
Model-Checking for Android Malware Detection�

Fu Song1 and Tayssir Touili2

1 Shanghai Key Laboratory of Trustworthy Computing,
East China Normal University, P.R. China

fsong@sei.ecnu.edu.cn
2 Liafa, CNRS and Université Paris Diderot, France

touili@liafa.univ-paris-diderot.fr

Abstract. The popularity of Android devices results in a significant increase of
Android malwares. These malwares commonly steal users’ private data or do ma-
licious tasks. Therefore, it is important to efficiently and automatically analyze
Android applications and identify their malicious behaviors. This paper intro-
duces an automatic and scalable approach to analyze Android applications and
identify malicious applications. Our approach consists of modeling an Android
application as a PushDown System (PDS), succinctly specifying malicious be-
haviors in Computation Tree Logic (CTL) or Linear Temporal Logic (LTL), and
reducing the Android malware detection problem to CTL/LTL model-checking
for PDSs. We implemented our techniques in a tool and applied it to analyze
more than 1260 android applications. We obtained encouraging results. In partic-
ular, we discovered ten programs known as benign that are leaking private data.

1 Introduction

The rapid growth of Android’s market results in a significant increase in Android mal-
wares. Although Google introduced a security service Bouncer on the Android Play
Store (Android Market) in February 2012, according to a recent report, the number of
Android malwares has increased from 3063 to 51447 between the first and third quar-
ters of 2012 1. These malwares usually steal users’ private information such as phone
identifiers, location information, or send overpriced messages, etc.

Researchers have done many efforts aimed at addressing these problems [2, 4, 7–
10, 12–16, 19, 20, 22, 30]. All these works cannot directly analyze Dalvik codes to
identify complicated malwares (Android applications are written in Java and compiled
into Dalvik codes. Dalvik codes are a kind of assembly programs that run in Dalvik
Virtual Machine, like Java bytecode run in Java Virtual Machine). In this work, we di-
rectly analyze Dalvik bytecode rather than translating it into Java and then using Java
program analyzers. Indeed, several malwares are written directly in Dalvik. Moreover,
decompilation from Android applications to Java does not always work, due to the fact

� This work was partially supported by STCSM Project (No. 14PJ1403200), NSFC Project (No.
61402179), SHMEC-SHEDF Project (No.13CG21), the Open Project of Shanghai Key Lab-
oratory of Trustworthy Computing (No. 07dz22304201301), ANR grant (No.ANR-08-SEGI-
006), SHEITC Project (No.130407), Shanghai Knowledge Service Platform for Trustworthy
Internet of Things (No. ZF1213).

1 http://www.f-secure.com.

J. Garrigue (Ed.): APLAS 2014, LNCS 8858, pp. 216–235, 2014.
c© Springer International Publishing Switzerland 2014

Model-Checking for Android Malware Detection 217

that existing reverse engineering tools are prone to failure. We propose an efficient and
automatic approach that directly analyzes Dalvik codes and can identify complicated
malwares. Our approach consists of modeling an Android application as a Pushdown
System (PDS) which is a natural model of sequential programs with potentially recur-
sive procedure calls [11], and expressing malicious behaviors in SCTPL [25, 26] and
SLTPL [27]. SCTPL (resp. SLTPL) is an extension of Computation Tree Logic (CTL)
(resp. Linear Temporal Logic (LTL)) with variables, quantifiers and predicates over the
stack that allows to succinctly describe malicious behaviors. The Android malware de-
tection problem is reduced to SCTPL/SLTPL model-checking for PDSs which can be
solved by [26, 27].

For instance, let us consider an Android application that intends to steal the IMSI
ID of the phone by sending a text message to another phone. This application can
obtain the IMSI ID by calling the getSubscriberId method whose return value is the
IMSI ID. Later, it can call the sendTextMessage method with the IMSI ID as third pa-
rameter by which the IMSI ID is sent to another phone. Since the IMSI ID is users’
private information, it is important to identify whether an Android application steals
the IMSI ID or not. We can model the Android application as a PDS and specify this
malicious behavior as the following SCTPL formula: EF∃x(x = getS ubscriberId() ∧
EFsendTextMessage(−,−, x,−,−)), where − denotes the non-important parameters.
This formula expresses that the return value of getSubscriberId (i.e., the IMSI ID) is
assigned to a variable x. Later, sendTextMessage is called with x as third parameter.
However, this formula is not robust enough and malwares could easily get around by
some obfuscation techniques. For example, a malware could encrypt the IMSI ID such
that the sent text (i.e., third parameter of sendTextMessage) does not have any explicit
relation with the IMSI ID. E.g., the malware Hongtoutou uses the DES algorithm to
encrypt the IMSI ID by the secret key 48734154. To overcome this problem, in this pa-
per, we introduce a predicate encode to express the existence of a relation between two
variables. More precisely, the predicate y = encode(x, l) expresses that the value of y
depends on the value of x at the control point l. Thus, the above malicious behavior can
be specified in a more precise manner using the following SCTPL formula: EF∃x∃l(x =
getS ubscriberId()∧Loc(l)∧EF∃y(sendTextMessage(−,−, y,−,−)∧y = encode(x, l))).
This formula specifies that the return value of getSubscriberId is assigned to a variable
x at a control point l (i.e., Loc(l) holds). Later, sendTextMessage is called with y as third
parameter such that the value of y depends on the value of x at l.

However, it is not trivial to determine whether a configuration of the PDS model
satisfies predicates of the form y = encode(x, l) or not. To solve this problem, we
propose an algorithm based on the saturation procedure of [11]. Our algorithm com-
putes an annotation function from which we can infer whether a configuration satisfies
y = encode(x, l) or not. Thus, we can check whether an Android application has some
malicious behaviors by applying SCTPL and SLTPL model-checking for PDSs.

We implemented our techniques in a tool and applied it to check 1260 Android mal-
wares. We obtained interesting results. Our tool was able to detect all these malwares.
We also applied our tool to check 71 applications from Android Compatibility Test
Suite which are regarded as benign applications. We found that ten of them leak private
data and three of them do some malicious behaviors such as record videos without the

218 F. Song and T. Touili

1 c l a s s M y a c t i v i t y e x t e n d s A c t i v i t y {
2 p u b l i c S t r i n g i d ;
3 p u b l i c o n C r e a t e () {
4 TelephonyManager m = C o n t e x t . g e t S y s t e m S e r v i c e (‘ ‘ phone ”) ;
5 i d=m. g e t D e v i c e I d () ;
6 r e t u r n ; }
7

8 p u b l i c onPause () {
9 SmsManager s=SmsManager . g e t D e f a u l t () ;

10 S t r i n g t e x t= e n c r y p t (id , key) ;
11 s . s e ndT e x tM e s s age (‘ ‘ 1 ” , ‘ ‘ 2 ” , t e x t , i n t e n t , i n t e n t) ;
12 r e t u r n ; } }

Fig. 1. A simplified program that leaks the device ID of the phone via text message

users’ knowledge. To our knowledge, the results we obtained for these 71 applications
are previously unknown. Our approach could also be applied to detect other malicious
programs, such as iOS programs, Windows programs, etc.

Outline: Section 2 presents the background of Android applications needed in this
paper. Section 3 recalls the definition of PDSs and shows how to model an Android
application as a PDS. Section 4 gives the definitions of SCTPL and SLTPL, and shows
how to express malicious behaviors of Android applications in SCTPL/SLTPL. Section
5 proposes an algorithm computing the annotation function. Section 6 gives the experi-
mental results. Section 7 shows related work. Due to lack of space, proofs are omitted.
They can be found in the full version of this paper [28].

2 Android Applications

Android provides four base classes: Activity, Service, Content Providers and Broad-
cast Receiver, each of them consists of several methods that could be invoked by the
Android operating system (OS) when its state is changed. These methods are called
callback methods. For instance, the Activity class has two callback methods onCreate
and onPause which will be invoked respectively by the Android OS when an activ-
ity is launched and is about to start resuming a previous activity. Also, there are other
classes containing callback methods. E.g., the OnClickListener interface has the onClick
method which will be called when the application is at the idle state and the correspond-
ing button was clicked by the user. An Android application should define one or more
classes that extend Activity, Service, Content Providers or Broadcast Receiver and the
extended classes can override callback methods to implement their own functionalities.
Moreover, an Android application does not necessarily have a main method (i.e., the
entry point of a normal program). Instead, an application may have several entry points
that are some callback methods of the four base classes. The Android OS can start an
application by calling one of these callback methods. Malicious Android applications
can also override the callback methods to execute a malicious task.

