
M o d e l - C h e c k i n g for a S u b c l a s s o f E v e n t
S t r u c t u r e s *

Wojciech Penczek

Institute of Computer Science
Polish Academy of Sciences

01-237 Warsaw, Ordona 21, Poland
email: penczek@ipipan.waw.pl

Abs t rac t . A finite representation of the prime event structure corre-
sponding to the behaviour of a program is suggested. The algorithm
of linear complexity using this representation for model checking of the
formulas of Discrete Event Structure Logic without past modalities is
given. A method of building finite representations of event structures in
an efficient way by applying partial order reductions is provided.

1 Introduction

Model checking is one of the most successful methods of automatic verification of
program properties. A model-checking algorithm decides whether a finite-state
concurrent system satisfies its specification, given as a formula of a temporal
logic [3, 10]. Behaviour of a concurrent system can be modeled in two ways.
In the interleaving semantics, the meaning of a program is an execution tree,
temporal-logic assertions are interpreted over paths of this tree. In partial-order
semantics (or event structure semantics), behaviour is an event structure, where
the ordering relations over events reflect the causal dependency and conflict
among them [28]. So far model checking algorithms have been suggested for
many partial-order temporal logics [23, 26, 1, 14].

There is a long and rich tradition of research that employs the interleaving
semantics, resulting in both theoretical and practical results. The main reason
for this is the simplicity of the model providing a natural connection with Kripke
structures or au tomata theory. In this framework, a concurrent system P, pos-
sibly with fairness requirements, is a Kripke structure Mp that generates the
execution tree. The commonly employed specification language is CTL [3, 6]. To
check whether the structure MR satisfies a CTL-formula 9, the model-checking
algorithm assigns the subformulas of ~ to states of Mp; if the beginning state
has been assigned the formula 9, then it holds over MR.

The use of partial-order semantics is less common, but has at tracted re-
searchers in concurrency theory for at least two reasons: It does not distinguish
among total-order executions that are equivalent up to reordering of independent

* Partially supported by The State Committee for Scientific Research under the grant
No. 8 T t l C 029 08

146

transitions, thereby, resulting in a more abstract and faithful representation of
concurrency [18, 26, 1, 14]. Logics over partial orders [24. 18, 19, 20, 21] allow a
direct representation of properties involving causality, conflict, and concurrency.

The first temporal logic on prime event structures has been put forward by
Lodaya and Thiagarajan [9]. Since then several new logics on event structures
have been defined [19, 20, 13, 22]. Most of these logics have been proved to be
decidable and possessing complete axiomatizations. However, the model checking
problem for event structure logics has never been addressed. The reason for
this was the lack of two notions: au tomata on event structures and/or finite
representations of event structures.

The main result of this paper is a finite representation of the event structure
corresponding to the behaviour of a program and the algorithm using this repre-
sentation for model checking of the formulas of Discrete Event Structure Logic
(DESL) [20] without past modalities. We suggest also a method of building finite
representations of event structures in an efficient way by applying partial order
reductions [17]. This is the first model checking algorithm for an event structure
logic suggested in the literature.

The rest of the paper is organized as follows. In section 2 event structures
are defined. Trace systems are introduced in section 3. Logic (DESL) on event
structures is given in section 4. Section 5 contains the definition of finite state
concurrent programs and its semantics. Finite representation of trace systems
and event structures is given in section 6. The correctness of the construction
is proved in section 7. Section 8 contains an efficient method of generating fi-
nite representations. Model checking of DESL is described in section 9 and the
discussion can be found in section 10.

2 E v e n t S t r u c t u r e s

We start with the definitions of event structures [28] and trace systems [12],
which are used for giving semantics to concurrent systems.

Let S be a countable set, and let < be a binary relation over S. The inverse of
< is denoted by < - 1 For an element s C S, the set $< (s) contains the elements
s' E S such that s' < s, and t< (s) equals {s ' C S] s < s'}.

An element s E S is <-initial if $< (s) is empty. The relation < is prefinite if
$< (s) is finite for all elements s E S. Let R* be the reflexive-transitive closure of
the relation _R. The relation < is reduced if for each s < s', (s, s') ~ (< \(s, s'))*.
Note that if < is reduced then < is irreflexive, and if s < s' and s' < s" then
8 ~ 8/I .

Event structures represent a concurrent system by taking occurrences of ac-
tions as the starting point. Every occurrence of an action is modelled as a sepa-
rate event. Two relations are provided that capture, respectively, the (immedi-
ate) causality and (immediate) conflict relationship between events.

D e f i n i t i o n l . A four-tuple (E, E0, -<, ~,~) is a (discrete prime) event structure
(ES, for short) if the following conditions are satisfied:

147

1. E is a countable set, called a set of events,
2. -<C E • E is irreflexive and reduced relation, called immediate causality

relation,
3. <=-<* is a prefinite part ial order, called causality relation,
4. #,~ C_ E • E is an irreflexive and symmetr ic relation, called immediate

conflict relation,
5. < A 4P = 0 for 4P = (<_ -1 ~ #,~ o <), called conflict relation
6. E0 C E is the set of -<-initial elements of E.

It follows from the definition tha t # o _< C_ # . This condition is called conflict
preservation. Notice tha t the conflict relation # is generated by the immediate
conflict relation #rn and the causality relation _<. For event structures giving se-
mantics to concurrent programs, the relation #,~ will be modeled as the minimal
relation generating the conflict relation # .

3 T r a c e S y s t e m s

By an independence alphabet we mean any ordered pair (Z, I), where Z is a
finite set of symbols (operation names) and I C_ Z • Z is a symmetr ic and
irreflexive binary relation in Z (the independence relation). Let (Z, I) be an
independence alphabet. Define - as the least congruence in the (standard) string
monoid (Z*, o, c) such that (a, b) E I ~ ab - ha, for all a, b C Z i.e., w - w',
if there is a finite sequence of strings w l , . . . , w,~ such that wl = w, w,~ = w I,
and for each i < n, wi = uabv, wi+l = ubav, for some (a,b) E I and u ,v C Z*.
Equivalence classes of _= are called traces over (Z, I) . The trace generated by a
string w is denoted by [w]. We use the following notation: [Z*] = {[w]] w E ST*}.
Concatenation of traces [w], [v], denoted [w][v], is defined as [wv].

