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Abs t rac t .  A finite representation of the prime event structure corre- 
sponding to the behaviour of a program is suggested. The algorithm 
of linear complexity using this representation for model checking of the 
formulas of Discrete Event Structure Logic without past modalities is 
given. A method of building finite representations of event structures in 
an efficient way by applying partial order reductions is provided. 

1 Introduction 

Model checking is one of the most successful methods of automatic verification of 
program properties. A model-checking algorithm decides whether a finite-state 
concurrent system satisfies its specification, given as a formula of a temporal 
logic [3, 10]. Behaviour of a concurrent system can be modeled in two ways. 
In the interleaving semantics, the meaning of a program is an execution tree, 
temporal-logic assertions are interpreted over paths of this tree. In partial-order 
semantics (or event structure semantics), behaviour is an event structure, where 
the ordering relations over events reflect the causal dependency and conflict 
among them [28]. So far model checking algorithms have been suggested for 
many partial-order temporal  logics [23, 26, 1, 14]. 

There is a long and rich tradition of research that employs the interleaving 
semantics, resulting in both theoretical and practical results. The main reason 
for this is the simplicity of the model providing a natural connection with Kripke 
structures or au tomata  theory. In this framework, a concurrent system P,  pos- 
sibly with fairness requirements, is a Kripke structure Mp that generates the 
execution tree. The commonly employed specification language is CTL [3, 6]. To 
check whether the structure MR satisfies a CTL-formula 9, the model-checking 
algorithm assigns the subformulas of ~ to states of Mp; if the beginning state 
has been assigned the formula 9, then it holds over MR. 

The use of partial-order semantics is less common, but has at tracted re- 
searchers in concurrency theory for at least two reasons: It does not distinguish 
among total-order executions that  are equivalent up to reordering of independent 
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transitions, thereby, resulting in a more abstract and faithful representation of 
concurrency [18, 26, 1, 14]. Logics over partial orders [24. 18, 19, 20, 21] allow a 
direct representation of properties involving causality, conflict, and concurrency. 

The first temporal  logic on prime event structures has been put forward by 
Lodaya and Thiagarajan [9]. Since then several new logics on event structures 
have been defined [19, 20, 13, 22]. Most of these logics have been proved to be 
decidable and possessing complete axiomatizations. However, the model checking 
problem for event structure logics has never been addressed. The reason for 
this was the lack of two notions: au tomata  on event structures and/or  finite 
representations of event structures. 

The main result of this paper is a finite representation of the event structure 
corresponding to the behaviour of a program and the algorithm using this repre- 
sentation for model checking of the formulas of Discrete Event Structure Logic 
(DESL) [20] without past modalities. We suggest also a method of building finite 
representations of event structures in an efficient way by applying partial order 
reductions [17]. This is the first model checking algorithm for an event structure 
logic suggested in the literature. 

The rest of the paper is organized as follows. In section 2 event structures 
are defined. Trace systems are introduced in section 3. Logic (DESL) on event 
structures is given in section 4. Section 5 contains the definition of finite state 
concurrent programs and its semantics. Finite representation of trace systems 
and event structures is given in section 6. The correctness of the construction 
is proved in section 7. Section 8 contains an efficient method of generating fi- 
nite representations. Model checking of DESL is described in section 9 and the 
discussion can be found in section 10. 

2 E v e n t  S t r u c t u r e s  

We start  with the definitions of event structures [28] and trace systems [12], 
which are used for giving semantics to concurrent systems. 

Let S be a countable set, and let < be a binary relation over S. The inverse of 
< is denoted by < - 1  For an element s C S, the set $< (s) contains the elements 
s' E S such that  s' < s, and t<  (s) equals {s '  C S ] s < s'}. 

An element s E S is <-initial if $< (s) is empty. The relation < is prefinite if 
$< (s) is finite for all elements s E S. Let R* be the reflexive-transitive closure of 
the relation _R. The relation < is reduced if for each s < s', (s, s') ~ (< \(s,  s'))*. 
Note that if < is reduced then < is irreflexive, and if s < s' and s' < s" then 
8 ~ 8/I . 

Event structures represent a concurrent system by taking occurrences of ac- 
tions as the starting point. Every occurrence of an action is modelled as a sepa- 
rate event. Two relations are provided that  capture, respectively, the (immedi- 
ate) causality and (immediate) conflict relationship between events. 

D e f i n i t i o n l .  A four-tuple (E, E0, -<, ~,~) is a (discrete prime) event structure 
(ES, for short) if the following conditions are satisfied: 
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1. E is a countable set, called a set of events, 
2. -<C E • E is irreflexive and reduced relation, called immediate causality 

relation, 
3. <=-<* is a prefinite part ial  order, called causality relation, 
4. #,~ C_ E • E is an irreflexive and symmetr ic  relation, called immediate 

conflict relation, 
5. < A 4P = 0 for 4P = (<_ -1 ~ #,~ o <), called conflict relation 
6. E0 C E is the set of -<-initial elements of E. 

It  follows from the definition tha t  # o _< C_ # .  This condition is called conflict 
preservation. Notice tha t  the conflict relation # is generated by the immediate  
conflict relation #rn and the causality relation _<. For event structures giving se- 
mantics  to concurrent programs,  the relation #,~ will be modeled as the minimal  
relation generating the conflict relation # .  

3 T r a c e  S y s t e m s  

By an independence alphabet we mean any ordered pair (Z, I), where Z is a 
finite set of symbols (operation names) and I C_ Z • Z is a symmetr ic  and 
irreflexive binary relation in Z (the independence relation). Let (Z, I) be an 
independence alphabet.  Define - as the least congruence in the (standard) string 
monoid (Z*, o, c) such that  (a, b) E I ~ ab - ha, for all a, b C Z i.e., w - w', 
if there is a finite sequence of strings w l , . . . ,  w,~ such that  wl = w, w,~ = w I, 
and for each i < n, wi = uabv, wi+l = ubav, for some (a,b) E I and u ,v  C Z*. 
Equivalence classes of _= are called traces over (Z, I) .  The trace generated by a 
string w is denoted by [w]. We use the following notation: [Z*] = {[w]] w E ST*}. 
Concatenation of traces [w], [v], denoted [w][v], is defined as [wv]. 