For example, Fig. 1 presents a simplified Android application that defines the My-
activity class which extends the Activity class. It overrides the onCreate and onPause
methods. In the onCreate method, a TelephonyManager object m is obtained by calling

Model-Checking for Android Malware Detection 219

the getSystemService method at line 4. It calls the getDeviceId method of the object m
and assigns the return value to the variable id at line 5. The return value of getDeviceId
is the unique device ID (called IMEI) of the phone which is private. In the onPause
method, it calls the getDefault method to obtain a SmsManager object s at line 9. Then,
it encrypts the obtained device ID (i.e., IMEI) by calling the encrypt method and assigns
the result to the variable text at line 10. Finally, it sends the value in the variable text via
a text message by invoking the sendTextMessage method of s at line 11. Note that this
program will send the user’s device ID to other phones via text messages. Thus, this
program may be malicious. It is important to analyze Android applications and tell the
user what the applications will do before installing them.

3 Program Model

We will use pushdown systems (PDSs) to model Android applications. PDSs are suit-
able to model sequential programs with (potentially recursive) procedure calls [11]. The
translation from the code of an Android application to a PDS is different from the stan-
dard translation from sequential programs to PDSs as it has to take into account the
specificity of Android applications such as the existence of callback methods, the way
these methods are called, and the absence of the main function.

3.1 Pushdown Systems

A Pushdown System (PDS) is a tuple P = (P, Γ, Δ), where P is a finite set of control
locations, Γ is the finite stack alphabet and Δ ⊆ (P × Γ) × (P × Γ∗) is a finite set
of transition rules. A configuration of P is pair 〈p, ω〉 with p ∈ P and ω ∈ Γ∗. If
(
(p, γ), (q, ω)

) ∈ Δ, we write 〈p, γ〉 ↪→ 〈q, ω〉. W.l.o.g., for every 〈p, γ〉 ↪→ 〈q, ω〉 ∈ Δ,
we assume |ω| ≤ 2 [11].

The successor relation�P⊆ (P × Γ∗) × (P × Γ∗) is defined as follows: if 〈p, γ〉 ↪→
〈q, ω〉, then 〈p, γω′〉 �P 〈q, ωω′〉 for every ω′ ∈ Γ∗. If 〈p, γω′〉 �P 〈q, ωω′〉, then
〈q, ωω′〉 is a successor of 〈p, γω′〉. A path is a sequence of configurations c0c1... such
that for every i ≥ 0, ci �P ci+1. Let �∗P⊆ (P × Γ∗) × (P × Γ∗) be the transitive and
reflexive relation of�P such that for every c, c′ ∈ P×Γ∗, c�∗P c, and c�∗P c′ iff there
exists c′′ ∈ P×Γ∗: c�P c′′ and c′′ �∗P c′. Let post∗ : 2P×Γ∗ −→ 2P×Γ∗ be the successor
function such that for every C ⊆ 2P×Γ∗ , post∗(C) = {c ∈ P × Γ∗ | ∃c′ ∈ C : c′ �∗P c}.

To finitely represent (potentially) infinite sets of configurations of PDSs, we use
multi-automata.

Given a PDS P = (P, Γ, Δ), a Multi-Automaton (MA) [3] is a tuple M =

(Q, Γ, δ, I, F), where Q is a finite set of states, δ : (Q×Γ)×Q is a finite set of transition
rules, I ⊆ Q is a set of initial states corresponding to the control locations P, F ⊆ Q is
a finite set of final states

Let −→δ : Q × Γ∗ × Q be the transition relation such that for every q ∈ Q: q ε−−→δ q
and q

γω−−−→δ q′ if there exists a state q′′ ∈ Q such that (q, γ, q′′) ∈ δ and q′′ ω−−→δ q′. A
configuration 〈p, ω〉 ∈ P × Γ∗ is accepted by M iff p ω−−→δ q for some q ∈ F. A set
of configurations C ⊆ P × Γ∗ is regular iff there exists a MAM such thatM exactly
accepts the set of configurations C. Let L(M) be the set of configurations accepted by
M.

220 F. Song and T. Touili

3.2 Modeling Android Applications as PDSs

In this section, we show how to model an Android application as a PDS. Given an
application with a set N of control points (excluding the control points of declaration
statements, e.g., the control point 2 in Fig. 1.), we construct a PDS P = ({p},N ∪
{γ⊥}, Δ) with p as the unique control location and N ∪ {γ⊥} as the stack alphabet, where
γ⊥ � N is used to handle entry points and callback methods. The PDS transition rules
model the control flow of the application. (In our implementation, we use Smali2, a
disassembler for Android applications, to disassemble the application into control flow
graphs.) Intuitively, the configuration 〈p, γ⊥〉 is the initial configuration of the PDS
model. It denotes that the run of the PDS is at the idle state (i.e., the application does
not execute any statement). A configuration 〈p, γω〉 such that γ ∈ N denotes that the run
of the application is at the control point γ and ω is the return addresses of the calling
procedures (i.e., the procedures that have not returned yet). Formally, Δ is computed as
follows: for every control point γ ∈ N s.t. stmt is the statement at the control point γ:

1. If stmt is a function call v = f (v1, ..., vm) and γ′ is the next control point of γ, then
〈p, γ〉 ↪→ 〈p, feγ′〉 ∈ Δ, where fe is the entry point of the procedure f and γ′ is
regarded as the return address of f ;

2. If stmt is a return statement return v, then 〈p, γ〉 ↪→ 〈p, ε〉 ∈ Δ, where ε is the empty
word;

3. If stmt is neither a function call nor a return statement and γ′ is the next control
point of γ, then 〈p, γ〉 ↪→ 〈p, γ′〉 ∈ Δ;

4. Moreover, for every callback method proc in the application, 〈p, γ⊥〉 ↪→
〈p, proceγ⊥〉 ∈ Δ, where proce is the entry point of proc.

The first three items describe the standard construction of a PDS model from a se-
quential program as shown in [11]. The last item models the invoking of callback meth-
ods. As explained previously, an Android application can override the callback methods
that are invoked by the Android OS. This implies that some callback methods may not
be reachable if we only use the first three items, but they can be called by the Android
OS. For example, let us consider the program shown in Fig. 1. The function onCreate is
only called by the Android OS when the activity is launched and can be an entry point
of the application. The onClick method of an ok button that implements the OnClickLis-
tener interface is called only when the ok button is clicked by the user. That is why we
add the last item by which all the callback methods could be invoked in any order when-
ever the application is at an idle state, i.e., the PDS is at the configuration 〈p, γ⊥〉. From
the view point of the application, we associate all the function calls of callback methods
to the control point γ⊥. The resulting PDS model is a sound over-approximation of the
application.

4 Android (Malicious) Behaviors Specifications

In this section, we recall the definition of the logics SLTPL [27] and SCTPL [26], and
show how to use them to describe Android (malicious) behaviors.

2 http://code.google.com/p/smali

Model-Checking for Android Malware Detection 221

Hereafter, we fix the following notations. Let X = {x1, x2, ...} be a finite set of vari-
ables ranging over a finite domainD. Let B : X∪D −→ D be an environment function
that assigns a value v ∈ D to each variable x ∈ X and such that B(v) = v for every
v ∈ D. B[x ← v] denotes the environment function such that B[x ← v](x) = v and
B[x ← v](y) = B(y) for every y � x. Let AP be a finite set of atomic propositions,
APX be a finite set of atomic predicates in the form of a(α1, ..., αm) such that a ∈ AP,
αi ∈ X ∪ D for every 1 ≤ i ≤ m, and APD be a finite set of atomic predicates of the
form a(α1, ..., αm) such that a ∈ AP, αi ∈ D for every 1 ≤ i ≤ m.

4.1 The SCTPL Logic

SCTPL can be seen as an extension of CTL with variables, quantifiers and predicates
over the stack. Variables are parameters of atomic predicates and can be quantified by
the existential and universal quantifiers. Formally, the set of SCTPL formulas is given
by (where x ∈ X and a(x1, ..., xm) ∈ APX):

ϕ ::= a(x1, ..., xm) | ¬ϕ | ϕ ∧ ϕ | ∀x ϕ | EXϕ | EGϕ | E[ϕUϕ].

Given a PDS P = (P, Γ, Δ), let λ : APD → 2P×Γ∗ be a labeling function that assigns
to each predicate a regular set of configurations. Let c ∈ P×Γ∗ be a configuration of P.
P satisfies a SCTPL formula ψ in c, denoted by c |=λ ψ, iff there exists an environment
B such that c |=B

λ ψ, where c |=B
λ ψ is defined by induction as follows:

– c |=B
λ a(x1, ..., xm) iff c ∈ λ

(
a
(
B(x1), ...,B(xm)

))
.