Now, let T be the set of all traces over (Z, I) . The successor relation -+ in
T is defined as follows: [wl] --+ [w~] iff there is a E Z such that [wl][a] = [w2].
The prefix relation < in T is defined as a reflexive and transitive closure of the
successor relation i.e., _< = (--+)*. By < we mean < - idT. Let 7 E T and Q c T.
We use the following notation: $< Q = [,JTc@ $5 7.

We say that a subset Q of T dominates another subset R of T, if R C_ $< Q.
Two traces are consistent, if there is a trace in T dominat ing both of them and
inconsistent otherwise. We shall say that inconsistent traces are in conflict.

A set R of traces is said to be proper , if any two of its consistent traces
are dominated by a trace in R, and directed, if arbi t rary two traces in R are
dominated by a trace in R. A set of traces Q is said to be prefix-closed, if
@=$< @.

An ordered pair (T, -+) is a trace system over (Z, I) , if T is a prefix-closed
and proper trace language over (Z, I) and --+ is the prefix relation in T.

For each w E Z*, let last(w) = a if w = w'a. For each trace v E [Z*]
M a x (r) = {last(w) I [w] = 7}. A trace 7 is called prime, if [Max(v)] = 1, i.e.,
there is exactly one operation executed last in 7.

148

4 L o g i c o n E v e n t S t r u c t u r e s

We give a definition of Discrete Event Structure Logic [19, 22] without past
modalities, for which a model checking algorithm is defined. The language con-
tains modalities corresponding to the relations of (immediate) causality and
(immediate) conflict.

4.1 Syntax and Semant ics

Let A P = {Pl ,P2,- . .} be a countable set of atomic propositions. The logical
connectives -~ and A, as well as modalities [] (causally always), | (all causally
next), Q~ (all in conflict), and | (all in immediate conflict) will be used. The
set of formulas is built up inductively:

El . every member of A P is a formula,
E2. if a and/3 are formulas, then so are --a and a A/3,
E3. if a is a formula, then so are [] a and D~ a,
D4. if a is a formula, then so are | a, and | a,

The following derived logical connectives and modalities are defined:

de]
a ~ /3 = --,o~ V /3

de]

O~ Ol de_f -1 | ~ a

(standard)

(standard)

(�9 - causally sometimes)

(01 - some in conflict)

(0 - some immediately causal)

(0~ - some in immediate conflict)

E2.

E3. e ~

D4. e ~

D e f i n i t i o n 2. An ordered pair 3,t = (F, V) is a model, where
F = (E, Eo, -<, #,~) is an ES and V : E ~ 2 a e is a valuation function.

Let M be a model, e E E be a state, and a be a formula. M , e ~ a denotes
that the formula a is true at the state e in the model M (M is omitted, if it is
implicitly understood). This notion is defined inductively as follows:

El . e ~ p i f f p E V (e) , f o r p E A P ,
--~ iff not e ~ a,
 A/3iffe and e

a iff (Ve f C E) (e -4* e' implies e' ~ a),
[] , a i f f (V e ' E E) (e~m o -4* e ' i m p l i e s e / ~ a) .
| a iff (Ve' C E) (e -4 e' implies e' ~ a),

e ~ | a iff (Ve I E E) (e ~m e' implies e ~ ~ a).

Notice that e ~ a[a specifies that a holds at all the states, which are in im-
mediate conlict or in the future of the states that are in immediate conflict with
e .

The above semantics is caused by the lack of the past operators. However,
our modMity [], is still usefnll for expressing properties of event structures:

149

- [] a - c~ holds in all the states (safety),
- (> c~ - a is possible in the causal future,
- [3(7 | true) - the system is conflict-free,
- ~([](-~ | true)) - from some state in the future the system is conflict free,
- O(a A O~ a) - c~ will inevitably hold in the next state.

For specifying more properties see [20, 22]. DESL was shown to be decidable
and possessing a complete axiomatization [20]. The extension of DESL by an
independency operator was considered in [13]. The model checking problem has
never been addressed for any of the event structure logics.

5 F i n i t e S t a t e C o n c u r r e n t P r o g r a m s a n d t h e i r S e m a n t i c s

Programs are represented by K-sequential agents communicating via executing
joint operations.

5.1 P r o g r a m s

A program is a structure P with the following components:

1. /C is a finite set, called set of processes,
2. for each process i E/C, a finite non-empty set Si, called a set of local-states

of the process i,
o 3. for each process i E/C, s i C Si is a distinguished state, called the initial state

of the process i,
4. for each nonempty process-set X C / C , / ' x C (1-[iex Si) 2 is transition rela-

tion.

For s E 1-[iex Si and Y C_ X let siy denote the projection of s to the Y-
components. If Y = {i}, we write sli instead of sl{i }.

Some of our model checking results will hold only for a restricted class of
programs in which the conflicting transitions having at least one beginning state
in common belong to the same sequential agents. This class of programs is called
free-choice (see [4] for the definition for Petri Nets) and it is formally defined as
follows:

D e f i n i t i o n 3 . A program P is said to be free-choice, if for each two transitions
t = (s, sl) E F z , t ' = (s',s~) E Fy, either X (1Y = 0 or if sii = s']~ for some
i E X MY, then X = Y and s]~ = s']i, for all i E X.

The transition-relation / ' x models the events in which all processes in X
participate. . For each transition t = (s, Sl), proc(t) denotes the set of processes
involved in executing t, i.e., proc(t) = X, if t E I x ; in(t) = s, and out(t) = sl.
Let Z = Uxc~: Fx . The independency relation I C E x Z of transitions is
defined as follhws: (t, t ') e I if proc(t) M proc(t') = 0. The dependency relation
D = S x S \ (I U ids) . The immediate dependency relation D m = {(t , t ') E D I

150

in(t)]{ = in(t ') l i , for some i E proc(t)Nproc(t ')} . The free choice p rog rams enjoy
the following proper ty : if two t rans i t ions (t , t ') E D,~, then proc(t) = proe(t')
and in (t) l { = in (t ') I { , for each i E proc(t).

