Model Checking for Modal Intuitionistic Dependence Logic

Fan Yang

Department of Mathematics and Statistics
University of Helsinki
Logical Approaches to Barriers in Complexity II Cambridge, 26-30 March, 2012

Joint work with Johannes Ebbing, Peter Lohmann, Institute for Theoretical Computer Science, Leibniz University Hannover

Outline

(1) First-order Dependence Logic with Intuitionistic Implication

- First-order Dependence Logic
- First-order Intuitionistic Dependence Logic
(2) Modal Intuitionistic Dependence Logic
- Introduction
- Some Properties of MID
(3) Complexity of Model Checking Problem for fragments of MID - MID-MC is PSPACE-complete

Characterizing dependence between variables

First Order Quantifiers

$$
\forall x_{1} \exists y_{1} \forall x_{2} \exists y_{2} \phi
$$

Henkin Quantifiers (Henkin, 1961)

Independence Friendly Logic (Hintikka, Sandu, 1989)

$$
\forall x_{1} \exists y_{1} \forall x_{2} \exists y_{2} /\left\{x_{1}\right\} \phi
$$

Dependence Logic (Väänänen 2007)

Characterizing dependence between variables

First Order Quantifiers

$$
\forall x_{1} \exists y_{1} \forall x_{2} \exists y_{2} \phi
$$

Henkin Quantifiers (Henkin, 1961)

$$
\left(\begin{array}{ll}
\forall x_{1} & \exists y_{1} \\
\forall x_{2} & \exists y_{2}
\end{array}\right) \phi
$$

Independence Friendly Logic (Hintikka, Sandu, 1989)

$$
\forall x_{1} \exists y_{1} \forall x_{2} \exists y_{2} /\left\{x_{1}\right\} \phi
$$

Dependence Logic (Väänänen 2007)

Characterizing dependence between variables

First Order Quantifiers

$$
\forall x_{1} \exists y_{1} \forall x_{2} \exists y_{2} \phi
$$

Henkin Quantifiers (Henkin, 1961)

$$
\left(\begin{array}{ll}
\forall x_{1} & \exists y_{1} \\
\forall x_{2} & \exists y_{2}
\end{array}\right) \phi
$$

Independence Friendly Logic (Hintikka, Sandu, 1989)

$$
\forall x_{1} \exists y_{1} \forall x_{2} \exists y_{2} /\left\{x_{1}\right\} \phi
$$

Dependence Logic (Väänänen 2007)

Characterizing dependence between variables

First Order Quantifiers

$$
\forall x_{1} \exists y_{1} \forall x_{2} \exists y_{2} \phi
$$

Henkin Quantifiers (Henkin, 1961)

$$
\left(\begin{array}{ll}
\forall x_{1} & \exists y_{1} \\
\forall x_{2} & \exists y_{2}
\end{array}\right) \phi
$$

Independence Friendly Logic (Hintikka, Sandu, 1989)

$$
\forall x_{1} \exists y_{1} \forall x_{2} \exists y_{2} /\left\{x_{1}\right\} \phi
$$

Dependence Logic (Väänänen 2007)

$$
\forall x_{1} \exists y_{1} \forall x_{2} \exists y_{2}\left(=\left(x_{2}, y_{2}\right) \wedge \phi\right)
$$

Syntax of First-order Dependence Logic (D)

$\mathbf{D}=\mathbf{F O}+=\left(t_{1}, \ldots, t_{n}\right)$
Well-formed formulas of \mathbf{D} (in negation normal form) are given by the following grammar

$$
\phi::=\alpha\left|=\left(t_{1}, \ldots, t_{n}\right)\right| \neg=\left(t_{1}, \ldots, t_{n}\right)|\phi \wedge \phi| \phi \otimes \phi|\forall x \phi| \exists x \phi
$$

where α is a first order literal and t_{1}, \ldots, t_{n} are first-order terms.

Syntax of First-order Dependence Logic (D)

$\mathbf{D}=\mathbf{F O}+=\left(t_{1}, \ldots, t_{n}\right)$
Well-formed formulas of \mathbf{D} (in negation normal form) are given by the following grammar

$$
\phi::=\alpha\left|=\left(t_{1}, \ldots, t_{n}\right)\right| \neg=\left(t_{1}, \ldots, t_{n}\right)|\phi \wedge \phi| \phi \otimes \phi|\forall x \phi| \exists x \phi
$$

where α is a first order literal and t_{1}, \ldots, t_{n} are first-order terms.

Semantics of dependence logic: Team semantics

D adopts team semantics, originally introduced by W. Hodges (1997) for IF-logic.

Important points of team semantics:
(1) satisfaction is defined w.r.t. sets of assignments (teams) instead of single assignments (Tarskian semantics)
(2) the semantics is compositional

Theorem (Enderton, Walkoe, Väänänen)
D sentences have the same expressive power as sentences of the second order Σ_{1}^{1} fragment.

Intuitionistic Implication [Abramsky, Väänänen, 2009]

- In a general context of W. Hodges' team semantics, Abramsky, Väänänen introduced intuitionistic implication \rightarrow and Boolean disjunction \otimes.

satisfy the Galois connection:

satisfy axioms of intuitionistic propositional logic.

- first-order intuitionistic dependence logic:

Intuitionistic Implication [Abramsky, Väänänen, 2009]

- In a general context of W. Hodges' team semantics, Abramsky, Väänänen introduced intuitionistic implication \rightarrow and Boolean disjunction \otimes.
- \wedge, \rightarrow satisfy the Galois connection:

$$
\phi \wedge \psi \models \chi \Longleftrightarrow \phi \models \psi \rightarrow \chi
$$

- $\rightarrow, \wedge, \otimes$ satisfy axioms of intuitionistic propositional logic.
- first-order intuitionistic dependence logic:

Intuitionistic Implication [Abramsky, Väänänen, 2009]

- In a general context of W. Hodges' team semantics, Abramsky, Väänänen introduced intuitionistic implication \rightarrow and Boolean disjunction \otimes.
- \wedge, \rightarrow satisfy the Galois connection:

$$
\phi \wedge \psi \models \chi \Longleftrightarrow \phi \models \psi \rightarrow \chi
$$

- $\rightarrow, \wedge, \otimes$ satisfy axioms of intuitionistic propositional logic.
- first-order intuitionistic dependence logic:

$$
\mathbf{I D}=\mathbf{D}+\otimes+\rightarrow
$$

First-order Intuitionistic Dependence Logic

Theorem ([Abramsky, Väänänen 2009],[Y. 2010])

Sentences of ID have the same expressive power as sentences of the full second order logic.