– c |=B
λ ψ1 ∧ ψ2 iff c |=B

λ ψ1 and c |=B
λ ψ2.

– c |=B
λ ∀x ψ iff ∀v ∈ D, c |=B[x←v]

λ ψ.
– c |=B

λ ¬ψ iff c �|=B
λ ψ.

– c |=B
λ EX ψ iff there exists a successor c′ of c s.t. c′ |=B

λ ψ.
– c |=B

λ E[ψ1Uψ2] iff there exists a path π = c0c1... of P with c0 = c s.t. ∃i ≥ 0, ci |=B
λ

ψ2 and ∀0 ≤ j < i, c j |=B
λ ψ1.

– c |=B
λ EGψ iff there exists a path π = c0c1... of P with c0 = c s.t. ∀i ≥ 0: ci |=B

λ ψ.

Intuitively, c |=B
λ ψ holds iff the configuration c satisfies ψ under the environment B.

We will freely use the following abbreviations: EFψ = E[trueUψ], AGψ = ¬EF(¬ψ),
and ∃xψ = ¬∀x¬ψ.

Theorem 1. [26] SCTPL model-checking for PDSs is decidable.

4.2 The SLTPL Logic

Similarly, SLTPL can be seen as an extension of LTL with variables, quantifiers and
predicates over the stack. The set of SLTPL formulas is given by (where x ∈ X and
a(x1, ..., xm) ∈ APX): ϕ ::= a(x1, ..., xm) | ¬ϕ | ϕ ∧ ϕ | ∀x ϕ | Xϕ | ϕUϕ.

Given a PDS P = (P, Γ, Δ) and a path π = c0c1... of P, let π(i) denote ci and πi denote
the suffix starting from π(i). Let c be a configuration of P. P satisfies a SLTPL formula
ψ in c (denoted by c |=λ ψ) iff there exists an environment B such that c satisfies ψ under
B (denoted by c |=B

λ ψ). c |=B
λ ψ holds iff there exists an execution π starting from c such

that π satisfies ψ under B (denoted by π |=B
λ ψ), where π |=B

λ ψ is defined by induction as
follows:

222 F. Song and T. Touili

– π |=B
λ a(x1, ..., xm) iff π(0) ∈ λ

(
a
(
B(x1), ...,B(xm)

))
;

– π |=B
λ ¬ψ1 iff π �|=B

λ ψ1;
– π |=B

λ ψ1 ∧ ψ2 iff π |=B
λ ψ1 and π |=B

λ ψ2;
– π |=B

λ ∀x ψ iff for every v ∈ D, π |=B[x←v]
λ ψ;

– π |=B
λ X ψ iff π1 |=B

λ ψ;
– π |=B

λ ψ1Uψ2 iff there exists i ≥ 0 s.t. πi |=B
λ ψ2 and ∀ j, 0 ≤ j < i : π j |=B

λ ψ1;

We will freely use the following abbreviations: Fψ = trueUψ, Gψ = ¬F(¬ψ) and
∃xψ = ¬∀x¬ψ.

Theorem 2. [27] SLTPL model-checking for PDSs is decidable.

4.3 SLTPL and SCTPL for Android Applications

In the context of Android applications, usually AP consists of the method names. For
the sake of readability, predicates such as f (x1, ..., xn) in APX will sometimes be written
as x1 = xn. f (x2, ..., xn−1) when x1 denotes the return value of f and xn denotes the object
having the method f , where x2, ..., xn−1 are f ’s parameters. The labeling function λ is
syntactically extracted from the application. For every function call v = f (v1, ..., vm),
every ω ∈ Γ∗, 〈p, γω〉 ∈ λ(v = f (v1, ..., vm)) iff v = f (v1, ..., vm) is called at the point γ.

Example 1. Consider the program shown in Fig. 1 and the following SCTPL for-
mula: φ = ∃x1∃x2EF

(
x1 = x2.getDeviceId() ∧ (EF∃x3∃x4 x3 = encrypt(x1, x4) ∧

∃x5∃x6∃x7∃x8∃x9 EFx5.sendTextMessage(x6, x7, x3, x8, x9)
))

, we have: X = {x1, ...,
x9} is the set of variables appearing in φ; AP = {getDeviceId,
sendTextMessage, encrypt} is the set of atomic propositions corresponding to
method names (we only list the propositions that are used in φ); APX = {x1 =

x2.getDeviceId(), x3 = encrypt(x1, x4), x5.sendTextMessage(x6, x7, x3, x8, x9)} is the
set of predicates appearing in φ; D = {m, id, s, key, “phone”, text, “1”, “2”, intent}
is the set of variables and constants that appear in the program; APD =

{id = m.getDeviceId(), s.sendTextMessage(“1”, “2”, text, intent, intent), text =

encrypt(id, key)} is the set of function calls; the labeling function λ is
given as follows: λ

(
id = m.getDeviceId()

)
= {〈p, l5ω〉 | ω ∈ Γ∗},

λ
(
s.sendTextMessage(“1”, “2”, text, intent, intent)

)
= {〈p, l10ω〉 | ω ∈ Γ∗} and

λ
(
text = encrypt(id, key)

)
= {〈p, l9ω〉 | ω ∈ Γ∗}.

Simplified Formulas: A variable x is non-important in a formula if x is quantified
by ∃ and occurs only in one atomic predicate. All the non-important variables will be
replaced by “−”. Let us consider the behavior that sends the IMEI (or an encrypted ver-
sion of it so that it becomes difficult to check that the IMEI is sent) to other phones via
text messages as shown in Fig. 1. We can specify this behavior in the SCTPL formula φ
(in Example 1). φ states that there exist a TelephonyManager object x2 and a variable x1

such that the return value of the getDeviceId method of x2 (i.e., IMEI) is assigned to x1.
Later, there exist a variable x3 and a key x4 such that encrypt is invoked with parameters
x1 and x4, the return value is assigned to x3 (i.e., the IMEI stored in x1 is encrypted with
the key x3 and the encrypted IMEI is stored in x3). Finally, there exist a SmsManager ob-
ject x5 and variables x6, ..., x9 such that the sendTextMessage method of x5 is called with

Model-Checking for Android Malware Detection 223

parameters x6, x7, x3, x8 and x9 (i.e., the encrypted IMEI is sent by calling sendTextMes-
sage). The variable x2 is quantified by ∃ and only occurs in x1 = x2.getDeviceId(),
then, we can simplify x1 = x2.getDeviceId() as x1 = −.getDeviceId() which is
written as x1 = getDeviceId(−). The same holds for the variables x4, .., x9. Thus,
the formula is simplified as Φid = ∃x1EF

(
x1 = getDeviceId(−) ∧ (EF∃x3 x3 =

encrypt(x1,−) ∧ EFsendTextMessage(−,−, x3,−,−,−)
))

.

4.4 Expressing Android (Malicious) Behaviors in SCTPL and SLTPL

In this section, we show how to use SCTPL/SLTPL to express malicious behaviors.
We need a special predicate of the form y = encode(x, l) to express that the value of y
is computed by encrypting the value of x at the control point l and a predicate of the
form Loc(l) to denote that the control point is l, where a configuration 〈p, γω〉 for every
ω ∈ Γ∗ satisfies Loc(l) iff l = γ.

4.4.1 The Predicate Encode
The formulaΦid given at the end of Section 4.3 is not robust enough for specifying the
behavior that sends the device ID (which may be encrypted) to other phones via text
messages. A malware writer could use other approaches to change the IMEI instead of
calling the encrypt method. For example, a malware writer can replace the statements
at lines 9 and 10 in Fig. 1 by the following code:

f o r (i n t i =0; i< i d . l e n g t h () ; i ++){
S t r i n g t e x t= i d . g e t (i) ;
t e x t= t e x t+ i ;
s . s e ndT e x tM e s s age (‘ ‘ 1 ” , ‘ ‘ 2 ” , t e x t , i n t e n t , i n t e n t) ;

}

where for every i from 0 upto the length id.length() of the string id (i.e., the IMEI),
first, a letter at position i in id is obtained by calling id.get(i) which is assigned to the
variable text, then the position number i is appended to the string stored in text (i.e.,
text = text + i). Finally, the string stored in text is sent by calling sendTextMessage.
By doing this, the IMEI is sent one letter by one letter, and each letter is sent appended
with its position. E.g., suppose the IMEI is the string abcd, then a0, b1, c2 and d3
are sent one by one. Thus, to make the behavior specification more robust, we intro-
duce a new predicate encode. Intuitively, y = encode(x, l) expresses that the value of
the variable y depends on the value of the variable x at the control point l. Formally,
a configuration 〈p, γω〉 satisfies a predicate y = encode(x, l) iff the run of the pro-
gram starting from the entry point reaches the control point γ such that the value of
y depends on the value of x at the control point l. We can specify the above behavior
in a more precise way as follows: Ψid = EF∃x1∃l

(
x1 = getDeviceId(−) ∧ Loc(l) ∧

EF∃x3
(
sendTextMessage(−,−, x3,−,−,−) ∧ x3 = encode(x1, l)

))
. Ψid states that the

return value of getDeviceId (i.e., IMEI) is assigned to a variable x1 at the control point
l. Later, sendTextMessage is called with x3 as third parameter when the value of x3

depends on the value of x1 at l (i.e., the (encrypted) IMEI is sent via text messages).