Now, let T be the set of all traces over (Z, I) .  The successor relation -+ in 
T is defined as follows: [wl] --+ [w~] iff there is a E Z such that  [wl][a] = [w2]. 
The prefix relation < in T is defined as a reflexive and transitive closure of the 
successor relation i.e., _< = (--+)*. By < we mean < - idT. Let 7 E T and Q c T. 
We use the following notation: $< Q = [,JTc@ $5 7. 

We say that  a subset Q of T dominates another subset R of T, if R C_ $< Q. 
Two traces are consistent, if there is a trace in T dominat ing both of them and 
inconsistent otherwise. We shall say that  inconsistent traces are in conflict. 

A set R of traces is said to be proper , if any two of its consistent traces 
are dominated by a trace in R, and directed, if arbi t rary two traces in R are 
dominated by a trace in R. A set of traces Q is said to be prefix-closed, if 
@=$< @. 

An ordered pair (T, -+) is a trace system over (Z, I) ,  if T is a prefix-closed 
and proper trace language over (Z, I )  and --+ is the prefix relation in T. 

For each w E Z*,  let last(w) = a if w = w'a. For each trace v E [Z*] 
M a x ( r )  = {last(w) I [w] = 7}. A trace 7 is called prime, if [Max(v)] = 1, i.e., 
there is exactly one operation executed last in 7. 
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4 L o g i c  o n  E v e n t  S t r u c t u r e s  

We give a definition of Discrete Event Structure Logic [19, 22] without past 
modalities, for which a model checking algorithm is defined. The language con- 
tains modalities corresponding to the relations of (immediate) causality and 
(immediate) conflict. 

4.1 Syntax  and Semant ics  

Let A P  = {Pl ,P2,- . .}  be a countable set of atomic propositions. The logical 
connectives -~ and A, as well as modalities [] (causally always), | (all causally 
next), Q~ (all in conflict), and | (all in immediate conflict) will be used. The 
set of formulas is built up inductively: 

El .  every member of A P  is a formula, 
E2. if a and/3 are formulas, then so are --a and a A/3, 
E3. if a is a formula, then so are [] a and D~ a, 
D4. if a is a formula, then so are | a,  and | a,  

The following derived logical connectives and modalities are defined: 

de] 
a ~ /3 = --,o~ V /3 

de] 

O~ Ol de_f -1 | ~ a  

(standard) 

(standard) 

(�9 - causally sometimes) 

(01 - some in conflict) 

(0  - some immediately causal) 

(0~ - some in immediate conflict) 

E2. 

E3. e ~  

D4. e ~  

D e f i n i t i o n  2. An ordered pair 3,t = (F, V) is a model, where 
F = (E, Eo, -<, #,~) is an ES and V : E ~ 2 a e  is a valuation function. 

Let M be a model, e E E be a state, and a be a formula. M ,  e ~ a denotes 
that  the formula a is true at the state e in the model M (M is omitted, if it is 
implicitly understood). This notion is defined inductively as follows: 

El .  e ~ p i f f p E V ( e ) , f o r p E A P ,  
--~ iff not e ~ a,  
 A/3iffe and e 

a iff (Ve f C E) (e -4* e' implies e' ~ a),  
[ ] , a i f f ( V e ' E E )  (e~m o -4* e ' i m p l i e s e  / ~ a ) .  
| a iff (Ve' C E) (e -4 e' implies e' ~ a),  

e ~ | a iff (Ve I E E) (e ~m e' implies e ~ ~ a).  

Notice that  e ~ a[  a specifies that  a holds at all the states, which are in im- 
mediate conlict or in the future of the states that  are in immediate conflict with 
e .  

The above semantics is caused by the lack of the past operators. However, 
our modMity [], is still usefnll for expressing properties of event structures: 
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- [] a - c~ holds in all the states (safety), 
- (> c~ - a is possible in the causal future, 
- [3(7 | true) - the system is conflict-free, 
- ~([](-~ | true)) - from some state in the future the system is conflict free, 
- O(a  A O~ a) - c~ will inevitably hold in the next state. 

For specifying more properties see [20, 22]. DESL was shown to be decidable 
and possessing a complete axiomatization [20]. The extension of DESL by an 
independency operator was considered in [13]. The model checking problem has 
never been addressed for any of the event structure logics. 

5 F i n i t e  S t a t e  C o n c u r r e n t  P r o g r a m s  a n d  t h e i r  S e m a n t i c s  

Programs are represented by K-sequential agents communicating via executing 
joint operations. 

5.1 P r o g r a m s  

A program is a structure P with the following components: 

1. /C is a finite set, called set of processes, 
2. for each process i E/C, a finite non-empty set Si, called a set of local-states 

of the process i, 
o 3. for each process i E/C, s i C Si is a distinguished state, called the initial state 

of the process i, 
4. for each nonempty process-set X C / C , / ' x  C (1-[iex Si) 2 is transition rela- 

tion. 

For s E 1-[iex Si and Y C_ X let siy denote the projection of s to the Y- 
components. If Y = {i}, we write sli instead of sl{i }. 

Some of our model checking results will hold only for a restricted class of 
programs in which the conflicting transitions having at least one beginning state 
in common belong to the same sequential agents. This class of programs is called 
free-choice (see [4] for the definition for Petri Nets) and it is formally defined as 
follows: 

D e f i n i t i o n 3 .  A program P is said to be free-choice, if for each two transitions 
t = (s, sl)  E F z , t '  = (s',s~) E Fy,  either X (1Y = 0 or if sii = s']~ for some 
i E X MY, then X = Y and s]~ = s']i, for all i E X. 