Let G S = I-[{e~: S{ be the set of global states of P . A t rans i t ion t = (s, s ') E
F x is said to be enabled f rom a global s ta te g E G S (denoted t E enabled(g)),
if 9 Ix = s. For the free-choice p rograms , for each two t ransi t ions (t, t') E Din, if
one of t h e m is enabled f rom a global s tate, then the other one is also enabled
f rom the global s tate.

For two global s ta tes g, g' E GS, 9 _2+ g' i f f for some Y C / ~ , t = (g IY, g' IY) E
Fy and 9 I~c\g = g' IIC\Y" An execution sequence w = to . . . t ~ E 2"* of P is a finite
sequence of t rans i t ions s.t. there is a sequence of global s ta tes (= go gl g2 . . . 9n

of P with 90 = (sO,. . �9 , s~;), and 9i L~ gi+l , for each i < n. Let g0 [w> 9~ denote
t ha t the s ta te 9n is reached after execut ing the execut ion sequence w f rom the
s ta te 90. We say t ha t t race [w] leads to the s ta te g~.

Example 1. P r o g r a m M U T E X is shown in Figure 1. I t is composed of three
processes, which local s ta tes are denoted with circles, whereas the t rans i t ions
with hor izontal bars, e.g. b = ((3, 8), (5, 10)). The p r o g r a m ensures the m u t u a l
exclusion of access to the local s ta tes 5 and 6 being the critical sections. $1 =

= { 2 , 4 , 6 } , = { 7 , 8 , 9 , H } , 4 = = 2, and 4 = 7.

~ 1 2 d

Fig. 1. Program MUTEX

5.2 Trace Sys tem Semantics of Programs

The in terpre ted t race sys tem T S p = (T, --% Z) over (•, i) and the set of a tomic
proposi t ions A P is the trace semantics of the p r o g r a m P iff the following con-
di t ions are satified:

151

- IT] E T i f f w is an execution sequence of P,
- -~ is the trace successor relation in T,
- :T : T) 2 A P is an i n t e r p r e t a t i o n f u n c t i o n such that for each [w], [w'] G T

if g0[w> g and g0[w'> g, then Z([w]) -- I ([w']) .

The interpretat ion function does not distinguish between the traces leading to
the same global state.

E x a m p l e 2. The trace semantics of program MUTEX is shown in Figure 2. T h e
prime traces are printed in bold face.

[]

[agb] [agd]

[agbel [agdb]

[gb 2 l
[agbcagb I [agbcagd] [agdbcha]

:

[hda] [hde]

[hd ~ e ~ i ~ , ~

[hdaef~hdefg] [hdefh] [hdefd l

[hd aefg][hd aefh][hd aefg][hdefdg][hdefdh]

[agdb~h~] [hd?fg~b] [h.a~fg~][hd~,fdhd] [hd~.fdhe]

�9 v v * �9

Fig. 2. Trace semantics of MUTEX

5.3 E v e n t S t r u c t u r e S e m a n t i c s o f P r o g r a m s

Each trace system defines the corresponding event structure [16], where the
events are defined as equivalence classes of strings of transitions. For the trace
systems that are semantics of the programs defined in Section 5.1, alternatively,

152

one can identify the events with the pr ime traces and view the corresponding
event s t ructure as a subst ructure of the original trace system. This approach is
taken below.

D e f i n i t i o n 4 . Let TSp = (T,--~,I) be the trace semantics of p rogram P . An
interpreted event s t ructure ESp = (E, E0, _~E, ~ E VE) is the event s t ructure
semantics of p rogram P , where

1. E = {e E T [[Max(e)[= 1},
2. E0 = {[c]},
3. e _~E e' if e -4* e ~ and e -4* e" -4* e', implies e = e" or e' = e", for each

e/I C E,
4. e # E e' if e, e' are not consistent and for each 7 E T s.t. 7 --4 e the traces

7, e ~ are consistent in T and for each r E T s.t. r -4 e' the traces e, r are
consistent in T.

5. VE(e) = Z(e), for e E E.

The condit ion 3) corresponds to the fact tha t the relation _~E is reduced. The
condit ion 4) specifies tha t ~ E is the min imal relation generat ing the conflict
relation in E.

L a m i n a 5. Let P be a free-choice program and let ESp be the event structure
semantics of P. Then, the following condition holds:

- e # E e' iff (97 E T) 7 --4 e, 7 --4 e', and (Max(e), Max(e')) E D,~.

P r o o f . Consider e, e' E E tha t are not consistent (i.e., in conflict) and for each
trace r E T s.t. 7 -4 e the traces 7, e' are consistent in T and for each trace
7' E T s.t. 7' -4 e' the traces e, 7 ' are consistent in T. Then, proe(Max(e)) ;q
proc(Max(e')) # O. Therefore, there is e0 E E such tha t e0 _~E e and e0 .~E e'.
This implies tha t ((Max(e), Max(e')) E D,~. Since P is free-choice, proc(e) :
proe(e'). Thus, { f E E I f _~E e} = { f ' E E I f ' _<E e'}. Consider the minimal
trace 7 E T such tha t f --4" r , for each f _~E e. Then, 7 -4 e and r --4 e'. []

Example 3. The event s t ructure semantics of p rogram M U T E X is shown in Fig-
ure 3.