PD and PID

- The underlying propositional logic of \mathbf{D} and ID are propositional dependence logic (PD) and propositional intuitionistic dependence logic (PID), respectively.
- Syntactically:

$$
\begin{aligned}
& \mathbf{P D}=\mathbf{C P L}+=\left(p_{1}, \ldots, p_{n}\right) \\
& \mathbf{P I D}=\mathbf{I P L}+=\left(p_{1}, \ldots, p_{n}\right)
\end{aligned}
$$

- PID is essentially equivalent to inquisitive logic [Ciardelli and Roelofsen, 2009], studied in the field of linguistics.

PD and PID

- The underlying propositional logic of \mathbf{D} and ID are propositional dependence logic (PD) and propositional intuitionistic dependence logic (PID), respectively.
- Syntactically:

$$
\begin{aligned}
& \mathbf{P D}=\mathbf{C P L}+=\left(p_{1}, \ldots, p_{n}\right) \\
& \mathbf{P I D}=\mathbf{I P L}+=\left(p_{1}, \ldots, p_{n}\right)
\end{aligned}
$$

- PID is essentially equivalent to inquisitive logic [Ciardelli and Roelofsen, 2009], studied in the field of linguistics.

Modal Intuitionistic Dependence Logic

- Modal Dependence Logic (Väänänen 2008)

$$
\mathbf{M D}=\operatorname{Modal} \operatorname{Logic}(\mathbf{M})+=\left(p_{1}, \cdots, p_{n}\right)
$$

- Modal Intuitionistic Dependence Logic

$$
\mathbf{M I D}=\mathbf{M D}
$$

Well-formed formulas of MID (in negation normal form) are defined by the following grammar :

Modal Intuitionistic Dependence Logic

- Modal Dependence Logic (Väänänen 2008)

$$
\mathbf{M D}=\operatorname{Modal} \operatorname{Logic}(\mathbf{M})+=\left(p_{1}, \cdots, p_{n}\right)
$$

- Modal Intuitionistic Dependence Logic

$$
\mathbf{M I D}=\mathbf{M D}+\otimes+\rightarrow
$$

Well-formed formulas of MID (in negation normal form) are defined by the following grammar :

Modal Intuitionistic Dependence Logic

- Modal Dependence Logic (Väänänen 2008)

$$
\mathbf{M D}=\operatorname{Modal} \operatorname{Logic}(\mathbf{M})+=\left(p_{1}, \cdots, p_{n}\right)
$$

- Modal Intuitionistic Dependence Logic

$$
\mathbf{M I D}=\mathbf{M D}+\otimes+\rightarrow
$$

Well-formed formulas of MID (in negation normal form) are defined by the following grammar :

$$
\begin{aligned}
\varphi::= & p|\neg p|=\left(p_{1}, \cdots, p_{n}\right)\left|\neg=\left(p_{1}, \cdots, p_{n}\right)\right| \\
& \varphi \wedge \varphi|\varphi \otimes \varphi| \varphi \otimes \varphi|\varphi \rightarrow \varphi| \square \varphi \mid \diamond \varphi
\end{aligned}
$$

Modal Intuitionistic Dependence Logic

- Modal Dependence Logic (Väänänen 2008)

$$
\mathbf{M D}=\operatorname{Modal} \operatorname{Logic}(\mathbf{M})+=\left(p_{1}, \cdots, p_{n}\right)
$$

- Modal Intuitionistic Dependence Logic

$$
\mathbf{M I D}=\mathbf{M D}+\otimes+\rightarrow
$$

Well-formed formulas of MID (in negation normal form) are defined by the following grammar :

$$
\begin{aligned}
\varphi::= & p|\neg p|=\left(p_{1}, \cdots, p_{n}\right)\left|\neg=\left(p_{1}, \cdots, p_{n}\right)\right| \\
& \varphi \wedge \varphi|\varphi \otimes \varphi| \varphi \otimes \varphi|\varphi \rightarrow \varphi| \square \varphi \mid \diamond \varphi
\end{aligned}
$$

$\square=\left(p_{1}, \ldots, p_{n}\right)$

Modal Intuitionistic Dependence Logic

- Modal Dependence Logic (Väänänen 2008)

$$
\mathbf{M D}=\operatorname{Modal} \operatorname{Logic}(\mathbf{M})+=\left(p_{1}, \cdots, p_{n}\right)
$$

- Modal Intuitionistic Dependence Logic

$$
\mathbf{M I D}=\mathbf{M D}+\boxtimes+\rightarrow
$$

Well-formed formulas of MID (in negation normal form) are defined by the following grammar :

$$
\begin{aligned}
\varphi::= & p|\neg p|=\left(p_{1}, \cdots, p_{n}\right)\left|\neg=\left(p_{1}, \cdots, p_{n}\right)\right| \\
& \varphi \wedge \varphi|\varphi \otimes \varphi| \varphi \otimes \varphi|\varphi \rightarrow \varphi| \square \varphi \mid \diamond \varphi
\end{aligned}
$$

- MD $=\mathbf{M I D}[\neg,=(\cdot), \wedge, \otimes, \square, \diamond]$,

Team Semantics of MID

Definition

A Kripke model is a triple $K=(S, R, \pi)$ consisting of a nonempty set S, a binary relation $R \subseteq S \times S$, and a labeling function $\pi: S \rightarrow \wp($ PROP $)$.

