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Characterizing dependence between variables

First Order Quantifiers
∀x1∃y1∀x2∃y2φ

Henkin Quantifiers (Henkin, 1961)(
∀x1 ∃y1
∀x2 ∃y2

)
φ

Independence Friendly Logic (Hintikka, Sandu, 1989)

∀x1∃y1∀x2∃y2/{x1}φ

Dependence Logic (Väänänen 2007)

∀x1∃y1∀x2∃y2(=(x2, y2) ∧ φ)
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Syntax of First-order Dependence Logic (D)

D = FO + =(t1, . . . , tn)

Well-formed formulas of D (in negation normal form) are given by the
following grammar

φ ::= α | =(t1, . . . , tn) | ¬ =(t1, . . . , tn) | φ ∧ φ | φ⊗ φ | ∀xφ | ∃xφ

where α is a first order literal and t1, . . . , tn are first-order terms.
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Semantics of dependence logic: Team semantics

D adopts team semantics, originally introduced by W. Hodges (1997)
for IF-logic.

Important points of team semantics:

1 satisfaction is defined w.r.t. sets of assignments (teams) instead of
single assignments (Tarskian semantics)

2 the semantics is compositional
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Theorem (Enderton, Walkoe, Väänänen)
D sentences have the same expressive power as sentences of the
second order Σ1

1 fragment.
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Intuitionistic Implication [Abramsky, Väänänen, 2009]

In a general context of W. Hodges’ team semantics, Abramsky,
Väänänen introduced intuitionistic implication→ and Boolean
disjunction >.

∧,→ satisfy the Galois connection:

φ ∧ ψ |= χ⇐⇒ φ |= ψ → χ

→, ∧, > satisfy axioms of intuitionistic propositional logic.

first-order intuitionistic dependence logic:

ID = D + >+→

8/71



Intuitionistic Implication [Abramsky, Väänänen, 2009]

In a general context of W. Hodges’ team semantics, Abramsky,
Väänänen introduced intuitionistic implication→ and Boolean
disjunction >.

∧,→ satisfy the Galois connection:

φ ∧ ψ |= χ⇐⇒ φ |= ψ → χ

→, ∧, > satisfy axioms of intuitionistic propositional logic.

first-order intuitionistic dependence logic:

ID = D + >+→

8/71



Intuitionistic Implication [Abramsky, Väänänen, 2009]

In a general context of W. Hodges’ team semantics, Abramsky,
Väänänen introduced intuitionistic implication→ and Boolean
disjunction >.

∧,→ satisfy the Galois connection:

φ ∧ ψ |= χ⇐⇒ φ |= ψ → χ

→, ∧, > satisfy axioms of intuitionistic propositional logic.

first-order intuitionistic dependence logic:

ID = D + >+→

8/71



First-order Intuitionistic Dependence Logic

Theorem ([Abramsky, Väänänen 2009],[Y. 2010])
Sentences of ID have the same expressive power as sentences of the
full second order logic.
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PD and PID

The underlying propositional logic of D and ID are propositional
dependence logic (PD) and propositional intuitionistic dependence
logic (PID), respectively.

Syntactically:

PD = CPL+ =(p1, . . . ,pn)

PID = IPL+ =(p1, . . . ,pn)

PID is essentially equivalent to inquisitive logic [Ciardelli and
Roelofsen, 2009], studied in the field of linguistics.
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Modal Intuitionistic Dependence Logic

Modal Dependence Logic (Väänänen 2008)

MD = Modal Logic (M)+ =(p1, · · · ,pn)

Modal Intuitionistic Dependence Logic

MID = MD + >+→

Well-formed formulas of MID (in negation normal form) are defined by
the following grammar :

ϕ ::= p | ¬p | =(p1, · · · ,pn) | ¬ =(p1, · · · ,pn) |
ϕ ∧ ϕ | ϕ⊗ ϕ | ϕ> ϕ | ϕ→ ϕ | �ϕ | ♦ϕ