Example 4. Consider again our running example. Let the set of proposi t ions con-
tain proposi t ions corresponding to the t ransi t ions Z of p rogram M U T E X . For
simplicity, we assume the same symbols for these proposi t ions and the transi-
tions, i.e., ~ : {a ,b , c ,d , e , f , g ,h} C AP. Let x E VE(e) if Max(e) = {x}, for
x E Z. Then, the following properties of M U T E X can be specified:

- r q <) b A D O e -
each process always can enter its critical section by executing b or e (rasp.),

- D(g o(b A false)) A D(h O(e A false)) ,
after executing g the action b will be inevi tably executed in the next step
and after executing h the act ion e will be inevi tably executed in the next
step,

153

[]

[a] [g] - #m - [h] [d]

[agbcagb]

L

de]

/
[hdefg]-#m-[hdefh] [hdefd]

[agdbehe] [hdefgab] [hdefdhe]

Fig. 3. Event structure semantics of MUTEX

- D(b ~ 0 c) A =(~ ~ 0 /) ,
each process will always leave its critical section in the next causal step.

- [] (g ~ O ~ h) A O (h ~ O ~ g) ,
the transitions g and h leading to the critical sections are in conflict.

6 F i n i t e R e p r e s e n t a t i o n s o f (P r i m e) T r a c e S y s t e m s

Trace Systems as well as Prime Event Structures are usually infinite objects and
as such are not very convenient for model checking. Therefore, one uses quotient
structures of TSp, which identify all the traces that cannot be distinguished by
the formulas of a logic of interest.

When one is interested in model checking of CTL formulas, then the finite
representation is obtained by applying the equivalence relation "~CTL on the
traces, which identifies the traces leading to the same global states, defined as
follows:

(v[w], [wq ~ T)(Vg ~ as) [w] -c~L [w'] i l l (g0[w> g r g).
When one is interested in model checking of CTLp formulas, then the finite

representation of TSp is obtained by using a more discriminating equivalence
relation (see [21]).

154

For event structure logics the situation is slightly different since a finite rep-
resentation should only involve equivalence classes of prime traces. The sim-
plest solution would be, if a substructure of the quotient structure of T S p by
"~CTL could be applied. This is, unfortunately, not the case since there could
be two prime traces leading to the same global state that have different causal
futures and therefore can be distinguished by DESL formulas corresponding to
the causality relation. In the trace semantics of MUTEX (Figure 2) the traces:
[], [agbc], [hdef] lead to the same global state (1, 2, 7), but the sets of global
states to which lead their causal successors are different (see Figure 3).

The solution is to sharpen the equivalence relation ~CTL accordingly. For
technical reasons, the new equivalence is defined for all traces. Two traces are
ES-equivalent if they lead to the same global states and their sets of maximal
transitions are the same. A new equivalence relation ~ES is formally defined as
follows:

- Define f : T - -+ Hie~=Si • (2~U{t0}), where to ~ Z is an artificial transition
with proc(to) = IC,
/([c]) = (go, to),
f([w]) = (g, X) i fg0[w> g and X = Max([w]) for [w] r [e], and

- (V[w], [w/] e T) [w] ~ E s [w/] iff f ([w]) -=- f([w']) .

We will write (g, tl . . . tn) for (g, {tl , . . , tn}) and let State(r) stand for g, where
f (r) = (g, X)

As we show later, ~ES identifies all the prime traces, which cannot be distin-
guished by DESL formulas without conflict operators. Unfortunately, for unre-
stricted programs ~Es-equivalent prime traces can be distinguished by conflict
modalities. To see this, consider the program P r shown in Figure 4. The be-
ginning states of the three processes of P r are marked with dots. The traces
[a], [b], [e], [ac], [ba], [bd], [ca] belong to the trace semantics of Pr. All of them
except for [ac] are prime. Notice that f([bd]) = f([cd]) = ((1, 7, 8), d), but
[cd] # E [a], whereas [bd] 4~ E [ba]. Since f([a]) r f([ba]), the prime traces [bd]
and [cd] can be distinguished by a conflict formula, referring to f([a]) or f([ba]).

There are two possible ways to overcome this problem:

1. Define a more restrictive equivalence relation on T, or
2. Restrict the class of programs such that ~ES preserves all DESL formulas.

The first solution leads inevitably to an equivalence relation, which index is
exponential in the number of the global states and therefore, we do not consider
this solution in the present paper.

The second solution requires such a restriction of programs, which makes it
possible to define the immediate conflict relation in terms of the preserved by
~ z s causality relation. This is the situation for free-choice programs, which is
shown below.

Next, we define the quotient structures of TSp and E S p by ~'Es.

155

Fig. 4. Program Pr

2

c

),

d

),

D e f i n l t i o n 6 . The quotient structure of TSp by "~ES is the triple FTS =
(W, -+ , wo), where:

- W : { [7 -] ~ E s I v E T} is a set of states,
I

- ~ C_ W x Z x W is a transition relation such that [r]~Es -~ [r]~Es, if there
are traces
rl E [r]~~s, 7-~ e [r']~Es, and t E ~U such that 7-1 [t] = r~,

- w 0 =

D e f i n i t i o n 7. The quotient structure of E S p by "ES is the 4-tuple FEs =
(EF, -~, ~m, e0), where:

- E F : {[e]~ss I e c E} is a set of states,
e t - -~ C E F • EF is a relation such that [e]~ss -~ []~~s, if there are prime

traces
t el E [e]~~s, e~ E [e]~~s such that e _~E e',

e I - ~rn C EF X EF is a relation such that [e]~ss :~m []~~s, if there are prime
t r a c e s

e I el E [e]~~,e~ E[]~~s such that ei # E e~,
- e 0 =

Example 5. The quotient structure of the trace semantics of MUTEX is shown
in Figure 5.