Teams

Teams: sets of possible worlds

$$
\text { team } T=\left\{s_{1}, s_{3}, s_{4}\right\}
$$

Operations on teams

For any set T of states in a Kripke model K, we define

$$
R(T)=\left\{s \in K \mid \exists s^{\prime} \in T, \text { s.t. } s^{\prime} R s\right\}
$$

Operations on teams

For any set T of states in a Kripke model K, we define

$$
R(T)=\left\{s \in K \mid \exists s^{\prime} \in T, \text { s.t. } s^{\prime} R s\right\}
$$

Operations on teams

Let T be a team. Define

$$
\langle T\rangle=\left\{T^{\prime} \mid T^{\prime} \subseteq R(T) \text { and } \forall s \in T, R(s) \cap T^{\prime} \neq \emptyset\right\}
$$

Operations on teams

Let T be a team. Define

$$
\langle T\rangle=\left\{T^{\prime} \mid T^{\prime} \subseteq R(T) \text { and } \forall s \in T, R(s) \cap T^{\prime} \neq \emptyset\right\}
$$

$$
\left\{s_{2}, s_{5}\right\} \in\left\langle\left\{s_{1}, s_{3}\right\}\right\rangle
$$

Operations on teams

Let T be a team. Define

$$
\langle T\rangle=\left\{T^{\prime} \mid T^{\prime} \subseteq R(T) \text { and } \forall s \in T, R(s) \cap T^{\prime} \neq \emptyset\right\}
$$

$$
\left\{s_{2}, s_{5}\right\} \in\left\langle\left\{s_{1}, s_{3}\right\}\right\rangle
$$

Clearly, $R(T) \in\langle T\rangle$.

Team Semantics of MID

Let $K=(S, R, \pi)$ be a Kripke model, $T \subseteq S$ a team. Define

- $K, T \models \square \varphi$ iff $K, R(T) \models \varphi$
- $K, T \models \diamond \varphi$ iff there exists nonempty $T^{\prime} \in\langle T\rangle$ such that $K, T^{\prime} \models \varphi$

Team Semantics of MID

Let $K=(S, R, \pi)$ be a Kripke model, $T \subseteq S$ a team. Define

- $K, T \models \square \varphi$ iff $K, R(T) \models \varphi$
- $K, T \models \diamond \varphi$ iff there exists nonempty $T^{\prime} \in\langle T\rangle$ such that $K, T^{\prime} \models \varphi$
- $K, T \models p$ iff $p \in \pi(s)$ for all $s \in T$
- $K, T \models \neg p$ iff $p \notin \pi(s)$ for all $s \in T$

$$
\begin{aligned}
& T=\left\{s_{1}, s_{2}\right\} \\
& K, T \models r \\
& K, T \not \models \neg p
\end{aligned}
$$

Team Semantics of MID

Let $K=(S, R, \pi)$ be a Kripke model, $T \subseteq S$ a team. Define

- $K, T \models \square \varphi$ iff $K, R(T) \models \varphi$
- $K, T \models \diamond \varphi$ iff there exists nonempty $T^{\prime} \in\langle T\rangle$ such that $K, T^{\prime} \models \varphi$
- $K, T \models p$ iff $p \in \pi(s)$ for all $s \in T$
- $K, T \models \neg p$ iff $p \notin \pi(s)$ for all $s \in T$
- $K, T \models=\left(p_{1}, \cdots, p_{n}, q\right)$ iff for any $s_{1}, s_{2} \in T$ such that $\pi\left(s_{1}\right) \cap\left\{p_{1}, \cdots, p_{n}\right\}=\pi\left(s_{2}\right) \cap\left\{p_{1}, \cdots, p_{n}\right\}$, we have that $\pi\left(s_{1}\right) \cap\{q\}=\pi\left(s_{2}\right) \cap\{q\}$
- $K, T \models \neg=\left(p_{1}, \cdots, p_{n}, q\right)$ iff $T=\emptyset$

$T=\left\{s_{1}, s_{2}\right\}$
$K, T \not \models=(r, p) \quad K, T \models=(r)$

Team Semantics of MID

Let $K=(S, R, \pi)$ be a Kripke model, $T \subseteq S$ a team. Define

- $K, T \models \square \varphi$ iff $K, R(T) \models \varphi$
- $K, T \models \diamond \varphi$ iff there exists nonempty $T^{\prime} \in\langle T\rangle$ such that $K, T^{\prime} \models \varphi$
- $K, T \models p$ iff $p \in \pi(s)$ for all $s \in T$
- $K, T \models \neg p$ iff $p \notin \pi(s)$ for all $s \in T$
- $K, T \models=\left(p_{1}, \cdots, p_{n}, q\right)$ iff for any $s_{1}, s_{2} \in T$ such that $\pi\left(s_{1}\right) \cap\left\{p_{1}, \cdots, p_{n}\right\}=\pi\left(s_{2}\right) \cap\left\{p_{1}, \cdots, p_{n}\right\}$, we have that $\pi\left(s_{1}\right) \cap\{q\}=\pi\left(s_{2}\right) \cap\{q\}$
- $K, T \models \neg=\left(p_{1}, \cdots, p_{n}, q\right)$ iff $T=\emptyset$
- $K, T \models \varphi \wedge \psi$ iff $K, T \models \varphi$ and $K, T \models \psi$
- $K, T \models \varphi \otimes \psi$ iff there are teams T_{1}, T_{2} with $T=T_{1} \cup T_{2}$ such that $K, T_{1} \models \varphi$ and $K, T_{2} \models \psi$
s_{1}

$$
\begin{aligned}
& T=\left\{s_{1}, s_{2}\right\} \\
& K, T \models p \otimes r \\
& K, T \nLeftarrow=(p) \otimes \neg=(p)
\end{aligned}
$$

