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This paper gives a bird’s-eye view of the various ingredients that make up a modern,

model-checking-based approach to performability evaluation: Markov reward models,

temporal logics and continuous stochastic logic, model-checking algorithms, bisimulation

and the handling of non-determinism. A short historical account as well as a large case

study complete this picture. In this way, we show convincingly that the smart combination

of performability evaluation with stochastic model-checking techniques, developed over the

last decade, provides a powerful and unified method of performability evaluation, thereby

combining the advantages of earlier approaches.

1. Introduction

Since the mid-1970’s the notion of performability has been developed and applied (see

Section 2) successfully in the joint assessment of the performance and reliability of

computer and communication systems. A crucial element in doing this has been the

construction and analysis of so-called Markov reward models (see Section 3).

In this paper we demonstrate that modern-day temporal logics, like CSL and CSRL,

allow a very flexible way of presenting all kinds of performability measures of in-

terest, as shown in Section 4. Combined with stochastic model-checking techniques

(see Section 5), they form an excellent vehicle for actually carrying out performability

evaluation studies, as demonstrated in Section 8. Moreover, recent results for achieving

state-space reductions using the notion of bisimulation, as developed in the realm of

formal verification, can be applied here also, as we show in Section 6. Furthermore,

the issue of non-determinism, which has traditionally not been addressed at all in

the field of stochastic models for performability evaluation, also turns out to be a

valuable technique when used in combination with stochastic models, leading to upper
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and lower bounds for performability measures when parts of the model are underspecified

– see Section 7. We present a case study in Section 8 addressing a survivability

assessment of an abstract model of the Google file system demonstrating the power of our

approach. A concise overview of the symbols used throughout this paper is given in an

appendix.

To summarise, this paper provides background details on the various ingredients that

make up a modern, model-checking-based approach to performability evaluation. It

shows that the combination of performability evaluation with stochastic model checking

provides us with a powerful and unified evaluation tool exploiting the advantages of

earlier approaches.

2. A short history of performability

2.1. Before it all started (up to 1975)

Up until the mid 1970’s, the notion of performability as we know it now did not exist.

Although the term ‘performability’ can be found in pre-1975 publications (for example,

using Google Scholar), it was just used then to mean ‘perform-ability ’: for example, in

the context of biological and chemical reactions, the ability to make a step or to take

place.

Before the mid-1970’s, the desirable properties of performance (throughput, delays)

and reliability (mean-time to failure, availability, reliability) for computer systems were

typically treated independently, effectively assuming that the system could not fail when

assessing performance, or, when addressing reliability or availability, that the performance,

as such, did not matter, and that only the sheer operation was of interest.

In the 1960’s, the field of performance evaluation in itself started to develop, but

focussed on relatively simple queueing models and queueing networks (cf. the well-

known books Kleinrock (1975) and Kleinrock (1976)), with applications in the (classical)

telecommunications sector and multiprogrammed computer systems (mainframes).

The field of reliability engineering was already flourishing, largely in the context of

mechanical and electrical engineering, thereby focussed on small, and often simplified,

models of system components, and using simple reliability block diagrams and fault-trees.

Dealing with complex component dependencies, repair units and larger system models

was not done in practice.

The use of simple Markovian models (continuous-time Markov chains), both in the

context of reliability and performance evaluation, started to grow, though practical

application was hampered by the limited numerical means (algorithms and readily

available computers) of that time. An example of this is provided by the work in

Arnold (1973) on a number of simple Markovian models, which showed the importance

of the notion of system coverage, that is, the probability of proper reconfiguration after

a system fault has taken place. His model, and most other Markov chain related studies,

focussed on relatively simple and structured models, for which closed-form solutions for

the measures of interest could be obtained.
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2.2. Performability: birth and childhood (1975–1985)

Throughout the 1970’s, the idea started to develop that for many applications (or systems),

a separate treatment of performance and reliability was not always useful. Example cases

that emerged were large telecommunication switches in which individual modules could

fail, thereby affecting the delivered system performance, but not directly causing the

system as a whole to fail. Other fields where such fault-tolerant systems started to emerge

include the aerospace and aircraft industries, and in large-scale computing facilities in

which multiple fairly autonomous systems were interconnected through new networking

technology, such as Ethernet or IBM token ring. It is interesting to note that the first

annual IEEE Conference on Fault-Tolerant Computing Systems (FTCS) took place in

1971: it still runs anually, though following a merger with the IFIP conference series on

Dependable Computing for Critical Applications (DCCA) and the IEEE Performance and

Dependability Symposium (PDS), since 2000 it has been held under the name Dependable

Systems and Networks (DSN)†.

The first contributions on performability, that is, the integrated analysis of system

performance and reliability, were published in the IEEE FTCS series in the 1970’s.

Notable amongst this work is Beaudry (1978) which developed the notion of ‘the mean

computation before failure’ in a Markovian model as a generalisation of the classical

mean time to failure, thereby taking into account the different computational capacity in

various degraded systems states, giving them a different value (or reward), before reaching

an overall system failure state. Another important paper was Gay and Ketelsen (1979),

which studied the performance of gracefully degradable systems.

The true seminal papers on performability are due to John F. Meyer, now Professor

Emeritus of the University of Michigan. In a series of papers (Meyer 1976; Meyer 1980;

Meyer 1982), he carefully defined the notion of performability as a precise probabilistic

measure of levels of performance that can be attained in systems that change their

structure over time, for example, due to the occurrence of faults and repair actions.

Although the framework and definitions he introduced are very general, they are most

often ‘implemented’ in a Markovian context, and this is often taken to be the performability

framework (as we will do in the rest of the paper). Meyer and his students also focussed

on the Markovian case (see, for example, Movaghar and Meyer (1984), Sanders and

Meyer (1987) and Sanders and Meyer (1991)), and also developed a number of algorithms

to evaluate simpler models, for example, models with an acyclic structure (Furchtgott and

Meyer 1984).

In the early 1980’s, a number of developments took place that influenced the growth of

the performability field:

— Small computer systems (VAX, PDP 11 and later PCs) became available that brought

the numerical evaluation of Markovian models within the reach of many researchers.

Towards 1985, software tools also started to emerge, allowing Markovian models with

several thousands of states to be constructed and analysed efficiently.

† See http://www.dsn.org/.
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— Clearly, such large Markovian models could not be input manually, but were the result

of ‘high-level models’ with an underlying Markov chain semantics. Instrumental in this

has been the work reported in Molloy (1982) on stochastic Petri nets (extending Petri

nets with stochastic timing), and later Ajmone Marsan et al. (1984) in developing

generalised stochastic Petri nets (GSPNs) and Movaghar and Meyer (1984) on

stochastic activity networks (SANs). The Petri net approaches were initially developed

purely with a view to the application of performance evaluation, while SANs were

developed with the performability application in mind from the outset.

— In 1983, Gross and Miller introduced an efficient method for analysing the

time-dependent behaviour of continuous-time Markov chains (CTMCs) (Gross and

Miller 1984). This method, now known as uniformisation, played an enormously

important role in the development of efficient performability algorithms in the years

to come. However, it took some years (at least 5) for it to be taken up. In fact, it

turned out that the method was a specialised case of a method that had been proposed

earlier in Jensen (1953).

2.3. Performability: adolescence (1985–1995)

A characteristic of the adolescent phase is an enormous sudden growth. The (re)invention

of uniformisation in the early 1980’s resulted in a huge growth in the application

potential for performability evaluation since it allowed the evaluation of the transient

state-probabilities in larger Markov chains in an efficient and stable way, without the

need to solve differential equations numerically. This new technique, combined with the

quickly growing computational and memory capabilities of commodity computers, made

performability evaluation applicable in practice. The number of publications in the field

on new uniformisation-based techniques, supporting tools and applications grew sharply.

More attention was paid to high-level tool mechanisms, thus also making the specification

of large models much easier. During this period, there was also a growth in research

capacity around the theme of ‘performability’, and new software tools were developed,

along with the publication of new algorithms for both general and special cases.

In 1991, the first performability workshop took place at the University of Twente†. This

brought together some forty researchers in the field (the number being limited in part by

travel bans due to the outbreak of the Gulf war a few days before the workshop). The

combined evaluation of performance and reliability (or dependability, as it was now often

called more generically – see Avizienis et al. (2004)) had become more mainstream.

To conclude this section, the work of many others could be mentioned, for example:

— for tools, see Donatiello and Iyer (1987a), Donatiello and Iyer (1987b), Geist and

Trivedi (1990), Goyal et al. (1987) and Haverkort and Niemegeers (1996);

— for specialised recursive algorithms to evaluate performability distributions for spe-

cially structured, typically acyclic, Markovian models, see Goyal and Tantawi (1987),

Goyal and Tantawi (1988) and Grassi et al. (1988);

† See http://www.pmccs.net/ and the special issue van Dijk et al. (1992).
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— for some more general numerical techniques, see Pattipati et al. (1993), Qureshi and

Sanders (1994a), Reibman and Trivedi (1988), Reibman and Trivedi (1989), Smith

et al. (1988) and Souza e Silva and Gail (1992).

More on all these can be found in several surveys, such as Meyer (1992), Meyer (1995)

and Haverkort et al. (2001).

2.4. Performability: young adult (1995–2005)

Throughout the 1990’s and the early 21st century, performability evaluation grew more

mature in terms of the refinement of algorithms and the incorporation of the algorithms

in more tools. Markov reward models (Howard 1971a; Howard 1971b), that is, the

combination of CTMCs with state and impulse reward structures remained the most

prominent model. Model enrichment towards semi-Markovian models (Markov models

with more generally distributed state residence times) were addressed, but were not taken

up widely.

The use of symbolic state space representation methods, such as multi-terminal decision

diagrams (Hermanns et al. 2003) and matrix diagrams (Ciardo et al. 2007), adapted from

the field of formal verification and the use of binary decision diagrams, made even larger

state spaces possible (Markov chains with hundreds of millions of states). The bottleneck

in practical use of such large models now lay in the representation of the non-sparse real

probability vectors.

A second important development was the connection made to the field of model

checking (Baier and Katoen 2008) through the development of temporal logics, now

enhanced with (stochastic) information on timing and reward, and leading to model-

checking procedures for CSL (continuous stochastic logic) (Aziz et al. 2000; Baier et al.

2003) and CSRL (continuous stochastic reward logic) (Baier et al. 2000; Baier et al. 2010b).

This connection also led to the incorporation of performability-like evaluation techniques

into model-checking tools like MRMC (Katoen et al. 2011), PRISM (Kwiatkowska et al.

2009), and (extended) stochastic Petri net tools like GreatSPN (Chiola 1985) and SMART

(Ciardo et al. 2003).

2.5. Performability: maturity and offspring (2005 onwards)

Some 30 years after its invention, the notion of performability evaluation, specialised

to Markov reward models, is now fully developed. Although refinements in techniques

and tools still take place, no new breakthroughs in the performability field per se can be

reported (nor are they expected in the future). However, the combination of performability

with state-of-the-art model-checking techniques, as presented in this paper, does form a

major technical development, as will become clear in the rest of this paper.

As with most well-developed techniques and technology, the novelty often lies in new

application fields. The notion of survivability, that is, the ability of a system to recover

to agreed-upon levels of quality of service after the occurrence of disasters of some form,

can be cast in the performability framework. The case study in this paper, which is based

on the earlier work Cloth and Haverkort (2005), is an example of this. Also, some more
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recent approaches to assessing system security in a quantitative way have built on the

notion of performability evaluation (Haverkort 2006; Sanders 2010).