We will refer to the states [T]~Es of FTS by the values of the function f of
their representatives, i.e., f (v) . Note that FT8 can bedi rec t ly generated from
the given program P using the Depth First Search (DFS)-algorithm [25]. The
algorithm starts from the beginning state (g0,t0) and then, recursively, for a
current state (g, X) and enabled transition t E Z expands the t-successor (g', X')
of (g, X). When all the successors of a current state have been already expanded,

156

((1,2,7),t0) d

a ~ g �9 " ' ~ g ""~'~ u h
"--~((3,2,7). ,a)' ((1 ,2 ,8) ,g) " ~ (1 , 2 , 9) , h) (. (1 , 4 , 7) , d ~ -~

((3,2,8) ,ag.~_.((3,2,9),ah) (

((~,2,~o),b) ((a,4,s),~gd)
c~ "-. d ~

~ ((1,2,7),e) ((5,4,1a),bd)

"".....a.....~ ~1

((1,4,7),dc)

d

(•.........•...,4,8) ,d g) ((1,4,9),hd)

[(3,4,9),hda) ((1,6,11),e)

4.,." 1, T ~ ' r

:(3,6,11),ae) ((1,2,7),f) ,,

i " I, I ~.."'~"
((3,2,7),af)

Fig. 5. The quotient structure of the trace semantics of MUTEX

the algorithm backtracks to the nearest state with at least one un-expanded
sncccessor. (gl, X ~) is computed in the following way: g' E GS: g[t > g~ and
x ' = (x u {t}) \ {t' ~ ~ l (t, t') ~ D}.

The simplest (but ineffective) way of constructing FEs is to extend FTS with
the relations ~ and #,~ between the states (g, X) with IXI = 1 (using the below
lemma) and then to remove from FTS all the states (g, X) with IXI > 1.

L e m m a 8. The following two conditions hold:

*) (g,t) ~< (g',t') iff there is a sequence (g,t) L~k (gl,X1) L~ . . . t._l__+

(gn- l ,Xn-1) ~ (g~,t,~) with (g,~,t,~) =-(g ' , t ') such that (ti,t) C I for 1 <_
i < n .

t ~ **) (g,t) # ~ (g',t') i/y 3(g" ,x) ~ E r s.t. (g" ,x) -~ (g,t), (g" ,x) -~ (g',t'),
and (t, t') E Din.

Proof . *). (g, t) -< (g' , t ') iff (by definition) there are prime traces e, e' E E
with f(e) = (g,t) and f (e ') = (g',t') such that e --+* e' and e --+* e" --+* e',
implies e = e" or d = e ' , for each e" E E, iff there is a sequence of traces
r0 --+ r l . . . -+ r , with 7"0 = e, r,~ = e', ri = r~-l[t~] with ti e ~U and (ti, t) E I
for 1 _< i < n, (Notice that if for some j < n (t j , t) E D, then it would be a
prime trace f • e s.t. e -+* f -+* rj and M a x (f) = {tj}), iff there is a sequence

(g,t) ~ (gl,Xl) ~4 ' " - ' �9 .. --+ (gn- l ,Xn-1) L~ (gn,tn) with (gi,Xi) = f(r i) and
(gn,t,~) = (g',t') such that (ti,t) E I for 1 ~_ i < n.

**) follows directly from Lemma 5. []

157

7 C o r r e c t n e s s o f t h e C o n s t r u c t i o n

We have to show that the formulas of DESL cannot distinguish between two
prime traces e and e' with f (e) = f (e ') . Since the modalities of DESL correspond
to the relations expressible in terms of the relations -~ and ~r this requires
proving the following Lemma.

L e m m a 9. For each prime traces e, e ~, e~ E E, the following two conditions hold:

.~E) if e ~Es e' and e - ~ el, then there is e~ E E s.t. e' d E e~ and el ~Es e~,
~mel and el " E S e11. g e e' and e # el, the , there is el c E s.t. e' E ,

P r o o f . _~E). It follows directly from Lemma 8 *).
E # E) . Let e "~ES e' and e ~:mel. Then, (3 5, 5' E T and t E ~U) such that

e = 5[t] and e' = 5'It]. It is not necessarily the case that f (5) = f(5 ') , but it
is easy to observe that State(5) = State(5'). It follows from the definition of
E that el = 5It'] for some t' E ~U with (t, t ') E Din. Let e~ = 5'It']. It is easy
to notice that e~ E T. Since 5'It] E E and proc(t) = proc(t'), so e~ E E. It
follows from definition of ~ E that e ~ E ~:mQ" Next, State(el) = State(e~) and
Max(e l) = Max(e~) = t'. Therefore, el "~ES e~, which completes the proof. []

Notice that Lemma 9 _~E) holds for the programs unrestricted to free-choice
o n e s .

L e m m a l 0 . For each formula ~ E D E S L and for each e, e' E E i l l (e) = f (e ') ,
then E S p , e ~ ~ i f f E S p , e ' ~ la

P r o o f . By induction on the complexity of a formula using Lemma 9. [3
Now, we can define the valuation V/~s : [E]~Es) 2 AP of the states of the

structure FEs consistent with the valuation of the corresponding traces of ESp:
VF([e]~ss) = V(e) for each e E E. Then, the notion of a formula 9 true at the
state e in the structure MES = (FEs, VES) (denoted IVIEs, e ~ 9) is defined
inductively as in Definition 2. The following theorem shows that model checking
of DESL can be performed over the structure iVIEs.

T h e o r e m l l . For each DESL-formula ~ and each e E E:
E S p , e ~ ~ i f f)VIEs, [e]~~s ~ 9-

P r o o f . Follows from the definition of M z s and Lemma 10. []

8 E f f i c i e n t M e t h o d o f G e n e r a t i n g F E S

The above method of generating FES can be substantially improved for some
programs by applying partial order reduction methods [7, 17].

Despite the equivalence classes of not-prime traces (called global states) do
not occur in the structure FES, some of them need to be generated in order to
establish whether two equivalence classes of prime traces (called local states) are

158

causally related. The idea of using partial order reductions relies on generating
only these necessary global states. For finding out whether (g, t) -~ (g', t '), it is
sufficient to find a sequence of global states satisfying the condition *) of Lemma
8.

