Model Checking for Modal Intuitionistic Dependence Logic

Fan Yang

Department of Mathematics and Statistics University of Helsinki

Logical Approaches to Barriers in Complexity II Cambridge, 26 - 30 March, 2012

Joint work with Johannes Ebbing, Peter Lohmann, Institute for Theoretical Computer Science, Leibniz University Hannover

First-order Dependence Logic with Intuitionistic Implication

- First-order Dependence Logic
- First-order Intuitionistic Dependence Logic
- Modal Intuitionistic Dependence Logic
 - Introduction
 - Some Properties of MID
- Complexity of Model Checking Problem for fragments of MID
 MID-MC is PSPACE-complete

First Order Quantifiers

 $\forall x_1 \exists y_1 \forall x_2 \exists y_2 \phi$

Henkin Quantifiers (Henkin, 1961)

$$\left(\begin{array}{cc} \forall x_1 & \exists y_1 \\ \forall x_2 & \exists y_2 \end{array}\right) \phi$$

Independence Friendly Logic (Hintikka, Sandu, 1989) $\forall x_1 \exists y_1 \forall x_2 \exists y_2 / \{x_1\} \phi$

Dependence Logic (Väänänen 2007)

 $\forall x_1 \exists y_1 \forall x_2 \exists y_2 (=(x_2, y_2) \land \phi)$

First Order Quantifiers

 $\forall x_1 \exists y_1 \forall x_2 \exists y_2 \phi$

Henkin Quantifiers (Henkin, 1961)

$$\left(\begin{array}{cc} \forall x_1 & \exists y_1 \\ \forall x_2 & \exists y_2 \end{array}\right) \phi$$

Independence Friendly Logic (Hintikka, Sandu, 1989) $\forall x_1 \exists y_1 \forall x_2 \exists y_2 / \{x_1\} \phi$

Dependence Logic (Väänänen 2007)

 $\forall x_1 \exists y_1 \forall x_2 \exists y_2 (=(x_2, y_2) \land \phi)$

First Order Quantifiers

 $\forall x_1 \exists y_1 \forall x_2 \exists y_2 \phi$

Henkin Quantifiers (Henkin, 1961)

$$\left(\begin{array}{cc} \forall x_1 & \exists y_1 \\ \forall x_2 & \exists y_2 \end{array}\right)\phi$$

Independence Friendly Logic (Hintikka, Sandu, 1989) $\forall x_1 \exists y_1 \forall x_2 \exists y_2 / \{x_1\} \phi$

Dependence Logic (Väänänen 2007)

 $\forall x_1 \exists y_1 \forall x_2 \exists y_2 (=(x_2, y_2) \land \phi)$

First Order Quantifiers

 $\forall x_1 \exists y_1 \forall x_2 \exists y_2 \phi$

Henkin Quantifiers (Henkin, 1961)

$$\left(\begin{array}{cc} \forall x_1 & \exists y_1 \\ \forall x_2 & \exists y_2 \end{array}\right) \phi$$

Independence Friendly Logic (Hintikka, Sandu, 1989)

 $\forall x_1 \exists y_1 \forall x_2 \exists y_2 / \{x_1\} \phi$

Dependence Logic (Väänänen 2007)

$$\forall x_1 \exists y_1 \forall x_2 \exists y_2 (=(x_2, y_2) \land \phi)$$

 $\mathbf{D} = \mathbf{FO} + = (t_1, \ldots, t_n)$

Well-formed formulas of ${\bf D}$ (in negation normal form) are given by the following grammar

 $\phi ::= \alpha \mid =(t_1, \ldots, t_n) \mid \neg =(t_1, \ldots, t_n) \mid \phi \land \phi \mid \phi \otimes \phi \mid \forall x \phi \mid \exists x \phi$

where α is a first order literal and t_1, \ldots, t_n are first-order terms.

 $\mathbf{D} = \mathbf{FO} + = (t_1, \ldots, t_n)$

Well-formed formulas of ${\bf D}$ (in negation normal form) are given by the following grammar

$$\phi ::= \alpha \mid = (t_1, \ldots, t_n) \mid \neg = (t_1, \ldots, t_n) \mid \phi \land \phi \mid \phi \otimes \phi \mid \forall x \phi \mid \exists x \phi$$

where α is a first order literal and t_1, \ldots, t_n are first-order terms.

D adopts team semantics, originally introduced by W. Hodges (1997) for IF-logic.

Important points of team semantics:

- satisfaction is defined w.r.t. sets of assignments (teams) instead of single assignments (Tarskian semantics)
- the semantics is compositional

Theorem (Enderton, Walkoe, Väänänen)

D sentences have the same expressive power as sentences of the second order Σ_1^1 fragment.

Intuitionistic Implication [Abramsky, Väänänen, 2009]

 In a general context of W. Hodges' team semantics, Abramsky, Väänänen introduced intuitionistic implication → and Boolean disjunction _☉.

• \land , \rightarrow satisfy the Galois connection:

 $\phi \land \psi \models \chi \Longleftrightarrow \phi \models \psi \to \chi$

• \rightarrow , \wedge , \otimes satisfy axioms of intuitionistic propositional logic.

• first-order intuitionistic dependence logic:

$$\mathsf{ID}=\mathsf{D}+\odot+\rightarrow$$

Intuitionistic Implication [Abramsky, Väänänen, 2009]

- In a general context of W. Hodges' team semantics, Abramsky, Väänänen introduced intuitionistic implication → and Boolean disjunction ⊘.
- \land , \rightarrow satisfy the Galois connection:

$$\phi \land \psi \models \chi \Longleftrightarrow \phi \models \psi \to \chi$$

- \rightarrow , \wedge , \otimes satisfy axioms of intuitionistic propositional logic.
- first-order intuitionistic dependence logic:

$$\text{ID}=\text{D}+\odot+\rightarrow$$

Intuitionistic Implication [Abramsky, Väänänen, 2009]

- In a general context of W. Hodges' team semantics, Abramsky, Väänänen introduced intuitionistic implication → and Boolean disjunction ⊘.
- \land , \rightarrow satisfy the Galois connection:

$$\phi \land \psi \models \chi \Longleftrightarrow \phi \models \psi \to \chi$$

- \rightarrow , \wedge , \otimes satisfy axioms of intuitionistic propositional logic.
- first-order intuitionistic dependence logic:

$$\text{ID}=\text{D}+\odot+\rightarrow$$

First-order Intuitionistic Dependence Logic

Theorem ([Abramsky, Väänänen 2009],[Y. 2010])

Sentences of **ID** have the same expressive power as sentences of the full second order logic.