224 F. Song and T. Touili

Table 1. Privates data sources and sinks

Descriptions of source functions

The return value of getLatitude or getlongitude is the location of the phone
The first parameter of onLocationChanged contains the location data of the phone
The return value of getDeviceId is the IMEI id of the phone
The return value of getSubscriberId is the IMSI id of the phone
The return value of getDeviceSoftwareVersion is the IMSI/SV of the phone
The return value of getLine1Number is the phone number (PN)
The return value of getNetworkCountryIso is the Phone’s Iso country code (ISOC)
The first parameter of getNetworkCountryIso is the incoming phone number (IPN)
The return value of getResult of AccountManagerFuture class contains the authentication token (AT) of the phone
The return value of query or managedQuery is the contact or calendar data (CC) of the phone
The second parameter of setOutputFile contains the media data (MD) of the phone
The return value of getExternalStorageDirectory contains the SD card (SDC) data of the phone
The return value of getConnectionInfo contains the WiFi network connection information of the phone
The return value of getStringExtra of the Intent class contains the data of an Intent object

Descriptions of sink functions

The third (resp. fourth) parameter of sendTextMessage (resp. sendMultipartTextMessage) leaks data via a text messages.
The first and second parameters of d,e,i,v,w,wtf leak data by writing into log files
The first and second parameters of loadurl leaks data via network connections
The first-fourth parameters of 〈@1init〉@1 in the URL class leak data via network connections
The fourth-eighth parameters of set in the URL class leak data via network connections
The first parameter of setRequestProperty leak data via network connections
The first and second parameters of execute in the http class can leak data via network connections
The first parameter of write or println leak data by writing data to files
The first parameter of 〈init〉 of the Intent class leak data to other applications or components

4.4.2 Malicious Behaviors in SCTPL or SLTPL

Information-Leaks: A source function is a function that will return a private data
through a return value or a parameter. A source port is a variable that stores the pri-
vate data of a source function. A sink function is a function which can leak some private
data through some parameters of the function. A sink port is a parameter of a sink func-
tion that can leak some private data. An information-leak is the behavior where a sink
function is called and its sink port stores some private data (usually got from a source
function). This kind of malicious behavior could be specified in SCTPL as the pattern:

EF∃x∃l(f1(x) ∧ Loc(l) ∧ EF∃y(f2(y) ∧ y = encode(x, l)))

where f1 (resp. f2) is a source (resp. sink) function and x (resp. y) is a source (resp.
sink) port such that the value of y relies on the value of x at the control point l. E.g.,
the application shown in Fig. 1 has an information leak behavior that sends the IMEI of
the phone to the other phone via text messages. The formula Ψid is an instance of the
pattern, where getDeviceId and sendTextMessage are the source and sink functions,
respectively. x1 and x3 are the source and sink ports. In Table 1, we give all the source
and sink functions considered in this work.

Background Picture Taking: An application may take a picture using a camera of
the phone without the user’s knowledge. To take a picture, an application first creates
a new Camera object to access a particular hardware camera by invoking the open
method of the Camera class. Next, it calls the setPreviewDisplay or setPreviewTex-
ture method with the Camera object as first parameter to set a surface to preview, and
then calls the takePicture method with the Camera object to take a picture. Calling

Model-Checking for Android Malware Detection 225

setPreviewDisplay or setPreviewTexture will inform the user about a camera access.
But, without calling them before taking the picture (i.e., calling takePicture) after the
Camera object is created (i.e., calling open) will take a picture without informing the
user. Thus, this behavior is malicious. We can specify this behavior in a SLTPL formula
as follows:Ψbp = F∃x1∃l1

(
x1 = open(−)∧Loc(l1)∧∃x2

(¬((setPreviewDisplay(x2,−)∨
setPreviewTexture(x2,−)) ∧ x2 = encode(x1, l1)

)
U ∃x3 takePicture(x3) ∧ x3 =

encode(x1, l1)
))

. The formula Ψbp states that a Camera object x1 is created by calling
open at l1. Later, a picture is taken by calling takePicture with x3 as its first parameter
such that the value of x3 is obtained from the value of x1 at l1 (i.e., x3 = encode(x1, l1)),
since the Camera object stored in x1 can be assigned to another variable x3. Between
calling open and takePicture, there does not exist a variable x2 such that setPreviewDis-
play or setPreviewTexture is called with x2 as first parameter and the value of x2 is
obtained from the value of x1 at l1 (i.e. x2 = encode(x1, l1)). This means that a picture
is taken without informing the user.

Background Video Recording: Android provides the MediaRecorder class to record
a video using a camera of the phone. To do this, an application first creates a
MediaRecorder object, then calls the setVideoSource method to choose a camera
(a phone may have two cameras). The application should call the setPreviewDis-
play method to set a surface to show a preview of the video. Thus, an appli-
cation recording the video without calling setPreviewDisplay, i.e., informing the
user, is malicious. We can specify this behavior in SCTPL as follows: Ψbv =

∃x1∃l1E
[¬(setPreviewDisplay(x1,−) ∧ Loc(l1)) U ∃x2setVideoS ource(x2,−) ∧ x2 =

encode(x1, l1) ∧ AG¬∃x3setVideoS ource(x3,−) ∧ x3 = encode(x1, l1)
]
. Ψbv states that

there does not exist a MediaRecorder object x1 such that the calling of setVideoSource
with x2 as its first parameter such that the value of x2 depends on x1 (i.e., x2 =

encode(x1, l1)) is not preceded by calling setPreviewDisplay with x1 as its first param-
eter at l1. Later, in all the future paths, setVideoSource will not be called with x3 as
its first parameter such that the value of x3 is obtained from the value of x1 at l1 (i.e.,
x3 = (x1, l1)).

Dynamically Loaded Code Execution: In Android, an application can dynamically
load classes from libraries and call functions in these classes. To do this, it first calls
loadclass to load a class from a library. Then, the return value is the class object. Later,
it calls the getMethod method with the class object as its first parameter. This returns
the method. Finally, it can call the method by calling invoke with the method as param-
eter. The loaded classes may perform malicious behaviors that cannot be identified by
statically checking the application. Thus, it is important to tell the user whether an ap-
plication executes some dynamically loaded code. To check this, we use the following
SCTPL formulas:Ψdc = EF∃x1∃l1

(
x1 = loadClass(−,−)∧Loc(l1)∧∃x2∃x3∃l2EF

(
x3 =

getMethod(x2,−) ∧ Loc(l2) ∧ x2 = encode(x1, l1) ∧ ∃x4EFinvoke(x4,−,−) ∧ x4 =

encode(x3, l2)
))

. Ψdc states that the x1 class is dynamically loaded by calling loadClass
at l1. Next, getMethod is called with x2 as first parameter such that the value of x2 is
obtained from the value of x1 at l1 (i.e., x2 = encode(x1, l1)), since the class object
stored in x1 may be assigned to another variable x2. Later, invoke is called at l2 with x4

as the first parameter such that the value of x4 is obtained from the return value x3 of

226 F. Song and T. Touili

the previous getMethod method call, i.e., x4 = encode(x3, l2) and the method stored in
x4 (x3) is invoked by the application.