Another application lies in the field of energy consumption for electronic devices,

especially when these are battery-powered. Instead of looking at reward as something

one gains from a system, reward can also be seen as a system’s cost, for example, in

terms of energy usage. System performance models can then be combined with battery

models, leading to integrated analyses (and trade-offs) between system performance and

system lifetime. However, this leads to the use of Markov reward models that are time-

inhomogeneous with respect to their transition rates and rewards, thus making numerical

analysis much more difficult and challenging in practice, as shown in Cloth et al. (2007).

Finally, the general notion of performability evaluation as originally defined by Meyer

can also be used in combination with other underlying mathematical structures, that is,

models other than Markov reward models. For instance, the base model could be a timed

automaton, with or without probabilities or stochastic timing, and with or without non-

determinism. The underlying mathematical structure is then no longer a plain Markov

reward model, but a discrete-continuous hybrid system describing systems of coupled

non-linear partial differential equations, which leads to new challenges for numerical

solution – see, for instance, Abate et al. (2008), Abate et al. (2011), Berendsen et al. (2006)

and Larsen and Rasmussen (2008).

3. Markov reward models

This section introduces some basics concerning Markov reward models (MRMs). We

consider continuous-time models, which means that the core behaviour of an MRM

is given as a continuous-time Markov chain (CTMC). Basically, a CTMC is a finite-

state automaton where transitions are labelled by (the rates of) negative exponential

distributions. Recall that a non-negative continuous random variable X is exponentially

distributed with rate λ ∈ �>0 if the probability of X being at most t (where t is a time

parameter) is given by

FX(t) = Pr(X � t) = 1 − e−λ·t

for t � 0, and has mean 1/λ.

Definition 3.1 (CTMC). A labelled continuous-time Markov chain (CTMC) C is a tuple

(S,R,L) where:

— S is a finite set of states,

— R : S × S → �>0 is the rate matrix ; and

— L : S → 2AP is the labelling function, which assigns to each state s ∈ S the set L(s) of

atomic propositions a ∈ AP that are valid in s.

A state s is said to be absorbing if and only if R(s, s′) = 0 for all states s′.

The state residence time of a state s in a CTMC is determined by its outgoing rates

R(s, ·). More precisely, the residence time of s is exponentially distributed with rate

E(s) =
∑
s′∈S

R(s, s′).
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Accordingly, the probability to exit state s within t time units is given by∫ t

0

E(s)·e−E(s)τdτ.

On leaving state s, the probability that the next state is s′ equals

R(s, s′)

E(s)
,

or P(s, s′) for short. Combining these two ingredients, we get that the probability of

making the transition s → s′ within t time units is

P(s, s′)·
∫ t

0

E(s)e−E(s)·τdτ.

As a running example, we will model the failure behaviour of the Hubble space telescope

(HST), which is a well-known orbiting astronomical observatory. In particular, we focus

on the steering unit, which contains six gyroscopes. They report any small movements of

the spacecraft to the HST pointing and control system. The computers then command

the spinning reaction wheels to keep the spacecraft stable or moving at the desired rate

in order to avoid the telescope pointing device from staggering. This is of particular

importance in preventing pictures taken by the telescope from being blurred. The system

works by comparing the HST motion relative to the axes of the spinning masses inside the

gyroscopes. Due to the possibility of failure, the gyroscopes are arranged in such a way

that any group of three gyroscopes can keep the telescope operating with full accuracy.

With fewer than three gyroscopes, the telescope turns into sleep mode and a Space Shuttle

mission must be undertaken to repair it. Without operational gyroscopes, the telescope

runs the risk of crashing. Hubble is the only telescope designed to be serviced in space

by astronauts. Four servicing missions were performed between 1993 to 2002. Servicing

Mission 3A (1999) was initiated after three of the six on-board gyroscopes had failed

(a fourth failed a few weeks before the mission, rendering the telescope incapable of

performing observations).

Example 3.2. We model the HST and the failing behaviour of its gyroscopes as a

CTMC. We make the following (not necessarily realistic) assumptions about the timing

behaviour of the telescope: each gyroscope has an average lifetime of 10 years, the average

preparation time of a repair mission is two months, and to turn the telescope into sleep

mode takes 1/100 years (about 3.5 days) on average. Assuming a base time scale of a

single year, the real-time probabilistic behaviour of the failure and repair of the gyroscopes

is now modelled by the CTMC of Figure 1. This model can be understood as follows. The

mean residence time of a state is the reciprocal of the sum of its outgoing transition rates.

In state 6, for instance, one out of 6 gyroscopes may fail. As these failures are stochastically

independent and as each gyroscope fails with rate 1/10, this state has outgoing rate 6/10.

If fewer operational gyroscopes are available, these rates decrease proportionally, and

state residence times become larger. In state 2, there are two possibilities: either one of

the remaining two gyroscopes fails (with probability 1000/1002), or the telescope is turned

into sleep mode (with probability 2/1002). The mean residence time of state 2 is 10/1002.
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Fig. 1. A simplified CTMC model of the Hubble space telescope.

In practice, we can assume that during a repair, all failed gyroscopes will be replaced,

and the system restarts as new; since the dominant delay is the mission preparation time,

the rates of going from any of the sleep states to the initial state are equal.

An MRM is now given as a CTMC enriched with the notion of a cost, or, dually, a

gain. This is done in two ways. The costs associated with transitions, which are called

impulse rewards, are constant non-negative real values that are incurred on performing

a transition. Thus, on making a transition between state s and s′ with impulse reward

ι(s, s′), a reward of ι(s, s′) is earned. Similarly, a cost rate is associated with states, and is

called a state reward. The intuition is that residing t time units in a state with cost rate

ρ(s) leads to a reward of ρ(s)·t being earned.

Definition 3.3 (Markov reward model). A labelled Markov reward model (MRM) M is a

triple (C, ι, ρ) where C is a labelled CTMC, ι : S × S → ��0 assigns impulse rewards to

pairs of states and ρ : S → ��0 assigns a reward rate to each state s ∈ S .

At this point we should explain why MRMs are considered as the central model in this

paper, and indeed in performability analysis in general. The incorporation of stochastic

timing is motivated by the fact that failures and repairs, which are the key events of

interest in performability, do indeed occur in a stochastic manner since their occurrence

is random. Given that, the negative exponential distribution is a specific, though rather

reasonable, choice, especially for failures. It is well known that the exponential distribution

maximises the entropy (if only the mean failure rate is known, the most appropriate

stochastic approximation is by means of an exponential distribution with that mean).

For repairs, one might also consider other distributions, such as a uniform distribution

or combinations of uniform and deterministic distributions. However, these distributions

can be matched arbitrarily closely by phase-type distributions (at the cost of state-space

increase), which are defined as the time until absorption in a CTMC. Finally, MRMs turn

out to provide a good balance between expressivity on the one hand and the analysis

possibilities on the other – with other stochastic assumptions, the analysis would become

much more involved.

Example 3.4. One of the main tasks of the HST is to take bright pictures of astronomical

targets. A key instrument is the High Speed Photometer (HSP), which was designed to
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measure the brightness and polarity of rapidly varying celestial objects. It can observe

in the ultraviolet, visible and near infra-red regions of the spectrum at a rate of one

measurement per 10 μsec (which amounts to about 32·1010 measurements per year).

Observations are still possible with fewer gyroscopes (up to two), but the area that can

be viewed is then more restricted, and observations requiring very accurate pointing

are more difficult. We can model this effect using state rewards by assuming that with

6 gyroscopes, a 100% coverage is possible, which gradually decays to 20% for two

gyroscopes. Accordingly:

ρ(6) = 32·1010

ρ(5) =
4

5
·ρ(6)

ρ(4) =
3

5
·ρ(6)

ρ(3) =
2

5
·ρ(6)

ρ(2) =
1

5
·ρ(6).

All other states have state reward zero: in particular, we assume that no observations are

possible in sleep mode.

Alternatively, one can consider the angular measurement of one of the other key

instruments of the HST, the Wide Field Camera (WFC3). It is the HST’s most recent and

technologically advanced instrument (installed in 2009) for taking images in the visible

spectrum. Its optical channel covers 164 by 164 arcsec (arcsec is the unit of angular

measurement and amounts to 1/60 of one degree), which is about 8.5% of the diameter

of the full moon as seen from the earth. In a similar way to the above, we assume that

with 6 gyroscopes, 100% coverage is possible, and this gradually decays to 20% for two

gyroscopes. Using ρ̂(6) = 1642, we define ρ̂(·) as above. However, as the WFC3 can still

make measurements when the gyroscopes are in sleep mode, we have

ρ̂(sleep2 ) = ρ̂(2) = 0.2·ρ̂(6),

and let

ρ̂(sleep1 ) = ρ̂(1) = 0.

Finally,

ρ̂(crash) = 0.

As an example of impulse rewards, we consider the switching and repair costs between

the different operational modes of the HST. For instance, switching from an operational

mode to a sleep mode requires physical changes of the HST, and repair costs are typically

huge since a space mission will need to be prepared and undertaken. A hypothetical
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reward structure is

ι(2, sleep2 ) = ι(1, sleep1 ) = 1

ι(sleep1 , 6) = ι(sleep2 , 6) = 108

ι(sleep1 , crash) = ι(1, crash) = 1012.

Here, we assume for simplicity that a crash is 10,000 times more expensive than a repair.

All other transitions have impulse reward zero.

Runs of MRMs are formalised as maximal paths, that is, paths that are not extensible: an

infinite path σ through an MRM is a sequence s0, t0, s1, t1, s2, t2, . . . where for i ∈ �, we have

si ∈ S , ti ∈ �>0 and R(si, si+1) > 0. A finite path is a sequence s0, t0, s1, t1, s2, t2, . . . , sn, tn
where for 0 � i � n − 1, the requirements are the same as for an infinite path, but in

addition we also have E(sn) = 0 and tn = ∞. Intuitively, states si are visited along the

path σ, and the residence time in state si equals ti. For i ∈ �, we let σ[i] = si be the

(i+1)th state of σ if it is defined. For t ∈ ��0 and i the smallest index with t <
∑i

j=0 tj , let

σ@t = σ[i], which is the state occupied in path σ at time t. The set of all maximal paths

starting in state s, that is, s0 = s, is denoted by Path(s). The next definition formalises the

reward that is accumulated along a path σ up to some time instant t.

Definition 3.5 (cumulative reward). Let σ = s0, t0, s1, t1, s2, t2, . . . be a path of the MRM M
and t =

∑k−1
j=0 tj + t′ with t′ < tk . The cumulative reward of σ up to time t is defined by

y(σ, t) =

k−1∑
j=0

tj · ρ(sj) + t′ · ρ(sk) +

k−1∑
j=0

ι(sj , sj+1).

Example 3.6. Consider the following behaviour of our Hubble telescope model:

σ = 6, 3, 5, 3, 4, 1, 3,
1

2
, 2,

1

1000
, sleep2, 3, sleep1,

1

2
, 6 . . .

where the boldface elements denote states and the other numbers denote the state residence

times. So, for example, σ[3] = 3, σ@9 = sleep2 . Consider the reward function ρ defined

earlier, that is, the number of measurements by the HSP per unit of time. In particular,

all impulse rewards in this case are zero. Hence we get

y(σ, 9) = 3·ρ(6) + 3·4
5

·ρ(6) + 1·3
5

·ρ(6) +
1

2
·2
5

·ρ(6) +
1

1000
·1
5

·ρ(6) +
449

1000
·0,

which means that in total about 193·1010 observations have been made in the first 9

operational years of the telescope.