PD and PID

- The underlying propositional logic of **D** and **ID** are *propositional dependence logic* (**PD**) and *propositional intuitionistic dependence logic* (**PID**), respectively.
- Syntactically:

$$PD = CPL + =(p_1, ..., p_n)$$

 $PID = IPL + =(p_1, ..., p_n)$

• **PID** is essentially equivalent to *inquisitive logic* [Ciardelli and Roelofsen, 2009], studied in the field of linguistics.

PD and PID

- The underlying propositional logic of **D** and **ID** are *propositional dependence logic* (**PD**) and *propositional intuitionistic dependence logic* (**PID**), respectively.
- Syntactically:

$$PD = CPL + = (p_1, \dots, p_n)$$
$$PID = IPL + = (p_1, \dots, p_n)$$

• **PID** is essentially equivalent to *inquisitive logic* [Ciardelli and Roelofsen, 2009], studied in the field of linguistics.

• Modal Dependence Logic (Väänänen 2008)

 $MD = Modal Logic (M) + = (p_1, \cdots, p_n)$

Modal Intuitionistic Dependence Logic

 $\mathsf{MID}=\mathsf{MD}+\odot+\rightarrow$

Well-formed formulas of **MID** (in negation normal form) are defined by the following grammar :

$$\varphi ::= p \mid \neg p \mid = (p_1, \cdots, p_n) \mid \neg = (p_1, \cdots, p_n) \mid$$
$$\varphi \land \varphi \mid \varphi \otimes \varphi \mid \varphi \otimes \varphi \mid \varphi \otimes \varphi \mid \varphi \rightarrow \varphi \mid \Box \varphi \mid \Diamond \varphi$$

• Modal Dependence Logic (Väänänen 2008)

 $MD = Modal Logic (M) + = (p_1, \cdots, p_n)$

• Modal Intuitionistic Dependence Logic

 $\text{MID} = \text{MD} + \odot + \rightarrow$

Well-formed formulas of **MID** (in negation normal form) are defined by the following grammar :

$$\varphi ::= p \mid \neg p \mid = (p_1, \cdots, p_n) \mid \neg = (p_1, \cdots, p_n) \mid$$
$$\varphi \land \varphi \mid \varphi \otimes \varphi \mid \varphi \otimes \varphi \mid \varphi \otimes \varphi \mid \varphi \rightarrow \varphi \mid \Box \varphi \mid \Diamond \varphi$$

• Modal Dependence Logic (Väänänen 2008)

 $MD = Modal Logic (M) + = (p_1, \cdots, p_n)$

• Modal Intuitionistic Dependence Logic

 $\text{MID} = \text{MD} + \odot + \rightarrow$

Well-formed formulas of **MID** (in negation normal form) are defined by the following grammar :

$$\varphi ::= \boldsymbol{p} \mid \neg \boldsymbol{p} \mid = (\boldsymbol{p}_1, \cdots, \boldsymbol{p}_n) \mid \neg = (\boldsymbol{p}_1, \cdots, \boldsymbol{p}_n) \mid$$
$$\varphi \land \varphi \mid \varphi \otimes \varphi \mid \varphi \otimes \varphi \mid \varphi \otimes \varphi \mid \varphi \rightarrow \varphi \mid \Box \varphi \mid \Diamond \varphi$$

• Modal Dependence Logic (Väänänen 2008)

 $MD = Modal Logic (M) + = (p_1, \cdots, p_n)$

• Modal Intuitionistic Dependence Logic

 $\text{MID} = \text{MD} + \odot + \rightarrow$

Well-formed formulas of **MID** (in negation normal form) are defined by the following grammar :

$$\varphi ::= \boldsymbol{\rho} \mid \neg \boldsymbol{\rho} \mid = (\boldsymbol{\rho}_1, \cdots, \boldsymbol{\rho}_n) \mid \neg = (\boldsymbol{\rho}_1, \cdots, \boldsymbol{\rho}_n) \mid$$
$$\varphi \land \varphi \mid \varphi \otimes \varphi \mid \varphi \otimes \varphi \mid \varphi \otimes \varphi \mid \varphi \rightarrow \varphi \mid \Box \varphi \mid \Diamond \varphi$$

• Modal Dependence Logic (Väänänen 2008)

 $MD = Modal Logic (M) + = (p_1, \cdots, p_n)$

• Modal Intuitionistic Dependence Logic

 $\text{MID} = \text{MD} + \odot + \rightarrow$

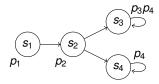
Well-formed formulas of **MID** (in negation normal form) are defined by the following grammar :

$$\varphi ::= \boldsymbol{\rho} \mid \neg \boldsymbol{\rho} \mid = (\boldsymbol{\rho}_1, \cdots, \boldsymbol{\rho}_n) \mid \neg = (\boldsymbol{\rho}_1, \cdots, \boldsymbol{\rho}_n) \mid$$
$$\varphi \land \varphi \mid \varphi \otimes \varphi \mid \varphi \otimes \varphi \mid \varphi \otimes \varphi \mid \varphi \rightarrow \varphi \mid \Box \varphi \mid \Diamond \varphi$$

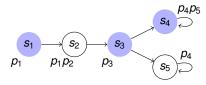
• $MD = MID[\neg, =(\cdot), \land, \otimes, \Box, \Diamond],$

Definition

A *Kripke model* is a triple $K = (S, R, \pi)$ consisting of a nonempty set S, a binary relation $R \subseteq S \times S$, and a labeling function $\pi : S \to \wp(\mathsf{PROP})$.