� =(p1, . . . ,pn)
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Team Semantics of MID

Definition
A Kripke model is a triple K = (S,R, π) consisting of a nonempty set S,
a binary relation R ⊆ S × S, and a labeling function π : S → ℘(PROP).

s1 s2

s3

s4
p1 p2

p3p4

p4

13/71



Teams

Teams: sets of possible worlds

s1 s2 s3

s4

s5
p1 p1p2 p3

p4p5

p4

team T =
{

s1 , s3 , s4

}
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Operations on teams

For any set T of states in a Kripke model K , we define

R(T ) = {s ∈ K | ∃s′ ∈ T , s.t. s′Rs},

s1 s2 s3

s4

s5
p1 p1p2

p3p4

p4

15/71



Operations on teams

For any set T of states in a Kripke model K , we define

R(T ) = {s ∈ K | ∃s′ ∈ T , s.t. s′Rs},

s1 s2 s3

s4

s5
p1 p1p2

p3p4

p4

16/71



Operations on teams

Let T be a team. Define

〈T 〉 = {T ′ | T ′ ⊆ R(T ) and ∀s ∈ T , R(s) ∩ T ′ 6= ∅}.

s1 s2 s3

s4

s5
p1 p1p2

p3p4

p4
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s1 s2 s3

s4

s5
p1 p1p2

p3p4

p4

{
s2 , s5

}
∈
〈{

s1 , s3

}〉
Clearly, R(T ) ∈ 〈T 〉.
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Team Semantics of MID

Let K = (S,R, π) be a Kripke model, T ⊆ S a team. Define

K ,T |= �ϕ iff K ,R(T ) |= ϕ

K ,T |= ♦ϕ iff there exists nonempty T ′ ∈ 〈T 〉 such that K ,T ′ |= ϕ
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s2

s1

r
p

r

T = {s1, s2}
K ,T |= r
K ,T 6|= ¬p
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Lemma (Empty team property)
Empty team satisfies all formulas φ of MID in any Kripke model K ,
namely K , ∅ |= φ.
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Example

t1

s1

s2

r2p2

r2

T =
{

t1
}

K ,T |= ♦(r2 →=(p2))
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Example

t1

s1

s2

r2p2

r2

T =
{

t1
}

K ,T |= ♦(r2 →=(p2))

T0 =
{

s1

}
K ,T0 |= r2 →=(p2)
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Simple properties

=(p1, · · · ,pn,q)≡
(

=(p1) ∧ · · · ∧ =(pn)
)
→=(q)

=(p)≡p > ¬p

¬p≡p → ⊥;

¬ =(p1, · · · ,pn)≡ =(p1, · · · ,pn)→ ⊥;
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Important Properties of MID

Theorem (Downwards Closure)
For any formula φ of MID, if K ,T |= φ and T ′ ⊆ T , then K ,T ′ |= φ.

Definition (Flatness)
We say that φ is flat if for all Kripke models K and teams T

K ,T |= φ⇐⇒ (K , {s} |= φ for all s ∈ T ).

Theorem
Formulas without any occurrences of =(·) and > are flat, namely
MID[¬,∧,⊗,�,♦] formulas are flat.
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Satisfaction Invariance Theorem

Theorem
Satisfaction of MID is invariant under generated submodels, p-morphic
images, disjoint unions.
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Important Properties of MD

[Sevenster 2009]:

Theorem
On singleton teams, MD = M.

There is a translation from MD into the usual modal logic. But the
translation causes an exponential blow-up in the size of the formulas.

Theorem
On arbitrary teams, MD > M.
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Complexity results of MD

Theorem (Sevenster 2009)
Satisfiability problem for MD is NEXPTIME-complete.