We can now define a probability space on measurable sets of maximal paths of an

MRM using cylinder sets. We will not dwell here on the technical details of this definition

(see Baier et al. (2003) for more information), but just use Pr to denote the probability

measure on the induced sigma-algebra. Let the transient probability

π(s, s′, t) = Prs{σ ∈ Path(s) | σ@t = s′}
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denote the probability of being in state s′ at time t given initial state s. Here, we use Prs
to denote the probability measure on measurable sets of maximal paths with state s as

starting state. The steady-state probability of being in state s′, given that the MRM starts

in state s, is given by

π(s, s′) = lim
t→∞

π(s, s′, t).

This limit always exists for finite MRMs. If the steady-state distribution does not depend

on the starting state s, we simply write π(s′) instead of π(s, s′). For S ′ ⊆ S , we use

π(s, S ′) =
∑
s′∈S ′

π(s, s′)

to denote the steady-state probability for set S ′. In a similar way, π(s, S ′, t) is defined for

time t.

Definition 3.7 (expected state rewards). The expected long-run reward rate while residing

in state s′ having started in s is defined by

ρ(s, s′) =

(
ρ(s′) +

∑
u∈S

P(u, s′) · ι(u, s′)

)
· π(s, s′). (1)

The expected instantaneous reward rate at time t while residing in s′ having started in s is

given by

ρ(s, s′, t) =

(
ρ(s′) +

∑
u∈S

P(u, s′) · ι(u, s′)

)
· π(s, s′, t). (2)

The expected accumulated reward at time t while residing in state s′ having started in s is

defined by

EY(s, s′, t) =

∫ t

0

ρ(s, s′, x) dx. (3)

To explain the definition of the expected long-run reward rate for state s′, intuitively,

the term ρ(s′) ·π(s, s′) gives the expected state reward rate at s′ for an infinite time horizon.

In order to take the impulse rewards into account, we consider the average reward to

reach s′ from its predecessors and scale this with π(s, s′), the frequency of visiting s′

in the long run. The expected instantaneous reward rate at time t is defined analog-

ously by replacing the steady-state probability π(s, s′) by the transient-state probability

π(s, s′, t).

The above notions can be generalised to sets of states in the following straightforward

manner. For S ′ ⊆ S , let

ρ(s, S ′) =
∑
s′∈S ′

ρ(s, s′),

and, similarly,

ρ(s, S ′, t) =
∑
s′∈S ′

ρ(s, s′, t)
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and

EY(s, S ′, t) =
∑
s,∈S ′

EY(s, s′, t).

In addition, for time interval I , let

EY(s, S ′, I) =

∫
I

ρ(s, S ′, x) dx.

Example 3.8. We consider some expected reward measures for the Hubble telescope. For

this example, it does not make sense to combine any of the impulse and state reward

structures, so we will just focus on one of them.

First, we consider the expected long-run average angular measurement (the measure of

Equation (1)) of the telescope using reward function ρ̂. This number turns out to be zero

for all states. This is because we will always finally enter the state ‘crash ’ and never leave

it again. Thus, in the long run, the MRM will almost surely be in this state. Because in

this state no measurements are possible, the final value is indeed zero.

Next we consider the average rate of measurements at time t (the measure of

Equation (2)), using reward structure ρ. We obtain

ρ(6, 1, 2) ≈ 0.0 · 0.0000004 ≈ 0

ρ(6, 2, 2) ≈ 6.4 · 0.0001938 ≈ 0.00124032

ρ(6, 3, 2) ≈ 12.8 · 0.0654052 ≈ 0.83718656

ρ(6, 4, 2) ≈ 19.2 · 0.2217154 ≈ 4.25693568

ρ(6, 5, 2) ≈ 25.6 · 0.4016865 ≈ 10.2831744

ρ(6, 6, 2) ≈ 32.0 · 0.3082933 ≈ 9.8653856

ρ(6, sleep2 , 2) ≈ 0.0 · 0.0026254 ≈ 0

ρ(6, sleep1 , 2) ≈ 0.0 · 0.0000761 ≈ 0

ρ(6, crash , 2) ≈ 0.0 · 0.0000039 ≈ 0

If we sum up all these values to ρ(6, S , 2) =
∑

s∈S ρ(6, s, 2), we find that the average rate

of measurement at time 2 having started in state 6 is about 25.24392256.

Similarly, we can consider the expected total operation cost until time 2 (measure of

Equation (3)) when using the instantaneous reward ι. It turns out that

EY(s, S , 2) ≈ 4812316.14144378.

This arguably high cost is due to the high cost of a crash. Figure 2 plots the average

number of measurements (using the reward structure ρ and the measure of Equation (2))

and the expected cost (using the reward structure ι and the measure of Equation (3)) for

time bounds 0 through 7.

4. Specifying performability

4.1. A logic for performability guarantees

The first step in our approach is to enable the specification of measures of interest, in

particular, a broad range of performability measures, on Markov reward models. In order
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Fig. 2. Plots for the expected reward at or until time t for the Hubble telescope.

to do this, we adopt temporal logic, in particular, branching temporal logics. As a basis,

we use CTL (Computation Tree Logic (Clarke et al. 1986)), which is an extension of

propositional logic that allows us to express properties that refer to the relative order

of events. Statements can be made about either states or paths, that is, the sequences of

states that model the system evolution. While CTL alllows us to state properties such as

‘all paths only visit legal states and eventually end up in a goal state’, CSRL (Continuous

Stochastic Reward Logic) additionally allows us to specify:

(1) the likelihood with which certain behaviours occur;

(2) the time frame in which certain events should happen;

(3) the costs (or rewards) that are allowed to be made.

State formulae (ranged over by capital Greek letters) are formulae in standard proposi-

tional logic with tt (true) and atomic propositions being the base cases. Recall that atomic

propositions are used as state labels in our MRMs. This corresponds to the first three

clauses in Definition 4.1. Each state formula Φ induces a set of states

SatM(Φ) = { s ∈ S | s |= Φ }

satisfying the formula. In order to address long-run probabilities, expected reward rates

and expected accumulated reward, we use �, � and � as operators in our logic. They

take as basis a set of states characterised by the formula Φ, and an interval. For instance,

�K (Φ) holds if the probability in the long run of being in a state in SatM(Φ) lies in the

interval K ⊆ [0, 1], and �t
J(Φ) holds if the expected reward rate in SatM(Φ) at time t

lies in J . Finally, the standard next and until operators are used as building blocks for

our path formulae, except that both are enriched with two intervals: one constraining the

elapsed time along a path and the other constraining its accumulated reward. The state

formula �K(ϕ) then holds in state s whenever the probability of all paths starting in state

s that fulfil path formula ϕ lies in K . Pulling this all together, we get the following syntax.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 20 Aug 2013 IP address: 130.225.68.149

C. Baier, E. M. Hahn, B. R. Haverkort, H. Hermanns and J.-P. Katoen 764

Definition 4.1 (CSRL syntax). Let I, J, K ⊆ ��0 be non-empty intervals (with rational

bounds allowing intervals of the form [c,∞)) with K ⊆ [0, 1] and t ∈ ��0. The syntax of

CSRL-formulae over the set of atomic propositions AP is defined inductively as follows:

— tt is a state formula.

— Each atomic proposition a ∈ AP is a state formula.

— If Φ and Ψ are state formulae, then so is Φ ∧ Ψ.

— If Φ is a state formula, then so are ¬Φ, �K(Φ),�J(Φ),�t
J(Φ) and �I

J(Φ).

— If ϕ is a path formula, then �K (ϕ) is a state formula.

— If Φ and Ψ are state formulae, then XI
J Φ and Φ UI

J Ψ are path formulae.

We refer to the sublogic of CSRL that does not contain � and � as CSRL−.

Definition 4.2 (CSRL semantics). The relation |= for CSRL state formulae is defined by

s |= tt

s |= a iff a ∈ L(s)

s |= ¬Φ iff s 
|= Φ

s |= Φ ∧ Ψ iff s |= Φ ∧ s |= Ψ

s |= �K (Φ) iff π(s,SatM(Φ)) ∈ K

s |= �J(Φ) iff ρ(s,SatM(Φ)) ∈ J

s |= �t
J(Φ) iff ρ(s,SatM(Φ), t) ∈ J

s |= �I
J(Φ) iff EY(s,SatM(Φ), I) ∈ J

s |= �K (ϕ) iff Pr(s |= ϕ) ∈ K where Pr(s |= ϕ) = Prs{σ ∈ Path(s) | σ |= ϕ }.

For path formulae and path σ = s0, t0, s1, t1, s2, t2, . . . , the relation |= is defined by

σ |= XI
J Φ iff σ[1] is defined and σ[1] |= Φ and t0 ∈ I and y(σ, t0) ∈ J

σ |= Φ UI
J Ψ iff ∃t ∈ I. (σ@t |= Ψ ∧ (∀t′ ∈ [0, t). σ@t′ |= Φ) ∧ y(σ, t) ∈ J).

Here, Prs denotes the probability measures of the sigma-algebra on the set of maximal

paths in an MRM starting in state s – the definition is fairly standard and can be found

in Baier et al. (2003). Stated in words, the path σ = s0, t0, s1, t1, . . . satisfies the formula

XI
J Φ whenever s1 satisfies Φ, t0 lies in I , and the earned reward ρ(s0)·t0 + ι(s0, s1) lies in

J . Path σ fulfils Φ UI
J Ψ whenever after t time units (with t ∈ I), a Ψ-state is reached, and

prior to that, only Φ-states are visited. Recall that σ@t denotes the current state in σ at

time instant t, and that y(σ, t) denotes the accumulated reward along the prefix of σ up

to time t.

We will use two convenient abbreviations as follows. Let �I
J Φ denote tt UI

J Φ. Given

that tt holds in any state, this formula requires a state satisfying Φ that is eventually

reached at some time point t ∈ I such that the accumulated reward up to t lies in the

interval J . The logical dual of �, denoted �, is defined by

��p

(
�I

JΦ
)

≡ ��p

(
�I
J¬Φ

)
.

We adopt the notational convention that intervals of the form [0,∞) are omitted from

the modalities next, until, � and �. Also, as above, we abbreviate probability intervals, for

example, [0, p] is written as � p and [0, p) as < p. For conciseness, we write ‘= t’ for point
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intervals of the form [t, t] and ‘� t’ for intervals of the form [0, t]. Similar conventions are

adopted for reward intervals.

Example 4.3. We can specify some measures of interest for our Hubble telescope, where

we concentrate on the reward function ρ̂ denoting the number of observations per time

unit. For instance,

��0.99999(�
�32¬crash)

requires with at least ‘five nines’ likelihood that the telescope does not crash within the

next 32 years. Alternatively,

��0.9(�
=32¬(crash ∨ sleep1 ∨ sleep2 ∨ 1))

holds when after 32 years (a transient probability), the telescope has at least two

operational gyroscopes (and thus can make observations) in at least 9 out of 10 cases.

The fact that in such an observational mode, the average coverage of the WFC3 exceeds

130×130 arcsec is expressed by the formula

�32
>1302 (¬(crash ∨ sleep1 ∨ sleep2 ∨ 1)) .

This should not be confused with the formula

��32
>1302 (¬(crash ∨ sleep1 ∨ sleep2 ∨ 1)) ,

which expresses the fact that the total coverage of the WFC3 in the first 32 years exceeds

130×130 arcsec. Finally, we consider the impulse reward function ι, which denotes the

repair and switching costs of the telescope. The formula

��0.000001

(
��50
>2·108¬(crash ∨ sleep1 ∨ sleep2 ∨ 1)

)
asserts that with likelihood at most 10−6 within the first 50 years, observations can be

made such that the total costs exceed 2·108. This effectively means that with extremely

low probability, two repair missions are needed within the first 50 years.