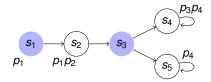
Teams: sets of possible worlds



team $T = \{s_1, s_3, s_4\}$

For any set T of states in a Kripke model K, we define

$$\mathbf{R}(\mathbf{T}) = \{ \mathbf{s} \in \mathbf{K} \mid \exists \mathbf{s}' \in \mathbf{T}, \text{ s.t. } \mathbf{s}' \mathbf{R} \mathbf{s} \},\$$

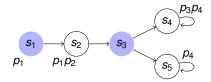


For any set T of states in a Kripke model K, we define

$$\mathbf{R}(\mathbf{T}) = \{ \mathbf{s} \in \mathbf{K} \mid \exists \mathbf{s}' \in \mathbf{T}, \text{ s.t. } \mathbf{s}' \mathbf{R} \mathbf{s} \},\$$

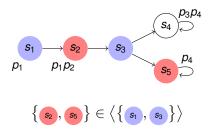
Let T be a team. Define

 $\langle T \rangle = \{ T' \mid T' \subseteq R(T) \text{ and } \forall s \in T, R(s) \cap T' \neq \emptyset \}.$



Let *T* be a team. Define

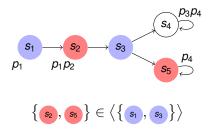
 $\langle T \rangle = \{ T' \mid T' \subseteq R(T) \text{ and } \forall s \in T, R(s) \cap T' \neq \emptyset \}.$



Clearly, $R(T) \in \langle T \rangle$.

Let *T* be a team. Define

 $\langle T \rangle = \{ T' \mid T' \subseteq R(T) \text{ and } \forall s \in T, R(s) \cap T' \neq \emptyset \}.$



Clearly, $R(T) \in \langle T \rangle$.

Let $K = (S, R, \pi)$ be a Kripke model, $T \subseteq S$ a team. Define

- $K, T \models \Box \varphi$ iff $K, R(T) \models \varphi$
- $K, T \models \Diamond \varphi$ iff there exists nonempty $T' \in \langle T \rangle$ such that $K, T' \models \varphi$

Let $K = (S, R, \pi)$ be a Kripke model, $T \subseteq S$ a team. Define

- $K, T \models \Box \varphi$ iff $K, R(T) \models \varphi$
- $K, T \models \Diamond \varphi$ iff there exists nonempty $T' \in \langle T \rangle$ such that $K, T' \models \varphi$
- $K, T \models p$ iff $p \in \pi(s)$ for all $s \in T$
- $K, T \models \neg p$ iff $p \notin \pi(s)$ for all $s \in T$

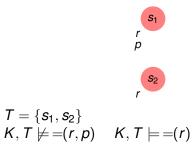
$$T = \{s_1, s_2\}$$

K, T \models r
K, T $\not\models \neg p$

Let $K = (S, R, \pi)$ be a Kripke model, $T \subseteq S$ a team. Define

•
$$K, T \models \Box \varphi$$
 iff $K, R(T) \models \varphi$
• $K, T \models \Diamond \varphi$ iff there exists nonempty $T' \in \langle T \rangle$ such that $K, T' \models \varphi$
• $K, T \models p$ iff $p \in \pi(s)$ for all $s \in T$
• $K, T \models \neg p$ iff $p \notin \pi(s)$ for all $s \in T$
• $K, T \models =(p_1, \dots, p_n, q)$ iff for any $s_1, s_2 \in T$ such that
 $\pi(s_1) \cap \{p_1, \dots, p_n\} = \pi(s_2) \cap \{p_1, \dots, p_n\}$, we have that
 $\pi(s_1) \cap \{q\} = \pi(s_2) \cap \{q\}$

• $K, T \models \neg = (p_1, \cdots, p_n, q)$ iff $T = \emptyset$



Let $K = (S, R, \pi)$ be a Kripke model, $T \subseteq S$ a team. Define

•
$$K, T \models \Box \varphi$$
 iff $K, R(T) \models \varphi$

• $K, T \models \Diamond \varphi$ iff there exists nonempty $T' \in \langle T \rangle$ such that $K, T' \models \varphi$

•
$$K, T \models p$$
 iff $p \in \pi(s)$ for all $s \in T$

•
$$K, T \models \neg p \text{ iff } p \notin \pi(s) \text{ for all } s \in T$$

•
$$K, T \models =(p_1, \dots, p_n, q)$$
 iff for any $s_1, s_2 \in T$ such that $\pi(s_1) \cap \{p_1, \dots, p_n\} = \pi(s_2) \cap \{p_1, \dots, p_n\}$, we have that $\pi(s_1) \cap \{q\} = \pi(s_2) \cap \{q\}$

•
$$K, T \models \neg = (p_1, \cdots, p_n, q)$$
 iff $T = \emptyset$

•
$$K, T \models \varphi \land \psi$$
 iff $K, T \models \varphi$ and $K, T \models \psi$

• $K, T \models \varphi \otimes \psi$ iff there are teams T_1, T_2 with $T = T_1 \cup T_2$ such that $K, T_1 \models \varphi$ and $K, T_2 \models \psi$

$$T = \{s_1, s_2\}$$

$$K, T \models p \otimes r$$

$$K, T \not\models = (p) \otimes \neg = (p)$$

Let $K = (S, R, \pi)$ be a Kripke model, $T \subseteq S$ a team. Define

- $K, T \models \Box \varphi$ iff $K, R(T) \models \varphi$
- $K, T \models \Diamond \varphi$ iff there exists nonempty $T' \in \langle T \rangle$ such that $K, T' \models \varphi$
- $K, T \models p$ iff $p \in \pi(s)$ for all $s \in T$
- $K, T \models \neg p$ iff $p \notin \pi(s)$ for all $s \in T$
- $K, T \models =(p_1, \dots, p_n, q)$ iff for any $s_1, s_2 \in T$ such that $\pi(s_1) \cap \{p_1, \dots, p_n\} = \pi(s_2) \cap \{p_1, \dots, p_n\}$, we have that $\pi(s_1) \cap \{q\} = \pi(s_2) \cap \{q\}$