Team Semantics of MID

Let $K=(S, R, \pi)$ be a Kripke model, $T \subseteq S$ a team. Define

- $K, T \models \square \varphi$ iff $K, R(T) \models \varphi$
- $K, T \models \diamond \varphi$ iff there exists nonempty $T^{\prime} \in\langle T\rangle$ such that $K, T^{\prime} \models \varphi$
- $K, T \vDash p$ iff $p \in \pi(s)$ for all $s \in T$
- $K, T \models \neg p$ iff $p \notin \pi(s)$ for all $s \in T$
- $K, T \models=\left(p_{1}, \cdots, p_{n}, q\right)$ iff for any $s_{1}, s_{2} \in T$ such that $\pi\left(s_{1}\right) \cap\left\{p_{1}, \cdots, p_{n}\right\}=\pi\left(s_{2}\right) \cap\left\{p_{1}, \cdots, p_{n}\right\}$, we have that $\pi\left(s_{1}\right) \cap\{q\}=\pi\left(s_{2}\right) \cap\{q\}$
- $K, T \models \neg=\left(p_{1}, \cdots, p_{n}, q\right)$ iff $T=\emptyset$
- $K, T \models \varphi \wedge \psi$ iff $K, T \models \varphi$ and $K, T \models \psi$
- $K, T \models \varphi \otimes \psi$ iff there are teams T_{1}, T_{2} with $T=T_{1} \cup T_{2}$ such that $K, T_{1} \models \varphi$ and $K, T_{2} \models \psi$
- $K, T \models \varphi \otimes \psi$ iff $K, T \models \varphi$ or $K, T \models \psi$
- $K, T \models \varphi \rightarrow \psi$ iff for any subteam $T^{\prime} \subseteq T$ if $K, T^{\prime} \models \varphi$ then $K, T^{\prime} \models \psi$.

Team Semantics of MID

Let $K=(S, R, \pi)$ be a Kripke model, $T \subseteq S$ a team. Define

- $K, T \models \square \varphi$ iff $K, R(T) \models \varphi$
- $K, T \models \diamond \varphi$ iff there exists nonempty $T^{\prime} \in\langle T\rangle$ such that $K, T^{\prime} \models \varphi$
- $K, T \vDash p$ iff $p \in \pi(s)$ for all $s \in T$
- $K, T \models \neg p$ iff $p \notin \pi(s)$ for all $s \in T$
- $K, T \models=\left(p_{1}, \cdots, p_{n}, q\right)$ iff for any $s_{1}, s_{2} \in T$ such that $\pi\left(s_{1}\right) \cap\left\{p_{1}, \cdots, p_{n}\right\}=\pi\left(s_{2}\right) \cap\left\{p_{1}, \cdots, p_{n}\right\}$, we have that $\pi\left(s_{1}\right) \cap\{q\}=\pi\left(s_{2}\right) \cap\{q\}$
- $K, T \models \neg=\left(p_{1}, \cdots, p_{n}, q\right)$ iff $T=\emptyset$
- $K, T \models \varphi \wedge \psi$ iff $K, T \models \varphi$ and $K, T \models \psi$
- $K, T \models \varphi \otimes \psi$ iff there are teams T_{1}, T_{2} with $T=T_{1} \cup T_{2}$ such that $K, T_{1} \models \varphi$ and $K, T_{2} \models \psi$
- $K, T \models \varphi \otimes \psi$ iff $K, T \models \varphi$ or $K, T \models \psi$
- $K, T \models \varphi \rightarrow \psi$ iff for any subteam $T^{\prime} \subseteq T$ if $K, T^{\prime} \models \varphi$ then $K, T^{\prime} \models \psi$.

Lemma (Empty team property)

Empty team satisfies all formulas ϕ of MID in any Kripke model K, namely $K, \emptyset \models \phi$.

Example

$$
\begin{aligned}
& T=\left\{t_{1}\right\} \\
& K, T \models \diamond\left(r_{2} \rightarrow=\left(p_{2}\right)\right)
\end{aligned}
$$

Example

$$
\begin{aligned}
& T=\left\{t_{1}\right\} \\
& K, T \models \diamond\left(r_{2} \rightarrow=\left(p_{2}\right)\right) \\
& T_{0}=\left\{s_{1}\right\} \\
& K, T_{0} \models r_{2} \rightarrow=\left(p_{2}\right)
\end{aligned}
$$

Simple properties

$$
\begin{aligned}
& =\left(p_{1}, \cdots, p_{n}, q\right) \equiv\left(=\left(p_{1}\right) \wedge \cdots \wedge=\left(p_{n}\right)\right) \rightarrow=(q) \\
& =(p) \equiv p \otimes \neg p \\
& \neg p \equiv p \rightarrow \perp ; \\
& \neg=\left(p_{1}, \cdots, p_{n}\right) \equiv=\left(p_{1}, \cdots, p_{n}\right) \rightarrow \perp ;
\end{aligned}
$$

Important Properties of MID

Theorem (Downwards Closure)

For any formula ϕ of MID, if $K, T \models \phi$ and $T^{\prime} \subseteq T$, then $K, T^{\prime} \models \phi$.

Definition (Flatness)
 We say that ϕ is flat if for all Kripke models K and teams T

Theorem
Formulas without any occurrences of =(.) and Q are flat, namely MID $[\neg, \wedge, \otimes, \square, \diamond]$ formulas are flat.

Important Properties of MID

Theorem (Downwards Closure)

For any formula ϕ of MID, if $K, T \models \phi$ and $T^{\prime} \subseteq T$, then $K, T^{\prime} \models \phi$.

Definition (Flatness)

We say that ϕ is flat if for all Kripke models K and teams T

$$
K, T \models \phi \Longleftrightarrow(K,\{s\} \models \phi \text { for all } s \in T) .
$$

Theorem

Formulas without any occurrences of $=(\cdot)$ and \otimes are flat, namely
$\operatorname{MID}[\neg, \wedge, \otimes, \square, \diamond]$ formulas are flat.

Important Properties of MID

Theorem (Downwards Closure)

For any formula ϕ of MID, if $K, T \models \phi$ and $T^{\prime} \subseteq T$, then $K, T^{\prime} \models \phi$.

Definition (Flatness)

We say that ϕ is flat if for all Kripke models K and teams T

$$
K, T \models \phi \Longleftrightarrow(K,\{s\} \models \phi \text { for all } s \in T) .
$$

Theorem

Formulas without any occurrences of $=(\cdot)$ and \otimes are flat, namely $\operatorname{MID}[\neg, \wedge, \otimes, \square, \diamond]$ formulas are flat.

