
Model Checking Knowledge, Strategies, and Games in
MultiAgent Systems

Alessio Lomuscio, Franco Raimondi
Department of Computer Science

University College London – London, UK

{a.lomuscio,f.raimondi}@cs.ucl.ac.uk

ABSTRACT

We present an OBDD-based methodology for verifying time, knowl-
edge, and strategies in multi-agent systems specified by the formal-
ism of interpreted systems. To this end, we investigate the inter-
pretation of ATL and epistemic formulae in various classes of in-
terpreted systems, we present model checking algorithms and their
implementation, and report experimental results.

General Terms

Theory;Verification,Algorithms

Keywords

Model checking multi-agent systems; ATL

1. INTRODUCTION
Model checking was traditionally put forward to verify specifica-

tions given in temporal logics [6]. Recently, however, researchers
have extended model checking techniques to other modal logics,
including some typical multi-agent systems (MAS) logics, thereby
making it possible to verify formally a range of multi-agent sys-
tems against temporal, epistemic, and other modalities. Examples
of efforts on this line include [25, 4, 8, 19, 22]. These works share
the model checking approach but differ in the choice of the logic-
based specification language, and in the specific model checking
technique employed.

In parallel developments, Alur et al. introduced Alternating-time
Temporal Logic (ATL), a logic to reason about strategies in multi-
player games [3]. Model checking approaches for this logic have
been developed [2, 16]. More recently, van der Hoek and Woold-
ridge proposed the logic ATEL [11]. ATEL extends ATL with epis-
temic operators whose semantics is defined over runs of a multi-
agent system. However, it has been argued [12, 15, 13, 14] that
the interpretation of ATL operators in ATEL might not correspond
entirely to the original spirit of ATL [3]. Following [11], various
solutions have been put forward [15, 13, 14, 1, 10] to express ATL
operators in a semantics based on MAS. Some of these issues relate
back to the seminal work by Moore [18].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’06 May 8–12 2006, Hakodate, Hokkaido, Japan.
Copyright 2006 ACM 1595933034/06/0005 ...$5.00.

Against this background, and in parallel with this discussion,
[11, 9, 20] suggested different techniques to reduce the problem of
ATEL model checking to standard ATL model checking, with the
idea of using MOCHA, the only existing model checker for ATL, for
model checking MAS. In addition, the algorithms proposed in [16]
are based on a reduction of the problem of model checking ATEL
to a boolean satisfiability problem; however, no implementation is
available yet.

In this paper we try to make further progress in this line by in-
vestigating interpretations of epistemic and ATL operators on inter-
preted systems, a mainstream semantics for MAS, and by present-
ing a verification methodology for it. In particular:

• we consider various classes of interpreted systems and we
explore in detail the interpretation of ATL operators on these
classes;

• we present model checking algorithms for ATL operators on
various classes of interpreted systems;

• we present an extension for MCMAS [21] (a tool for the au-
tomatic verification of temporal and epistemic operators in
interpreted systems) supporting ATL operators.

In contrast to previous approaches, our tool does not involve the
translation or the reduction of the problem of model checking to
plain ATL, and it permits the automatic verification of ATL oper-
ators on different classes of interpreted systems, thereby making
it possible to express what agents may bring about, and what they
may enforce. To our knowledge, this is not supported by any im-
plementation. The tool is available for download from [21] under
the terms of the GPL license.

The rest of the paper is organised as follows. In Section 2 we
review theoretical preliminaries, and we compare briefly semantics
for ATL and for interpreted systems. In Section 3 we discuss differ-
ent classes of interpreted systems for the evaluation of ATL opera-
tors. In Section 4 we introduce the algorithms for model checking
and we present the tool MCMAS. In Section 5 we evaluate the effec-
tiveness of our approach by verifying three examples and we report
experimental results. We conclude in Section 6.

2. PRELIMINARIES
In this section we review the main formalisms that we shall use

in the remainder of this paper. We first introduce the logic ATL,
then we describe the formalism of interpreted systems to model
multi-agent systems, and we compare the semantics of interpreted
systems with ATL semantics.