•
$$K, T \models \neg = (p_1, \cdots, p_n, q)$$
 iff $T = \emptyset$

- $K, T \models \varphi \land \psi$ iff $K, T \models \varphi$ and $K, T \models \psi$
- $K, T \models \varphi \otimes \psi$ iff there are teams T_1, T_2 with $T = T_1 \cup T_2$ such that $K, T_1 \models \varphi$ and $K, T_2 \models \psi$
- $K, T \models \varphi \otimes \psi$ iff $K, T \models \varphi$ or $K, T \models \psi$
- $K, T \models \varphi \rightarrow \psi$ iff for any subteam $T' \subseteq T$ if $K, T' \models \varphi$ then $K, T' \models \psi$.

Let $K = (S, R, \pi)$ be a Kripke model, $T \subseteq S$ a team. Define

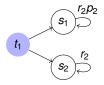
- $K, T \models \Box \varphi$ iff $K, R(T) \models \varphi$
- $K, T \models \Diamond \varphi$ iff there exists nonempty $T' \in \langle T \rangle$ such that $K, T' \models \varphi$
- $K, T \models p$ iff $p \in \pi(s)$ for all $s \in T$
- $K, T \models \neg p$ iff $p \notin \pi(s)$ for all $s \in T$
- $K, T \models =(p_1, \dots, p_n, q)$ iff for any $s_1, s_2 \in T$ such that $\pi(s_1) \cap \{p_1, \dots, p_n\} = \pi(s_2) \cap \{p_1, \dots, p_n\}$, we have that $\pi(s_1) \cap \{q\} = \pi(s_2) \cap \{q\}$

•
$$K, T \models \neg = (p_1, \cdots, p_n, q)$$
 iff $T = \emptyset$

- $K, T \models \varphi \land \psi$ iff $K, T \models \varphi$ and $K, T \models \psi$
- $K, T \models \varphi \otimes \psi$ iff there are teams T_1, T_2 with $T = T_1 \cup T_2$ such that $K, T_1 \models \varphi$ and $K, T_2 \models \psi$
- $K, T \models \varphi \otimes \psi$ iff $K, T \models \varphi$ or $K, T \models \psi$
- $K, T \models \varphi \rightarrow \psi$ iff for any subteam $T' \subseteq T$ if $K, T' \models \varphi$ then $K, T' \models \psi$.

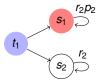
Lemma (Empty team property)

Empty team satisfies all formulas ϕ of **MID** in any Kripke model K, namely $K, \emptyset \models \phi$.



$$T = \left\{ \begin{array}{c} t_1 \end{array} \right\}$$

 $K,T\models\Diamond(r_2\rightarrow=(p_2))$



- $T = \left\{ t_1 \right\}$
- $K,T\models\Diamond(r_2\rightarrow=(p_2))$

 $T_0 = \left\{ \begin{array}{c} s_1 \end{array} \right\}$

 $\textit{K},\textit{T}_{0} \models \textit{r}_{2} \rightarrow = (\textit{p}_{2})$

$$=(p_1, \cdots, p_n, q) \equiv (=(p_1) \land \cdots \land =(p_n)) \rightarrow =(q)$$
$$=(p) \equiv p \otimes \neg p$$
$$\neg p \equiv p \rightarrow \bot;$$

 $\neg = (p_1, \cdots, p_n) \equiv = (p_1, \cdots, p_n) \rightarrow \bot;$

Theorem (Downwards Closure)

For any formula ϕ of MID, if $K, T \models \phi$ and $T' \subseteq T$, then $K, T' \models \phi$.

Definition (Flatness)

We say that ϕ is *flat* if for all Kripke models K and teams T

$$K, T \models \phi \iff (K, \{s\} \models \phi \text{ for all } s \in T).$$

Theorem

Formulas without any occurrences of $=(\cdot)$ and \odot are flat, namely **MID** $[\neg, \land, \otimes, \Box, \Diamond]$ formulas are flat.

Theorem (Downwards Closure)

For any formula ϕ of MID, if $K, T \models \phi$ and $T' \subseteq T$, then $K, T' \models \phi$.

Definition (Flatness)

We say that ϕ is *flat* if for all Kripke models K and teams T

$$K, T \models \phi \iff (K, \{s\} \models \phi \text{ for all } s \in T).$$

Theorem

Formulas without any occurrences of $=(\cdot)$ and \odot are flat, namely **MID** $[\neg, \land, \otimes, \Box, \Diamond]$ formulas are flat.

Theorem (Downwards Closure)

For any formula ϕ of MID, if $K, T \models \phi$ and $T' \subseteq T$, then $K, T' \models \phi$.

Definition (Flatness)

We say that ϕ is *flat* if for all Kripke models K and teams T

$$K, T \models \phi \iff (K, \{s\} \models \phi \text{ for all } s \in T).$$

Theorem

Formulas without any occurrences of $=(\cdot)$ and \odot are flat, namely **MID** $[\neg, \land, \otimes, \Box, \Diamond]$ formulas are flat.

Satisfaction of **MID** is invariant under generated submodels, p-morphic images, disjoint unions.

Satisfaction of **MID** is invariant under generated submodels, p-morphic images, disjoint unions.

[Sevenster 2009]:

Theorem

On singleton teams, MD = M.

There is a translation from **MD** into the usual modal logic. But the translation causes an exponential blow-up in the size of the formulas.

Theorem

On arbitrary teams, MD > M.

[Sevenster 2009]:

Theorem

On singleton teams, MD = M.

There is a translation from **MD** into the usual modal logic. But the translation causes an exponential blow-up in the size of the formulas.