Theorem (Ebbing, Lohmann 2011)
Model checking problem for MD is NP-complete.
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MID Model Checking Problem

Definition
Let L be a sublogic (fragment) of MID. The model checking problem
for L is defined as the decision problem of the set

L−MC :=
{
〈K ,T , ϕ〉 K = (S,R, π) is a Kripke model, T ⊆ S,

ϕ ∈ L and K ,T |= ϕ

}
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Complexity results for fragments of MD-MC
(Ebbing, Lohmann 2010)

Operators Complexity Ref.
� ♦ ∧ ⊗ ¬ =(·)
∗ ∗ + + ∗ + NP [E& L 2011]
+ ∗ ∗ + ∗ + NP [E& L 2011]
∗ + ∗ ∗ ∗ + NP [E& L 2011]
∗ − ∗ − ∗ ∗ in P [E& L 2011]
∗ ∗ ∗ ∗ ∗ − in P [CES 1986]

+ : operator present − : operator absent
∗ : complexity independent of operator
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Computational Complexity of MID Model Checking

Theorem
Model checking problem for MID is PSPACE-complete.
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Complexity results for fragments of MID-MC

Operators Complexity Method/Ref.
� ♦ ∧ ⊗ ¬ > → =(·)
∗ ∗ + + ∗ ∗ + + PSPACE reduct. from TQBF
∗ ∗ + + ∗ + + ∗ PSPACE see above
∗ + + ∗ ∗ + + ∗ PSPACE see above
∗ − + − ∗ + + ∗ coNP reduct. from TAUT
∗ ∗ ∗ ∗ ∗ − ∗ − in P [CES 1986]
∗ ∗ + + ∗ ∗ − + NP [E& L 2011]
+ ∗ ∗ + ∗ ∗ − + NP [E& L 2011]
∗ + ∗ ∗ ∗ ∗ − + NP [E& L 2011]
∗ − ∗ − ∗ ∗ − ∗ in P [E& L 2011]
∗ ∗ ∗ ∗ ∗ ∗ − − in P [E& L 2011]

+ : operator present − : operator absent
∗ : complexity independent of operator
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In the rest of the talk, we will prove:

Theorem
MID -MC is PSPACE complete.

MID -MC is in PSPACE.
MID -MC is PSPACE-hard.
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Theorem
MID -MC is in PSPACE.
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PSPACE algorithm of MID -MC
check(K = (S,R, π), ϕ,T ):

case ϕ

when ϕ = p
foreach s ∈ T

i f not p ∈ π(s) then
return f a l s e

return t r ue

when ϕ = ¬p
foreach s ∈ T

i f p ∈ π(s) then
return f a l s e

return t r ue

when ϕ = =(p1, . . . ,pn,q)
foreach (s, s′) ∈ T × T

i f π(s) ∩ {p1, . . . ,pn} = π(s′) ∩ {p1, . . . ,pn} then
i f (q ∈ π(s) and not q ∈ π(s′) ) or ( not q ∈ π(s) and q ∈ π(s′) ) then

return f a l s e
return t r ue

when ϕ = ¬ =(p1, . . . ,pn)
i f S = ∅

return t r ue
return f a l s e

when ϕ = ψ ⊗ χ
e x i s t e n t i a l l y guess two sets o f s ta tes T1, T2 ⊆ S
i f not T1 ∪ T2 = T then

return f a l s e
return ( check (K ,T1, ψ ) and check (K ,T2, χ ) )
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PSPACE algorithm of MID -MC (cont.)
when ϕ = ψ > χ

return ( check (K ,T , ψ ) or check (K ,T , ψ ) )

when ϕ = ψ ∧ χ
return ( check (K ,T , ψ ) and check (K ,T , χ ) )

when ϕ = �ψ
T ′ := ∅
foreach s′ ∈ S

foreach s ∈ T
i f (s, s′) ∈ R then

T ′ := T ′ ∪ {s′}
return check (K ,T ′, ψ )

when ϕ = ♦ψ
e x i s t e n t i a l l y guess a set of s ta tes T ′ ⊆ S

foreach s ∈ T
i f there i s no s′ ∈ T ′ wi th (s, s′) ∈ R then

return f a l s e
return check (K ,T ′, ψ )

when ϕ = ψ → χ
u n i v e r s a l l y guess a set of s ta tes T ′ ⊆ T
i f ( not check (K , ψ,T ′ ) or check (K , χ,T ′ ) )

return t r ue
return f a l s e
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Next, we show

Theorem
MID -MC is PSPACE-hard.