Satisfaction Invariance Theorem

Theorem
Satisfaction of MID is invariant under generated submodels, p-morphic images, disjoint unions.

Satisfaction Invariance Theorem

Theorem
Satisfaction of MID is invariant under generated submodels, p-morphic images, disjoint unions.

Important Properties of MD

On singleton teams, MD = M.
There is a translation from MD into the usual modal logic. But the translation causes an exponential blow-up in the size of the formulas.

Theorem

On arbitrary teams, IMD

Important Properties of MD

[Sevenster 2009](Theorem):

Theorem

On singleton teams, $\mathbf{M D}=\mathbf{M}$.
There is a translation from MD into the usual modal logic. But the translation causes an exponential blow-up in the size of the formulas.

Theorem
On arbitrary teams, MD $>\mathbf{M}$.

Complexity results of MD

Theorem (Sevenster 2009)
Satisfiability problem for MD is NEXPTIME-complete.

Theorem (Ebbing, Lohmann 2011)
Model checking problem for MD is NP-complete.

MID Model Checking Problem

Definition

Let \mathcal{L} be a sublogic (fragment) of MID. The model checking problem for \mathcal{L} is defined as the decision problem of the set

$$
\mathcal{L}-\mathrm{MC}:=\left\{\begin{array}{l|l}
\langle K, T, \varphi\rangle & \begin{array}{l}
K=(S, R, \pi) \text { is a Kripke model, } T \subseteq S, \\
\varphi \in \mathcal{L} \text { and } K, T \models \varphi
\end{array}
\end{array}\right\}
$$

Complexity results for fragments of MD-MC (Ebbing, Lohmann 2010)

Operators				Complexity	Ref.		
\square	\diamond	\wedge	\otimes	\neg	$=(\cdot)$		
$*$	$*$	+	+	$*$	+	NP	$[$ [E\& L 2011]
+	$*$	$*$	+	$*$	+	NP	$[$ E\& L 2011]
$*$	+	$*$	$*$	$*$	+	NP	$[$ E\& L 2011]
$*$	-	$*$	-	$*$	$*$	in P	$[$ E\& L 2011]
$*$	$*$	$*$	$*$	$*$	-	in P	$[$ CES 1986]

+ : operator present - : operator absent
* : complexity independent of operator

Computational Complexity of MID Model Checking

Theorem
Model checking problem for MID is PSPACE-complete.

Complexity results for fragments of MID-MC

Operators
Complexity Method/Ref.

\square	\diamond	\wedge	\otimes	\neg	\otimes	\rightarrow	$=(\cdot)$		
$*$	$*$	+	+	$*$	$*$	+	+	PSPACE	reduct. from TQBF
$*$	$*$	+	+	$*$	+	+	$*$	PSPACE	see above
$*$	+	+	$*$	$*$	+	+	$*$	PSPACE	see above
$*$	-	+	-	$*$	+	+	$*$	coNP	reduct. from TAUT
$*$	$*$	$*$	$*$	$*$	-	$*$	-	in P	[CES 1986]
$*$	$*$	+	+	$*$	$*$	-	+	NP	[E\& L 2011]
+	$*$	$*$	+	$*$	$*$	-	+	NP	[E\& L 2011]
$*$	+	$*$	$*$	$*$	$*$	-	+	NP	[E\& L 2011]
$*$	-	$*$	-	$*$	$*$	-	$*$	in P	[E\& L 2011]
$*$	$*$	$*$	$*$	$*$	$*$	-	-	in P	[E\& L 2011]

+ : operator present - : operator absent
* : complexity independent of operator

In the rest of the talk, we will prove:
Theorem
MID -MC is PSPACE complete.

- MID-MC is in PSPACE.
- MID-MC is PSPACE-hard.

Theorem

MID -MC is in PSPACE.

PSPACE algorithm of MID-MC

```
check(K=(S,R,\pi),\varphi,T):
case \varphi
when }\varphi=
    foreach s\inT
        if not }p\in\pi(s) the
                return false
    return true
when }\varphi=\neg
    foreach s\inT
        if }p\in\pi(s) the
            return false
    return true
when }\varphi==(\mp@subsup{p}{1}{},\ldots,\mp@subsup{p}{n}{},q
    foreach (s, s') \inT\timesT
        if \pi(s)\cap{\mp@subsup{p}{1}{},\ldots,\mp@subsup{p}{n}{}}=\pi(\mp@subsup{s}{}{\prime})\cap{\mp@subsup{p}{1}{},\ldots,\mp@subsup{p}{n}{}}\mathrm{ then}
            if (q\in\pi(s) and not q\in\pi(s')) or (not q\in\pi(s) and q\in\pi(s')) then
                return false
    return true
when }\varphi=\neg=(\mp@subsup{p}{1}{},\ldots,\mp@subsup{p}{n}{}
    if S=\emptyset
        return true
    return false
when }\varphi=\psi\otimes
    existentially guess two sets of states }\mp@subsup{T}{1}{},\mp@subsup{T}{2}{}\subseteq
    if not }\mp@subsup{T}{1}{}\cup\mp@subsup{T}{2}{}=T\mathrm{ then
        return false
    return ( }\operatorname{check}(K,\mp@subsup{T}{1}{},\psi)\mathrm{ and }\operatorname{check}(K,\mp@subsup{T}{2}{},\chi)
```


PSPACE algorithm of MID-MC (cont.)

```
when }\varphi=\psi\otimes
    return (check(K,T,\psi) or check(K,T,\psi))
when }\varphi=\psi\wedge
    return (check (K,T,\psi) and check (K,T,\chi))
when }\varphi=\square
    T':=\emptyset
    foreach s'\inS
        foreach s\inT
            if (s,s')\inR then
                T':= T'\cup{\mp@subsup{s}{}{\prime}}
    return check(K, T',\psi)
when }\varphi=\Delta
    existentially guess a set of states }\mp@subsup{T}{}{\prime}\subseteq
        foreach s\inT
            if there is no s'\inT' with (s, s')\inR then
            return false
    return check(K, T',\psi)
when }\varphi=\psi->
    universally guess a set of states T}\mp@subsup{T}{}{\prime}\subseteq
    if (not check(K,\psi,\mp@subsup{T}{}{\prime}) or check(K,\chi,\mp@subsup{T}{}{\prime}))
        return true
    return false
```

Next, we show
Theorem
MID -MC is PSPACE-hard.
Proof. Reduction from TQBF.