Theorem

On arbitrary teams, MD > M.

Theorem (Sevenster 2009)

Satisfiability problem for **MD** is NEXPTIME-complete.

Theorem (Ebbing, Lohmann 2011)

Model checking problem for MD is NP-complete.

Definition

Let \mathcal{L} be a sublogic (fragment) of **MID**. The *model checking problem* for \mathcal{L} is defined as the decision problem of the set

$$\mathcal{L}-\mathrm{MC} := \left\{ \langle K, T, \varphi
angle \; \left| \begin{array}{c} K = (S, R, \pi) ext{ is a Kripke model, } T \subseteq S, \ arphi \in \mathcal{L} ext{ and } K, T \models \varphi \end{array}
ight.
ight.$$

Complexity results for fragments of **MD**-MC (Ebbing, Lohmann 2010)

		Оре	rato	rs		Complexity	Ref.
	\Diamond	\wedge	\otimes		$=(\cdot)$		
*	*	+	+	*	+	NP	[E& L 2011]
+	*	*	+	*	+	NP	[E& L 2011]
*	+	*	*	*	+	NP	[E& L 2011]
*	—	*	_	*	*	in P	[E& L 2011]
*	*	*	*	*	-	in P	[CES 1986]

+ : operator present - : operator absent

* : complexity independent of operator

Computational Complexity of MID Model Checking

Theorem

Model checking problem for **MID** is PSPACE-complete.

Complexity results for fragments of MID-MC

			Оре	erato	ors		Complexity	Method/Ref.	
	\Diamond	\wedge	\otimes		\bigcirc	\rightarrow	$=(\cdot)$		
*	*	+	+	*	*	+	+	PSPACE	reduct. from TQBF
*	*	+	+	*	+	+	*	PSPACE	see above
*	+	+	*	*	+	+	*	PSPACE	see above
*	_	+	_	*	+	+	*	coNP	reduct. from TAUT
*	*	*	*	*	_	*	_	in P	[CES 1986]
*	*	+	+	*	*	_	+	NP	[E& L 2011]
+	*	*	+	*	*	_	+	NP	[E& L 2011]
*	+	*	*	*	*	_	+	NP	[E& L 2011]
*	_	*	_	*	*	_	*	in P	[E& L 2011]
*	*	*	*	*	*	—	_	in P	[E& L 2011]

+ : operator present - : operator absent * : complexity independent of operator In the rest of the talk, we will prove:

- MID-MC is in PSPACE.
- MID-MC is PSPACE-hard.

MID -MC is in PSPACE.

PSPACE algorithm of MID-MC

```
check(K = (S, R, \pi), \varphi, T):
case \varphi
when \varphi = p
   foreach s \in T
      if not p \in \pi(s) then
         return false
   return true
when \varphi = \neg p
   foreach s \in T
      if p \in \pi(s) then
         return false
   return true
when \varphi = = (p_1, \ldots, p_n, q)
   for each (s, s') \in T \times T
      if \pi(s) \cap \{p_1, \dots, p_n\} = \pi(s') \cap \{p_1, \dots, p_n\} then
         if (q \in \pi(s) \text{ and not } q \in \pi(s')) or (\text{not } q \in \pi(s) \text{ and } q \in \pi(s')) then
            return false
   return true
when \varphi = \neg = (p_1, \ldots, p_n)
   if S = \emptyset
      return true
   return false
when \varphi = \psi \otimes \chi
   existentially guess two sets of states T_1, T_2 \subseteq S
   if not T_1 \cup T_2 = T then
      return false
   return (check (K, T_1, \psi) and check (K, T_2, \chi))
```

PSPACE algorithm of MID-MC (cont.)

```
when \varphi = \psi \otimes \chi
   return (check(K, T, \psi) or check(K, T, \psi))
when \varphi = \psi \wedge \chi
   return (check(K, T, \psi) and check(K, T, \chi))
when \varphi = \Box \psi
   T' := \emptyset
   foreach s' \in S
      foreach s \in T
         if (s, s') \in R then
            T' := T' \cup \{s'\}
   return check (K, T', \psi)
when \varphi = \Diamond \psi
   existentially guess a set of states T' \subseteq S
      foreach s \in T
         if there is no s' \in T' with (s, s') \in R then
            return false
   return check (K, T', \psi)
when \varphi = \psi \rightarrow \chi
   universally guess a set of states T' \subset T
   if (not check (K, \psi, T') or check (K, \chi, T'))
      return true
   return false
```

Next, we show

Theorem

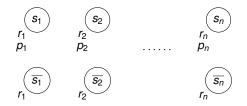
MID -MC is PSPACE-hard.

Proof. Reduction from TQBF.

Kripke model K_{φ}

Definition

Let $\varphi(p_1, \dots, p_n)$ be a formula of **CPL**. We define a Kripke model $K_{\varphi} = (S_{\varphi}, R_{\varphi}, \pi_{\varphi})$ by letting



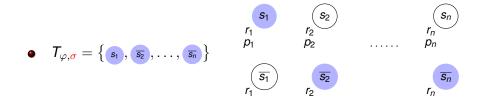
 σ vs $T_{\varphi,\sigma}$

Let σ : *Prop* \rightarrow { \top , \perp } be a valuation of **CPL**. The team $T_{\varphi,\sigma}$ of K_{φ} *induced by* σ is defined as

$$T_{\varphi,\sigma} = \{ s_i \in S_{\varphi} \mid \sigma(p_i) = \top \} \cup \{ \overline{s_i} \in S_{\varphi} \mid \sigma(p_i) = \bot \}.$$

Example:

• $\sigma: p_1 \mapsto \top p_2 \mapsto \bot \dots p_n \mapsto \bot$



Definition

Let *r* be a fixed propositional variable.