Proof. Reduction from TQBF.
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Kripke model Kϕ

Definition
Let ϕ(p1, · · · ,pn) be a formula of CPL. We define a Kripke model
Kϕ = (Sϕ,Rϕ, πϕ) by letting

Sϕ := {s1, . . . , sn, s1, . . . , sn},
Rϕ := ∅,
πϕ(si) := {ri ,pi},
πϕ(si) := {ri}.

s1 s2

s1 s2 sn

sn

· · · · · ·
r1
p1

r1

r2
p2

r2

rn
pn

rn
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σ vs Tϕ,σ

Let σ : Prop → {>,⊥} be a valuation of CPL. The team Tϕ,σ of Kϕ
induced by σ is defined as

Tϕ,σ = {si ∈ Sϕ | σ(pi) = >} ∪ {si ∈ Sϕ | σ(pi) = ⊥}.

Example:
σ: p1 7→ > p2 7→ ⊥ . . . pn 7→ ⊥

Tϕ,σ =
{

s1 , s2 , . . . , sn

}
s1 s2

s1 s2 sn

sn

· · · · · ·
r1
p1

r1

r2
p2

r2

rn
pn

rn
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ϕ→

Definition
Let r be a fixed propositional variable.

For every formula ϕ of CPL in negation normal form without any
occurrence of r , we inductively define a formula ϕ→ of MID as follows:

p→ := r → p,
(¬p)→ := r → ¬p,

(ϕ ∧ ψ)→ := ϕ→ ∧ ψ→,
(ϕ ∨ ψ)→ := ϕ→ > ψ→.
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In team Tϕ,σ of the Kripke model Kϕ,

MID formula ϕ→ behaves like the CPL formula ϕ under valuation σ.

Lemma
For any formula ϕ and any valuation σ of CPL,

σ(ϕ) = > ⇐⇒ Kϕ,Tϕ,σ |= ϕ→.

Proof. By induction on ϕ.
Case ϕ = p: We have that Sp = {s, s} and that

σ(p) = > ⇐⇒ Tp,σ = {s}
⇐⇒ Kp,Tp,σ |= r → p. s

s
r
p

r
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Complexity of MID Model Checking

Theorem
MID -MC is PSPACE-hard.

Proof.
We give a polynomial-time reduction from TQBF to MID -MC.

Let ψ = ∀x1∃x2 . . . ∀xn−1∃xn ϕ with ϕ quantifier-free (thus in CPL) be a
QBF instance. The corresponding MID -MC instance is defined as
(K ,T0, f (ψ)) where
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K = (S,R, π), where S =
⋃

1≤i≤n
Si , R =

⋃
1≤i≤n

Ri , for 1 ≤ i ≤ n/2

S2i−1 = {s2i−1, s2i−1}
S2i = {s2i , s2i} ∪ {ti} ∪ {ti1, · · · , ti(i−1)}

R2i−1 = {(s2i−1, s2i−1), (s2i−1, s2i−1)}
R2i = {(ti , ti1), (ti1, ti2), · · · , (ti(i−2), ti(i−1))}

∪{(ti(i−1), s2i), (ti(i−1), s2i)}
∪{(s2i , s2i), (s2i , s2i)}

π(sj) = {rj ,pj}, for 1 ≤ j ≤ n
π(t) = ∅, for t /∈ {sj , sj | 1 ≤ j ≤ n};

T0 = {si , si | 1 ≤ i ≤ n, i odd} ∪ {ti | 1 ≤ i ≤ n/2};
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f : QBF→MID is the reduction function defined by

f (ψ) =
((

r1 →=(p1)
)
→ ♦((

r3 →=(p3)
)
→ ♦

· · · · · · → ♦((
rn−1 →=(pn−1)

)
→ ♦ϕ→

))
. . .
))
.
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Model K
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Model K
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It suffices to show:

for any QBF formula ψ = ∀x1∃x2 . . . ∀xn−1∃xn ϕ,

ψ ∈ TQBF⇐⇒ K ,T0 |= f (ψ).
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An example

Let ψ = ∀x1∃x2∀x3∃x4ϕ be a QBF formula with ϕ quantifier-free.