Harvesting Installed Applications: Android provides the getInstalledPackages
method of the PackageManager class to access information of the installed applica-
tions, their components, and permissions. An application harvesting the installed appli-
cations is dangerous, as the installed applications are users’ private data. To harvest the
installed applications, an application can call getInstalledPackages which returns a list
of installed applications. Then, the application can traverse this list using the hasNext
function of the Iterator class or the get function of the List class. Since a conditional
statement is modeled as two non-deterministic PDS transition rules when we model an
application as a PDS, then, the traversing of the list which checks whether all the ele-
ments are visited will be an infinite loop. This is an over-approximation of the control
flow of the application. We can specify this behavior in the following SLTPL formula:
Ψhi = F∃x1∃l1

(
x1 = getInstalledPackages(−,−) ∧ Loc(l1) ∧ GF∃x2 ∧ (get(x2,−) ∨

hasNext(x2)) ∧ x2 = encode(x1, l1)
)
. Ψhi states that a list x1 of installed applications

is obtained by calling getInstalledPackages at l1. Later, it will infinitely often access
this list by calling get or hasNext with x2 as first parameter such that the value of x2

is obtained from the value of x1 at l1 (i.e., x2 = encode(x1, l1)). Note that the always
operator G specifies the infinite loop that traverses the list of installed applications.

Native Codes Execution: Android Applications have a way to execute native codes
that are written in other languages such as C/C++. Applications can execute native
libraries by calling the loadLibrary method (i.e., the Java Native Interface) or the exec
method of the Runtime object. As these codes are not in Android assembly language
and may contain malicious behaviors, it is crucial to tell the user whether an application
will execute codes in native libraries. For this, we check whether the loadLibrary or
exec is called or not by the following formula: Ψnc = EF(loadLibrary(−) ∨ exec(−)).
Ψnc checks whether the function loadLibrary or exec is called.

Downloading Data from Servers: Many applications download payloads from servers.
They may download malicious applications and the downloading costs network flow.
Thus, it is important to check whether an application downloads data from some servers.
An application can use the getInputStream method of the URLConnection, HttpURL-
Connection or HttpsURLConnection classes to obtain an InputStream object. The In-
putStream object allows the application to read data from the server by calling the
read method of the InputStream class. By doing so, the data read from the Input-
Stream object is put at the buffer pointed by the second parameter of the read method.
Then, an application can write the data to a file by calling the write method of the
FileOutputStream class with the buffer as second parameter. Thus, it is important to
check whether an application reads data using an InputStream object and then writes
this data into a file. We can express this behavior in a SCTPL formula as follows:
Ψdd = EF∃x1∃l1

(
x1 = getInputS tream(−) ∧ Loc(l1) ∧ EF∃x2∃x3∃l2

(
read(x2, x3) ∧

Loc(l2) ∧ x2 = encode(x1, l1) ∧ EF∃x4 write(−, x4,−,−) ∧ x4 = encode(x3, l2)
))

.
Ψdd expresses that the return value of getInputStream is assigned to the variable x1

(i.e., x1 is an InputStream object) at l1. Next, read is called at control point l2 with x2

and x3 as its parameters such that the value of x2 is obtained from the value of x1 at l1

Model-Checking for Android Malware Detection 227

(i.e., x2 = encode(x1, l1)), since the InputStream object stored in x1 may be assigned to
another variable x2. This means that the application reads data from a server by calling
the read method of the InputStream object and the data is put at the buffer x3. Later,
write is called with x4 as its second parameter whose value is obtained from the value
of x3 at l2 which stores the data from the server.

Remark 1. Note that we need both SLTPL and SCTPL to be able to express the Android
malicious behaviors. Indeed, the SCTPL formula Ψbv cannot be expressed in SLTPL,
whereas the SLTPL formula Ψhi cannot be expressed in SCTPL.

5 Model-Checking Android Applications

As described previously, we model an Android application as a PDS and specify An-
droid malicious behaviors in SCTPL/SLTPL. Then, to check whether an application
contains a malicious behavior or not, it is sufficient to check whether the PDS model
satisfies the SCTPL/SLTPL formula expressing the malicious behavior. However, it is
non-trivial to decide whether or not a configuration 〈p, γω〉 satisfies a predicate of the
form v2 = encode(v1, l), since one cannot easily determine whether the value of v2 de-
pends on the value of v1 at the control point l or not. To solve this problem, in this
section, we propose an approach to compute an annotation function that allows us to
determine whether a configuration satisfies predicates of the form v2 = encode(v1, l).
Intuitively, the annotation function associates to each control point n of the program a
dependency function, where the dependency function assigns to each variable x a set of
pairs (y, l) expressing that the value of x at the control point n depends on the value of
y at l. The annotation function is computed by an extension of the saturation procedure
of [11] which computes all the reachable configurations represented by a MA of the
PDS model. We assign to each transition of the MA a dependency function and update
the dependency function during the saturation procedure according to the side-effects of
the program statements. To distinguish variables in SCTPL/SLTPL formulas from those
that appear in the applications, from now on, we will use x, y, z to denote variables in
SCTPL/SLTPL formulas, and use v, v1, v2... to denote variables in applications.

5.1 Annotating the Program with encode Predicates

Let us fix a PDS P = (P, Γ, Δ) modeling a given Android application. For every γ ∈
Γ, let Proc(γ) be the procedure that contains the control point γ. Let G be the set of
global variables used in an application and Lproc be the set of local variables in the
procedure proc. For each procedure proc, let Rproc be a local variable of the procedure
proc which denotes the return value of proc after the return statement. The formal
parameters p1, ..., pm of each procedure are local variables of this procedure. Let L be
the set of local variables used in the application. Let θ : G ∪ L −→ 2(G∪L)×Γ be a
dependence function that assigns to each variable v ∈ G ∪ L a set of pairs (v′, γ) such
that v depends on the value of v′ at the control point γ. Let Θ be the set of dependence
functions. Let � : Θ×Θ −→ Θ be a function such that for every θ, θ′ ∈ Θ, every variable
v ∈ G ∪ L: (θ � θ′)(v) = θ(v) ∪ θ′(v).

228 F. Song and T. Touili

Let M = (Q, Γ, δ, I, F) be the MA where Q = {p, q f }, I = {p}, F = {q f } and
δ = {(p, γ⊥, q f)}. M accepts the configuration 〈p, γ⊥〉 (i.e., the initial configuration).
We create a new MA M∗ = (Q∗, Γ, δ∗, I, F) with ε-transition rules and an annotation
function ρ : δ∗ −→ Θ that associates each transition rule of M∗ with a dependence
function θ such that L(M∗) = post∗(L(M)), and for every control point γ, M∗ has a

transition rule t = (p, γ, q1) such that q1
ω−→δ∗ q f and (v, l) ∈ ρ(t)(v′) iff a configuration

〈p, γω′〉 satisfies v′ = encode(v, l).
Let Var(exp) be the set of variables used in the expression exp. The computation of

M∗ and ρ consists of two steps. First, we construct the MAM∗ accepting post∗(L(M)).
Then, we annotate the transition rules ofM∗ with an adequate dependence function (i.e.
compute ρ). We use the saturation procedure of [11] to computeM∗ by adding a finite
number of transition rules intoM based on the following rules: Initially,M∗ equalsM;

– For every transition rule 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 ∈ Δ, add a new state p′γ′ , and a new
transition rule (p′, γ′, p′γ′) intoM∗;

– Add new transition rules intoM∗ according to the following saturation rules: for
every p

γ−−→δ∗ q inM∗,
• If 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 ∈ Δ, we add a new transition rule (p′γ′ , γ

′′, q) intoM∗;
• If 〈p, γ〉 ↪→ 〈p′, γ′〉 ∈ Δ, we add a new transition rule (p′, γ′, q) intoM∗;
• If 〈p, γ〉 ↪→ 〈p′, ε〉 ∈ Δ, we add a new transition rule (p′, ε, q) intoM∗;
• If (p′, ε, p) ∈ δ∗, we add a new transition rule (p′, γ, q) intoM∗.

The annotation function ρ is computed according to the following rules:

β0: For every transition rule t = (p, γ, q) inM∗, let ρ(t)(v) = ∅ for any v ∈ G ∪ L;
β1: For every transition 〈p, γ〉 ↪→ 〈p′, γ′〉 ∈ Δ, every t = (p, γ, q) and t′ = (p′, γ′, q) in
M∗, ρ(t′) = ρ(t′) � θ, where

β1.1: If the statement at the control point γ is an assignment v = exp, then, ∀v′ ∈
G ∪ L \ {v} : θ(v′) = ρ(t)(v′) and θ(v) = {(v, γ)} ∪⋃v′∈Var(exp) ρ(t)(v

′);
β1.2: Otherwise, θ = ρ(t);

β2: For every 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 ∈ Δ s.t. v = f (v1, ..., vm) is called at γ, every t =
(p, γ, q), t′ = (p′, γ′, p′γ′) and t′′ = (p′γ′ , γ

′′, q) inM∗:
β2.1: ρ(t′) = ρ(t′) � θ, where ∀v′ ∈ G: θ(v′) = ρ(t)(v′), ∀v′ ∈ L f : θ(v′) = ∅ and ∀i ∈

{1, ...,m}: θ(pi) = {(pi, γ
′)} ∪ ρ(t)(vi) (note that p1, ..., pm are formal parameters

of f);
β2.2: ρ(t′′) = ρ(t′′) � θ′, where ∀v′ ∈ LProc(γ): θ′(v′) = ρ(t)(v′), ∀v′ ∈ G: θ′(v′) = ∅

and θ′(v) = {(v, γ)} ∪ {(R f , γ
′′)}; (Note that Proc(γ) denotes the procedure that

contains the control point γ, i.e., where v = f (v1, ..., vm) is called.)

