ Sat(φ2)). We also need to classify the uncertain states,
which may or may not be in the satisfaction set, Sunclear = W \ (SIN ∪ SOUT).
After we divide the states, we can compute the probability solution with a re-
cursive equation:

Prob(s, φ1∪≤kφ2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if s ∈ SIN

0, if s ∈ SOUT

0, if s ∈ Sunclear and k = 0
∑

s′∈W P (s, s′) · Prob(s, φ1 ∪≤k φ2), if s ∈ Sunclear and k = 1

For the “until” operator, we can consider “bounded until” with unlimited
value. The probability solution equation is then as follows:

Prob(s, φ1 ∪ φ2) =

⎧
⎪⎨

⎪⎩

1, if s ∈ SIN

0, if s ∈ SOUT
∑

s′∈W P (s, s′) · Prob(s′, φ1 ∪ φ2), otherwise

If the formula is a pure PCTLK formula (Ki(Pr�b(φ1))), then we compute

first the set X of states satisfying ¬Pr�b(φ1), then we return all the states in
W except those that have access to the states in X .

76 W. Wan, J. Bentahar, and A.B. Hamza

Theorem 1. The complexity of PCTLK model checking in interpreted systems
is PSPACE-complete.

Proof. The model checking of PCTLK is composed of the model checking of:
1) CTLK; 2) PCTL; and 3) Ki(Pr�b(φ1)). The complexity of 2) in interpreted
systems is known to be PSPACE-complete, and the same proof can be used
for 2). For 3), computing X needs polynomial space (complexity of PCTL),
and computing Y needs only logarithmic space, as only tow states needed to be
memorized. Thus, the whole complexity is PSPACE-complete.

5 Case Study

We use a simple online shopping example to simulate our algorithm. The cus-
tomer requests a delivery, and the system will successfully deliver the goods in
95% of the cases, and will fail in 5% of the cases. The DTMC model is shown
on Fig. 3.

Fig. 3. DTMC for online shopping

We have two agents in this system: a customer agent and a server agent. The
local states for the customer agent is: {s0}; while for the server is {s1}. The envi-
ronment agent states are {s2, s3}; Thus, the global stateW = {s0, s1, s2, s3}. Ini-
tial distribution Iinit is [0, 1, 0, 0]. The probability relation Pt =⎡

⎢
⎢
⎣

0 1 0 0
0 0 0.95 0.05
0 0 1 0
0 0 0 0

⎤

⎥
⎥
⎦

We would like to check that after a customer orders, he knows that at least

90% items will be successfully delivered, i.e. Kc(P≥0.9 © (successful))

1. Sat(succesful) = {S2}
2. Pr(©(successful) = P • PropSat(P≥0.9(successful)) =⎡

⎢
⎢
⎣

0 1 0 0
0 0 0.95 0.05
0 0 1 0
0 0 0 0

⎤

⎥
⎥
⎦ ·

⎡

⎢
⎢
⎣

0
0
1
0

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0
0.95
1
0

⎤

⎥
⎥
⎦

3. Pr(©(successful)) = [0, 0.95, 1, 0], Sat(P≥0.9 © (successful)) = {S1, S2}
4. Convert Kc(P≥0.9(successful)) to checking P≥1 © (P≥0.9 © (successful)).

This conversion reflects the semantics of Ki by representing the quantifier ∀
using P≥1.

Model Checking Epistemic and Probabilistic Properties 77

5. P≥1 © (P≥0.9 © (successful)) = P · PropSat(©P≥0.9(successful)) =⎡

⎢
⎢
⎣

0 1 0 0
0 0 0.95 0.05
0 0 1 0
0 0 0 0

⎤

⎥
⎥
⎦ ·

⎡

⎢
⎢
⎣

0
1
1
0

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

1
0.95
1
0

⎤

⎥
⎥
⎦

6. Pr(©(successful)) = [1, 0.95, 1, 0], Sat(P≥1 © φ) = {S0, S2}

S0 is a customer agent local state. Therefore, the formula is satisfied. This case
study has been implemented in the PRISM and MCMAS model checkers.