Then
f (ψ) = (r1 →=(p1))→ ♦

(
(r3 →=(p3))→ ♦ϕ→

)
Claim:

ψ ∈ TQBF⇐⇒ K ,T0 |= f (ψ).

s3

s3

s1

s1

r3p3

r3

r1p1

r1 t1

s2

s2

t2

s4

s4

r2p2

r2

r4p4

r4

54/71



Proof of Claim “=⇒”

“=⇒”: Suppose ∀x1∃x2∀x3∃x4ϕ ∈ TQBF, i.e. ∀x1∃x2∀x3∃x4ϕ ≡ >.

We will show that

K ,T0 |= (r1 →=(p1))→ ♦((r3 →=(p3))→ ♦ϕ→)

s3

s3

s1

s1

r3p3

r3

r1p1

r1 t1

s2

s2

t2

s4

s4

r2p2

r2

r4p4

r4

T0 = { blue points }
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Proof of Claim “=⇒”

“=⇒”: Suppose ∀x1∃x2∀x3∃x4ϕ ∈ TQBF, i.e. ∀x1∃x2∀x3∃x4ϕ ≡ >.

Claim:
K ,T0 |= (r1 →=(p1))→♦((r3 →=(p3))→ ♦ϕ→)
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s3

s1

s1

r3p3

r3

r1p1

r1 t1

s2

s2

t2

s4

s4

r2p2

r2

r4p4

r4

T1 = { red points }
K ,T1 |= r1 →=(p1)
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Proof of Claim “=⇒”

“=⇒”: Suppose ∀x1∃x2∀x3∃x4ϕ ≡ >.

Claim:
K ,T0 |= (r1 →=(p1))→♦((r3 →=(p3))→ ♦ϕ→)
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s1
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r3p3

r3

r1p1

r1 t1

s2

s2

t2

s4

s4

r2p2

r2

r4p4

r4

T1 = { red points }
K ,T1 |= r1 →=(p1)
σ: x1 7→ >
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Proof of Claim “=⇒”

“=⇒”: Suppose ∀x1∃x2∀x3∃x4ϕ ≡ >.

Claim:
K ,T0 |= (r1 →=(p1))→♦((r3 →=(p3))→ ♦ϕ→)

s3

s3

s1

s1

r3p3

r3
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r1 t1

s2
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t2

s4

s4

r2p2
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r4p4

r4

T1 = { red points }
K ,T1 |= r1 →=(p1)
σ: x1 7→ >, x2 7→ ⊥
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Proof of Claim “=⇒”

“=⇒”: Suppose ∀x1∃x2∀x3∃x4ϕ ≡ >.

Claim:
K ,T0 |= (r1 →=(p1))→♦((r3 →=(p3))→ ♦ϕ→)
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r3p3

r3

r1p1

r1 t1

s2

s2
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s4

s4

r2p2
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r4

T2 = { blue points }
σ: x1 7→ >, x2 7→ ⊥
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Proof of Claim “=⇒”

“=⇒”: Suppose ∀x1∃x2∀x3∃x4ϕ ≡ >.

Claim:
K ,T0 |= (r1 →=(p1))→♦((r3 →=(p3))→♦ϕ→)
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r3

r1p1

r1 t1
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s4

s4
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T3 = { red points }
σ: x1 7→ >, x2 7→ ⊥, x3 7→ >
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Proof of Claim “=⇒”

“=⇒”: Suppose ∀x1∃x2∀x3∃x4ϕ ≡ >.