Kripke model K_{φ}

Definition

Let $\varphi\left(p_{1}, \cdots, p_{n}\right)$ be a formula of CPL. We define a Kripke model $K_{\varphi}=\left(S_{\varphi}, R_{\varphi}, \pi_{\varphi}\right)$ by letting

$$
\begin{aligned}
S_{\varphi} & :=\left\{s_{1}, \ldots, s_{n}, \overline{s_{1}}, \ldots, \overline{s_{n}}\right\} \\
R_{\varphi} & :=\emptyset \\
\pi_{\varphi}\left(s_{i}\right) & :=\left\{r_{i}, p_{i}\right\} \\
\pi_{\varphi}\left(\overline{s_{i}}\right) & :=\left\{r_{i}\right\}
\end{aligned}
$$

σ vs $T_{\varphi, \sigma}$

Let $\sigma: \operatorname{Prop} \rightarrow\{\top, \perp\}$ be a valuation of CPL. The team $T_{\varphi, \sigma}$ of K_{φ} induced by σ is defined as

$$
T_{\varphi, \sigma}=\left\{s_{i} \in S_{\varphi} \mid \sigma\left(p_{i}\right)=\top\right\} \cup\left\{\bar{s}_{i} \in S_{\varphi} \mid \sigma\left(p_{i}\right)=\perp\right\} .
$$

Example:

- $\sigma: p_{1} \mapsto T \quad p_{2} \mapsto \perp \quad \ldots \quad p_{n} \mapsto \perp$

Definition

Let r be a fixed propositional variable.
For every formula φ of CPL in negation normal form without any occurrence of r, we inductively define a formula $\varphi \rightarrow$ of MID as follows:

$$
\begin{aligned}
p^{\rightarrow} & :=r \rightarrow p, \\
(\neg p)^{\rightarrow} & :=r \rightarrow \neg p, \\
(\varphi \wedge \psi) & :=\varphi^{\rightarrow} \wedge \psi, \\
(\varphi \vee \psi) \rightarrow & :=\varphi^{\rightarrow} \otimes \psi \rightarrow .
\end{aligned}
$$

In team $T_{\varphi, \sigma}$ of the Kripke model K_{φ},
MID formula $\varphi \rightarrow$ behaves like the CPL formula φ under valuation σ.

Lemma

For any formula φ and any valuation σ of CPL,

$$
\sigma(\varphi)=\top \Longleftrightarrow K_{\varphi}, T_{\varphi, \sigma} \models \varphi^{\rightarrow} .
$$

Proof. By induction on φ.
Case $\varphi=p$: We have that $S_{p}=\{s, \bar{s}\}$ and that

$$
\begin{aligned}
\sigma(p)=\top & \Longleftrightarrow T_{p, \sigma}=\{s\} \\
& \Longleftrightarrow K_{p}, T_{p, \sigma}=r \rightarrow p .
\end{aligned}
$$

Complexity of MID Model Checking

Theorem
MID -MC is PSPACE-hard.
Proof.
We give a polynomial-time reduction from TQBF to MID-MC.
Let $\psi=\forall x_{1} \exists x_{2} \ldots \forall x_{n-1} \exists x_{n} \varphi$ with φ quantifier-free (thus in CPL) be a QBF instance. The corresponding MID-MC instance is defined as ($K, T_{0}, f(\psi)$) where

Complexity of MID Model Checking

Theorem
MID -MC is PSPACE-hard.
Proof.
We give a polynomial-time reduction from TQBF to MID-MC.

Let $\psi=\forall x_{1} \exists x_{2} \ldots \forall x_{n-1} \exists x_{n} \varphi$ with φ quantifier-free (thus in CPL) be a
QBF instance. The corresponding MID-MC instance is defined as $\left(K, T_{0}, f(\psi)\right)$ where

Complexity of MID Model Checking

Theorem

MID -MC is PSPACE-hard.
Proof.
We give a polynomial-time reduction from TQBF to MID-MC.
Let $\psi=\forall x_{1} \exists x_{2} \ldots \forall x_{n-1} \exists x_{n} \varphi$ with φ quantifier-free (thus in CPL) be a QBF instance. The corresponding MID-MC instance is defined as (K, $T_{0}, f(\psi)$) where

- $K=(S, R, \pi)$, where $S=\underset{1 \leq i \leq n}{ } S_{i}, R=\underset{1 \leq i \leq n}{ } R_{i}$, for $1 \leq i \leq n / 2$

$$
\begin{aligned}
S_{2 i-1}= & \left\{s_{2 i-1}, \overline{s_{2 i-1}}\right\} \\
S_{2 i}= & \left\{s_{2 i}, \overline{s_{2 i}}\right\} \cup\left\{t_{i}\right\} \cup\left\{t_{i 1}, \cdots, t_{i(i-1)}\right\} \\
R_{2 i-1}= & \left\{\left(s_{2 i-1}, s_{2 i-1}\right),\left(\overline{s_{2 i-1}}, \overline{s_{2 i-1}}\right)\right\} \\
R_{2 i}= & \left.\left\{\left(t_{i}, t_{i 1}\right),\left(t_{i 1}, t_{i 2}\right), \cdots,\left(t_{i(i-2}\right), t_{i(i-1)}\right)\right\} \\
& \cup\left\{\left(t_{i(i-1}, s_{2 i}\right),\left(t_{i(i-1}, \overline{\left.s_{2 i}\right)}\right\}\right. \\
& \cup\left\{\left(s_{2 i}, s_{2 i}\right),\left(\overline{s_{2 i}}, \overline{\left.s_{2 i}\right)}\right\}\right. \\
\pi\left(s_{j}\right)= & \left\{r_{j}, p_{j}\right\}, \text { for } 1 \leq j \leq n \\
\pi(t)= & \emptyset, \text { for } t \notin\left\{s_{j}, \overline{s_{j}} \mid 1 \leq j \leq n\right\} ;
\end{aligned}
$$