4.2. Specifying performability measures

Given the logical framework of CSRL, we are led to ask which performability measures

can be expressed. First, however, it is important to note that we use the logic to express

constraints on the measures-of-interest rather than the measures themselves. This is

because the boolean interpretation of the logic – a formula either holds or it does not. For

instance, we can express the fact that the likelihood that the accumulated reward in a time

interval is below or above a threshold, but cannot state the value of the cumulative reward.

That is to say, CSRL provides ample means for expressing performability guarantees for

MRMs. Indeed, CSRL allows us to express guarantees over almost all commonly known

performability measures, our point of reference being the list of performability measures

given in the seminal papers Smith et al. (1988) and Meyer and Sanders (2001), which

have been widely adopted within the dependability community.

Table 1 lists the performability measures of Smith et al. (1988), together with a

specification in CSRL that asserts a guarantee on this measure. For simplicity, we
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Table 1. Important performability base cases and their specification in CSRL.

Performability measure CSRL formula

(a) π(s, t) ∈ K transient probability of being in state s at time t �K (�=t at s)

(b) π(s) ∈ K steady-state probability of being in state s �K (at s)

(c) A(t) ∈ K transient availability �K (�=t ¬F )

(d) limt→∞ A(t) ∈ K steady-state availability �K (¬F )

(e) Pr{ρ(X(t′))�1, ∀t′�t} ∈ K reliability �K (��t ¬F )

(f) E[ρ(X(t))] � r expected reward rate at time t �t
�r(tt)

(g) E[Y (t)] � r expected cumulative reward until time t ��t
�r(tt)

(h) Pr{Y (t) � r} ∈ K distribution of cumulative reward until t �K (�=t
�r tt)

(i) Pr{Y (∞) � r} ∈ K distribution of cumulative reward �K (¬F U�r F )

(j) Pr{A(t) � r} ∈ K interval availability (see case (m))

(k) E[W (t)] � r expected time-average cum. reward until t ��t
�r·t(tt)

(l) E[W (∞)] � r expected time-average cum. reward ��r(tt)

(m) Pr{W (t) � r} ∈ K dist. of time-average cum. reward up to t �K (�=t
�r·t tt)

(n) Pr{W (∞) � r} ∈ K distribution of time-average cum. reward –

assume a system that can either be operational or failed, like in the Hubble telescope.

Here, it is assumed that failed states are indicated by F (like the proposition crash for

the HST) and operational states by ¬F . For measures (i) and (l) to be specified in

CSL, we have to require states of F to be absorbing. Although failed and operational

states are usually modelled by binary rewards (for example, zero and one for the modes

failed and operational, respectively (Smith et al. 1988)), we use the proposition F since it

provides us with more specification flexibility. The second column of Table 1 describes the

constraint on performability measures while referring to the random variables X(t) and

Y (t) that describes the state of the MRM at time t and the accumulated reward at time t,

respectively. The random variable W (t) describes the time-averaged accumulated reward

and is defined as Y (t)/t. The random variable A(t) indicates the availability of the system

and is equal to one if the system is operational at time t, and zero otherwise. In this case,

reward one is assigned to the operational states by the state-reward structure ρ, while the

non-operational states are assigned reward zero. The third column provides the formal

characterisations of the performability measures, and is identical (modulo adaptations to

our notation) to those in Smith et al. (1988).

For state s, the atomic proposition at s uniquely characterises state s, that is, it only

holds in state s and not in any other state. Formulae (a) and (b) are guarantees on

transient-state and steady-state probabilities. The transient availability at a certain time

instant t (measure (c)) expresses (a bound on) the probability of not being in a failed state

at time t. Using the �-operator, this can also be generalised to infinite time horizons –

see measure (d). The reliability measure (e) expresses a probability that the system is up,

that is, ρ(X(t)) � 1 from a certain time instant t on. This time constraint is represented

by the time bound of the always (that is, �) operator, while being reliable is (as before)

indicated by ¬F . Note that the measures (a) through (e) can also be expressed in CSL

(Baier et al. 2003).
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Measures (f) and (g) are straightforward applications of the � and � operators,

respectively. As there is no need to select a certain set of states, the state subformula

simply equals true. Measure (h) expresses the simultaneous distribution of the accumulated

reward against time, that is, it expresses the probability for the reward accumulated at

time t to be at most r. This measure is also known as Meyer’s performability distribution

(Meyer 1980). As there is no restriction imposed on the type of state reached at time t,

the subformula true is used. For an infinite time horizon, the accumulated reward until

failure is typically considered. This is expressed by measure (i).

Measure (j) is a special case of measure (m) in which only failed and operational states

are distinguished (typically by binary rewards). The CSRL-formula for measure (m) can

thus also be applied to (j) without modification. The CSRL-formula for guarantees on

the measures (k) and (m) follow directly from the fact that W (t) = Y (t)/t (for finite

t). Note that the reward bound is r·t since an accumulated reward r·t over the interval

[0, t] yields a time-averaged accumulated reward r. Measure (n) cannot be specified in

CSRL since it is only possible to refer to the expected time-averaged cumulative reward

(which is identical to the expected steady-state reward), and not to the probability that

the time-averaged cumulative reward is below a given value.

To conclude, we emphasise that CSRL allows us to specify much more complex

performability measures than those listed in Table 1. For instance, for cases (f), (g) and

(h), we may select a subset of states, for example, those in which the system is guaranteed

to offer a certain quality-of-service, that are of interest at time instant t (rather than

considering any state). Moreover, the general syntax of the logic means that nesting of

measures is supported naturally. This allows us to specify non-trivial properties such as

the transient probability at time t to be in a state s, say, that guarantees that almost

surely the accumulated reward (when starting in s) within a given deadline d is at most r

exceeds 0.99 can be expressed by

�>0.99

(
�=t �=1

(
��d

�r tt)
)

4.3. Duality

Inspired by an observation in Beaudry (1978), time and reward constraints are dual in

the sense that they can be swapped, provided the MRM is ‘rescaled’ at the same time.

To discuss this effect in more detail, we will ignore impulse rewards, that is, we consider

MRMs for which ι(s, s′) = 0 for every pair of states s, s′. For simplicity, we will also omit

the component ι from an MRM in this section. Given an MRM M = (C, ρ) with ρ(s) > 0

for all states s, we consider the dual MRM M∗ that results from M by adapting the exit

rates and reward function such that the reward units in state s in M correspond to the

time units in state s in M∗, and vice versa.

Definition 4.4 (dual MRM). Let MRM M = (S,R, L, ρ) with ρ(s) > 0 for all states s ∈ S .

The dual MRM is

M∗ = (S,R∗, L, ρ∗)
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where

R∗(s, s′) =
R(s, s′)

ρ(s)

ρ∗(s) =
1

ρ(s)
.

Intuitively, the transformation of M into M∗ stretches the residence time in state s by a

factor that is proportional to the reciprocal of its reward ρ(s) if 0 < ρ(s) < 1. The reward

function is changed similarly. Thus, all states s for which ρ(s) < 1 are accelerated, while

all states s with ρ(s) > 1 are slowed down. The residence of t time units in MRM M∗

might be interpreted as the earning of t reward in state s in M, or (conversely) an earning

of a reward r in state s in MRM M corresponds to a residence of r time units in M∗.

The proof of the following theorem can be found in Baier et al. (2010a).

Theorem 4.5 (duality theorem). For MRM M = (S,R, L, ρ) with ρ(s) > 0 for all s ∈ S

and CSRL− state formula Φ,

SatM(Φ) = SatM
∗
(Φ∗),

where Φ∗ is obtained from Φ by swapping I and J in every subformula in Φ of the form

XI
J or UI

J .

This duality result turns out to be of practical importance for checking formulae of the

form �K(Φ1 UI
J Φ2) where I = [0,∞). In such formulae, there is no time constraint, just a

constraint on the accumulated (state) reward. Thanks to the duality theorem, the ‘dual’

formula �K (Φ1 UJ
I Φ2) can be checked on the dual MRM, and efficient procedures exist for

such time-bounded formulae. A major restriction, however, is that all state rewards must

be strictly positive: this duality result does not hold if M contains states equipped with a

zero reward since the reverse of earning a zero reward in M when considering Φ should

correspond to a residence of 0 time units in M∗ for Φ∗, which, since the advance of time

in a state cannot be halted, is in general impossible. However, the result of Theorem 4.5

applies to some other practical cases: for example, when for each subformula of the form

Φ1 UI
J Φ2, we have

J = [0,∞)

or

SatM(Φ1) ⊆ { s ∈ S | ρ(s) > 0 },
that is, all Φ1-states are positively rewarded. The intuition is that either the reward

constraint (that is, time constraint) is trivial in Φ (in Φ∗) or zero-rewarded states are not

involved in checking the reward constraint. We define M∗ here by setting

R∗(s, s′) = R(s, s′)

and

ρ∗(s) = 0

when ρ(s) = 0, otherwise it is defined as above.
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Suppose now that the given MRM M is strongly connected. Then so is M∗, and the

steady-state probabilities in M and M∗ do not depend on the starting state. Hence, the

CSRL formula �K (Φ) either holds for all states in M or for none of them. The same

holds for M∗ and CSRL formulae of the form �J(Φ).

Let π(s) and π∗(s) denote the steady-state probability for state s in M and M∗,

respectively. Then
(
π(s)

)
s∈S is the unique vector such that∑

s∈S
π(s) = 1∑

u∈S
π(u) · R(u, s) = π(s) · E(s).

Recall that

E(s) =
∑
u∈S

R(s, u)

is the exit rate of state s.

Similarly,
(
π∗(s)

)
s∈S is the unique vector such that∑

s∈S
π∗(s) = 1∑

u∈S
π∗(u) · R∗(u, s) = π∗(s) · E∗(s)

where

E∗(s) =
∑
v∈S

R∗(s, v).

Since

R(s, v) = ρ(s) · R∗(s, v),

we get

E(s) = ρ(s) · E∗(s).

We now define

q =
∑
u∈S

π(u) · ρ(u)

χ(u) =
1

q
· π(u) · ρ(u) for all states u ∈ S.

So, ∑
u∈S

χ(u) =
1

q
·
∑
u∈S

π(u) · ρ(u)︸ ︷︷ ︸
=q

= 1,

and

χ(u) · R∗(u, s) =
1

q
· π(u) · ρ(u) · R(u, s)

ρ(u)

=
1

q
· π(u) · R(u, s).
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Hence: ∑
u∈S

χ(u) · R∗(u, s) =
1

q
·
∑
u∈S

π(u) · R(u, s)

=
1

q
· π(s) · E(s)

=
1

q
· π(s) · ρ(s) · E∗(s)

= χ(s) · E∗(s).

We therefore conclude that χ(s) = π∗(s) for all states s. As a consequence, we get the

duality of the long-run average operator �K (·) and the expected long-run reward operator

�J(·) in the following sense.

Theorem 4.6 (duality of long-run average and expected long-run reward). If MRM M is

strongly connected, we have

SatM(�K(Φ)) = SatM
∗
(�K∗ (Φ∗)),

where K∗ = {x | x · q ∈ K } and q is defined as above.