2.1 ATL
The syntax of the temporal logic ATL (Alternating-time Tem-

poral Logic) [3] is defined as follows. Let AP be a finite set of
atomic propositions, let Σ = {1, . . . , n} be a set of players, and
let Γ ⊆ Σ be a subset of the set of players. Let p ∈ AP be an
atomic proposition; well-formed ATL formulae are defined by the
following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈〈Γ〉〉Xϕ | 〈〈Γ〉〉Gϕ | 〈〈Γ〉〉[ϕUψ]

In [3], the formula 〈〈Γ〉〉 · ϕ is read as “the set of players Γ can
enforce ·ϕ” (where · denotes a temporal modality). ATL can be
seen as an extension of the temporal logic CTL [6] where the path
quantifiers E and A are replaced with quantification over sets of
computations which players can “enforce”. Indeed, quantification
over all the possible computations is read as the existential quanti-
fier of CTL, while quantification over the empty set is read as the
universal quantifier of CTL.

Traditionally, the semantics of ATL formulae is given in terms
of concurrent game structures (CGS). A CGS is a tuple

< Σ, S,AP, h, d, δ >

where Σ is a set of players, S is a finite set of states, AP is a set
of atomic propositions, h : AP → 2S is an evaluation function,
d : Σ × S → IN is the number of moves available to a player
i in a state (moves are labelled with natural numbers), and δ is
an evolution function that determines the evolution of the system.
Various definitions of δ are possible, we refer to [3] for more de-
tails. A strategy for player i is a function fi that maps sequences
of states to a natural number, corresponding to a move available
to player i at the end of the sequence, i.e., fi : S+ → IN , with
fi(s) < d(i, s) for all states in the sequence. Given a state s ∈ S,
a set of players Γ, and a set of strategies FΓ = {fi|i ∈ Γ}, the set
out(s, FΓ) ⊆ S+ is the set of sequences that the group Γ can en-

force in s, as defined in [3], p. 685. A sequence of states s0, s1, . . .
such that each si, i ≥ 0 is related to si+1 via the evolution func-
tion δ is denoted with π, and π(i) = si denotes the i-th state in
the sequence. Sequences of states are usually called computations.
Satisfaction of an ATL formula in a state s ∈ S of a given CGS is
defined as follows:

s |= p iff s ∈ h(p),
s |= ¬ϕ iff s 6|= ϕ,
s |= ϕ1 ∨ ϕ2 iff s |= ϕ1 or s |= ϕ2,
s |= 〈〈Γ〉〉Xϕ iff there exists a set of strategies FΓ s.t.

for all computations π ∈ out(s, FΓ),
π(1) |= ϕ.

s |= 〈〈Γ〉〉Gϕ iff there exists a set of strategies FΓ s.t.
for all computations π ∈ out(s, FΓ)
and ∀i ≥ 0, π(i) |= ϕ.

s |= 〈〈Γ〉〉[ϕUψ] iff there exists a set of strategies FΓ s.t.
for all computations π ∈ out(s, FΓ),
∃i ≥ 0 s.t. π(i) |= ψ and
∀0 ≤ j < i, π(j) |= ϕ

It is worth noticing here that the definitions above are given with
the intuition that every player has complete information about the

system and perfect recall (see Section 2.3 for further details).

2.2 Interpreted systems
An interpreted system [7] is a formal description of the compu-

tations carried out by a set of agents Σ = {1, . . . , n}. Each agent
i ∈ Σ is characterised by a finite set of private local states Li

and by a finite set of actions Acti that may be performed. Actions
are performed in compliance with a protocol Pi : Li → 2Acti .
Notice that this definition of protocols allows for non-determinism

in the system. The environment in which agents “live” may be
modelled by means of a special agent E, modelled by a set of lo-
cal states LE , a set of actions ActE , and protocol PE . A tuple
g = (l1, . . . , ln, le) ∈ L1 × · · · × Ln × LE is called a global

state and gives a description of the system at a particular instant
of time. The evolution of the agents’ local states is described by
a function ti : Li × LE × Act1 × · · · × Actn × ActE → Li

which gives the “next” local state as a function of the current lo-
cal state of the agent, the environment, and all the other agents’
actions (the evolution function for the environment is defined as
tE : LE × Act1 × · · · × Actn × ActE → LE). It is assumed
that, in every state, agents evolve simultaneously (this assump-
tion corresponds to the definition of Moore synchronous CGS, in
which the evolution function δ prescribes a simultaneous evolu-
tion of players). The evolution of the (global states of the) sys-
tem may be described by a function t : G × Act → G, where
G ⊆ (L1 × · · · × Ln × LE) denotes the set of reachable global
states, and Act = Act1 × · · · × Actn × ActE denotes the set of
“joint” actions (similarly, one can reason about the joint actions
of a group of agents Γ ⊆ Σ). The function t is the composi-
tion of all the functions ti, and it is defined by t(g, a) = g′ iff
∀i, ti(li(g), lE(g), a) = li(g

′), where li(g) denotes the local state
of agent i in global state g and a ∈ Act. The set G of reachable
global states is obtained by considering all the possible evolutions
of the system from a set of initial global states, denoted with I .
Finally, to complete the description of an interpreted system, a set
of atomic propositions AP is introduced, together with a valuation
function h : AP → 2G.