β3: For every 〈p, γ〉 ↪→ 〈p′, ε〉 ∈ Δ s.t. return v is the statement at the control point γ,
every t = (p, γ, q) and t′ = (p′, ε, q) inM∗, ρ(t′) = ρ(t′)�θ, where ∀v′ ∈ G∪LProc(γ):
θ(v′) = ρ(t)(v′) and θ(RProc(γ)) = {(v, γ)} ∪ ρ(t)(v);

β4: For every t = (p, ε, q), t′ = (q, γ, q′) and t′′ = (p, γ, q′) inM∗, ρ(t′′) = ρ(t′′) � θ,
where ∀v ∈ G: θ(v) = ρ(t)(v); ∀v ∈ LProc(γ): θ(v) = ρ(t′)(v); moreover, ∀v ∈
G ∪ LProc(γ) s.t. (R f , γ) ∈ ρ(t′)(v) where ρ(t)(R f) � ∅: θ(v) = ρ(t′)(v) ∪ ρ(t)(R f).

Model-Checking for Android Malware Detection 229

Item β0 initializes the annotation function ρ such that the value of any variable v at
each control point does not depend on any variable at any location. Then, by iteratively
applying Items β1, ..., β4 until there does not exist any transition t inM∗ such that ρ(t)
can be updated, we can get the annotation function ρ such that for every configuration
〈p, γω〉 ∈ L(M∗) with γ ∈ Γ, 〈p, γω〉 satisfies v′ = encode(v, l) iff there exists a transi-

tion rule t = (p, γ0, q1) ∈ δ∗ such that (v, l) ∈ ρ(t)(v′) and q1
ω′−−−→δ∗ q f for some ω′ ∈ Γ∗.

The intuition behind these rules is explained as follows.
Item β1 expresses that if 〈p, γ〉 ↪→ 〈p′, γ′〉 is a transition of the PDS, t = (p, γ, q)

and t′ = (p′, γ′, q) are in M∗, then, the procedure depends on whether the statement
is an assignment or not. If v = exp is the assignment statement at the control point γ
(Item β1.1), we associate the set of pairs {(v, γ)} ∪ ⋃v′∈Var(exp) ρ(t)(v

′) to the variable v
in the dependence function of the transition rule t′. This means that after executing the
v = exp statement, the value of v at the control point γ′ depends on the variables in
Var(exp) and on itself at γ. Moreover, the values of the other variables v′ remain the
same as at γ. Therefore, the set of variables they depend on remain the same as at γ,
i.e., θ(v′) = ρ(t)(v′). Item β1.2 states that if the statement at the control point γ does not
change the value of any variable, we associate the dependence function ρ(t′) � ρ(t) to
the transition rule t′.

Item β2 states that if 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 is a transition rule of the PDS such that
v = f (v1, ..., vm) is called at γ, t = (p, γ, q), t′ = (p′, γ′, p′γ′) and t′′ = (p′γ′ , γ

′′, q) are
transition rules inM∗, then, we update the dependence functions of t′ in Item β2.1 and t′′
in Item β2.2, respectively. Note that γ′ denotes the entry point of the procedure f and γ′′
is its corresponding return address. Item β2.1 updates the dependence function of t′ (i.e.,
the control point γ′) by setting ρ(t′) = ρ(t′) � θ such that (1) for every global variable
v′ ∈ G, θ(v′) = ρ(t)(v′) (i.e., at the entry point γ′ of the function f , the set of variables
that v′ depends on remain the same as in γ), (2) for every local variable v′ ∈ L f of the
procedure f : θ(v′) = ∅; (3) for every parameter pi of f , θ(pi) = {(pi, γ

′)}∪ρ(t)(vi), since
according to parameter passing pi equals vi and pi at γ′ also depends on its value at γ′.
Item β2.2 updates the dependence function of t′′ (i.e., the control point γ′′) by setting
ρ(t′′) = ρ(t′′)�θ′ such that (1) for every local variable v′ ∈ LProc(γ): θ′(v′) = ρ(t)(v′), this
records the set of variables on which the local variables of the procedure Proc(γ) at the
caller-site depend on. This information will be used when the procedure f returns, i.e.,
at the control point γ′′, see Item β4; (2) for every global variable v′ ∈ G: θ′(v′) = ∅ (since
global variables may be changed in the procedure f , we update these global variables
when f returns, see Item β4); (3) the variable v is associated with the specific variable
R f and control location γ′′ which denotes that v depends on R f at γ′′ and the value of v
at γ′ depends on its value at γ i.e., θ′(v) = {(v, γ)} ∪ {(R f , γ

′′)}. R f will be replaced by
the real return value of f when f returns, see Item β4.

Item β3 expresses that if 〈p, γ〉 ↪→ 〈p′, ε〉 is a transition rule of the PDS such that
return v is the statement at the control point γ (w.l.o.g., we assume that each function
will return a value), and t = (p, γ, q) and t′ = (p′, ε, q) are transition rules inM∗, then,
we update the annotation function of the transition t′ by setting ρ(t′) = ρ(t′)�θ such that
for every variable v′ ∈ G ∪ LProc(γ), θ(v′) = ρ(t)(v′) (since the values of these variables
remain the same as in γ), and since at this point the variable RProc(γ) denoting the return
value of the procedure Proc(γ) is instantiated with v, it depends on the set of variables

230 F. Song and T. Touili

that v depends on at γ and on itself at γ. The transition rule t′ = (p′, ε, q) will be used
in Item β4 to pass the return value to the caller-side.

Item β4 states that if t = (p, ε, q) denoting the return of a procedure f (see Item
β3), t′ = (q, γ, q′) denoting that γ is the return address of the procedure f , and t′′ =
(p, γ, q′) denoting that the control point of the program is at the return address γ, are
transition rules inM∗, then, we update the annotation function of the transition t′′ by
setting ρ(t′′) = ρ(t′′) � θ such that (1) for every global variable v ∈ G: θ(v) = ρ(t)(v)
(i.e. at the return address γ, the program should use the values of the global variables
of the procedure f); (2) for every local variable v ∈ LProc(γ): θ(v) = ρ(t′)(v) (i.e. the
local variables of the procedure Proc(γ) depend on the same set of variables at the
caller-site in which the function f is called); (3) for every variable v ∈ G ∪ LProc(γ)

that depends on the specific variable R f (i.e. the return value of the procedure f) at γ:
θ(v) = ρ(t′)(v) ∪ ρ(t)(R f), since the variable v at γ depends on the same set of variables
as R f . Intuitively, the dependence function of the transition rule t′ is updated in Item β2.2

when a function call is made, thus, ρ(t′) records the sets of variables and locations that
the local variables of Proc(γ) depend on at the caller-side. The dependence function of
t is updated in Item β3 when the procedure f returns, this implies that ρ(t) records the
sets of variables and locations that the global variables and the return value R f depend
on at the return point. The transition rule t′′ denotes that the control point is at the
return address γ, thus, the update θ of the transition rule t′′ uses the values of the global
variables and R f in ρ(t) and uses the values of the local variables of Proc(γ) in ρ(t′).

Complexity: Since the number of variables is bounded, the number of dependence
functions is also bounded, at most O(|G| · |L| · 2|G|·|L|·|Γ|). The number of transition rules
ofM∗ is at most O((|P| + k) · |P| · |Δ|) where k is the number of pairs (p′, γ′) ∈ P × Γ
such that 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 ∈ Δ for some p ∈ P, γ, γ′′ ∈ Γ. Then, we can get ρ and
M∗ in time O((|P| + k) · |P| · |Δ| · |G| · |L| · 2|G|·|L|×|Γ|).
Theorem 3. Given a PDS P = (P, Γ, Δ) modeling a given application, we can compute
a MAM∗ and an annotation function ρ in time O((|P|+ k) · |P| · |Δ| · |G| · |L| ·2|G|·|L|), such
that for every 〈p, γ〉 ∈ P × Γ, every ω ∈ Γ∗: 〈p, γω〉 satisfies v′ = encode(v, l) iff there
exists a transition rule t = (p, γ, q) ∈ δ∗ such that (v, l) ∈ ρ(t)(v′) and q ω−−→δ∗ q f .