The transition-relation / ' x  models the events in which all processes in X 
participate. . For each transition t = (s, Sl), proc(t) denotes the set of processes 
involved in executing t, i.e., proc(t) = X, if t E I x ;  in(t) = s, and out(t) = sl. 
Let Z = Uxc~: Fx .  The independency relation I C E x Z of transitions is 
defined as follhws: (t, t ') e I if proc(t) M proc(t') = 0. The dependency relation 
D = S  x S \ (I U ids) .  The immediate dependency relation D m =  {(t , t ' )  E D I 
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in(t)]{ = in(t ') l i ,  for some i E proc( t )Nproc( t ' )} .  The  free choice p rog rams  enjoy 
the following proper ty :  if two t rans i t ions  ( t , t ' )  E D,~, then proc(t) = proe(t') 
and in ( t ) l {  = in ( t ' ) I { ,  for each i E proc(t). 

Let G S  = I-[{e~: S{ be the set of  global states of P .  A t rans i t ion t = (s, s ' )  E 
F x  is said to be enabled f rom a global s ta te  g E G S  (denoted t E enabled(g)), 
if 9 Ix = s. For the free-choice p rograms ,  for each two t ransi t ions  (t, t') E Din, if 
one of t h e m  is enabled f rom a global  s tate,  then the other  one is also enabled  
f rom the global  s tate.  

For two global s ta tes  g, g' E GS,  9 _2+ g' i f f for  some Y C / ~ ,  t = (g IY, g' IY) E 
Fy  and 9 I~c\g = g'  IIC\Y" An execution sequence w = to . . . t ~  E 2"* of P is a finite 
sequence of t rans i t ions  s.t. there is a sequence of global  s ta tes  ( = go gl g2 . . .  9n 

of P with  90 = (sO,. .  �9 , s~;), and 9i L~ gi+l ,  for each i < n. Let g0 [w>  9~ denote  
t ha t  the s ta te  9n is reached after  execut ing the execut ion sequence w f rom the 
s ta te  90. We say t ha t  t race [w] leads to the s ta te  g~. 

Example 1. P r o g r a m  M U T E X  is shown in Figure 1. I t  is composed  of three 
processes, which local s ta tes  are denoted with circles, whereas  the t rans i t ions  
with hor izontal  bars,  e.g. b = ((3, 8), (5, 10)). The  p r o g r a m  ensures the m u t u a l  
exclusion of access to the local s ta tes  5 and 6 being the critical sections. $1 = 

= { 2 , 4 ,  6 } ,  = { 7 , 8 , 9 ,  H } ,  4 = = 2, and 4 = 7. 

~ 1 2 d 

Fig.  1. Program MUTEX 

5.2 Trace Sys tem Semantics of  Programs 

The  in terpre ted  t race sys tem T S p  = (T, --% Z) over (•, i )  and the set of  a tomic  
proposi t ions  A P  is the trace semantics of the p r o g r a m  P iff the following con- 
di t ions are satified: 



151 

- IT] E T i f f  w is an execution sequence of P,  
- -~ is the trace successor relation in T, 
- :T : T ) 2 A P  is an i n t e r p r e t a t i o n  f u n c t i o n  such that  for each [w], [w'] G T 

if g0[w> g and g0[w'> g, then Z([w]) -- I ( [w']) .  

The interpretat ion function does not distinguish between the traces leading to 
the same global state. 

E x a m p l e  2. The trace semantics of program MUTEX is shown in Figure 2. T h e  
prime traces are printed in bold face. 

[] 

[agb] [agd] 

[agbel [agdb] 

[ gb 2 l 
[agbcagb I [agbcagd] [agdbcha] 

: 

[hda] [hde] 

[hd ~ e ~ i ~ ,  ~ 

[hdaef~hdefg] [hdefh] [hdefd l 

[hd aefg][hd aefh][hd aefg][hdefdg][hdefdh] 

[agdb~h~] [hd?fg~b] [h.a~fg~][hd~,fdhd] [hd~.fdhe] 

�9 v v * �9 

Fig. 2. Trace semantics of MUTEX 

5.3 E v e n t  S t r u c t u r e  S e m a n t i c s  o f  P r o g r a m s  

Each trace system defines the corresponding event structure [16], where the 
events are defined as equivalence classes of strings of transitions. For the trace 
systems that  are semantics of the programs defined in Section 5.1, alternatively, 
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one can identify the events with the pr ime traces and view the corresponding 
event s t ructure  as a subst ructure  of  the original trace system. This approach is 
taken below. 

D e f i n i t i o n 4 .  Let TSp = (T,--~,I) be the trace semantics  of  p rogram P .  An 
interpreted event s t ructure  ESp = (E, E0, _~E, ~ E  VE) is the event s t ructure  
semantics  of  p rogram P ,  where 

1. E = {e E T [[Max(e)[ = 1}, 
2. E0 = {[c]}, 
3. e _~E e' if e -4* e ~ and e -4* e" -4* e', implies e = e" or e' = e", for each 

e/I C E,  
4. e # E  e' if e, e' are not  consistent and for each 7 E T s.t. 7 --4 e the traces 

7, e ~ are consistent in T and for each r E T s.t. r -4 e' the traces e, r are 
consistent in T. 

5. VE(e) = Z(e), for e E E.  

The  condit ion 3) corresponds to the fact tha t  the relation _~E is reduced. The 
condit ion 4) specifies tha t  ~ E  is the min imal  relation generat ing the conflict 
relation in E.  