The new algorithm is the adaptation of the DFS-algorithm such that only a
subset of transitions enabled at a current state is expanded. This subset (called
ample-set) is computed statically at the current state. Let s = (9, X) be a current
state with proc(X) = J. A transition t is called J-transition, if proc(t) M J ~ 0.
Ample(s) has to satisfy the following condition:

C for all non-empty sequences (9, X) ~r (91 Xi) -~ t ._l , . . . - + (g n - l , X n - 1) ~ - ~
(g,~,t.) such that there is t E X with (t~,t) E I for 1 < i < n, there is
t' E ample(g, X) s.t. t~ = t ' for some i < n and (t', tj) E I for all j < i.

It follows from C that t,~ is an J-transit ion and all J-transitions t E enabled(s)
are in ample(s).

Denote the structure generated by the modified DFS-algorithm by RTS =
(R, ~). Define the relations -<~, ~Pm,~ C_ R x R as follows:

(g,t) -<~ (g',t') iff there is a sequence (9, t) ~-~ (g i ,X i) - ~ t~-i

(g~- i ,X,~- i) - ~ (gn,t~) with (g~,t~) = (g',t') such that (ti ,t) E I for
l < i < n .

t ~ - (g, t) ~,~,r (g', t') iff 3(g", X) E R s.t. (g", X) 4 ~ (g, t), (g", X) --% (g', t'),
and (t, t ') E Din.

In order to show the correctness of the partial order reduction method we need
the following lemma.

L e m m a 1 2 . / f (g ,X) E /~ with t E X and there is a sequence (g ,X) 2_~
(g l , X l) ~ t,~-i . . . --+ (g ~ - l , X ~ - i) L% (g~,t~) in FEs such that (t, ti) E I,

t ~ t ~ t~_ i
for 1 <_ i < n, then there is a sequence (g ,X) :4~ (g~,X[) 2% -+~

(g ' - i , ' t' X , _ i) --5~ (g~,t'n) in RES such that (g~,t~) = (g~,t~) and (t,t~) E I,
for l < i < n.

P r o o f . By induction on Inl. Let proc(X) = J.
Base case. Inl = 1. Since t l is an J-transition, it follows from condition C

that t l E a m p l e (g , X) . So, (gl, t l) E R and (g, X) -% (gi, t i) .

Induction step. Assume that the lemma holds for all In I _< k. Let (g, X) !4
(g i ,X i) 2_~ .. �9 tL~, ~ (gk+l,tk+i), t E X with (t,ti) E I, for 1 _< i < k + 1.
Since tk+l is an J-transit ion, it follows from condition C that there is t" E

t" ample(g, X) s.t. ti = t" for some i < k and (t ' , tj) E I for all j < i. Let (g, X) --+r
(g~,X~), for some (g~,X~). Since (t", t) E l and t E X, t E X[. Moreover,

there is the sequence (g[,X[) -~ (g~,X~) !3, . . . (g~_ i ,X[_ l) tl_~ (gi ,Xi) t!~ ~

(g i+ i ,X i+ i) . . . t2-~ ~ (gk+l,tk+i) of length k in FES such that (t, tj) E I, for

159

t / / t I l ~ _ j < i a n d i < j < k + l , where (g j ,Xj) -+ (gi+l,Xj+l) f o r 0 < j < i - 1 .
Thus, the lemma holds by the inductive assumption (see the figure below). []

(g,X) (gl ,X0 (g2,X2) (gi-l,X~-l)

t" I t" = ti
. ~ - ~ t i + l ~ o ~ - ~

(gi' X~) (g~, X~) (g~, X~) (gi, Xi) (gi-{-1, Xi+l)
tk+~O

(gk+l, tk+l)

T h e o r e m 13. The following three conditions hold:

1. (go,to) �9 R,
2. if (g, t) �9 R and (g', t') �9 FEs such that (g, t) -~ (g', t'), then (g', t') �9 R and

(g, t) -<, (g', t').
3. if (g,t) �9 _R and (g',t') �9 FEs such that (g,t)~C,~(g',t'), then (g',t') �9 R

and (g,t)#m,r(g',t ').

P r o o f . 1) (go, to) is the beginning state of the modified DFS-algorithm.
2) Follows directly from Lemma 8 *) and Lemma 12 for X = {t}.
3) If (g, t) ~=,~ (g', t'), then t =fi to and t' :~ to. Thus, there is (g", X) �9 R such

that (g", X) -~ (g,t). Since (t,t') �9 Din, t' �9 r Moreover, it follows
t I

fromproc(t')Nproc(X) ~s 0 that t' �9 ample(g", X). Therefore, (g", X) --+ (g', t'),
which implies that (g, t)~,~,r (g', t'). []

It is easy to see that checking that condition C holds for a set of transitions
is as hard as checking reachability, hence as hard as the original model-checking
algorithm itself (which is in NP-hard for some standard representations of the
program).

However, one can benefit from substantial reduction even when using a pes-
simistic heuristic algorithm that in some cases considers a subset of transitions
not to satisfy C when it actually does. We suggest the following heuristic method
of computing ample(g, X) with proc(X) = J.

Define ample(g, X) as the minimal set of transitions satisfying the following
conditions:

1. For each J-transition t, if t E enabled(g, X), then t E ample(g, X),
2. For each J-transit ion t = (s, s') ~ enabled(g, X) s.t. (3i �9 J) sl~ = gli, either

there is a transition t' �9 enabled(g, X) s.t. (t, t') �9 D and t' �9 ample(g, X),
or ample(g, X) = enabled(g, X),

3. For each transition t' �9 ample(g, X), t" �9 ample(g, X) for all transitions t"
s.t. (t', t',) �9 D~.

160

Thus, if there is an J-transition t, which is not enabled at (g, X), but it may
become enabled in the future of (g, X), and no transition from the processes to
which t belongs is enabled now, then ample(y, X) = enabled(g, X). Notice that
condition 3) is correct only for the free-choice programs, but it could be easily
adapted to deal with the not-restricted programs.

L e m m a 14. Conditions !, 2, and 3 imply condition C.

Proof . Consider a non-empty sequence (g, X) ~-~ (gl, X1) ~ . . . (gn-t, X~-I)
(g. , t~) such that there is t E X with (t~,t) E I for 1 < i < n. Assume that
ample(g, X) 7s enabled(g, X). If n = 1, then tl E ample(g, X) (by cond. 1).