Proof. The calculation above shows that

π∗(u) = χ(u) =
1

q
· ρ(u) · π(u)

for all states u ∈ S . This yields

s ∈ SatM(�K(Φ)) iff
∑

u∈SatM(Φ)

π(u) ∈ K

iff
∑

u∈SatM(Φ)

1

q
· π(u) ∈ K∗

iff
∑

u∈SatM∗
(Φ∗)

π∗(u) · 1

ρ(u)
∈ K∗

iff
∑

u∈SatM∗
(Φ∗)

π∗(u) · ρ∗(u) ∈ K∗

iff s ∈ SatM
∗
(�K∗ (Φ∗)).

The practical relevance of this theorem is as follows. Efficient algorithms exist to check

whether s |= �K (Φ). In fact, for strongly connected MRMs, this boils down to computing

steady-state probabilities, which can be done by solving a system of linear equations in

the size of the state space. The above theorem shows that in order to check whether

s |= �K(Φ), the same procedure can be followed on the dual MRM.

5. Model checking

Suppose we are confronted with a (finite) Markov reward model originating from some

high-level formalism such as a stochastic reward net, a stochastic activity network or
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a Markovian queueing network, and a performability guarantee formulated in the logic

described above. So how do we compute the set of states satisfying this guarantee? The

basic computational procedure is a simple recursive descent over the logical formula.

This means, basically, that the formula is broken down into its subformulae, that the

computation starts with the simplest subformulae, and once this step is completed, then

considers the formulae that combine subformulae using a single operator, and so on, until

the entire formula is captured. Considering the parse tree of the formula, this computation

is just a bottom-up traversal over the parse tree, where at each node (representing a

subformula) a single algorithm is invoked. In this way, formulae of arbitrary complexity

can be treated in a uniform manner. This recursive descent mechanism is adopted

from model-checking algorithms (Baier and Katoen 2008; Clarke et al. 1986). The main

difference compared with traditional model-checking algorithms, where all computations

involve graph algorithms, fixed-point computations and the like, is that in our setting,

numerical algorithms are needed to reason about the probabilities and reward aspects. To

achieve this, well-known techniques for solving systems of linear equations, determining

long-run probabilities, and transient probabilities (such as uniformisation (Gross and

Miller 1984)) are embedded in the tree traversal as subroutines.

We will explain the computational procedure in a bit more detail by means of an

example. Consider the formula

��0.99999

(
��500

�10 �[90,100](operational ∧ ¬idle)
)
.

We are thus interested in computing the states in an MRM from which, with at least

‘five-nine’ dependability (that is, probability at least 0.99999), the computation will only

visit certain states in the next 500 time units while consuming in total at most 10 units

of reward. The states in which the system has to reside for the next 500 time units

should guarantee that starting from there, the expected costs to keep the system, when in

equilibrium, functioning in operational mode (that is, non-idling) are between 90 and 100

reward units. Note that we assume that operational and idle are propositions of the MRM

under study. Before continuing with the explanation of our computational procedure, it

is worth spending a few moments thinking about how to determine the required states –

it is not easy.

We will start by explaining the model-checking algorithm. We begin by determining the

subformulae of the guarantee at hand. The above formula has the following subformulae:

— operational

— idle

— ¬idle

— operational ∧ ¬idle

— �[90,100](operational ∧ ¬idle)

— and the entire formula.

The computation starts with the simplest subformulae, that is, operational and idle. Since

these are the most elementary formulae of our logical framework, we will assume that

their validity in any state of the model can be determined directly. In the case of a

stochastic reward net, for instance, the operational and idle states could be states with a
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certain number of tokens in a certain place, whereas in a Markovian queueing network,

they could refer to states with a certain queue occupancy. The computation of the set of

states satisfying idle, denoted by Sat(idle), is therefore straightforward. The same applies

to computing Sat(operational ).

The parse tree traversal proceeds by considering the next-to-simplest subformulae, that

is, ¬idle. This set is simply obtained by complementing Sat(idle), that is,

SatM(¬idle) = S − SatM(idle),

where S is the entire set of states in the MRM under consideration. We thus see

that the logical operator negation is interpreted using its set-theoretical analogue:

complementation. The same holds for conjunction (and the other propositional logical

operators). Accordingly,

SatM(operational ∧ ¬idle) = SatM(operational ) ∩ SatM(¬idle).

For brevity, we will let U = SatM(operational ∧ ¬idle). The next step in the procedure is

to compute the states satisfying �[90,100](1U), where 1U is the characteristic function of the

set U, that is, 1U(s) = 1 if and only if s ∈ U. That is to say, we have to determine the set

of states from which the system can be started and that guarantee an expected long-run

reward in states in U to be in the interval [90, 100]. Since we are following a recursive

descent procedure, the set 1U has already been computed. Following Definition 3.7, we

proceed by determining

ρ(s, s′) =

(
ρ(s′) +

∑
u∈S

P(u, s′) · ι(u, s′)

)
· π(s, s′)

where π(s, s′) denotes the steady-state probability of state s′ when starting in state s. We

then have

s ∈ SatM
(
�[90,100](operational ∧ ¬idle)

)
iff

∑
u∈U

ρ(s, u) ∈ [90, 100].

In the general case, the steady-state probabilities depend on the initial state – certain

states may not even be reachable, depending on where we start. Using a graph analysis,

which is basically a depth-first traversal through the graph underlying the MRM, we then

determine the strongly connected components (SCCs) that are terminal. A terminal SCC

is a subgraph in which each state can reach any other state within the subgraph, but

no other states. Hence, once we reach such a terminal SCC, we cannot leave it again;

we can only cycle through that component, and can never escape it. Furthermore, the

steady-state probabilities of each state in a terminal SCC are independent of which state in

the terminal SCC we start from. For each such component, the steady-state probabilities

are determined by solving a system of linear equations, which can be done using standard

means. For terminal SCC T , we let πT (s′) be the steady-state probability for being in state

s′ in T in equilibrium under the condition that we start in some state of T . In order to

determine π(s, s′), we will now determine the probability

xs,T = Pr
s

{s |= �T }
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of reaching the terminal SCC T from state s. This is done for all terminal SCCs, and can

be computed by solving the following system of linear equations for all states s ∈ S from

which T is reachable:

xs,T =

{
1 if s ∈ T∑

s′∈S P(s, s′) · xs′ ,T otherwise.

If T is not reachable from s, the xs,T is set to zero. The above equation can be solved

using standard means (for example, Gauss–Seidel).

As a final step in the verification process, we will now determine the set of states

satisfying the formula

��0.99999

(
��500

�10 1G
)

where

G = SatM
(
�[90,100](operational ∧ ¬idle)

)
is as computed before. Note first that this formula is equivalent to

��0.00001

(
��500

�10 1G
)

where G is a shorthand for S \ G, that is, the complement of G with respect to the total

set of states S . We now consider a path s0 s1 s2 . . . through the MRM. (For simplicity, we

will omit the state residence times.) Once a state in G has been reached, knowing which

states will be visited afterwards is completely irrelevant. That is, when sk ∈ G, the fact

of whether later states sj (for j > k) are in G or not has no effect on whether the path

satisfies �1G. This means we can treat sk ∈ G as an absorbing state. This applies to all

states in G. So, prior to doing any computational step, the MRM M is changed into M′

by making all states in G absorbing and turning their reward into zero. The number of

reachable states in M′ is never larger than that in M. It is not difficult to see that it now

suffices to check the formula

��0.00001(�
=500
�10 1G)

in the newly obtained MRM M′. This formula should be compared with the formula for

the distribution of the cumulative reward – see performability measure (h) in Table 1. The

shapes are very similar, and, indeed, we have transformed the verification of our original

formula into a (standard) performability measure calculation on another MRM. Thus we

are left to determine the transient reward probability to be in a state in G at time 500

when starting from an arbitrary state in the (transformed) MRM. Using Meyer’s original

terminology, where X(t) denotes the state of the MRM at time t and Y (t) denotes the

random variable for the accumulated reward until time t, we get

s |= ��0.00001(�
=500
�10 1G) iff Pr{Y (500) � 10 ∧ X(500) ∈ G | X(0) = s} � 0.00001.

A discussion of the numerical techniques required to obtain this transient reward measure

is beyond the scope of this paper – see Baier et al. (2010a) for a detailed discussion of

appropriate numerical procedures; here we will just mention that the techniques described

in Qureshi and Sanders (1994b), Sericola (2000) and Tijms and Veldman (2000) are all

potential candidates.
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6. Bisimulation

Bisimulation and simulation relations play a central role in the design of hierarchical

and compositional systems, but are also used for abstraction purposes. Bisimulation and

simulation relations provide formal criteria of when two systems (or two states of a system)

have the same observable branching behaviour (bisimulation), or when the observable

branching behaviour of one system is covered by the observable branching behaviour

of another one (simulation). The underlying notion of ‘observability’ can refer to action

names for transitions and a classification of the actions into visible and invisible ones,

or it can refer to atomic propositions that serve as observables of the states. In addition,

several quantitative parameters (for example, timing constraints or reward functions) can

be taken into account to ensure that the values of the relevant performance measures are

the same for bisimilar systems.

Inspired by Milner’s seminal work (Milner 1971; Milner 1980) on (bi)simulation

relations for non-probabilistic systems, Larsen and Skou (1991) introduced probabilistic

bisimulation for discrete-time probabilistic systems. Roughly speaking, their notion of

bisimulation equivalence rephrased for (discrete-time) Markov chains with state labels

requires that bisimilar states satisfy the same atomic propositions, and that the probabilities

of moving within one step to each of the bisimulation equivalence classes agree. An

analogous definition of bisimulation equivalence for CTMCs (rephrased for the state-

labelled approach) is that bisimilar states cannot be distinguished by the state labels

and move with the same total rates to each of the bisimulation equivalence classes. This

notion of bisimulation equivalence for CTMCs fits in nicely with the notion of lumpability

(Howard 1971a), and can be seen as a conservative extension of bisimulation equivalence

of the embedded discrete-time Markov chain in the following sense. Two states of a CTMC

are bisimilar if and only if they are bisimilar in the embedded discrete-time Markov chain

(DTMC) and have the same total exit rate.

In the literature, several variants of bisimulation equivalence have been proposed

for discrete- and continuous-time Markov chains and extensions to these that include

non-determinism (Hermanns 2002) or rewards (Bernardo and Bravetti 2001; Aldini

and Bernardo 2007). These variants include abstracting from internal (invisible) steps

(Segala and Lynch 1995; Baier and Hermanns 1997) and the dropping of symmetry

requirements, leading to formal notions of simulation and refinement relations (Jonsson

and Larsen 1991; Baier et al. 2005b; Caillaud et al. 2010).

We will focus here on the basic concept of bisimulation equivalence for the model

of MRMs, that is, a state-labelled CTMC with state and impulse rewards. The formal

definition of bisimulation equivalence follows the standard principle of coinduction,

where conditions are first provided to define the notion of a bisimulation relation, and

bisimulation equivalence is then defined as the coarsest bisimulation relation.

For state s and a set of states U, we use R(s, U) to denote the total rate for moving

from state s to some state in U, that is,

R(s, U) =
∑
u∈U

R(s, u).
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Thus,

R(s, S) = E(s)

is the total rate for state s. Similarly, P(s, U) stands for the probability to move from s

within one step to U, that is,

P(s, U) =
R(s, U)

E(s)
.

Definition 6.1 (bisimulation relation and bisimulation equivalence). Let M = (C, ι, ρ) be an

MRM where C = (S,R, L). A bisimulation relation on M is an equivalence relation R on

the state space S of M such that for all pairs (s1, s2) ∈ R and all equivalence classes U of

R the following conditions hold:

(1) L(s1) = L(s2)

(2) R(s1, U) = R(s2, U)

(3) ρ(s1) = ρ(s2)

(4)
∑
u∈U

P(s1, u) · ι(s1, u) =
∑
u∈U

P(s2, u) · ι(s2, u).