L a m i n a  5. Let P be a free-choice program and let ESp be the event structure 
semantics of P. Then, the following condition holds: 

- e # E  e' iff (97 E T) 7 --4 e, 7 --4 e', and (Max(e), Max(e')) E D,~. 

P r o o f .  Consider e, e' E E tha t  are not  consistent (i.e., in conflict) and for each 
trace r E T s.t. 7 -4  e the traces 7, e' are consistent in T and for each trace 
7'  E T s.t. 7' -4  e' the traces e, 7 '  are consistent in T. Then,  proe(Max(e)) ;q 
proc(Max(e')) # O. Therefore,  there is e0 E E such tha t  e0 _~E e and e0 .~E e'. 
This implies tha t  ((Max(e), Max(e')) E D,~. Since P is free-choice, proc(e) : 
proe(e'). Thus,  { f  E E I f  _~E e} = { f '  E E I f '  _<E e'}. Consider the minimal  
trace 7 E T such tha t  f --4" r ,  for each f _~E e. Then,  7 -4 e and r --4 e'. [] 

Example 3. The  event s t ructure  semantics of  p rogram M U T E X  is shown in Fig- 
ure 3. 

Example 4. Consider again our running example.  Let the set of  proposi t ions con- 
tain proposi t ions corresponding to the t ransi t ions Z of  p rogram M U T E X .  For 
simplicity, we assume the same symbols  for these proposi t ions and the transi- 
tions, i.e., ~ : {a ,b , c ,d , e , f , g ,h}  C AP.  Let x E VE(e) if Max(e) = {x}, for 
x E Z.  Then,  the following properties of  M U T E X  can be specified: 

- r q < ) b A D O e -  
each process always can enter its critical section by executing b or e (rasp.), 

- D(g o(b A false))  A D(h O(e A false)) ,  
after executing g the action b will be inevi tably executed in the next  step 
and after executing h the act ion e will be inevi tably executed in the next 
step, 
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[] 

[a] [g] - #m - [h] [d] 

[agbcagb] 

L 

de] 

/ 
[hdefg]-#m-[hdefh] [hdefd] 

[agdbehe] [hdefgab] [hdefdhe] 

Fig. 3. Event structure semantics of MUTEX 

- D(b ~ 0 c) A =(~ ~ 0 / ) ,  
each process will always leave its critical section in the next causal step. 

- [ ] ( g ~ O ~ h )  A O ( h ~ O ~ g ) ,  
the transitions g and h leading to the critical sections are in conflict. 

6 F i n i t e  R e p r e s e n t a t i o n s  o f  ( P r i m e )  T r a c e  S y s t e m s  

Trace Systems as well as Prime Event Structures are usually infinite objects and 
as such are not very convenient for model checking. Therefore, one uses quotient 
structures of TSp, which identify all the traces that cannot be distinguished by 
the formulas of a logic of interest. 

When one is interested in model checking of CTL formulas, then the finite 
representation is obtained by applying the equivalence relation "~CTL on the 
traces, which identifies the traces leading to the same global states, defined as 
follows: 

(v[w], [wq ~ T)(Vg ~ as) [w] -c~L [w'] i l l  (g0[w> g r g). 
When one is interested in model checking of CTLp formulas, then the finite 

representation of TSp is obtained by using a more discriminating equivalence 
relation (see [21]). 
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For event structure logics the situation is slightly different since a finite rep- 
resentation should only involve equivalence classes of prime traces. The sim- 
plest solution would be, if a substructure of the quotient structure of T S p  by 
"~CTL could be applied. This is, unfortunately, not the case since there could 
be two prime traces leading to the same global state that  have different causal 
futures and therefore can be distinguished by DESL formulas corresponding to 
the causality relation. In the trace semantics of MUTEX (Figure 2) the traces: 
[ ], [agbc], [hdef] lead to the same global state (1, 2, 7), but the sets of global 
states to which lead their causal successors are different (see Figure 3). 

The solution is to sharpen the equivalence relation ~CTL accordingly. For 
technical reasons, the new equivalence is defined for all traces. Two traces are 
ES-equivalent if they lead to the same global states and their sets of maximal 
transitions are the same. A new equivalence relation ~ES is formally defined as 
follows: 

- Define f : T - -+ Hie~=Si • (2~U{t0}), where to ~ Z is an artificial transition 
with proc(to) = IC, 
/([c]) = (go, to), 
f([w]) = (g, X) i fg0[w> g and X = Max([w]) for [w] r [e], and 

- (V[w], [w/] e T) [w] ~ E s  [w/] iff f ( [w])  -=- f([w']) .  

We will write (g, tl . . . tn) for (g, {tl , . . ,  tn}) and let State(r)  stand for g, where 
f ( r )  = (g, X) 

As we show later, ~ES  identifies all the prime traces, which cannot be distin- 
guished by DESL formulas without conflict operators. Unfortunately, for unre- 
stricted programs ~Es-equivalent  prime traces can be distinguished by conflict 
modalities. To see this, consider the program P r  shown in Figure 4. The be- 
ginning states of the three processes of P r  are marked with dots. The traces 
[a], [b], [e], [ac], [ba], [bd], [ca] belong to the trace semantics of Pr.  All of them 
except for [ac] are prime. Notice that  f([bd]) = f([cd]) = ((1, 7, 8), d), but 
[cd] # E  [a], whereas [bd] 4~ E [ba]. Since f([a]) r f([ba]), the prime traces [bd] 
and [cd] can be distinguished by a conflict formula, referring to f([a]) or f([ba]). 

There are two possible ways to overcome this problem: 

1. Define a more restrictive equivalence relation on T, or 
2. Restrict the class of programs such that  ~ES preserves all DESL formulas. 

The first solution leads inevitably to an equivalence relation, which index is 
exponential in the number of the global states and therefore, we do not consider 
this solution in the present paper. 