Formally, an interpreted systems IS is a tuple

IS =
〈

(Li, Acti, Pi, ti)i∈Σ∪{E} , I, h
〉

. Interpreted systems have

been proven a suitable formalism for reasoning about temporal and
epistemic properties of agents [7, 17]. The standard semantics of
interpreted systems is given Section 3.

2.3 On the relationship between interpreted
systems and concurrent game structures

Interpreted systems and concurrent game structures are closely
related. Consider an interpreted system

IS =
〈

(Li, Acti, Pi, ti)i∈Σ∪{E} , I, h
〉

and a concurrent game structure

CGS =< Σ, S,AP, h, d, δ >:

• both structures comprise a set of agents (or players) Σ, and
both structures comprise a set of states, called global states
in IS ;

• the function d, which returns the number of moves available
to a player in a state of a CGS, intuitively corresponds to the
protocols Pi in IS ;

• the evolution function δ ofCGS is an “accessibility” relation
between states, as the evolution function t of IS , defined in
terms of the evolution functions ti;

• the valuation functions h of CGS and IS both label (global)
states with propositions.

Differently from CGS, however, global states of interpreted sys-
tems have a structure, being tuples of private local states. This
subtle difference is key in understanding the difference in the se-
mantics for ATL operator in CGS and in interpreted systems pre-
sented in the next section. Indeed, CGS assume that every player

has perfect information, i.e., every player is fully aware of the state
s ∈ S at every time instant. Conversely, in interpreted systems an
agent is aware of its private local state only.

A further difference between interpreted systems and CGS is the
definition of strategies. In [3], a strategy is defined as a function
from sequences of states to an action. In the case of interpreted
systems, instead, we define below a strategy for agent i to be a func-
tion from a (single) local state to an action of agent i (see the next
Section for a discussion about this). In this sense, strategies and
protocols in interpreted systems are closely related because they as-
sociate actions to states and, in the case of deterministic interpreted
systems (see Section 3.2), strategies and protocols are the same
mathematical object. In the remainder of the paper we will refer
to protocols when describing interpreted systems, and to strategies
when reasoning about ATL formulae in interpreted systems.

Explanations of other technical similarities and differences be-
tween the two semantics is not the aim of the present paper.

3. ATL OPERATORS IN INTERPRETED SYS

TEMS
In this section we discuss how interpreted systems can provide a

semantics for a language that includes operators to reason about
time, knowledge, and strategies. Formally, let AP be a set of
atomic propositions and let p ∈ AP be an atomic proposition;
the syntax of the language we consider is defined by the following
grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EXϕ | EGϕ | E[ϕUψ] |

Kiϕ | EΓϕ | CΓϕ |DΓϕ |

〈〈Γ〉〉X(ϕ) | 〈〈Γ〉〉G(ϕ) | 〈〈Γ〉〉[ϕUψ]

In the grammar above, Γ ⊆ Σ denotes a set of agents, Kiϕ is
read as “agent i knows ϕ”, EΓϕ is read as “everybody in group
Γ knows ϕ”, CΓϕ is read as “it is common knowledge in Γ that
ϕ” [7], DΓϕ is read as “it is distributed knowledge in Γ that ϕ, and
〈〈Γ〉〉 · ϕ (where · is one of the temporal operators X,G, or U) is
read as “group Γ can enforce ·ϕ”. Other temporal and ATL opera-
tors expressing eventuality (F), and the universal quantifier (A) for
paths, can be derived in a standard way. Notice that, although the
temporal operators can be derived from the ATL operators, we treat
them separately to stress the difference between temporal reasoning
and strategic reasoning; we refer to [3, 6] for details.