The states s1 and s2 of M are said to be bisimulation equivalent (or just bisimilar for

short), denoted s1 ∼ s2, if there exists a bisimulation relation R with (s1, s2) ∈ R.

It can be shown that the relation ∼ is an equivalence relation that satisfies conditions

(1)–(4). Hence, ∼ is the coarsest bisimulation relation.

The intuitive meaning of conditions (1)–(4) is as follows:

(1) This is a standard condition for (bi)simulation relations for state-labelled models where

the ‘observability’ of a state s is considered to be given by the atomic propositions

that hold for s. So (1) simply requires that bisimilar states are equally observable.

(2) This is a formalisation of the above-stated condition that bisimilar states of a CTMC

have the same cumulative rate for moving within one step to some bisimulation

equivalence class U. It is equivalent to stating that

P(s1, U) = P(s2, U)

and

E(s1) = E(s2).

(3) This requires that bisimilar states have the same state reward.

(4) This condition requires that the expected impulse reward earned by taking a transition

to some bisimulation equivalence class U coincides for bisimilar states.

The following theorem asserts that bisimilar states yield the same performance measures

when they are expressible in CSRL.

Theorem 6.2 (preservation of performance measures). If s1, s2 are bisimilar states of an

MRM M, then for all CSRL-formulae Φ,

s1 |= Φ iff s2 |= Φ.
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The proof of Theorem 6.2 is by structural induction and follows the proof techniques

provided in, for example, Baier et al. (2005b) for the preservation of CSL-definable

properties under bisimulation equivalence for CTMCs.

An important application of Theorem 6.2 is that it allows us to use bisimulation

equivalence as a reduction technique. In order to verify a CSRL property Φ for a given

MRM M, we build the quotient M/∼, where the states are the bisimulation equivalence

classes of the states in M. The rate matrix R∼ of M/∼ is given by

R∼([s], U) = R(s, U)

for each state s and bisimulation equivalence class U where [s] = {s′ ∈ S : s ∼ s′} denotes

the bisimulation equivalence class of state s. For each state s of M, we have the labelling

of [s] is L(s), the reward rate of [s] is ρ(s) and the impulse reward for the pair ([s], U) is

given by ∑
u∈U

P(s, u) · ι(s, u).

Obviously, conditions (1)–(4) in Definition 6.1 ensure that M/∼ is well defined. Fur-

thermore, each state s of M is bisimilar to its bisimulation equivalence class [s] in the

combined MRM that results from taking the disjoint union of M and M/∼. By Theorem

6.2, s and [s] satisfy the same CSRL formulae. This observation allows us to switch from

M to its quotient M/∼ and to apply the model-checking techniques sketched in the

previous section to M/∼ rather than M. Building the quotient is often called lumping.

We expect that the proof techniques presented in Desharnais and Panangaden (2003)

for CSL are also applicable here to show that bisimulation equivalence for MRMs is the

coarsest equivalence that preserves the truth values of all CSRL formulae. This means

that whenever two states satisfy the same CSRL formulae, they are bisimilar. Together

with Theorem 6.2, this means that the bisimulation quotient M/∼ is the smallest MRM

that satisfies precisely the same CSRL formulae.

Example 6.3. Consider the model of Figure 3. It is a variant of the Hubble telescope model

already given previously in Figure 1. However, in contrast to the previous model, here we

distinguish between the six individual gyroscopes, which may be working or not working

– in the previous model, we just counted the number of gyroscopes working. However,

if we are in fact only interested in properties that depend on the number of working

gyroscopes, and are never interested in whether a particular gyroscope is functional, we

could choose a labelling that assigns the same label to all the states of Figure 3 that have

the same number of working gyroscopes, the same sleep mode and the same rewards.

Consequently, the bisimulation quotient of the model in Figure 3 is the same as that for

Figure 1.

Notice that the model of Figure 1 only has 9 states, whereas the model of Figure 3 has(
6

6

)
+

(
6

5

)
+

(
6

4

)
+

(
6

3

)
+ 2 ·

(
6

2

)
+ 2 ·

(
6

1

)
+

(
6

0

)
= 85
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1

crash
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sleep2

Fig. 3. Unlumped version of the Hubble telescope from Figure 1. In each state, the six gyroscopes

are denoted by circles. A black circle denotes a working gyroscope, whereas a white one means

that it is defective. Sleep mode is marked by ‘S’. Thin lines between states correspond to a rate of

0.1 (failure of a gyroscope), medium ones to 6 (servicing mission), and thick ones to 100 (go to

sleep). Boxes containing several states and a labelling denote which state of Figure 1 the included

states are lumped into.
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states. For this model, bisimulation thus yields a reduction in the number of states by a

factor of ≈ 9. If we generalise the model so that it has n telescopes, the size of the state

space would be O(2n) for the unlumped version and O(n) for the lumped one.

7. Non-determinism

7.1. Continuous-time Markov reward decision processes

A continuous-time Markov decision process (CTMDP) extends CTMCs by adding non-

deterministic choices. As with CTMCs, the model consists of states, and the timed

behaviour is governed by exponential distributions. But unlike the case for CTMCs, each

state may have a number of non-deterministic decisions of next-step distributions. The

class of CTMDPs is of interest because it can be viewed as a common semantic model

for various performance and dependability modelling formalisms, including generalised

stochastic Petri nets (Ajmone Marsan et al. 1984), Markovian stochastic activity networks

(Sanders and Meyer 1987) and interactive Markov chains (Hermanns and Katoen 2009).

Non-deterministic decisions are decisions that we cannot actually associate a particular

probability distribution with, since it is unknown or inapplicable. Such decisions may

result from the interleaved execution of concurrent systems, from underspecification of

the model or from leaving out probabilities we do not have enough information about,

such as user actions or certain environmental influences. Labels are usually used to

distinguish the non-deterministic alternatives. Here instead, we support models where

there is internal non-determinism between equally labelled next steps. In summary, a

CTMDP specification consists of state transitions, corresponding distributions and a

labelling function that maps transitions to labels.

Definition 7.1 (CTMDP). A continuous-time Markov decision process (CTMDP) C is a

tuple (S,Act,R, L) with:

— S a countable set of states;

— Act a set of actions;

— R : S × Act × S → �>0 the rate function; and

— L : S → 2AP a labelling function.

The set of actions that are enabled in state s is denoted by

Act(s) = { α ∈ Act | ∃s′.R(s, α, s′) > 0 }.

A CTMC is a CTMDP in which for each state s, Act(s) is a singleton or empty. The

operational behaviour of a CTMDP is similar to that of a CTMC, except that on entering

state s, an action α, say, in Act(s) is selected non-deterministically (unless the state is

absorbing).

As we have non-deterministic decisions, we cannot talk about the probability of a

model satisfying a property. Instead, probabilistic behaviour results after applying an

entity that resolves the non-deterministic decisions. This entity is called a scheduler, policy

or adversary. Intuitively, a scheduler acts as follows: whenever it is given a current state,

it picks an enabled transition. It may do this using (or not using) probabilities, and it may
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base the decision on the history of the process since its initialisation. This history can be

considered in more or less detail, and may, for instance, consist of the sequence of states

(path) visited thus far, with or without time stamps of the state changes. The scheduler

may also use the information about the time it has spent in the current state in order to

reconsider the decision.

The potential of such schedulers forms a natural hierarchy, with memoryless schedulers

(which do not use any history or time information) being the smallest class, and arbitrary

schedulers (using all the above-mentioned concepts) being the largest class. An interesting

intermediate class of schedulers are time-abstract schedulers, which use arbitrary history

information, apart from time, and arise naturally when dealing with CTMDPs resulting

from abstractions of CTMCs (Katoen et al. 2007).

Given a CTMDP and a particular class of schedulers, the basic approach in associating

a semantics with a logical state formula Φ from a logic like CSL is to demand that the

formula Φ be satisfied regardless of the choice of scheduler used to turn the decision

process into a stochastic process. This is closely related to the question of which scheduler

maximises or minimises a given CSL path formula.

These questions have induced a considerable amount of recent work in the context

of CTMDPs. The base problem considered is that of computing maximal time-bounded

reachability (��t) probabilities. The existence of optimal schedulers has been shown for

both, the arbitrary (Rabe and Schewe 2011) and the time-abstract (Brázdil et al. 2009)

scheduler setting, the latter coming with a decision algorithm.

Of practical relevance are approximative model-checking procedures, which are related

to those discussed in Section 5. An efficient approach for time-abstract schedulers has

been devised that is tailored to uniform CTMDPs. In this model class, there is a unique

rate E such that for each state and each non-deterministic alternative, the total outgoing

rate of this alternative is E (Baier et al. 2005a). The overhead over the CTMC algorithm

is linear in the maximal non-deterministic fanout. This algorithm has been generalised to

locally uniform CTMCs, which are models where there is a uniform exit rate per state

(Neuhäußer and Zhang 2010). This, in turn, is the basis for a model-checking algorithm

for IMCs, viz. interactive Markov chains (Zhang and Neuhäußer 2010). If we relinquish

the uniformity restriction entirely, but stay in the time-abstract setting, the only known

algorithm has exponential complexity (Brázdil et al. 2009).

Approximate model checking with respect to the most general class, viz. arbitrary

schedulers, has been a challenge until recently. A first step was a discretisation procedure

for time-bounded reachability (Neuhäußer and Zhang 2010). It is only recently that

an efficient algorithm has been proposed†. To handle properties depending on time

(instantaneous rewards, time-bounded until, and so on), it uses an initial gain vector, the

exact value of which depends on the property to be checked. Starting at the time bound (or

time point) t, this value is propagated back in time along the model states, until time 0 is

reached. While doing this, the time interval [0, t] is divided into smaller intervals, for which

the (almost) optimal decision for each state is constant. The correctness follows from a

† In fact, it is in a setting with state rewards and for a full CSL- (and CSRL-) like logic (Buchholz et al. 2011)
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result in Miller (1968) implying that an optimal policy exists, and only a finite number

of switches of the actions is needed to describe it. The algorithm returns a scheduler that

maximises or minimises a reward measure over a finite or infinite time horizon.

If reward values are zero, and we have the appropriate initial value for the gain

vector gt, the problem can be exploited to arrive at a uniformisation-based approach

to the computation of time bounded reachability probabilities within time t. It is easy

to generalise this to the maximal reachability for a finite interval [t′, t], which is the

key element in checking the probabilistic operator in CSL. Moreover, by computing the

gain vector between [t′, t] with t′ > 0, followed by a probabilistic reachability analysis

for the interval [0, t′], we are able to compute the minimum/maximum gain vector for

[t′, t]: this then gives us a complete model-checking algorithm for CTMDPs. Experimental

evidence shows that the efficiency of the new numerical approach provides a dramatic

improvement over the state-of-the-art. The situation here resembles the milestones in

approximate CTMC model-checking research, which initially resorted to discretisation

(Baier et al. 1999), but only got effective and mainstream technology through the use of

uniformisation (Baier et al. 2003).

It is not yet clear whether the CSRL-specific time-and-reward bounded operator can

also be checked in this way. However, the duality result presented in Theorem 4.5 extends

to (state-rewarded) CTMDPs (Baier et al. 2008). This means we can also check the reward-

bounded but time-unbounded formulae. A lot of work is currently going on in this area,

which also covers continuous-time Markov games, thereby extending the CTMDP setting

to a second type of non-determinism. In the discrete-time setting, such games have been

shown to be useful for obtaining under- and over-approximations of concrete models

using abstraction (Kattenbelt et al. 2009; Wachter et al. 2007). We anticipate similar

applications in the continuous-time setting in the near future.