The second solution requires such a restriction of programs, which makes it 
possible to define the immediate conflict relation in terms of the preserved by 
~ z s  causality relation. This is the situation for free-choice programs, which is 
shown below. 

Next, we define the quotient structures of TSp  and E S p  by ~'Es. 
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Fig. 4. Program Pr 

2 

c 

), 

d 

), 

D e f i n l t i o n 6 .  The quotient structure of TSp by "~ES is the triple FTS = 
(W, -+ ,  wo), where: 

- W : { [ 7 - ] ~ E s  I v E T} is a set of states, 
I 

- ~ C_ W x Z x W is a transition relation such that [r]~Es -~ [r ]~Es, if there 
are traces 
rl E [r]~~s, 7-~ e [r']~Es, and t E ~U such that 7-1 [t] = r~, 

- w 0  = 

D e f i n i t i o n  7. The quotient structure of E S p  by "ES  is the 4-tuple FEs = 
(EF, -~, ~m,  e0), where: 

- E F  : {[e]~ss I e c E} is a set of states, 
e t - -~ C E F  • EF is a relation such that [e]~ss -~ [ ]~~s, if there are prime 

traces 
t el E [e]~~s, e~ E [e ]~~s such that e _~E e', 

e I - ~rn C EF  X EF  is a relation such that [e]~ss :~m [ ]~~s, if there are prime 
t r a c e s  

e I el E [e]~~,e~ E[  ]~~s such that ei # E  e~, 
- e 0  = 

Example  5. The quotient structure of the trace semantics of MUTEX is shown 
in Figure 5. 

We will refer to the states [T]~Es of FTS by the values of the function f of 
their representatives, i.e., f (v) .  Note that FT8 can bedi rec t ly  generated from 
the given program P using the Depth First Search (DFS)-algorithm [25]. The 
algorithm starts from the beginning state (g0,t0) and then, recursively, for a 
current state (g, X) and enabled transition t E Z expands the t-successor (g', X')  
of (g, X).  When all the successors of a current state have been already expanded, 
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((1,2,7),t0) d 

a ~ g �9 " ' ~  g ""~'~ u h 
"--~((3,2,7). ,a)' ( (1 ,2 ,8 ) ,g )  " ~ ( 1 , 2 , 9 ) , h )  ( . ( 1 , 4 , 7 ) , d ~  -~ 

((3,2,8) ,ag.~_.((3,2,9),ah) ( 

((~,2,~o),b) ((a,4,s),~gd) 
c~ "-. d ~ 

~ ((1,2,7),e) ((5,4,1a),bd) 

"".....a.....~ ~1 

((1,4,7),dc) 

d 

(•.........•...,4,8) ,d g) ((1,4,9),hd) 

[(3,4,9),hda) ((1,6,11),e) 

4.,." 1, T ~ '  r 

:(3,6,11),ae) ((1,2,7),f) ,, 

i " I, I ~.."'~" 
((3,2,7),af) 

Fig. 5. The quotient structure of the trace semantics of MUTEX 

the algorithm backtracks to the nearest state with at least one un-expanded 
sncccessor. (gl, X ~) is computed in the following way: g' E GS: g[t > g~ and 
x '  = ( x  u {t}) \ {t' ~ ~ l (t, t') ~ D}. 

The simplest (but ineffective) way of constructing FEs is to extend FTS with 
the relations ~ and #,~ between the states (g, X) with IXI = 1 (using the below 
lemma) and then to remove from FTS all the states (g, X) with IXI > 1. 

L e m m a  8. The following two conditions hold: 

*) (g,t) ~< (g',t') iff there is a sequence (g,t) L~k (gl,X1) L~ . . .  t._l__+ 

(gn- l ,Xn-1)  ~ (g~,t,~) with (g,~,t,~) =-(g ' , t ' )  such that (ti,t) C I for 1 <_ 
i < n .  

t ~ **) (g,t) # ~  (g',t') i/y 3(g" ,x)  ~ E r  s.t. (g" ,x)  -~ (g,t), (g" ,x)  -~ (g',t'), 
and (t, t') E Din. 

Proof .  *). (g, t) -< (g' , t ' )  iff (by definition) there are prime traces e, e' E E 
with f(e) = (g,t) and f (e ')  = (g',t') such that  e --+* e' and e --+* e" --+* e', 
implies e = e" or d = e ' ,  for each e" E E, iff there is a sequence of traces 
r0 --+ r l . . .  -+ r ,  with 7"0 = e, r,~ = e', ri = r~-l[t~] with ti e ~U and (ti, t) E I 
for 1 _< i < n, (Notice that  if for some j < n (t j , t)  E D, then it would be a 
prime trace f • e s.t. e -+* f -+* rj and M a x ( f )  = {tj}), iff there is a sequence 

(g,t) ~ (gl,Xl) ~4 ' " - '  �9 .. --+ (gn- l ,Xn-1)  L~ (gn,tn) with (gi,Xi) = f(r i )  and 
(gn,t,~) = (g',t') such that (ti,t) E I for 1 ~_ i < n. 

**) follows directly from Lemma 5. [] 
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7 C o r r e c t n e s s  o f  t h e  C o n s t r u c t i o n  

We have to show that  the formulas of DESL cannot distinguish between two 
prime traces e and e' with f (e)  = f (e ' ) .  Since the modalities of DESL correspond 
to the relations expressible in terms of the relations -~ and ~r this requires 
proving the following Lemma. 