To provide a semantics for well-formed formulae we proceed
as follows. Given an interpreted system IS , we associate a Kripke
modelMIS to IS . The associated modelMIS = (G, t, (∼i)i∈Σ, L)
for a given interpreted system

IS =
〈

(Li, Acti, Pi, ti)i∈Σ∪{E} , I, h
〉

is defined as follows:

• The set of possible worlds G is the set of reachable states of
IS . The set G can be obtained from the set of initial states I
by iterating the evolution function t defined by the protocols
and the evolution functions of each agent in Section 2.2.

• The temporal relation t ⊆ G×Act×G relating two worlds
by means of a joint action is the relation defined in Sec-
tion 2.2.

• Each epistemic accessibility relations ∼i is defined by the
equality of the local components of the global states: g ∼i g

′

iff li(g) = li(g
′), i.e. iff the local states of agent i in global

states g and g′ are the same [7].

• The labelling function L : AP → 2G is equivalent to the
evaluation function h.

Temporal and epistemic formulae are interpreted on MIS in a
standard way; we refer to [7, 6, 3] for details. Similarly to Sec-
tion 2.1, we define a strategy to be a function fi : Li → Acti
from (local) states to actions for agent i, with the requirement that
fi(li(g)) ∈ Pi(li(g)), i.e. fi(li(g)) is one of the actions enabled
by the protocol Pi for agent i when its local state is li(g). Notice
that this definition corresponds to the memoryless, imperfect infor-
mation semantics of ATL [23]. Different partial recall semantics
could be defined by using vectors of local states. Given a group
of agents Γ and a state g ∈ G, let FΓ = {fi|i ∈ Γ} be a set
of strategies; as in Section 2.1, we denote with out(g, FΓ) the set
of computations that group Γ can enforce at state g (computations
are defined as in Section 2.1). For convenience, we report here the
semantics for ATL and epistemic formulae.

• MIS , g |= Kiϕ iff for all g′ ∈ G, g ∼i g
′ impliesMIS , g

′ |=
ϕ.

• MIS , g |= 〈〈Γ〉〉Xϕ iff there exists a set of strategies FΓ such
that, for all computations π ∈ out(g, FΓ), π(1) |= ϕ.

• MIS , g |= 〈〈Γ〉〉Gϕ iff there exists a set of strategies FΓ such
that, for all computations π ∈ out(g,FΓ) and for all i ≥ 0,
π(i) |= ϕ.

• MIS , g |= 〈〈Γ〉〉[ϕUψ] iff there exists a set of strategies FΓ

such that for all computations π ∈ out(g,FΓ), there exists
i ≥ 0 such that π(i) |= ψ, and for all 0 ≥ j < i π(j) |= ϕ.

Following [7] (p.118), we write IS |= ϕ if MIS |= ϕ.
It is known that non-intuitive results may arise when evaluating

ATL operators in MAS logics [15, 13, 14, 1]. We investigate this is-
sue for the semantics of interpreted systems in the next subsections,
by considering various classes of interpreted systems.

3.1 Nondeterministic interpreted systems
The most general class of interpreted systems is the one defined

in Section 2.2. Consider the following simple example of an inter-
preted system IS 1 composed by two agents Ag1 and E (the envi-
ronment); the agent Ag1 is modelled by means of three local states
L1 = {l11, l

2
1, l

3
1} and two possible actions Act1 = {a1

1, a
2
1}. The

protocol for Ag1 prescribes that every action is allowed in every
state. The second agent E is modelled by means of two local states
LE = {l1E , l

2
E}, and we assume that no action is performed by E

(and thus no protocol is required). In the initial state the system
can be either in global state (l11, l

1
E) or in global state (l11, l

2
E). The

evolution function for Ag1 is defined below:

Loc. st. Ag1 Loc. st. E Act. Ag1 Next state

l11 l1E a1
1 l21

l11 l1E a2
1 l31

l11 l2E a1
1 l31

l11 l2E a2
1 l21

We assume that in every other state there is no change in lo-
cal state for Ag1, and we assume that the local state of E never
changes. We introduce an evaluation function h assigning the propo-
sition WIN to the global states (l21, l

1
E) and (l21, l

2
E). The model

associated to IS is depicted in Figure 1.
In this simple example the formula 〈〈Ag1〉〉X(WIN) is true in the

initial states of IS ; however, it is not the case thatAg1 is capable of
enforcing a state in which the proposition WIN holds. Indeed, Ag1
cannot distinguish between the global states (l11, l

1
E) and (l11, l

2
E),

1This is a reduced version of the card game presented in [15, 13].