For every formula φ of **CPL** in negation normal form without any occurrence of *r*, we inductively define a formula φ^{\rightarrow} of **MID** as follows:

$$p^{
ightarrow} := r
ightarrow p,$$

 $(\neg p)^{
ightarrow} := r
ightarrow \neg p,$
 $(\varphi \land \psi)^{
ightarrow} := \varphi^{
ightarrow} \land \psi^{
ightarrow},$
 $(\varphi \lor \psi)^{
ightarrow} := \varphi^{
ightarrow} \otimes \psi^{
ightarrow}.$

In team $T_{\varphi,\sigma}$ of the Kripke model K_{φ} ,

MID formula φ^{\rightarrow} behaves like the **CPL** formula φ under valuation σ .

Lemma

For any formula φ and any valuation σ of **CPL**,

$$\sigma(\varphi) = \top \iff K_{\varphi}, T_{\varphi,\sigma} \models \varphi^{\rightarrow}$$

Proof. By induction on φ . Case $\varphi = p$: We have that $S_p = \{s, \overline{s}\}$ and that

$$\sigma(\boldsymbol{p}) = \top \iff T_{\boldsymbol{p},\sigma} = \{\boldsymbol{s}\}$$

$$\iff \mathcal{K}_{\boldsymbol{p}}, T_{\boldsymbol{p},\sigma} \models \boldsymbol{r} \to \boldsymbol{p}.$$

s

MID -MC is PSPACE-hard.

Proof.

We give a polynomial-time reduction from TQBF to **MID**-MC.

Let $\psi = \forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n \varphi$ with φ quantifier-free (thus in **CPL**) be a QBF instance. The corresponding **MID**-MC instance is defined as $(K, T_0, f(\psi))$ where

MID -MC is PSPACE-hard.

Proof. We give a polynomial-time reduction from TQBF to **MID**-MC.

Let $\psi = \forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n \varphi$ with φ quantifier-free (thus in **CPL**) be a QBF instance. The corresponding **MID**-MC instance is defined as $(K, T_0, f(\psi))$ where

MID -MC is PSPACE-hard.

Proof.

We give a polynomial-time reduction from TQBF to **MID**-MC.

Let $\psi = \forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n \varphi$ with φ quantifier-free (thus in **CPL**) be a QBF instance. The corresponding **MID**-MC instance is defined as $(K, T_0, f(\psi))$ where

•
$$K = (S, R, \pi)$$
, where $S = \bigcup_{1 \le i \le n} S_i$, $R = \bigcup_{1 \le i \le n} R_i$, for $1 \le i \le n/2$

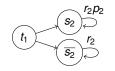
$$\begin{array}{rcl} S_{2i-1} &=& \{s_{2i-1}, \overline{s_{2i-1}}\} \\ S_{2i} &=& \{s_{2i}, \overline{s_{2i}}\} \cup \{t_i\} \cup \{t_{i1}, \cdots, t_{i(i-1)}\} \\ R_{2i-1} &=& \{(s_{2i-1}, s_{2i-1}), (\overline{s_{2i-1}}, \overline{s_{2i-1}})\} \\ R_{2i} &=& \{(t_i, t_{i1}), (t_{i1}, t_{i2}), \cdots, (t_{i(i-2)}, t_{i(i-1)})\} \\ & \cup \{(t_{i(i-1)}, s_{2i}), (t_{i(i-1)}, \overline{s_{2i}})\} \\ & \cup \{(s_{2i}, s_{2i}), (\overline{s_{2i}}, \overline{s_{2i}})\} \\ \pi(s_j) &=& \{r_j, p_j\}, \text{ for } 1 \leq j \leq n \\ \pi(t) &=& \emptyset, \text{ for } t \notin \{s_j, \overline{s_j} \mid 1 \leq j \leq n\}; \end{array}$$

• $T_0 = \{s_i, \overline{s_i} \mid 1 \le i \le n, i \text{ odd}\} \cup \{t_i \mid 1 \le i \le n/2\};$

• $f: QBF \rightarrow MID$ is the reduction function defined by

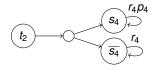
$$f(\psi) = \left((r_1 \to =(p_1)) \to \Diamond \\ \left((r_3 \to =(p_3)) \to \Diamond \\ \cdots \quad \cdots \to \Diamond \\ \left((r_{n-1} \to =(p_{n-1})) \to \Diamond \varphi^{\to} \right) \right) \cdots \right) \right).$$

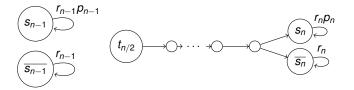
Model K



÷

÷

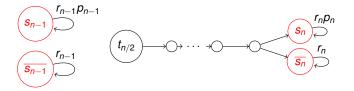




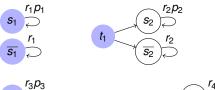
Model K

÷

÷

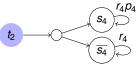


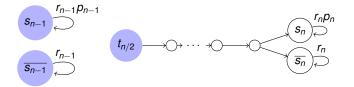
Model K



÷

÷





It suffices to show:

for any QBF formula $\psi = \forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n \varphi$,

$$\psi \in \mathsf{TQBF} \iff K, T_0 \models f(\psi).$$

An example

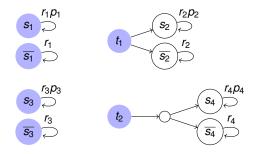
Let $\psi = \forall x_1 \exists x_2 \forall x_3 \exists x_4 \varphi$ be a QBF formula with φ quantifier-free.

Then

$$f(\psi) = (r_1 \rightarrow = (p_1)) \rightarrow \Diamond ((r_3 \rightarrow = (p_3)) \rightarrow \Diamond \varphi^{\rightarrow})$$

Claim:

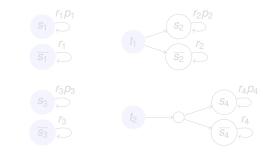
$$\psi \in \mathsf{TQBF} \Longleftrightarrow K, T_0 \models f(\psi).$$



"⇒": Suppose $\forall x_1 \exists x_2 \forall x_3 \exists x_4 \varphi \in \mathsf{TQBF}$, i.e. $\forall x_1 \exists x_2 \forall x_3 \exists x_4 \varphi \equiv \top$.