- $T_{0}=\left\{s_{i}, \overline{s_{i}} \mid 1 \leq i \leq n, i\right.$ odd $\} \cup\left\{t_{i} \mid 1 \leq i \leq n / 2\right\} ;$
- $f:$ QBF \rightarrow MID is the reduction function defined by

$$
\begin{aligned}
& f(\psi)=\left(\left(r_{1} \rightarrow=\left(p_{1}\right)\right) \rightarrow \diamond\right. \\
& \left(\left(r_{3} \rightarrow=\left(p_{3}\right)\right) \rightarrow \diamond\right. \\
& \cdots \quad \cdots \rightarrow \diamond \\
& \left.\left.\left.\quad\left(\left(r_{n-1} \rightarrow=\left(p_{n-1}\right)\right) \rightarrow \Delta \varphi\right)\right) \cdots\right)\right) .
\end{aligned}
$$

Model K

Model K

s_{n-1}
$\left(s_{n-1} r_{n}^{r_{n-1}}\right.$

Model K

It suffices to show:
for any QBF formula $\psi=\forall x_{1} \exists x_{2} \ldots \forall x_{n-1} \exists x_{n} \varphi$,

$$
\psi \in \mathrm{TQBF} \Longleftrightarrow K, T_{0} \models f(\psi)
$$

An example

Let $\psi=\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4} \varphi$ be a QBF formula with φ quantifier-free.
Then

$$
f(\psi)=\left(r_{1} \rightarrow=\left(p_{1}\right)\right) \rightarrow \diamond\left(\left(r_{3} \rightarrow=\left(p_{3}\right)\right) \rightarrow \Delta \varphi^{\rightarrow}\right)
$$

Claim:
$\psi \in \operatorname{TQBF} \Longleftrightarrow K, T_{0} \models f(\psi)$.

Proof of Claim " \longrightarrow "

$" \Longrightarrow ":$ Suppose $\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4} \varphi \in$ TQBF, i.e. $\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4} \varphi \equiv$ T.

We will show that

$T_{0}=\{$ blue points $\}$

Proof of Claim "

$" \Longrightarrow "$ Suppose $\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4} \varphi \in$ TQBF, i.e. $\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4} \varphi \equiv \top$.
We will show that

$$
K, T_{0} \models\left(r_{1} \rightarrow=\left(p_{1}\right)\right) \rightarrow \Delta\left(\left(r_{3} \rightarrow=\left(p_{3}\right)\right) \rightarrow \Delta \varphi^{2}\right)
$$

$T_{0}=\{$ blue points $\}$

Proof of Claim "

$" \Longrightarrow "$ Suppose $\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4} \varphi \in$ TQBF, i.e. $\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4} \varphi \equiv \top$.
Claim:

$$
K, T_{0}=\left(r_{1} \rightarrow=\left(p_{1}\right)\right) \rightarrow \Delta\left(\left(r_{3} \rightarrow=\left(p_{3}\right)\right) \rightarrow \Delta \varphi \rightarrow\right)
$$

$T_{1}=\{$ red points $\}$
$K, T_{1} \models r_{1} \rightarrow=\left(p_{1}\right)$

Proof of Claim "

$" \Longrightarrow ":$ Suppose $\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4} \varphi \equiv \top$.
Claim:

$$
K, T_{0}=\left(r_{1} \rightarrow=\left(p_{1}\right)\right) \rightarrow \diamond\left(\left(r_{3} \rightarrow=\left(p_{3}\right)\right) \rightarrow \Delta \varphi^{\rightarrow}\right)
$$

$T_{1}=\{$ red points $\}$
$K, T_{1} \models r_{1} \rightarrow=\left(p_{1}\right)$
$\sigma: x_{1} \mapsto T$

Proof of Claim "

$" \Longrightarrow ":$ Suppose $\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4} \varphi \equiv \top$.
Claim:

$$
K, T_{0} \models\left(r_{1} \rightarrow=\left(p_{1}\right)\right) \rightarrow \diamond\left(\left(r_{3} \rightarrow=\left(p_{3}\right)\right) \rightarrow \diamond \varphi^{\rightarrow}\right)
$$

$T_{1}=\{$ red points $\}$
$K, T_{1} \models r_{1} \rightarrow=\left(p_{1}\right)$
$\sigma: x_{1} \mapsto \top, x_{2} \mapsto \perp$

Proof of Claim "

" "": Suppose $\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4} \varphi \equiv \top$.
Claim:

$$
K, T_{0} \models\left(r_{1} \rightarrow=\left(p_{1}\right)\right) \rightarrow \Delta\left(\left(r_{3} \rightarrow=\left(p_{3}\right)\right) \rightarrow \Delta \varphi \rightarrow\right)
$$

$$
\begin{aligned}
& T_{2}=\{\text { blue points }\} \\
& \sigma: x_{1} \mapsto T, x_{2} \mapsto \perp
\end{aligned}
$$

Proof of Claim "

" "": Suppose $\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4} \varphi \equiv \top$.
Claim:

$$
K, T_{0} \models\left(r_{1} \rightarrow=\left(p_{1}\right)\right) \rightarrow \Delta\left(\left(r_{3} \rightarrow=\left(p_{3}\right)\right) \rightarrow \diamond \varphi^{\rightarrow}\right)
$$

$$
\begin{aligned}
& T_{3}=\{\text { red points }\} \\
& \sigma: x_{1} \mapsto \top, x_{2} \mapsto \perp, x_{3} \mapsto \top
\end{aligned}
$$

Proof of Claim " \longrightarrow "

" "": Suppose $\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4} \varphi \equiv \mathrm{~T}$.
Claim:

$$
K, T_{0} \models\left(r_{1} \rightarrow=\left(p_{1}\right)\right) \rightarrow \Delta\left(\left(r_{3} \rightarrow=\left(p_{3}\right)\right) \rightarrow \Delta \varphi \rightarrow\right)
$$

$T_{4}=\{$ blue points $\}$
$\sigma: x_{1} \mapsto \top, x_{2} \mapsto \perp, x_{3} \mapsto \top, x_{4} \mapsto \perp$
$\sigma(\varphi)=\mathrm{T}$
It suffices to show $K, T_{4} \models \varphi^{\rightarrow}$.