L e m m a  9. For each prime traces e, e ~, e~ E E, the following two conditions hold: 

.~E) if e ~Es  e' and e - ~  el, then there is e~ E E s.t. e' d E e~ and el ~Es  e~, 
~mel  and el " E S  e11. g e e' and e # el, the ,  there is el c E s.t. e' E , 

P r o o f .  _~E). It follows directly from Lemma 8 *). 
E # E ) .  Let e "~ES e' and e ~:mel. Then, (3 5, 5' E T and t E ~U) such that  

e = 5[t] and e' = 5'It]. It is not necessarily the case that  f (5)  = f(5 ' ) ,  but it 
is easy to observe that  State(5) = State(5').  It follows from the definition of 
# E  that  el = 5It'] for some t' E ~U with (t, t ') E Din. Let e~ = 5'It']. It is easy 
to notice that  e~ E T. Since 5'It] E E and proc(t) = proc(t'), so e~ E E. It 
follows from definition of ~ E  that  e ~ E ~:mQ" Next, State(el)  = State(e~) and 
Max(e l )  = Max(e~) = t'. Therefore, el "~ES e~, which completes the proof. [] 

Notice that  Lemma 9 _~E) holds for the programs unrestricted to free-choice 
o n e s .  

L e m m a l 0 .  For each formula ~ E D E S L  and for each e, e' E E i l l ( e )  = f (e ' ) ,  
then E S p , e  ~ ~ i f f  E S p , e '  ~ la 

P r o o f .  By induction on the complexity of a formula using Lemma 9. [3 
Now, we can define the valuation V/~s : [E]~Es ) 2 AP of the states of the 

structure FEs consistent with the valuation of the corresponding traces of ESp:  
VF([e]~ss ) = V(e) for each e E E. Then, the notion of a formula 9 true at the 
state e in the structure MES = (FEs, VES) (denoted IVIEs, e ~ 9) is defined 
inductively as in Definition 2. The following theorem shows that  model checking 
of DESL can be performed over the structure iVIEs. 

T h e o r e m l l .  For each DESL-formula ~ and each e E E: 
E S p , e  ~ ~ i f f  )VIEs, [e]~~s ~ 9- 

P r o o f .  Follows from the definition of M z s  and Lemma 10. [] 

8 E f f i c i e n t  M e t h o d  o f  G e n e r a t i n g  F E S  

The above method of generating FES can be substantially improved for some 
programs by applying partial order reduction methods [7, 17]. 

Despite the equivalence classes of not-prime traces (called global states) do 
not occur in the structure FES, some of them need to be generated in order to 
establish whether two equivalence classes of prime traces (called local states) are 
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causally related. The idea of using partial order reductions relies on generating 
only these necessary global states. For finding out whether (g, t) -~ (g', t '), it is 
sufficient to find a sequence of global states satisfying the condition *) of Lemma 
8. 

The new algorithm is the adaptation of the DFS-algorithm such that  only a 
subset of transitions enabled at a current state is expanded. This subset (called 
ample-set) is computed statically at the current state. Let s = (9, X) be a current 
state with proc(X) = J. A transition t is called J-transition, if proc(t) M J ~ 0. 
Ample(s) has to satisfy the following condition: 

C for all non-empty sequences (9, X) ~r (91 Xi)  -~ t ._l , . . . - +  ( g n - l , X n - 1 ) ~ - ~  
(g,~,t.) such that  there is t E X with (t~,t) E I for 1 < i < n, there is 
t' E ample(g, X)  s.t. t~ = t '  for some i < n and (t', tj) E I for all j < i. 

It follows from C that t,~ is an J-transit ion and all J-transitions t E enabled(s) 
are in ample(s). 

Denote the structure generated by the modified DFS-algorithm by RTS = 
(R, ~ ). Define the relations -<~, ~Pm,~ C_ R x R as follows: 

(g,t) -<~ (g',t') iff there is a sequence (9, t) ~-~ (g i ,X i )  - ~  t~-i 

(g~- i ,X,~- i )  - ~  (gn,t~) with (g~,t~) = (g',t') such that (ti ,t) E I for 
l < i < n .  

t ~ - (g, t) ~,~,r (g', t') iff 3(g", X) E R s.t. (g", X) 4 ~  (g, t), (g", X) --% (g', t'), 
and (t, t ') E Din. 

In order to show the correctness of the partial order reduction method we need 
the following lemma. 

L e m m a 1 2 .  / f  (g ,X)  E /~ with t E X and there is a sequence (g ,X)  2_~ 
( g l , X l )  ~ t,~-i . . .  --+ ( g ~ - l , X ~ - i )  L% (g~,t~) in FEs such that (t, ti) E I, 

t ~ t ~ t~_ i 
for  1 <_ i < n, then there is a sequence (g ,X)  :4~ (g~,X[) 2% . . . .  -+~ 

( g ' - i ,  ' t' X , _ i )  --5~ (g~,t'n) in RES such that (g~,t~) = (g~,t~) and (t,t~) E I, 
for  l < i < n. 

P r o o f .  By induction on Inl. Let proc(X) = J. 
Base case. Inl = 1. Since t l  is an J-transition, it follows from condition C 

that t l  E a m p l e ( g ,  X ) .  So, (gl, t l )  E R and (g, X )  -% (gi, t i) .  