We will show that

 $K, T_0 \models (r_1 \rightarrow =(p_1)) \rightarrow \Diamond ((r_3 \rightarrow =(p_3)) \rightarrow \Diamond \varphi^{\rightarrow})$

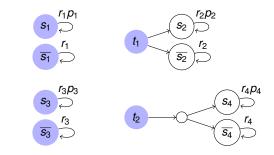


 $T_0 = \{ blue points \}$

"⇒": Suppose $\forall x_1 \exists x_2 \forall x_3 \exists x_4 \varphi \in \mathsf{TQBF}$, i.e. $\forall x_1 \exists x_2 \forall x_3 \exists x_4 \varphi \equiv \top$.

We will show that

$$\mathsf{K}, \mathsf{T}_0 \models (\mathsf{r}_1 \rightarrow = (\mathsf{p}_1)) \rightarrow \Diamond ((\mathsf{r}_3 \rightarrow = (\mathsf{p}_3)) \rightarrow \Diamond \varphi^{\rightarrow})$$

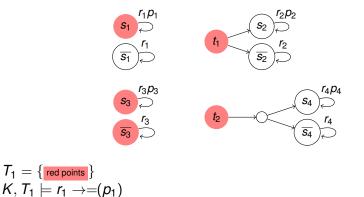


 $T_0 = \{ \text{ blue points} \}$

"⇒": Suppose $\forall x_1 \exists x_2 \forall x_3 \exists x_4 \varphi \in \mathsf{TQBF}$, i.e. $\forall x_1 \exists x_2 \forall x_3 \exists x_4 \varphi \equiv \top$.

Claim:

 $K, T_0 \models (r_1 \rightarrow = (p_1)) \rightarrow \Diamond ((r_3 \rightarrow = (p_3)) \rightarrow \Diamond \varphi^{\rightarrow})$

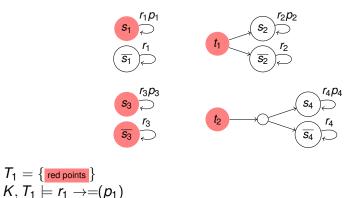


"⇒": Suppose
$$\forall x_1 \exists x_2 \forall x_3 \exists x_4 \varphi \equiv \top$$
.

Claim:

 $\sigma: \mathbf{X}_1 \mapsto \top$

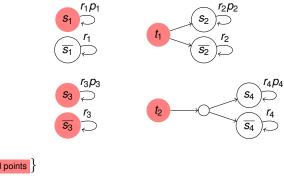
 $K, T_0 \models (r_1 \rightarrow = (p_1)) \rightarrow \Diamond ((r_3 \rightarrow = (p_3)) \rightarrow \Diamond \varphi^{\rightarrow})$



"⇒": Suppose
$$\forall x_1 \exists x_2 \forall x_3 \exists x_4 \varphi \equiv \top$$
.

Claim:

 $K, T_0 \models (r_1 \rightarrow = (p_1)) \rightarrow \Diamond ((r_3 \rightarrow = (p_3)) \rightarrow \Diamond \varphi^{\rightarrow})$

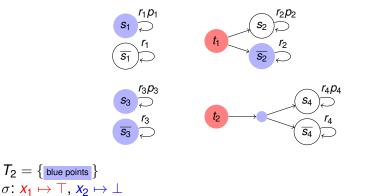


 $T_1 = \{ \text{ red points} \} \\ K, T_1 \models r_1 \rightarrow = (p_1) \\ \sigma: \mathbf{X}_1 \mapsto \top, \mathbf{X}_2 \mapsto \bot$

" \Longrightarrow ": Suppose $\forall x_1 \exists x_2 \forall x_3 \exists x_4 \varphi \equiv \top$.

Claim:

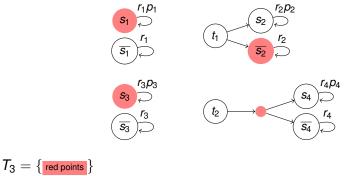
 $K, T_0 \models (r_1 \rightarrow = (p_1)) \rightarrow \Diamond ((r_3 \rightarrow = (p_3)) \rightarrow \Diamond \varphi^{\rightarrow})$



" \Longrightarrow ": Suppose $\forall x_1 \exists x_2 \forall x_3 \exists x_4 \varphi \equiv \top$.

Claim:

 $K, T_0 \models (r_1 \rightarrow = (p_1)) \rightarrow \Diamond ((r_3 \rightarrow = (p_3)) \rightarrow \Diamond \varphi^{\rightarrow})$

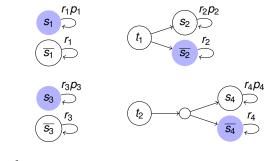


 $\sigma: \mathbf{X}_1 \mapsto \top, \mathbf{X}_2 \mapsto \bot, \mathbf{X}_3 \mapsto \top$

"⇒": Suppose
$$\forall x_1 \exists x_2 \forall x_3 \exists x_4 \varphi \equiv \top$$
.