5.2 SCTPL and SLTPL Model-Checking for Android Applications

By Theorem 3, we can determine each predicate of the form v′ = encode(v, l) from
M∗ and ρ, then, we can obtain the labeling function λ as follows: for every function
call v = f (v1, ..., vm), we let λ(v = f (v1, ..., vm)) = {〈p, γω〉 | ω ∈ Γ∗ such that the call
v = f (v1, ..., vm) is made at the control point γ}; for every predicate Loc(l), λ(Loc(l)) =
{〈p, γω〉 | ω ∈ Γ∗ ∧ γ = l}; for every predicate v′ = encode(v, l), λ(v′ = encode(v, l)) =

{〈p, γω〉 | t = (p, γ, q) ∈ δ∗ ∧ (v, l) ∈ ρ(t)(v′) ∧ q ω′−−−→δ∗ q f } which is a regular set of
configurations. By applying Theorems 1 and 2, we can get the following theorem.

Theorem 4. Given a PDS modeling an Android application and a (malicious) behavior
expressed in SCTPL/SLTPL formula, whether the PDS satisfies this behavior or not is
decidable.

Model-Checking for Android Malware Detection 231

Table 2. Results of checking information-leak formulas on the malicious applications

Private Data
Sum2Location IMEI IMSI IMSI/SV PN ISOC IPN AT CC MD SDC WiFi Intent

L
eak

w
ays

TextMessage 2 74 20 0 0 0 0 0 3 0 0 0 1 100
Log File 315 278 179 0 33 178 26 0 267 0 199 52 275 1802
Network 138 345 165 9 67 11 23 0 82 0 163 10 439 1443
File writer 90 424 219 18 27 19 5 0 61 0 331 2 14 1210
Intent 105 1 0 0 0 0 12 0 7 0 167 5 9 306

Sum1 348 685 480 18 114 204 48 0 288 0 352 52 529
Avg. Time(s) 5.79 3.29 3.16 3.39 2.64 8.07 5.69 0 4.77 0 3.97 7.10 5.57
Avg. Mem(MB) 76.6 63.8 56.3 50.1 48.3 68.8 81.1 0 61.4 0 67.8 61.5 63.8

6 Experiments

We implemented a model builder based on the tool Smali, a disassembler for Android
applications. Given an Android application as an app file which contains the applica-
tion’s Dalvik code, model builder automatically outputs a labeling function λ and a
PDS modeling the application. We use the model-checking algorithms of [26, 27] to
check whether the PDS model satisfies a given formula describing Android applica-
tions’ (malicious) behaviors. We applied our tool to check 1331 applications which
consists of 1260 confirmed real malwares from the dataset of [29], and 71 applications
from the Android Compatibility Test Suite (CTS) 3 considered as benign applications.
The size of malwares ranges from 13 KB to 15022 KB. The total size is 1.5 GB. While
the size of CTS applications ranges from 2.7 KB to 26748 KB and its total size is 56.8
MB. We checked these applications against all the formulas presented in this paper. The
analysis of each application costs only few seconds time and MB memory. This implies
that our techniques are efficient and scalable. Our tool was able to detect all these mal-
wares and several previously unknown malicious behaviors in the applications from
CTS.

6.1 Information-Leak Android Applications

Table 2 gives the result of checking applications against information-leak formulas.
TextMessage, Log File, Network, File writer and Intent denote different leaking ways
that the private data can leak via text messages, log files, network connections, files
and Intent object, respectively. Location, IMEI, IMSI, IMSI/SV, PN, ISOC, IPN,
AT, CC, MD, SDC, WiFi and Intent are the private data we considered, denoting the
location data, IMEI id, IMSI id, IMSI/SV id, phone number, Iso country code, incoming
phone number, authentication token, contact or calendar data, mediate data, SD card
data, WiFi connection information of the phone and the data stored in an Intent object,
respectively. Our tool can check all the information-leak formulas for each application
at the same time. Each cell in Table 2 except the rows Avg. Time(s), Avg. Mem(MB),
Sum1 and the column Sum2, gives the number of applications that leak the private data
indicated by the column title via the (way) approach indicated by the row title. For
instance, there are 345 applications in the benchmark leaking the IMEI of the phone

3 http://developer.android.com

232 F. Song and T. Touili

via network connections. The Sum1 row (resp. Sum2 column) shows the total number
of applications that leak the private data indicated by the column title (resp. use the
leaking approach indicated by the row title). The Avg. Time(s) (resp. Avg. Mem(MB))
row gives the average of time (resp. memory) consumption in seconds (resp. MB) used
to detect all the applications that leak the private data indicated by the column title.

As shown in Table 2, 685 applications leaks the IMEI of the phone, most of them are
leaked via Log files, files and networks. No application in our experiment leaks media
data (MD) and authentication token (AT). The detection of these applications costs only
several seconds. This implies that our techniques are efficient and scalable.

We checked all the benign programs from Android CTS against all the information
leak formulas using only 2569 seconds. The average memory consumption is 13.6 MB.
Our tool reports that there are ten benign programs leaking private data, 8 of them
have the corresponding permissions which will inform users the use of the private data,
while the other two applications (CtsTelephonyTestCases and CtsWidgetTestCases) do
not have permissions to access the private data, i.e., the users do not know the use of the
private data. CtsTelephonyTestCases accesses WiFi connection information by calling
the method getConnectionInfo of the class WifiManager and sends the information to
other applications by Intent object. CtsTelephonyTestCases accesses Contact and Cal-
ender data by calling the query of the class ContentResolver and writes the information
into a log file.

6.2 Checking the Other Malicious Behaviors

We applied our tool to check the benchmark against the other SCTPL/SLTPL for-
mulas shown in Section 4.4. Table 3 depicts the results of checking all the ma-
licious applications. The Number of Apps row shows the number of applications
that satisfy the corresponding formula indicated by the column title. The Avg.
Time(s) (resp. Avg. Mem(MB)) row gives the average of time (resp. memory)
consumption in seconds (resp. MB) used to detect all the applications that satisfy
the corresponding formula, where the time consumption is the sum of the time
for computing the MA M∗ and the annotation function ρ and for model-checking.

Table 3. Results of model-checking the mali-
cious applications

Ψdd Ψbp Ψbv Ψnc Ψdc Ψhi

Number of Apps 491 0 1 679 185 793
Avg. Time(s) 40.04 0 21.77 16.44 11.8 17.51
Avg. Mem(MB) 86.3 0 59 41.1 23.8 78.9

The memory consumption is the maxi-
mum of the memory for computing the
MA M∗ and the annotation function ρ
and for model-checking. From Table 3,
we can see that malicious applications
rarely take pictures or record videos with-
out users’ knowledge. But, many mali-
cious applications executes dynamically
loaded codes and harvest installed applications.

The analysis of all the benign programs against all the SCTPL/SLTPL formulas (ex-
cepting information leak formulas) costs 3611.73 seconds. The average of memory con-
sumption is 10.4 MB. 5 applications execute native codes, 2 applications record videos
without the users’ knowledge and 1 application harvests installed applications. During
the analysis of benign programs, our tool automatically avoids to apply model-checking

Model-Checking for Android Malware Detection 233

on an application against a SCTPL/SLTPL formula if no function of in SCTPL/SLTPL
formula is called. This improves the efficiency of our tool.

7 Related Work

Many works such as [1, 8, 9, 13, 14, 16, 19] use dynamic and/or static data flow anal-
ysis to analyze Android malwares. However, these works consider only information-
leak malwares, and do not consider more complicated malicious behaviors. [30] aims
to mainly analyze known Android malwares and needs samples to extract behavioral
signatures. However, the signature-based techniques can be easily gotten around by
malware writers. [9] static analyzes Android applications by translating them (Dalvik
codes) into Java source codes and applying existing static analyzers of Java programs.
However, as we discussed in the introduction, known reverse engineering tools, such
as dex2jar, ded [9] and Dare [21], fail in some cases and it is also possible for mali-
cious developers to write malicious codes at the Dalvik bytecode level that makes the
application hard to be retargeted.