Induction step. Assume that  the lemma holds for all In I _< k. Let (g, X) !4 
(g i ,X i )  2_~ .. �9 tL~, ~ (gk+l,tk+i),  t E X with (t,ti) E I, for 1 _< i < k + 1. 
Since tk+l is an J-transit ion, it follows from condition C that  there is t"  E 

t" ample(g, X)  s.t. ti = t"  for some i < k and ( t ' ,  tj) E I for all j < i. Let (g, X) --+r 
(g~,X~), for some (g~,X~). Since (t", t)  E l and t E X, t E X[. Moreover, 

there is the sequence (g[ ,X[)  -~ (g~,X~) !3, . . . (g~_ i ,X[_ l  ) tl_~ (gi ,Xi)  t!~ ~ 

(g i+ i ,X i+ i ) . . .  t2-~ ~ (gk+l,tk+i) of length k in FES such that  (t, tj) E I, for 
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t / /  t I l ~ _ j  < i a n d i < j  < k + l ,  where (g j ,Xj ) -+ (gi+l,Xj+l) f o r 0 < j  < i - 1 .  
Thus, the lemma holds by the inductive assumption (see the figure below). [] 

(g,X) (gl ,X0 (g2,X2) (gi-l,X~-l) 

t" I t" = ti 
. . . . .  ~ - ~  t i + l ~ o ~  . . . . . . . .  . - ~  

(gi' X~) (g~, X~) (g~, X~) (gi, Xi) (gi-{-1, Xi+l) 
tk+~O 

(gk+l, tk+l) 

T h e o r e m  13. The following three conditions hold: 

1. (go,to) �9 R, 
2. if (g, t) �9 R and (g', t') �9 FEs such that (g, t) -~ (g', t'), then (g', t') �9 R and 

(g, t) -<, (g', t'). 
3. if (g,t) �9 _R and (g',t') �9 FEs such that (g,t)~C,~(g',t'), then (g',t') �9 R 

and (g,t)#m,r(g',t '). 

P r o o f .  1) (go, to) is the beginning state of the modified DFS-algorithm. 
2) Follows directly from Lemma 8 *) and Lemma 12 for X = {t}. 
3) If (g, t) ~=,~ (g', t'), then t =fi to and t' :~ to. Thus, there is (g", X) �9 R such 

that (g", X) -~ (g,t). Since (t,t') �9 Din, t' �9 r Moreover, it follows 
t I 

fromproc(t')Nproc(X) ~s 0 that t' �9 ample(g", X). Therefore, (g", X) --+ (g', t'), 
which implies that (g, t)~,~,r (g', t'). [] 

It is easy to see that checking that condition C holds for a set of transitions 
is as hard as checking reachability, hence as hard as the original model-checking 
algorithm itself (which is in NP-hard for some standard representations of the 
program). 

However, one can benefit from substantial reduction even when using a pes- 
simistic heuristic algorithm that in some cases considers a subset of transitions 
not to satisfy C when it actually does. We suggest the following heuristic method 
of computing ample(g, X) with proc(X) = J. 

Define ample(g, X) as the minimal set of transitions satisfying the following 
conditions: 

1. For each J-transition t, if t E enabled(g, X),  then t E ample(g, X), 
2. For each J-transit ion t = (s, s') ~ enabled(g, X) s.t. (3i �9 J)  sl~ = gli, either 

there is a transition t' �9 enabled(g, X) s.t. (t, t') �9 D and t' �9 ample(g, X), 
or ample(g, X) = enabled(g, X), 

3. For each transition t' �9 ample(g, X), t" �9 ample(g, X) for all transitions t" 
s.t. (t', t',) �9 D~. 
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Thus, if there is an J-transition t, which is not enabled at (g, X), but it may 
become enabled in the future of (g, X), and no transition from the processes to 
which t belongs is enabled now, then ample(y, X) = enabled(g, X). Notice that 
condition 3) is correct only for the free-choice programs, but it could be easily 
adapted to deal with the not-restricted programs. 

L e m m a  14. Conditions !, 2, and 3 imply condition C. 

Proof .  Consider a non-empty sequence (g, X) ~-~ (gl, X1) ~ . . .  (gn-t,  X~-I)  
(g. , t~)  such that  there is t E X with (t~,t) E I for 1 < i < n. Assume that  
ample(g, X) 7s enabled(g, X). If n = 1, then tl E ample(g, X) (by cond. 1). 

Assume that  n > 1 and let t~ = (s, s'). Since t~ is the first transition in the 
sequence s.t. (tn,t) E D, (3i E proc(t) C J) sii = gli. If in ~ enabled(g,X), 
then let t ~ be a transition dependent on tn such that t ~ E enabled(g,X) and 
t' E ample(y,X) (by cond. 2). It is easy to notice that  it is not possible that  
all ti with i < n are independent of tC Because then, t ~ E enabled(y~_l, X,~-t), 
which implies that  (t',tn) E Din. Since proc(t') = proc(tn), tn is independent 
of all ti with i < n, which contradicts with the fact that  tn-1 E Xn-1 and 

(g~-t,  X~-I)  ~ (g~, tn). If tn e enabled(g, X), then t~ E ample(g, X) (by cond. 
1). By repeating the same argument as before, we show that  there is i < n s.t. 
(ti,t~) E D. In this case let t ~ = tn. 

Next, consider the smallest index i s.t. (t',t~) E D. Since (t',tj) E I for 
all j < i, t' E enabled(gi_l,Xi_l). Thus, (t',ti) E Drn and (ti,tj) E I for all 
j < i. This implies that ti E enabled(g, X) and ti E ample(g, X) (by cond. 3). 
Therefore, the condition C is satisfied. [] 

Example 6. For our running example, the modified DFS-algorithm would gen- 
erate the structure shown in Figure 5, without the transitions marked with the 
dotted lines. In this case, the partial order reduction method did not reduce 
any states, but only transitions. We give an example showing that  substantial 
reduction of states is also possible. 

9 M o d e l  C h e c k i n g  o f  D E S L  

Assume that  the modified DFS-algorithm has generated the reduced structure 
RTS ---- (R, -+r) for program P. In order to obtain the structure FES, we have to 
construct the relations -~ and #m,~ between the states (g, X) E R with IXI = 1 
and then to remove from RTS all the states (g, X) with IXI > 1. Constructing 
#m,~ is straightforward, whereas constructing -~ could be of quadratic complex- 
ity in the size of/ /TS.  Therefore, from practical point of view, it is more efficient 
to perform model checking over the structure RTS itself. Our method relies on 
translating DESL causality formulas into CTL formulas, interpreted over RTS. 
Then, the model checking algorithm for CTL [3, 27] applies. 