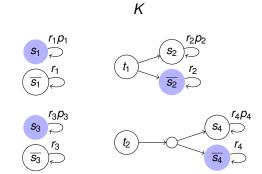
Claim:

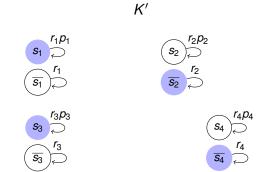
 $K, T_0 \models (r_1 \rightarrow = (p_1)) \rightarrow \Diamond ((r_3 \rightarrow = (p_3)) \rightarrow \Diamond \varphi^{\rightarrow})$

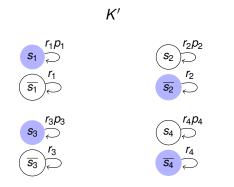


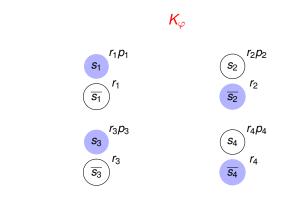
 $T_4 = \{ \text{blue points} \}$ $\sigma: \mathbf{X}_1 \mapsto \top, \mathbf{X}_2 \mapsto \bot, \mathbf{X}_3 \mapsto \top, \mathbf{X}_4 \mapsto \bot$ $\sigma(\varphi) = \top$ It suffices to show $K, T_4 \models \varphi^{\rightarrow}.$

But now,

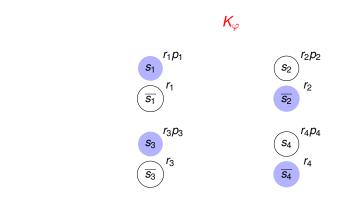




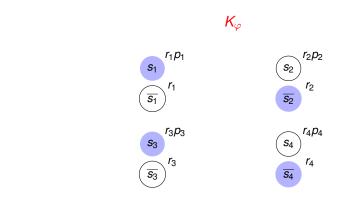




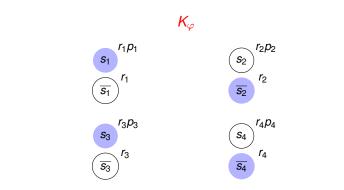
 $T_4 = T_{\varphi,\sigma} = \{ \text{ blue points} \} \text{ with}$ • $\sigma: x_1 \mapsto \top, x_2 \mapsto \bot, x_3 \mapsto \top, x_4 \mapsto \bot$ • $\sigma(\varphi) = \top$



 $T_4 = T_{\varphi,\sigma} = \{ \text{blue points} \} \text{ with}$ • $\sigma: x_1 \mapsto \top, x_2 \mapsto \bot, x_3 \mapsto \top, x_4 \mapsto \bot$ • $\sigma(\varphi) = \top$

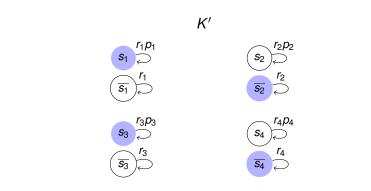


$$\begin{split} \mathcal{T}_4 &= \mathcal{T}_{\varphi,\sigma} = \{ \begin{array}{c} \text{blue points} \\ \bullet & \sigma \colon x_1 \mapsto \top, \, x_2 \mapsto \bot, \, x_3 \mapsto \top, \, x_4 \mapsto \bot \\ \bullet & \sigma(\varphi) = \top \end{split}$$



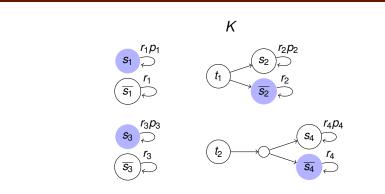
 $T_4 = T_{\varphi,\sigma} = \{ \text{blue points} \} \text{ with } \sigma : x_1 \mapsto \top, x_2 \mapsto \bot, x_3 \mapsto \top, x_4 \mapsto \bot$ Hence

$$\sigma(\varphi) = \top$$
$$\Longrightarrow K_{\varphi}, T_{\varphi,\sigma} \models \varphi^{\rightarrow}$$



 $T_4 = T_{\varphi,\sigma} = \{ \text{blue points} \} \text{ with } \sigma : x_1 \mapsto \top, x_2 \mapsto \bot, x_3 \mapsto \top, x_4 \mapsto \bot$ Hence

$$\begin{split} \sigma(\varphi) &= \top \\ \Longrightarrow & \mathcal{K}_{\varphi}, \mathcal{T}_{\varphi,\sigma} \models \varphi^{\rightarrow} \\ \Longrightarrow & \mathcal{K}', \mathcal{T}_{4} \models \varphi^{\rightarrow}, \text{ since } \varphi^{\rightarrow} \text{ is modality-free} \end{split}$$



 $T_4 = T_{\varphi,\sigma} = \{ \text{blue points} \} \text{ with } \sigma \colon x_1 \mapsto \top, x_2 \mapsto \bot, x_3 \mapsto \top, x_4 \mapsto \bot$ Hence

$$\sigma(\varphi) = \top$$

$$\Longrightarrow K_{\varphi}, T_{\varphi,\sigma} \models \varphi^{\rightarrow}$$

$$\Longrightarrow K', T_{4} \models \varphi^{\rightarrow}, \text{ since } \varphi^{\rightarrow} \text{ is modality-free}$$

$$\Longrightarrow K, T_{4} \models \varphi^{\rightarrow}, \text{ since } K' \text{ is a generated submodel of } K \square$$

The other direction "—" is proved symmetrically.

Hence

Theorem

MID -MC is PSPACE-hard.

Theorem

MID -MC is PSPACE-complete.

The other direction "—" is proved symmetrically.

Hence

Theorem

MID -MC is PSPACE-hard.

Theorem

MID -MC is PSPACE-complete.

Complexity results for fragments of MID-MC

Operators								Complexity	Method/Ref.
	\Diamond	\wedge	\otimes		\bigcirc	\rightarrow	$=(\cdot)$		
*	*	+	+	*	*	+	+	PSPACE	reduct. from TQBF
*	*	+	+	*	+	+	*	PSPACE	see above
*	+	+	*	*	+	+	*	PSPACE	see above
*	_	+	_	*	+	+	*	coNP	reduct. from TAUT
*	*	*	*	*	_	*	_	in P	[CES 1986]
*	*	+	+	*	*	_	+	NP	[E& L 2011]
+	*	*	+	*	*	_	+	NP	[E& L 2011]
*	+	*	*	*	*	_	+	NP	[E& L 2011]
*	_	*	_	*	*	_	*	in P	[E& L 2011]
*	*	*	*	*	*	_	_	in P	[E& L 2011]

+ : operator present - : operator absent * : complexity independent of operator That's all.

Thank you!