[21] proposes a more precise tool translating Dalvik codes into Java. However, the
resulting Java source codes may miss some malicious behaviors. In this work, we pro-
pose an efficient and automatic approach that directly analyzes Android Dalvik codes.
Our approach can analyze information-leak malwares and other more complicated (ma-
licious) behaviors beyond information-leaks.

[17] introduces CTPL to specify malicious behaviors. SCTPL is an extension of
CTPL with predicates over the stack [25, 26]. SLTPL is first introduced in [27], to
specify malicious behaviors of executable programs. [17, 25–27] do not consider An-
droid malware specifications and cannot be applied to check Android malwares in
a precise manner. Indeed, for Android applications, we need predicates of the form
y = encode(x, l) which cannot be determined in [17, 25–27]. Moreover, the translation
from Android applications to PDSs extends the standard translation from sequential
programs to PDSs [11] and the translation used in [25–27] cannot be applied in the An-
droid context due to existence of callback methods, the way these methods are called,
and the absence of the main function. Furthermore, the Android malicious behaviors
described in this work were not considered in [17, 25–27]. Model-checking and static
analysis such as [5, 6, 17, 24] have been applied to detect non Android malwares.

The saturation procedure proposed in this work is an extension of the saturation
procedure of [11]. However, [11] does not consider how to compute the annotation
function ρ, i.e., the dependence relation between variables. [23] extends PDSs with a
weight domain (called weighted PDSs) and their saturation procedure computes the
weights of reachable configurations. [18] introduces an extension of weighted PDSs,
called extended weighted PDSs, and shows how to compute the weights of reachable
configurations by a kind of a saturation procedure. We could define the dependence
relation of variables as a weight domain and apply the approaches of [18, 23] to com-
pute the weights of reachable configurations, where each transition rule of the resulting
MA is associated with a function over variables. Then, to decide whether the value of
a variable depends on some variable at some control point, we have to compose sev-
eral functions over the weight domain multiple times which can be avoided using our

234 F. Song and T. Touili

approach. Indeed, we only need to query the transition rules of the MA M∗ that are
labeled by γ.

References

1. Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Traon, Y.L., Octeau, D.,
McDaniel, P.: Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware
taint analysis for android apps. In: PLDI (2014)

2. Beresford, A.R., Rice, A., Skehin, N., Sohan, R.: Mockdroid: Trading privacy for application
functionality on smartphones. In: HotMobile, pp. 49–54 (2011)

3. Bouajjani, A., Esparza, J., Maler, O.: Reachability Analysis of Pushdown Automata: Ap-
plication to Model Checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997.
LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)

4. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.-R., Shastry, B.: Towards taming
privilege-escalation attacks on android. In: NDSS (2012)

5. Christodorescu, M., Jha, S.: Static analysis of executables to detect malicious patterns. In:
12th USENIX Security Symposium, pp. 169–186 (2003)

6. Christodorescu, M., Jha, S., Seshia, S.A., Song, D.X., Bryant, R.E.: Semantics-aware mal-
ware detection. In: IEEE Symposium on Security and Privacy, pp. 32–46 (2005)

7. Dietz, M., Shekhar, S., Pisetsky, Y., Shu, A., Wallach, D.S.: Quire: Lightweight provenance
for smart phone operating systems. In: USENIX Security Symposium (2011)

8. Enck, W., Gilbert, P., Gon Chun, B., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.: Taintdroid:
An information-flow tracking system for realtime privacy monitoring on smartphones. In:
OSDI (2010)

9. Enck, W., Octeau, D., McDaniel, P., Chaudhuri, S.: A study of android application security.
In: USENIX Security Symposium (2011)

10. Enck, W., Ongtang, M., McDaniel, P.D.: On lightweight mobile phone application certifica-
tion. In: ACM Conference on Computer and Communications Security (2009)

11. Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithm for model checking
pushdown systems. In: Emerson, E.A., Sistla, A.P. (eds.) SPIN 2000. LNCS, vol. 1885, pp.
232–247. Springer, Heidelberg (2000)

12. Felt, A.P., Wang, H.J., Moshchuk, A., Hanna, S., Chin, E.: Permission re-delegation: Attacks
and defenses. In: USENIX Security Symposium (2011)

13. Gibler, C., Crussell, J., Erickson, J., Chen, H.: AndroidLeaks: Automatically detecting po-
tential privacy leaks in android applications on a large scale. In: Katzenbeisser, S., Weippl,
E., Camp, L.J., Volkamer, M., Reiter, M., Zhang, X. (eds.) TRUST 2012. LNCS, vol. 7344,
pp. 291–307. Springer, Heidelberg (2012)

14. Grace, M.C., Zhou, Y., Zhang, Q., Zou, S., Jiang, X.: Riskranker: Scalable and accurate
zero-day android malware detection. In: MobiSys (2012)

15. Hornyack, P., Han, S., Jung, J., Schechter, S.E., Wetherall, D.: These aren’t the droids you’re
looking for: retrofitting android to protect data from imperious applications. In: ACM CCS,
pp. 639–652 (2011)

16. Kim, J., Yoon, Y., Yi, K., Shin, J.: Scandal: Static analyzer for detecting privacy leaks in
android application. In: Mobile Security Technologies 2012 (2012)

17. Kinder, J., Katzenbeisser, S., Schallhart, C., Veith, H.: Detecting malicious code by model
checking. In: Julisch, K., Kruegel, C. (eds.) DIMVA 2005. LNCS, vol. 3548, pp. 174–187.
Springer, Heidelberg (2005)

18. Lal, A., Reps, T., Balakrishnan, G.: Extended weighted pushdown systems. In: Etessami,
K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 434–448. Springer, Heidelberg
(2005)

Model-Checking for Android Malware Detection 235

19. Mann, C., Starostin, A.: A framework for static detection of privacy leaks in android appli-
cations. In: SAC, pp. 1457–1462 (2012)

20. Nauman, M., Khan, S., Zhang, X.: Apex: Extending android permission model and enforce-
ment with user-defined runtime constraints. In: ASIACCS, pp. 328–332 (2010)

21. Octeau, D., Jha, S., McDaniel, P.: Retargeting Android applications to Java bytecode. In:
SIGSOFT FSE (2012)

22. Ongtang, M., McLaughlin, S.E., Enck, W., McDaniel, P.D.: Semantically rich application-
centric security in android. In: ACSAC (2009)

23. Reps, T.W., Schwoon, S., Jha, S.: Weighted pushdown systems and their application to inter-
procedural dataflow analysis. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 189–213.
Springer, Heidelberg (2003)

24. Singh, P.K., Lakhotia, A.: Static verification of worm and virus behavior in binary executa-
bles using model checking. In: IAW, pp. 298–300 (2003)

25. Song, F., Touili, T.: Efficient malware detection using model-checking. In: Giannakopoulou,
D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 418–433. Springer, Heidelberg (2012)

26. Song, F., Touili, T.: Pushdown model checking for malware detection. In: Flanagan, C.,
König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 110–125. Springer, Heidelberg (2012)

27. Song, F., Touili, T.: LTL model-checking for malware detection. In: Piterman, N., Smolka,
S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 416–431. Springer, Heidelberg (2013)

28. Song, F., Touili, T.: Model-checking for Android Malware Detection. Technical report,
Shanghai Key Laboratory of Trustworthy Computing (2014),
http://research.sei.ecnu.edu.cn/˜song/publications/APLAS14.pdf

29. Zhou, Y., Jiang, X.: Dissecting android malware: Characterization and evolution. In: IEEE
Symposium on Security and Privacy, pp. 95–109 (2012)

30. Zhou, Y., Wang, Z., Zhou, W., Jiang, X.: Hey, you, get off of my market: Detecting malicious
apps in official and alternative android markets. In: NDSS (2012)

http://research.sei.ecnu.edu.cn/~song/publications/APLAS14.pdf

	Model-Checking for Android Malware Detection
	1 Introduction
	2 Android Applications
	3 Program Model
	3.1 Pushdown Systems
	3.2 Modeling Android Applications as PDSs

	4 Android (Malicious) Behaviors Specifications
	4.1 The SCTPL Logic
	4.2 The SLTPL Logic
	4.3 SLTPL and SCTPL for Android Applications
	4.4 Expressing Android (Malicious) Behaviors in SCTPL and SLTPL

	5 Model-Checking Android Applications
	5.1 Annotating the Program with encode Predicates
	5.2 SCTPL and SLTPL Model-Checking for Android Applications

	6 Experiments
	6.1 Information-Leak Android Applications
	6.2 Checking the OtherMalicious Behaviors

	7 Related Work
	References