First, we have to extend RTS by a valuation function and make the definition 
of the set of atomic propositions a bit more precise. So, assume that AP is a 
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finite set of propositions, which contains the special proposition prime, which 
is used to mark the "prime" states in RTS and propositions corresponding to 
the transitions Z of program P.  For simplicity, we assume the same symbols for 
these propositions and the transitions. Therefore, {prime} U Z C A P .  Define 
MR = (RTS, VR) as follows: 

VR : R ) 2 AP such that  X C_ Vn(g,X), for X C AP,  and prime E 
V . (g ,X)  iff IX I = 1. 

Since FES is a substructure of RTS, we can define MR, (g, t) ~ ~ iffMEs, (g, t) 
for each DESL formula ~. In order to give the traslation from DESL causality 

formulas to CTL, we have to define the semantics of the CTL operator EX.  and 
E(.Until.): 

- MR, s ~ E X ~  iff there is a state st s.t. s --+~ Sl and MR, st ~ 
- MR, s ~ E ( r  iff there is a sequence of states so, s t , . . ,  such that  so = s, 

8i --~r 8i+1, for i > 0, and (3i > 0) si ~ T and (Yj : 0 < j < i) sj ~ r 

The translation is defined as follows: 

by replacing (ti, 

(g, t) ~ (gt, Xt) 
that  t E Xi for 

l < i < n .  
On the other 

- MR, (g, t) ~ ~ ~ iff MR, (g, t) ~ -~EXE(t Until ( -~  A prime)), 
- MR, (g, t) ~ [] !a iff i n ,  (g, t) ~ -~E(true Until (-,~ A prime)). 

The correctness of the translation of e a follows from the following observation. 
Notice that  the condition *) of Lemma 8 could be equivalently reformulated 

t) E I by t E Xi i.e., (g,t) -< (g ' , t ' )  iff there is a sequence 

�9 .. --+ (gn-t ,Xn-1) L_~ (g,~,tn) with (gn,t,~) = (g' , t ' )  such 

1 < i < n. Consider a sequence (g,t) L.~ (g l ,Xt )  ~ �9 .. t"-41 

(g~,tn). If (t~, t) e I for 1 _< i < n, then obviously t E Xi for 

hand i f t  E Xi, then either (ti,t) E I or t~ = t for 1 < i < n. 
In the latter case, (gi-1, X~-I) = (g~, Xi) as t enables t. Therefore, if we remove 

from the sequnece (g,t) -~ (gl,X1) L_~ .. .  tr_#l (gn-l ,Xn-1) L~ (gn,tn) all the 
transitions t~ = t for 1 < i < n, then it would hold for the sequence of remaining 
states and transitions ti that  (ti, t) E I. 

The correctness of the translation of [] a follows from the definition of -<~. 

Given a DESL formula ~. First, replace each occurrence of [3~ modali ty by the 
semantically equivalent combination of ~, o .  Next, the model checking method 
relies on assigning the subformulas of the formula ~ to the local states of MR. 
The method is inductive, i.e., starting from the shortest and most deeply nested 
subformula ~p of ~ the algorithm labels with r these local states of MR, which 
are equivalent classes of the prime traces at which r holds. Therefore, in case of 
checking a less nested subformula, it can be assumed that  the states have just 
been labelled with all its subformulas. 

The appriopriate algorithms for labelling states with the causality subformu- 
las are standard (see [3, 27, 21]) due to the translation to CTL formulas. The 
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algorithms for the immediate conflict subformulas are based on the following 
principle: 

- MR, (g, t) b | ~ iff for all (g', t') E R, if (g, t) #m,r (g', t'), then 
MR, (g' ,r)  b ~, 

C o m p l e x i t y  o f  M o d e l  C h e c k i n g  

Notice that  checking a formula containing a subformula | r requires labelling 
states of MR with the formulas E X E ( t  Until (-~r A prime)) for all t E ~.  
Therefore, we have the following theorem: 

T h e o r e m  15. The complexity of the model checking algorithm of a formula 
over program P is O(IMR [ • ( m x  ]Z I + (1~1 - m))), where m is the number of 
the | of ~ and [MRI < (IGSI x IC(I)I) + [ --~ I with C(I) = {A C 
Z IA x A C I} (the set of I-cliques of ~). 

Experiments with applying partial order reductions show (see [17, 7]) that  one 
can expect MR to be much smaller than its upper bound. 

f 

kC-" 

2k( 
. . . . . . . .  2 .~?  

3k 

I 

Fig. 6. The global state space contains 3 k states, whereas the reduced structure only 
2k 2 states, for k-processes. 

The model checking algorithm for DESL has not yet been implemented. 
However, it is possible to calculate the number of the global states GS and the 
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number  of the states in the reduced structures RTS for several "toy" programs, 
for which substantial  reductions in the number  of states can be obtained. A 
simple program is given in Figure 6. 

10 D i s c u s s i o n  

We have suggested a model checking algorithm for Discrete Event Structure 
Logic without past  modalities. So far model checking algorithms have been given 
for linear t ime partial  order temporal  logics: (# )TrPTL [14, 15] and TLC [1]. 
Our algori thm is the first one, which is designed for a logic interpreted on event 
structures. It  is also the first model checking algorithm for a partial  order logic, 
which is linear in the number  of subformulas of a checked formula. As far as 
efficient generation of quotient structures of event structures is concerned, it 
seems possible to apply also net unfolding methods [11]. It  is impor tant  to men- 
tion tha t  for unrestricted programs Lemma  9 .<E) still holds making it possible 
to model check the DESL formulas without conflict operators.  Moreover our 
method can be applied to model checking of more expressive languages, like 
modal  #-calculus, interpreted over pr ime event structures. This approach wilt be 
described in a forthcoming paper. 
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