Proof of Claim " \longrightarrow "

But now,

$$
K
$$

Proof of Claim " \longrightarrow "

$$
\begin{aligned}
& K^{\prime} \\
& \begin{array}{l}
s_{1} \stackrel{r_{1} p_{1}}{\stackrel{~}{s}} \stackrel{r_{1}}{\sim}
\end{array} \\
& s_{2} \stackrel{r_{2} p_{2}}{\sim} \\
& s_{2} \frac{r_{2}}{\rho} \\
& s_{s_{4}} \underset{\sim}{\stackrel{r}{r}} \stackrel{r_{4}}{\stackrel{r}{r} p_{4}}
\end{aligned}
$$

Proof of Claim " \longrightarrow "

K^{\prime}

$s_{2} \sim_{r}^{\sim} \stackrel{r}{r}_{\sim}^{r_{2} p_{2}}$

$s_{4} \underset{\sim}{s_{4}} \underset{\sim}{\stackrel{r_{4}}{\hookleftarrow}} \stackrel{r_{4} p_{4}}{\sim}$

Proof of Claim " \longrightarrow "

Proof of Claim " \longrightarrow "

$T_{4}=T_{\varphi, \sigma}=\{$ blue points $\}$ with

- $\sigma: x_{1} \mapsto \top, x_{2} \mapsto \perp, x_{3} \mapsto \top, x_{4} \mapsto \perp$

Proof of Claim " \longrightarrow "

$T_{4}=T_{\varphi, \sigma}=\{$ blue points $\}$ with

- $\sigma: x_{1} \mapsto \top, x_{2} \mapsto \perp, x_{3} \mapsto \top, x_{4} \mapsto \perp$
- $\sigma(\varphi)=T$

Proof of Claim "

\qquad
K_{φ}

$T_{4}=T_{\varphi, \sigma}=\{$ blue points $\}$ with $\sigma: x_{1} \mapsto \top, x_{2} \mapsto \perp, x_{3} \mapsto \top, x_{4} \mapsto \perp$ Hence

$$
\begin{gathered}
\sigma(\varphi)=\top \\
\Longrightarrow K_{\varphi}, T_{\varphi, \sigma} \models \varphi^{\rightarrow}
\end{gathered}
$$

Proof of Claim "

K^{\prime}

(s) $\stackrel{r}{r}_{r_{2} p_{2}}^{r}$
$s_{2} \stackrel{r_{2}}{\stackrel{~}{\rho}}$
$s_{3} \stackrel{r_{3} p_{3}}{\stackrel{s_{3}}{\sim}}$

$T_{4}=T_{\varphi, \sigma}=\{$ blue points $\}$ with $\sigma: x_{1} \mapsto \top, x_{2} \mapsto \perp, x_{3} \mapsto \top, x_{4} \mapsto \perp$ Hence

$$
\begin{aligned}
& \sigma(\varphi)=\top \\
\Longrightarrow & K_{\varphi}, T_{\varphi, \sigma} \models \varphi^{\prime} \\
\Longrightarrow & K^{\prime}, T_{4} \models \varphi^{\rightarrow}, \text { since } \varphi^{\rightarrow} \text { is modality-free }
\end{aligned}
$$

Proof of Claim "

$\Longrightarrow 3 y$

K

$T_{4}=T_{\varphi, \sigma}=\{$ blue points $\}$ with $\sigma: x_{1} \mapsto \top, x_{2} \mapsto \perp, x_{3} \mapsto \top, x_{4} \mapsto \perp$ Hence

$$
\begin{aligned}
& \sigma(\varphi)=\top \\
\Longrightarrow & K_{\varphi}, T_{\varphi, \sigma} \models \varphi^{\prime} \rightarrow \\
\Longrightarrow & K^{\prime}, T_{4} \models \varphi^{\rightarrow}, \text { since } \varphi^{\prime} \text { is modality-free } \\
\Longrightarrow & K, T_{4} \models \varphi^{\rightarrow}, \text { since } K^{\prime} \text { is a generated submodel of } K \quad \square
\end{aligned}
$$

The other direction " \Longleftarrow " is proved symmetrically.

Hence
Theorem
MID -MC is PSPACE-hard.

Theorem

MID -MC is PSPACE-complete.

The other direction " \Longleftarrow " is proved symmetrically.

Hence
Theorem
MID -MC is PSPACE-hard.
Theorem
MID -MC is PSPACE-complete.

Complexity results for fragments of MID-MC

Operators
Complexity Method/Ref.

\square	\diamond	\wedge	\otimes	\neg	\otimes	\rightarrow	$=(\cdot)$		
$*$	$*$	+	+	$*$	$*$	+	+	PSPACE	reduct. from TQBF
$*$	$*$	+	+	$*$	+	+	$*$	PSPACE	see above
$*$	+	+	$*$	$*$	+	+	$*$	PSPACE	see above
$*$	-	+	-	$*$	+	+	$*$	coNP	reduct. from TAUT
$*$	$*$	$*$	$*$	$*$	-	$*$	-	in P	[CES 1986]
$*$	$*$	+	+	$*$	$*$	-	+	NP	[E\& L 2011]
+	$*$	$*$	+	$*$	$*$	-	+	NP	[E\& L 2011]
$*$	+	$*$	$*$	$*$	$*$	-	+	NP	[E\& L 2011]
$*$	-	$*$	-	$*$	$*$	-	$*$	in P	[E\& L 2011]
$*$	$*$	$*$	$*$	$*$	$*$	-	-	in P	[E\& L 2011]

+ : operator present - : operator absent
* : complexity independent of operator

That's all.
Thank you!