8. Case study: the Google file system

In this section, we demonstrate the application of performability in practice on a case

study developed in an earlier publication (Cloth and Haverkort 2005). The model we

consider addresses a replicated file system as used as part of the Google search engine

(Ghemawat et al. 2003).

The high-level description is given as a generalised stochastic Petri net (GSPN)

(Ajmone Marsan et al. 1984). GSPNs are Petri nets in which transitions are either

immediate or stochastic, the latter being decorated with rates. A GSPN can be transformed

into an underlying CTMC. The states of this CTMC consist of an assignment of the number

of tokens to (a subset of) the places.

In the file system model we consider, files are divided into chunks of equal size. Several

copies of each chunk reside at several chunk servers. There is a single master server, which

knows the location of the chunk copies. If a user of the file system wants to access a

certain chunk of a file, it asks the master for the location. Data transfer then takes place

directly between a chunk server and the user.

The GSPN describing the model is shown in Figure 4, and is identical to the one given

in the original paper (Cloth and Haverkort 2005). Timed transitions are given as white
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M

C up

c hard re c soft re

c fail

C 1

R present

C soft d C hard d

c soft c hard

C 2

R lost

M up

m hard re m soft re

M soft d M hard d

m soft m hard

M1 m fail

replicate

destroy

keep

master

copies

servers

transition rate / prob.

m fail 0.0005

m soft re #M soft d·12

m hard re 6.0

c fail 0.05

c soft re #C soft d·12

c hard re 1.0

replicate
20.0 if #R present>0

2.0 if #R present=0

m soft 0.95

m hard 0.05

c soft 0.95

c hard 0.05

destroy #R present

#C up

keep 1 − #R present

#C up

Condition for replicate: (#C up>#R present)∧
(#C up·S�(#R present+1)·N)

Fig. 4. GSPN of the Google file system as described in (Cloth and Haverkort 2005).

rectangles and immediate transitions as black ones. Conditions and effects are specified

as usual for Petri nets by arcs connecting transitions and places. Additional conditions,

together with rates and probabilities, are displayed in the right-hand side of the figure.

The GSPN describes the life cycle of a single chunk, but takes into account the load

caused by the other chunks. The upper part describes the master. It may be: up and

running (token at M up); failed, but the type of failure not yet decided (M1); failed because

of a software failure (M soft d); or failed because of a hardware failure (M hard d).

The middle part describes the number of copies of available (R present), as well as the

number of lost (R lost) copies of the chunk under consideration. The lower part of

the GSPN describes the behaviour of the chunk servers. It contains places denoting the

numbers of running servers (C up) and servers with software (C soft d) and hardware

(C hard d) failures. If a server crashes, it either stores the chunk under consideration,

and thus a copy of it is lost (destroy), or it only stores chunks that we do not consider

explicitly (keep), so no copies are lost.

We transformed the GSPN into an equivalent model in which there are no immediate

transitions, as shown in Figure 5. GSPNs without immediate transitions can be easily

transformed into the PRISM (Kwiatkowska et al. 2009) modelling language, which is a

stochastic variant of Dijkstra’s guarded command language. We used PRISM , partially

as a model checker and partially to transform the models (CTMCs in this case) to the

(sparse matrix) format of our model checker MRMC (Katoen et al. 2011). All experiments

were conducted on an Intel Core 2 Duo P9600 with 2.66 GHz clock frequency and 4 GB

of main memory running Linux.
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M

C up

c soft rec hard re

R present

c hard d

c soft d

R lost

M up

m hard fa

m hard re

M soft d M hard d

m soft re

m soft fa

replicate

c hard de

c soft de

c hard ke

c soft ke

master

copies

servers

etarnoitisnart

m soft fa 0.0005 · 0.95

m hard fa 0.0005 · 0.05

m soft re #M soft d·12

m hard re 6.0

c soft de 0.05 · 0.95 · #R present

#C up

c hard de 0.05 · 0.05 · #R present

#C up

c soft ke 0.05 · 0.95 · (1 − #R present

#C up
)

c hard ke 0.05 · 0.05 · (1 − #R present

#C up
)

c soft re #C soft d·12

c hard re 1.0

replicate
20.0 if #R present>0

2.0 if #R present=0

Condition for replicate: (#C up>#R present)∧
(#C up·S�(#R present+1)·N)

Fig. 5. Transformed GSPN of the Google file system without intermediate transitions. The model

is equivalent to the one of Cloth and Haverkort (2005).

Table 2. Number of states and transitions in the underlying CTMC of the GSPN of

Figure 5, depending on the number of chunk servers.

M #states = 6(M2 + 1) #transitions

20 2406 15323

40 9606 63614

60 21606 145335

80 38406 260885

100 60006 410435

120 86406 593985

The model has three parameters:

— M is the number of chunk servers;

— S is the number of chunks a chunk server may store;

— N is the total number of chunks.

We fix S = 5000 and N = 100000. Table 2 shows the number of states and transitions for

different values of M.

We first consider a survivability property expressed in CSL (as described in Section 2.5):

Φ = severe hardware disaster ⇒ ��x(�
�T service level 3 ),

where

severe hardware disaster = (M hard d = 1) ∧ (C hard d > 0.75 · M) ∧ (C soft d = 0),
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Table 3. Performance figures for bounded until property Φ in the underlying CTMC of the

GSPN under consideration. The table shows the minimal probability (‘Prob.’) over all

states in which severe hardware disaster is fulfilled to reach a state in which

service level 3 holds within t time units. In addition, we give the time needed for the

computations (‘Time’) in minutes (‘m’) and seconds (‘s’).

M T = 20 T = 40 T = 60 T = 80 T = 100 T = 120 T = 140

20
Time 0s 0s 0s 0s 0s 0s 0s

Prob. 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

40
Time 0s 1s 1s 1s 1s 2s 2s

Prob. 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

60
Time 7s 12s 19s 25s 31s 36s 43s

Prob. 0.000000 0.001766 0.507116 0.990604 0.999992 1.000000 1.000000

80
Time 16s 32s 47s 1m 4s 1m 24s 1m 48s 2m 11s

Prob. 0.000000 0.001767 0.507119 0.990604 0.999992 1.000000 1.000000

100
Time 43s 1m 34s 2m 28s 3m 19s 4m 18s 4m 36s 5m 36s

Prob. 0.000000 0.001767 0.507119 0.990604 0.999992 1.000000 1.000000

120
Time 1m 30s 2m 54s 4m 20s 5m 44s 7m 15s 8m 13s 9m 20s

Prob. 0.000000 0.001767 0.507119 0.990604 0.999992 1.000000 1.000000

and

service level 3 = (M up = 1) ∧ (R present � 3).

The formula Φ states that in all states in which severe hardware problems have occurred

(master server is down and more than three quarters of the chunk servers are down), a

state in which a guaranteed quality-of-service level (all three chunk copies are present

and the master server is available) holds will be reached within time t with a probability

of at least x. We give the performance figures in Table 3 for different time bounds t

and different numbers of chunk servers M. We used MRMC for this analysis; we could

have used PRISM as well, but we chose MRMC so that we would be able to compare

performance measures in a reasonable way with the results of the next set of experiments.

We set the algorithms to use a precision of 10−6.†

The analyses were performed using a standard algorithm for the time-bounded until

operator in CTMCs (Baier et al. 2003). Instead of giving the truth value of Φ for

the individual states, we give the minimal probability that service level 3 is reached

within time t from state s, over all s in which severe hardware disaster holds. Cloth and

Haverkort (2005) described a number of similar properties, and the time complexity for

all these is the same.

It can be seen that the time needed for the analyses grows approximately linearly with

the time bound. The same holds with respect to the model size. For instance, for M = 100,

the state space is about three times larger than for M = 60 (see Table 2), and so is the

† Some results reported in Table 3 differ slightly from those reported in Cloth and Haverkort (2005) – this

appears to be rooted in numerical instabilities of the prototype implementation used then.
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time needed for the analysis. These observations are in accordance with the complexity

results for the algorithm used (Baier et al. 2003). As expected, the more time we allow for

recovery to the required quality of service, the more likely it is that we recover before the

bound is reached.

As seen in the table, for values of M below 60, the reachability probability is always

zero. This seemingly strange result is in accordance with the theory. Consider the enabling

condition for replicate: ‘(#C up · S � (#R present+ 1) · N)’. Given that we have M = 60,

S = 5000 and N = 100000, if all chunk servers are up, it is #C up · S = 300000. If there

are two existing replicas, it is (#R present + 1) · N) = 300000. For service level three, we

need to obtain three replicas in the end. For M = 59 or below, this will never be possible,

because then #C up ·S < 300000 and the condition to generate the third replica can never

be fulfilled since we can never have enough chunk servers up and running. Because of

this, service level three will never be reached.

In the previous analyses, we assumed that we know the probabilities and rates appearing

in the model exactly. We now consider a model variant in which we assume that we do

not know the probabilities of whether a hardware or a software failure occurs in the

chunk server part, but that the other probabilities and rates are known – this case

was not addressed in Cloth and Haverkort (2005). We thus have a non-deterministic

choice between c soft and c hard (of Figure 4). Accordingly, the underlying model

is no longer a Markov chain, but a Markov decision process. Using an algorithm

integrated into an experimental version of MRMC (Buchholz et al. 2011), we can

handle time-bounded until formulae for this model class. We give performance measures

in Table 4. The non-determinism can be resolved in different ways, leading to different

underlying stochastic models. The probabilities given in the table correspond to the

resolution of the non-determinism such that reachability probabilities are either minimal

or maximal (over the general class of schedulers). Because the non-deterministic choice

abstracts from the concrete probabilities in the purely stochastic model, the probabilities

of Table 3 lie between the minimal and maximal probabilities of those computed for

Table 4. In Figure 6, we fix M = 60 and plot the probabilities in the CTMC (following

Table 3), as well as the lower and upper bounds obtained from the CTMDP as a

function of the time bound (following Table 4). The probabilities obtained from the

CTMC model are close to the upper bound for the CTMDP model. This is because

in the CTMC we have a probability of 0.95 for a software failure, which can be

repaired much more quickly than a hardware failure. The algorithm for analysing models

involving non-determinism is more complex because we have to consider the worst-case

probabilities over all possible choices. Because of this, the analyses took much longer,

but we were still able to complete all of the analyses we completed for the original

model.

We now consider the variant of the model without non-determinism again, and assign

a reward of 1 to all transitions corresponding to the failure of a component (m soft fa,

m hard fa, c soft de, c soft ke, c hard de, c hard ke). This means that we need to

add a transition reward structure to the underlying CTMC. The property

Ψ1 = �<x(tt)
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Table 4. Performance figures for bounded until property Φ in the CTMDP variant of the

GSPN under consideration. The table shows the minimal probability (‘Prob.’) over all

states in which severe hardware disaster is fulfilled to reach a state in which service level 3

holds within t time bounds. In addition, we give the time needed for the computations

(‘Time’), in minutes (‘m’) and seconds (‘s’). In lines marked by ‘min’ we minimise over the

non-deterministic choice whereas for lines marked with ‘max’ we maximise.