Assume that n > 1 and let t~ = (s, s'). Since t~ is the first transition in the
sequence s.t. (tn,t) E D, (3i E proc(t) C J) sii = gli. If in ~ enabled(g,X),
then let t ~ be a transition dependent on tn such that t ~ E enabled(g,X) and
t' E ample(y,X) (by cond. 2). It is easy to notice that it is not possible that
all ti with i < n are independent of tC Because then, t ~ E enabled(y~_l, X,~-t),
which implies that (t',tn) E Din. Since proc(t') = proc(tn), tn is independent
of all ti with i < n, which contradicts with the fact that tn-1 E Xn-1 and

(g~-t, X~-I) ~ (g~, tn). If tn e enabled(g, X), then t~ E ample(g, X) (by cond.
1). By repeating the same argument as before, we show that there is i < n s.t.
(ti,t~) E D. In this case let t ~ = tn.

Next, consider the smallest index i s.t. (t',t~) E D. Since (t',tj) E I for
all j < i, t' E enabled(gi_l,Xi_l). Thus, (t',ti) E Drn and (ti,tj) E I for all
j < i. This implies that ti E enabled(g, X) and ti E ample(g, X) (by cond. 3).
Therefore, the condition C is satisfied. []

Example 6. For our running example, the modified DFS-algorithm would gen-
erate the structure shown in Figure 5, without the transitions marked with the
dotted lines. In this case, the partial order reduction method did not reduce
any states, but only transitions. We give an example showing that substantial
reduction of states is also possible.

9 M o d e l C h e c k i n g o f D E S L

Assume that the modified DFS-algorithm has generated the reduced structure
RTS ---- (R, -+r) for program P. In order to obtain the structure FES, we have to
construct the relations -~ and #m,~ between the states (g, X) E R with IXI = 1
and then to remove from RTS all the states (g, X) with IXI > 1. Constructing
#m,~ is straightforward, whereas constructing -~ could be of quadratic complex-
ity in the size of/ /TS. Therefore, from practical point of view, it is more efficient
to perform model checking over the structure RTS itself. Our method relies on
translating DESL causality formulas into CTL formulas, interpreted over RTS.
Then, the model checking algorithm for CTL [3, 27] applies.

First, we have to extend RTS by a valuation function and make the definition
of the set of atomic propositions a bit more precise. So, assume that AP is a

161

finite set of propositions, which contains the special proposition prime, which
is used to mark the "prime" states in RTS and propositions corresponding to
the transitions Z of program P. For simplicity, we assume the same symbols for
these propositions and the transitions. Therefore, {prime} U Z C A P . Define
MR = (RTS, VR) as follows:

VR : R) 2 AP such that X C_ Vn(g,X), for X C AP, and prime E
V . (g ,X) iff IX I = 1.

Since FES is a substructure of RTS, we can define MR, (g, t) ~ ~ iffMEs, (g, t)
for each DESL formula ~. In order to give the traslation from DESL causality

formulas to CTL, we have to define the semantics of the CTL operator EX. and
E(.Until.):

- MR, s ~ E X ~ iff there is a state st s.t. s --+~ Sl and MR, st ~
- MR, s ~ E (r iff there is a sequence of states so, s t , . . , such that so = s,

8i --~r 8i+1, for i > 0, and (3i > 0) si ~ T and (Yj : 0 < j < i) sj ~ r

The translation is defined as follows:

by replacing (ti,

(g, t) ~ (gt, Xt)
that t E Xi for

l < i < n .
On the other

- MR, (g, t) ~ ~ ~ iff MR, (g, t) ~ -~EXE(t Until (-~ A prime)),
- MR, (g, t) ~ [] !a iff i n , (g, t) ~ -~E(true Until (-,~ A prime)).

The correctness of the translation of e a follows from the following observation.
Notice that the condition *) of Lemma 8 could be equivalently reformulated

t) E I by t E Xi i.e., (g,t) -< (g ' , t ') iff there is a sequence

�9 .. --+ (gn-t ,Xn-1) L_~ (g,~,tn) with (gn,t,~) = (g' , t ') such

1 < i < n. Consider a sequence (g,t) L.~ (g l ,Xt) ~ �9 .. t"-41

(g~,tn). If (t~, t) e I for 1 _< i < n, then obviously t E Xi for

hand i f t E Xi, then either (ti,t) E I or t~ = t for 1 < i < n.
In the latter case, (gi-1, X~-I) = (g~, Xi) as t enables t. Therefore, if we remove

from the sequnece (g,t) -~ (gl,X1) L_~ .. . tr_#l (gn-l ,Xn-1) L~ (gn,tn) all the
transitions t~ = t for 1 < i < n, then it would hold for the sequence of remaining
states and transitions ti that (ti, t) E I.

The correctness of the translation of [] a follows from the definition of -<~.

Given a DESL formula ~. First, replace each occurrence of [3~ modali ty by the
semantically equivalent combination of ~, o . Next, the model checking method
relies on assigning the subformulas of the formula ~ to the local states of MR.
The method is inductive, i.e., starting from the shortest and most deeply nested
subformula ~p of ~ the algorithm labels with r these local states of MR, which
are equivalent classes of the prime traces at which r holds. Therefore, in case of
checking a less nested subformula, it can be assumed that the states have just
been labelled with all its subformulas.

The appriopriate algorithms for labelling states with the causality subformu-
las are standard (see [3, 27, 21]) due to the translation to CTL formulas. The

162

algorithms for the immediate conflict subformulas are based on the following
principle:

- MR, (g, t) b | ~ iff for all (g', t') E R, if (g, t) #m,r (g', t'), then
MR, (g' ,r) b ~,

C o m p l e x i t y o f M o d e l C h e c k i n g

Notice that checking a formula containing a subformula | r requires labelling
states of MR with the formulas E X E (t Until (-~r A prime)) for all t E ~.
Therefore, we have the following theorem:

T h e o r e m 15. The complexity of the model checking algorithm of a formula
over program P is O(IMR [• (m x]Z I + (1~1 - m))), where m is the number of
the | of ~ and [MRI < (IGSI x IC(I)I) + [--~ I with C(I) = {A C
Z IA x A C I} (the set of I-cliques of ~).