WIN WIN

(l11, l1E) (l11, l2E)

(l31, l2E)(l31, l1E)(l21, l1E)

a2
1 a2

1
a1
1 a1

1

(l21, l2E)

Figure 1: A simple example.

because its local state is the same in the two global states. We
conclude that, similarly to what happens in the case of ATEL, ATL
operators in non-deterministic interpreted systems do not express
what agents may enforce, but what agents may bring about. In our
example, the formula 〈〈Ag1〉〉X(WIN) has to be read “Ag1 may
bring about a state in which the proposition WIN holds, maybe by
guessing moves”.

3.2 Deterministic interpreted systems
The reason the meaning of the ATL operators is subtly different

in interpreted systems is that these allow for agents to run non-
deterministic protocols, i.e., the same agent may perform different
actions in a given local state. To follow the spirit of the original
CGS more closely, we can focus on the subclass of interpreted sys-
tems, whose protocols are deterministic, i.e., protocols in which
only one action is associated to a given local state: Pi : Li → Acti.

We define an interpreted system to be deterministic iff the pro-
tocol of each agent is deterministic (a deterministic protocol asso-
ciates a unique action to each local state). Notice that, since we
assume the transition function to be deterministic, the models as-
sociated to deterministic interpreted systems are not branching but
linear.

Since in deterministic interpreted systems agents are not allowed
to “guess” actions, the evaluation of ATL operators in their associ-
ated expresses the original “enforcement” meaning of ATL opera-
tors in CGS [3].

3.3 Γuniform interpreted systems
Deterministic interpreted systems are close in spirit to the origi-

nal interpretation of ATL in CGS, but, as exemplified later in Sec-
tion 5, in many circumstances the class of deterministic interpreted
systems is too restrictive to be used in the specification of MAS
scenarios. In these circumstances it is useful to reason about non-
deterministic interpreted systems that at least are consistent in their
selection of actions in a given local state.

By extending the concepts of [15, 14], we define an agent to be
uniform if throughout a run the agent performs always the same
action when in a particular local state. A group of agents Γ ⊆ Σ
is uniform if every agent in the group is uniform. We say that an
interpreted system is Γ-uniform if all agents in Γ are uniform. We
define a Γ-uniform interpreted system ISΓ to be compatible with
an interpreted system IS if (i) it contains the same agents, with the
same set of local states, actions, and evolution function, and (ii)
the protocols PΓ

i for the Γ agents in ISΓ are a restriction of the
protocols Pi of IS , in the sense that for all local states li ∈ Li,
PΓ

i (li) ∈ Pi(li) (i.e. only one action is selected in P Γ
i , and the

action is one of the actions specified in Pi).
Notice that, for a given interpreted system IS and a group of

agents Γ, there may be several Γ-uniform interpreted systems com-

patible with IS (but at most
∏

i∈Γ

|Acti|
|Li|). We denote with {IS}Γ

the set of Γ-uniform interpreted systems that are compatible with a
given interpreted system IS .

Similarly to the general case, we associate a Kripke model to
each Γ-uniform interpreted system in {IS}Γ. We say that a formula
ϕ is true in a class of Γ-uniform interpreted systems, and write
IS |=Γ ϕ, if ϕ is true in at least one of the models associated with
the Γ-uniform interpreted system in {IS}Γ.

WIN

(l1
1
, l1

E
) (l1

1
, l2

E
)

(l2
1
, l1

E
)

a1
1

a1
1

(l3
1
, l2

E
)

Ag1-uniform model 1

(l1
1
, l1E) (l1

1
, l2E)

a2
1

(l31, l1E)

a2
1

WIN

(l21, l2E)

Ag1-uniform model 2

Figure 2: Ag1-uniform interpreted systems for the interpreted

system of Figure 1.

As an example, the uniform interpreted systems for the exam-
ple of Figure 1 are presented in Figure 2. In this example, in
the initial states we have IS |= 〈〈Ag1〉〉X(win), but IS 6|=Ag1

〈〈Ag1〉〉X(win), because there is no Ag1-uniform interpreted sys-
tem compatible with the original interpreted system in which the
formula is true. Intuitively, a uniform agent chooses one of the ac-
tions allowed by the protocols, and it behaves consistently with its
choice, i.e., the agent will always choose the same action in epis-
temically equivalent states.