M T = 20 T = 40 T = 60 T = 80 T = 100 T = 120 T = 140

min
Time 4s 8s 14s 18s 23s 29s 34s

Prob. 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
20

max
Time 5s 11s 17s 23s 29s 36s 43s

Prob. 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

min
Time 22s 45s 1m 9s 1m 35s 2m 2s 2m 27s 2m 53s

Prob. 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
40

max
Time 31s 1m 4s 1m 37s 2m 12s 2m 46s 3m 22s 4m 0s

Prob. 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

min
Time 1m 39s 3m 15s 4m 55s 6m 34s 8m 7s 9m 48s 11m 10s

Prob. 0.000000 0.000899 0.372063 0.968060 0.999877 1.000000 1.000000
60

max
Time 1m 39s 3m 18s 4m 59s 6m 38s 8m 8s 9m 37s 11m 9s

Prob. 0.000000 0.001830 0.514567 0.991275 0.999994 1.000000 1.000000

min
Time 4m 10s 8m 6s 12m 14s 16m 30s 20m 5s 23m 29s 25m 24s

Prob. 0.000000 0.000899 0.372069 0.968061 0.999877 1.000000 1.000000
80

max
Time 4m 21s 8m 23s 12m 42s 16m 46s 19m 52s 23m 29s 25m 26s

Prob. 0.000000 0.001830 0.514569 0.991275 0.999994 1.000000 1.000000

min
Time 8m 4s 16m 2s 24m 3s 32m 7s 39m 9s 45m 31s 50m 35s

Prob. 0.000000 0.000899 0.372069 0.968061 0.999877 1.000000 1.000000
100

max
Time 8m 18s 16m 22s 24m 26s 32m 12s 37m 56s 45m 15s 50m 48s

Prob. 0.000000 0.001830 0.514569 0.991275 0.999994 1.000000 1.000000

min
Time 15m 15s 29m 44s 43m 40s 59m 18s 67m 7s 76m 56s 84m 48s

Prob. 0.000000 0.000899 0.372069 0.968061 0.999877 1.000000 1.000000
120

max
Time 14m 59s 30m 20s 43m 39s 58m 54s 66m 42s 76m 22s 83m 25s

Prob. 0.000000 0.001830 0.514569 0.991275 0.999994 1.000000 1.000000

corresponds to the average number of failures per time unit, while

Ψ2 = �[0,T ]
<x (tt)

describes the total number of failures until time t.

As MRMC does not yet support properties of the form of Ψ1 and Ψ2 (but instead

focuses on the reward-bounded until), we used PRISM to carry out these analyses. We
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Fig. 6. Reachability probabilities for M = 60 as a function of the time bound. The black plot

corresponds to the numbers obtained from the CTMC model (see Table 3), while the enclosed grey

area is given by lower and upper bounds in the CTMDP model (see Table 4.)

Table 5. Performance figures for reward-based property Ψ1. The table shows the long-run

average number of failures per time unit (‘Reward’) as well as the time needed to perform

the analysis (‘Time’) in minutes (‘m’) and seconds (‘s’).

M

20
Time 0s

Reward 0.050500

40
Time 1s

Reward 0.050500

60
Time 1s

Reward 0.050500

80
Time 2s

Reward 0.050500

100
Time 3s

Reward 0.050500

120
Time 6s

Reward 0.050500

140
Time 9s

Reward 0.050500

used the PRISM engine based on sparse matrices and a precision of 10−6. In Table 5, we

give results for Ψ1, and in Table 6 we provide those for Ψ2. Instead of the truth values,

we provide the rewards obtained when starting in the initial state of the model. There is

no visible influence of M on the average number of failures per time unit. In theory, the

choice of M should, however, affect this number: a failure can only occur if the place

C up is not empty, and this is more likely for large M. However, for the analyses we
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Table 6. Performance figures for reward-based property Ψ2. The table shows the average

number of failures that have occurred up until time t (‘Reward’), as well as the time

needed for the analysis (‘Time’) in minutes (‘m’) and seconds (‘s’).

M T = 20 T = 40 T = 60 T = 80 T = 100 T = 120 T = 140

20
Time 0s 0s 0s 0s 0s 0s 0s

Reward 1.010000 2.019999 3.029999 4.039998 5.049998 6.059997 7.069997

40
Time 1s 1s 1s 1s 1s 1s 1s

Reward 1.010000 2.019999 3.029999 4.039998 5.049998 6.059997 7.069997

60
Time 3s 3s 3s 3s 3s 3s 3s

Reward 1.010000 2.019999 3.029999 4.039998 5.049998 6.059997 7.069997

80
Time 6s 6s 6s 6s 6s 6s 6s

Reward 1.010000 2.019999 3.029999 4.039998 5.049998 6.059997 7.069997

100
Time 11s 11s 11s 18s 18s 18s 16s

Reward 1.010000 2.019999 3.029999 4.039998 5.049998 6.059997 7.069997

120
Time 18s 18s 18s 19s 23s 31s 31s

Reward 1.010000 2.019999 3.029999 4.039998 5.049998 6.059997 7.069997

have carried out, the effect of the choice of M is below the analysis precision. This can

be explained by the fact that repair rates are much higher than the failure rates, so it is

already unlikely that C up is empty for the smaller M considered.

The time needed for the analysis is again approximately linear in the number of states.

However, it is much lower than for the time-bounded reachability analyses carried out for

property Φ (we also checked this for PRISM ). In addition, for Ψ2, the dependence on the

time bound t is much weaker than for the computations of the reachability probability.

While in the worst case the algorithm used is still linear in the time bound, it features

what is known as a ‘steady-state detection’ mechanism. For this model, this allows us to

terminate the iterative algorithm at an early stage, while still guaranteeing the precision

requested.

9. Epilogue

In this paper we have shown that model checking and performability analysis, combined

with logics and performability specifications, form ‘dream teams’. We have illustrated this

through a detailed treatment of various core performability measures on an important

model in performabilty analysis – continuous-time Markov reward models. The flexibility

provided by using stochastic temporal logics like CSRL as a specification vehicle means

we can give succinct representations of many standard, and new, performability measures

that have practical relevance. In addition, model checking provides a unified algorithmic

approach for analysing a broad variety of performability measures. That is to say, a single

algorithm suffices to treat all measures that can be expressed in the logical framework

provided. There is no need to come up with a new algorithm for a new formula, that is, a

new measure. It is our firm belief that this is one of the major strengths of the approach

advocated in this paper.
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Apart from giving an overview of the key ingredients in a model-checking-based

performability evaluation, we have also provided a few new results. We extended an

existing duality result for (constrained) reachability properties by showing the duality

of long-run averages and expected long-run rewards. We have also defined notions

of bisimulation for MRMs with impulse rewards, illustrated the potential impact of

considering bisimulation quotients on our running example and considered the notion

of expected reward measures in the presence of state and impulse rewards. Finally, a

comprehensive case study (the Google file system) demonstrates the power of the currently

available model-checking technology. In particular, we demonstrated the analysis in the

presence of non-determinism, that is, we presented some experimental results on model

checking continuous-time Markov reward decision processes.

As future work, it is important to improve the efficiency of some of the verification

algorithms: in particular, for time- and reward-bounded reachability probabilities. Given

the close intertwining of the elapse of time and reward, this is a challenge. Furthermore, it

is fair to say that the analysis of continuous-time Markov reward decision processes is in

its infancy, and much progress is required there. On the modelling side, reward extensions

of stochastic hybrid systems seem to be of interest. Finally, we believe that in order to

increase scalability, we will need aggressive abstraction techniques that go far beyond the

state space reductions that can be obtained by bisimulation quotienting.

Appendix A. Table of symbols

The following table gives an overview of symbols used in the paper.

Symbol Meaning Page

Pr(ev ) probability of event ev 756

Path(s) set of maximal paths starting in state s 760

Pr measure on paths 760

Prs probability measure on paths starting in state s 761

t used for time duration and time points 756

C used for continuous-time Markov chains (CTMCs) 756

C used for continuous-time Markov decision processes

(CTMDPs) 778

M used for Markov reward models (MRM) 758

λ used for rates 756

X random variable 756

X(t) state of a Markov model at time t 766

Y (t) accumulated reward 766

W (t) time-averaged accumulated reward 766

A(t) availability at time t 766

FX(t) cumulative probability distribution of X 756

S state space of a stochastic model 756
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Symbol Meaning Page

s, u used for states 756

R(s, s′) rate from state s to state s′ 756

AP set of atomic propositions 756

a used for atomic propositions 756

L(s) labelling of state s 756

E(s) sum of outgoing rates of state s 756

P(s, s′) probability to finally jump from state s to state s′ 757

P(s, S ′) probability to finally jump from state s to set S ′ of states 757

s → s′ transition from state s to state s′ 757

ι(s, s′) impulse reward from state s to state s′ 758

ρ(s) reward rate of state s 758

ρ, ρ̂, ρ̃ reward structures 758

σ used for paths 760

si used for (i + 1)th state of a path 760

ti used for (i + 1)th time duration of a path 760

σ[i] (i + 1)th state of path σ 760

σ@t state occupied at time t on path σ 760

π(s, s′, t) probability of being in state s′ at time t if started in state s 760

π(s, s′) steady-state probability of being in state s′ if started in

state s

761

π(s′) steady-state probability of being in state s′ regardless of

starting state

761

π(s, S ′, t) probability of being in a set S ′ of states at time t if started

in state s

761

π(s, S ′) steady-state probability of being in a set S ′ of states if

started in state s

761

y(σ, t) cumulative reward on path σ up to time t 760

ρ(s, s′) expected long-run reward rate for state s′ if started in state s 761

ρ(s, s′, t) expected instantaneous reward rate for state s′ at time t if

started in state s

761

ρ(s, S ′) expected long-run reward rate for a set S ′ of states if

started in state s

761

ρ(s, S ′, t) expected instantaneous reward rate for a set S ′ of states at

time t if started in state s

761

EY(s, s′, t) expected accumulated reward in state s′ at time t if started

in state s

761

EY(s, S ′, t) expected accumulated reward at t in set S ′ of states if

started in state s

762
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Symbol Meaning Page

EY(s, S ′, I) expected reward accumulated in state s′ in time interval I

if started in state s

765

F marks a failure state 766

Φ used for CSRL state formulae 764

Ψ used for CSRL state formulae 763

s |= Φ state s fulfills CSRL formula Φ 763

ϕ used for CSRL path formulae 763

SatM(Φ) states fulfilling Φ 762

I used for time intervals 763

J used for reward intervals 763

K used for probability intervals 763

tt state formula: the boolean value ‘true’ 764

∧ state formula: logical ‘and’ 764

¬ state formula: negation 764

�K(Φ) state formula: long-run probability 764

�J(Φ) state formula: long-run average reward 764

�t
J(Φ) state formula: instantaneous reward 764

�I
J(Φ) state formula: accumulated reward 764

�K(ϕ) state formula: probability measure 764

XI
J Φ path formula: next 764

Φ UI
J Ψ path formula: until 764

�I
J state formula: finally 764

�I
J state formula: always 764

·∗ dual model, reward structure, and so on 767

q defined in part about duality 769

χ(u) defined in part about duality 769

G used for states fulfilling a certain formula 773

1U characteristic function of the set U of states 772

T used for strongly connected components (SCCs) 772

gt initial gain vector 780

xs,T probability of reaching SCC T from state s 773

G complement set of states of G 773

[s] equivalence class containing state s 776

R a bisimulation relation 775

∼ coarsest bisimulation relation 775

M/∼ bisimulation quotient of model M 776

Act actions of a CTMDP 778

Act(s) actions enabled in state s 778

R(s, α, s′) rate to state s′ from state s choosing action α 778
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