Experiments with applying partial order reductions show (see [17, 7]) that one
can expect MR to be much smaller than its upper bound.

f

kC-"

2k(
. 2 .~?

3k

I

Fig. 6. The global state space contains 3 k states, whereas the reduced structure only
2k 2 states, for k-processes.

The model checking algorithm for DESL has not yet been implemented.
However, it is possible to calculate the number of the global states GS and the

163

number of the states in the reduced structures RTS for several "toy" programs,
for which substantial reductions in the number of states can be obtained. A
simple program is given in Figure 6.

10 D i s c u s s i o n

We have suggested a model checking algorithm for Discrete Event Structure
Logic without past modalities. So far model checking algorithms have been given
for linear t ime partial order temporal logics: (#)TrPTL [14, 15] and TLC [1].
Our algori thm is the first one, which is designed for a logic interpreted on event
structures. It is also the first model checking algorithm for a partial order logic,
which is linear in the number of subformulas of a checked formula. As far as
efficient generation of quotient structures of event structures is concerned, it
seems possible to apply also net unfolding methods [11]. It is impor tant to men-
tion tha t for unrestricted programs Lemma 9 .<E) still holds making it possible
to model check the DESL formulas without conflict operators. Moreover our
method can be applied to model checking of more expressive languages, like
modal #-calculus, interpreted over pr ime event structures. This approach wilt be
described in a forthcoming paper.

R e f e r e n c e s

1. R. Ahir, D. Peled, and W. Penczek, Model-Checking of Causality Properties, Proc.
of LICS'95, pp. 90-100, 1995

2. L. Bolc, A. Sza}as, eds., Time and Logic: A Computational Approach, UCL Press
Ltd., London, 1995.

3. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite
state concurrent systems using temporal logic specifications: A practical approach.
ACM Transactions on Programming Languages and Systems, 8(2):244-263, 1986.

4. J. Desel and J. Esparza, Free choice Petri Nets, Cambridge tracts in TCS 40,
Cambridge University Press, 1995.

5. V. Diekert and G. Rozenberg, editors. Book o] Traces. World Scientific, Singapore.
1995.

6. E.A. Emerson. Temporal and Modal Logic. In J. van Leeuven, editor, Handbook
of Theoretical Computer Science, Volume B: Formal Methods and Semantics, The
MIT Press Elsevier, pp. 995-I067, 1990.

7. R. Gerth, R. Kuiper, D. Peled, and W. Penczek, A partial order approach to
branching time logic model checking, Proc. of the Israeli Conference on Theoretical
Computer Science, IEEE Computer Society Press, pp. 130-139, 1995.

8. M. Hutm and P. Niebert, Towards automata for branching time and partial order,
Proc. of CONCUR'96, LNCS 1119, pp. 611-626, 1996.

9. K. Lodaya and P.S. Thiagarajan, A modal logic for a subclass of event structures,
LNCS 267, Springer-Verlag, pp. 290-303, 1987.

10. O. Lichtenstein, A. Pnueli, Checking that finite-state concurrent programs satisfy
their linear specification. Proc. 11th ACM POPL, pp. 97-107, 1984.

1i. K.L. McMillan, A technique of a state space search based on unfolding. Formal
Methods in System Design 6 (1), pp. 45-65, i995.

164

12. A. Mazurkiewicz, Basic notions of trace theory, LNCS 354, pp. 285-363, 1988.
13. M. Mukund, P.S. Thiagarajan, An Axiomatization of Well Branching Prime Event

Structures. Theoretical Computer Science 96, pp. 35-72, 1992.
14. M. Mukund and P.S. Thiagarajan, Linear time temporal logics over Mazurkiewicz

traces, Proceedings of MFCS'96, LNCS 1113, pp. 62-92, 1996.
15. P. Niebert, A/~-calculus with local views for systems of sequential agents, Proc. of

MFCS'95, LNCS 969, pp. 563-573, 1995.
16. M. Nielslen and G. Winskel, Trace structures and other models for concurrency, a

chapter in [5].
17. D. Peled, Partial order reductions: model-checking using representatives, Proc. of

MFCS'96, LNCS 1113, pp. 93-112, 1996.
18. D. Peled, A. Pnueli, Proving partial order properties. Theoretical Computer Science

126, 143-182, 1994.
19. W. Penczek, A temporal logic for event structures, Fundamenta Informaticae XI,

pp. 297-326, 1988.
20. W. Penczek, A Temporal Logic for the Local Specification of Concurrent Systems.

Information Processing IFIP-89, pp. 857- 862, 1989.
21. W. Penczek, Temporal logics on trace systems: on automated verification, Inter-

national Journal of Foundations of Computer Science, Vol. 4 No. 1, pp. 31-67,
1993.

22. W. Penczek, Branching time and partial order in temporal logics, chapter 4 in [2].
23. W. Penczek and R. Kuiper, "Traces and Logic", a chapter in [5],
24. S. Pinter and P. Wolper, A temporal logic for reasoning about partially ordered

computations. Proc. 3rd ACM PODC, 28- 37, 1984.
25. R.E. Tarjan, Depth first search and linear graph algorithms, SIAM Journal of

Computing, 1(2), pp. 146-160, 1972.
26. P.S. Thiagarajan, A Trace Based Extension of Linear Time Temporal Logic. Proc.

lOth IEEE LICS, pp. 438-447, 1994.
27. B. Vergauwen and J. Levi, A linear local model checking algorithm for CTL, Proc.

of CONCUR'93, LNCS 715, pp. 447-461, 1993.
28. G. Winskel, Event structures, in: W. Brauer, W. Reisig, G. Rozenberg (eds.),

Advances in Petri Nets 1986, LNCS 255, pp. 279-324, 1987.