6 Conclusion and Future Work

In the field of multi-agent systems, the properties of agents such as their knowl-
edge, beliefs, and autonomous reactions and pro-actions are important aspects
for modeling system. In this paper, we extended interpreted systems by adding
probabilistic functions so that we are able to use them as DTMC and to model
probabilistic multi-agent systems. We also introduced a new language (PCTLK)
to cover epistemic and probabilistic features. we also designed an efficient model
checking algorithm for our DTMC interpreted systems model and properties ex-
pressed using PCTLK. In our algorithm, there are three modules: propositional
temporal module, probabilistic module, and epistemic module. These features al-
low us to use different model checking tools. We also proved that the complexity
of our model checking is the same as for CTLK and PCTL.

Delgado and Benevides[4] modeled multi-agent systems using DTMC with
synchronization actions and defined K − PCTL logic to specify the properties.
They use the PRISM probabilistic model checker to verify their work. They do
not use or generate the interpreted systems for DTMC. Instead of using PRISM
directly, we embed epistemic model checker package into it. In [7] Jamroga pro-
posed Markov temporal logic MTL, an extension of the “Discounted CTL”
(DCTL), which uses a discount factor to achieve the probabilistic factor. He
used Markov Chains to model the multi-agent systems, but the main focus is on
quantitative properties, not epistemic properties.

Our probabilistic knowledge model checking is an ongoing project. In the
future, we will focus on the following aspects:

• Currently, our model checking algorithm is based on decomposing the parse
tree of the formula. We are planning to use symbolic model checking meth-
ods, such as MTBDD-based (Multi-Terminal Binary Decision Diagrams) or
OBDD-based algorithm.

• our PCTLK language only includes the simple epistemic operatorKi. In the
future, we expect to extended the logic to include more epistemic properties
like common knowledge, distributed knowledge, and commitments, etc.

78 W. Wan, J. Bentahar, and A.B. Hamza

References

1. Baier, C., Katoen, J.: Principles of model checking. MIT Press, Cambridge (2008)
2. Clarke, E.M., Grumberg, O., Peled, D.: Model checking. MIT Press, Cambridge

(1999)
3. Dekhtyar, M.I., Dikovsky, A.J., Valiev, M.K.: Temporal verification of probabilistic

multi-agent systems. In: Anonymous Pillars of Computer Science, pp. 256–265.
Springer, Heidelberg (2008)

4. Delgado, C., Benevides, M.: Verification of epistemic properties in probabilistic
multi-agent systems. In: Braubach, L., van der Hoek, W., Petta, P., Pokahr, A.
(eds.) MATES 2009. LNCS, vol. 5774, pp. 16–28. Springer, Heidelberg (2009)

5. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about knowledge. MIT
Press, Cambridge (1995)

6. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6, 512–535 (1994)

7. Jamroga, W.: A Temporal Logic for Markov Chains. In: AAMAS 2008, Padgham,
Parkes, May 12-16, pp. 697–704 (2008)

8. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: probabilistic symbolic model
checker. In: Anonymous Proceedings, April 14-17, pp. 200–204. Springer, Berlin
(2002)

9. Lomuscio, A., Pecheur, C., Raimondi, F.: Automatic Verification of Knowledge and
Time with NuSMV. In: IJCAI 2007, Hyderabadad, India, pp. 1384–1389 (2007)

10. Lomuscio, A., Penczek, W.: Symbolic model checking for temporal-epistemic logics.
SIGACT News 38(3), 77–99 (2007)

11. Lomuscio, A., Raimondi, F.: MCMAS: a model checker for multi-agent systems. In:
Anonymous Proceedings, March 25-April 2, pp. 450–454. Springer, Berlin (2006)

12. Penczek, W., Lomuscio, A.: Verifying epistemic properties of multi-agent systems
via bounded model checking. Fundamenta Informaticae, 167–185 (May 2003)

13. Gammie, P., van der Meyden, R.: MCK: Model Checking the Logic of Knowledge.
In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 479–483. Springer,
Heidelberg (2004)

14. Wooldridge, M.J.: An introduction to multi-agent systems. John Wiley & Sons,
Chichester (2009)

	Model Checking Epistemic and Probabilistic Properties of Multi-agent Systems
	Introduction
	Interpreted Systems for DTMC
	PCTLK Logic
	Syntax of PCTLK
	PCTLK Semantics

	PCTLK Model Checking
	Overview
	SAT-Based Model Checking

	Case Study
	Conclusion and Future Work
	References