Claim:
K ,T0 |= (r1 →=(p1))→♦((r3 →=(p3))→♦ϕ→)

s3

s3

s1

s1

r3p3

r3

r1p1

r1 t1

s2

s2

t2

s4

s4

r2p2

r2

r4p4

r4

T4 = { blue points }
σ: x1 7→ >, x2 7→ ⊥, x3 7→ >, x4 7→ ⊥
σ(ϕ) = >
It suffices to show K ,T4 |= ϕ→.
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Proof of Claim “=⇒”

But now,

K

s3

s3

s1

s1

r3p3

r3

r1p1

r1 t1

s2

s2

t2

s4

s4

r2p2

r2

r4p4

r4

62/71



Proof of Claim “=⇒”

K ′
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Proof of Claim “=⇒”
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Proof of Claim “=⇒”
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T4 = Tϕ,σ = { blue points } with

σ: x1 7→ >, x2 7→ ⊥, x3 7→ >, x4 7→ ⊥
σ(ϕ) = >
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Proof of Claim “=⇒”

Kϕ

s3

s3

s1

s1

r3p3

r3

r1p1

r1

s2

s2

s4

s4

r2p2

r2

r4p4

r4

T4 = Tϕ,σ = { blue points } with

σ: x1 7→ >, x2 7→ ⊥, x3 7→ >, x4 7→ ⊥
σ(ϕ) = >

65/71



Proof of Claim “=⇒”
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Proof of Claim “=⇒”
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T4 = Tϕ,σ = { blue points } with σ: x1 7→ >, x2 7→ ⊥, x3 7→ >, x4 7→ ⊥
Hence

σ(ϕ) = >
=⇒Kϕ,Tϕ,σ |= ϕ→

=⇒K ′,T4 |= ϕ→, since ϕ→ is modality-free
=⇒K ,T4 |= ϕ→ since K ′ is a generated submodel of K
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Proof of Claim “=⇒”

K ′
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Hence

σ(ϕ) = >
=⇒Kϕ,Tϕ,σ |= ϕ→

=⇒K ′,T4 |= ϕ→, since ϕ→ is modality-free
=⇒K ,T4 |= ϕ→ since K ′ is a generated submodel of K
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Proof of Claim “=⇒”

K
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r1 t1
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r2p2

r2
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r4

T4 = Tϕ,σ = { blue points } with σ: x1 7→ >, x2 7→ ⊥, x3 7→ >, x4 7→ ⊥
Hence

σ(ϕ) = >
=⇒Kϕ,Tϕ,σ |= ϕ→

=⇒K ′,T4 |= ϕ→, since ϕ→ is modality-free
=⇒K ,T4 |= ϕ→, since K ′ is a generated submodel of K
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The other direction “⇐=” is proved symmetrically.

Hence

Theorem
MID -MC is PSPACE-hard.

Theorem
MID -MC is PSPACE-complete.
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Complexity results for fragments of MID-MC

Operators Complexity Method/Ref.
� ♦ ∧ ⊗ ¬ > → =(·)
∗ ∗ + + ∗ ∗ + + PSPACE reduct. from TQBF
∗ ∗ + + ∗ + + ∗ PSPACE see above
∗ + + ∗ ∗ + + ∗ PSPACE see above
∗ − + − ∗ + + ∗ coNP reduct. from TAUT
∗ ∗ ∗ ∗ ∗ − ∗ − in P [CES 1986]
∗ ∗ + + ∗ ∗ − + NP [E& L 2011]
+ ∗ ∗ + ∗ ∗ − + NP [E& L 2011]
∗ + ∗ ∗ ∗ ∗ − + NP [E& L 2011]
∗ − ∗ − ∗ ∗ − ∗ in P [E& L 2011]
∗ ∗ ∗ ∗ ∗ ∗ − − in P [E& L 2011]

+ : operator present − : operator absent
∗ : complexity independent of operator
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That’s all.

Thank you!
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