4. OBDDBASED MODEL CHECKING FOR

INTERPRETED SYSTEMS
In this section we present the algorithms for the verification of

temporal, epistemic, and ATL operators in the various classes of
interpreted systems presented above. Our approach is similar, in
spirit, to the traditional model checking techniques for the temporal
logic CTL [6], and to the approach presented in [22].

4.1 Model checking algorithm
To evaluate epistemic, temporal, and ATL operators in models

associated to non-deterministic interpreted systems we proceed as
follows. Given an interpreted system

IS =
〈

(Li, Acti, Pi, ti)i∈Σ∪{E} , I, h
〉

, note that the number of

boolean variables vi(i ∈ IN) required to encode the local states of
an agent is nv(i) = ⌈log2|Li|⌉. Similarly, to encode an agent’s
action, the number of boolean variables wi(i ∈ IN) required is
na(i) = ⌈log2|Acti|⌉. A global state g can be encoded as a
boolean vector v = (v1, . . . , vN), where N =

∑

i

nv(i). Sim-

ilarly, a joint action a can be encoded as a boolean vector w =
(w1, . . . , wM), where M =

∑

i

na(i). In turn, a boolean vector

can be identified with a boolean formula, represented by a con-
junction of literals, i.e. a conjunction of variables or their negation.
In this way, a set of global states (and similarly a set of joint ac-
tions) can be expressed as the disjunction of the boolean formulae
encoding each global state in the set. Given this, protocols can be
encoded by implications between boolean formulae representing
local states and actions (see [22] for more details). Let P (v, w)
be the boolean formula obtained by taking the conjunction of the
boolean formulae encoding the protocols for all the agents. The
evolution function ti for a single agent can also be expressed as
a boolean formula; we denote with t(v, w, v′) the boolean func-
tion obtained by taking the conjunction of all the boolean formulae
encoding the evolution functions for the agents. Notice that evo-
lution functions require two sets of boolean variables for encoding
states; in the above v′ = (v′1, . . . , v

′
N) denotes the additional set of

boolean variables required. The set of initial states can be encoded
by means of a boolean formula I(v), as well as the evaluation func-
tion h.

In addition to the parameters presented above, the algorithm for
model checking presented below requires the definition of n boolean
functions RK

i (v, v′) (one for each agent) representing the epis-
temic accessibility relation, and the definition of a boolean function
Rt(v, v′), representing a temporal transition between the global
states g and g′ encoded by means of the boolean vectors (v1, . . . , vN)
and (v′1, . . . , v

′
N). Rt(v, v) can be obtained from the boolean func-

tion t by quantifying over actions. This quantification can be trans-
lated into a propositional formula using a disjunction (see [6] for a
similar approach to boolean quantification):

Rt(v, v′) =
∨

w∈Act

[(t(v, w, v′) ∧ P (v, w)]

The formula above provides a boolean relation between global states
that can be used in the evaluation of temporal operators. Also, the
set of reachable states is needed by the algorithm: the set G of
reachable global states can be expressed symbolically by a boolean
formula, and it can be computed as the fix-point of the operator
τ (Q) = (I(v) ∨ (∃(v′)).(Rt(v′, v) ∧ Q(v′). Intuitively, τ (Q)
computes the sets of states that are reachable from Q in a single
temporal step. The fix-point of τ can be computed by iterating
τ (∅) as standard (see [6]).

Figure 3 presents the algorithm for model checking, based on the
parameters presented above. In the following, ActΓ denotes a joint
action performed by group Γ. Let a ∈ ActΓ and b ∈ ActΣ\Γ:
we denote with (a, b) the joint action defined by the concatenation
of a and b, with the appropriate reordering of elements, if needed.
SAT (ϕ) computes the set of global states (expressed as a boolean
formula) in which ϕ holds. The support procedures SATK and
SATX are presented in Figure 4, while SATG, SATU , SATE ,
SATC , and SATD are defined using the ideas of [3, 11, 22]. The

SAT (ϕ) {
ϕ is an atomic formula: return h(ϕ);
ϕ is ¬ϕ1: return G \ SAT (ϕ1);
ϕ is ϕ1 ∧ ϕ2: return SAT (ϕ1) ∩ SAT (ϕ2);
ϕ is 〈〈Γ〉〉Xϕ1 : return SATX(ϕ1,Γ);
ϕ is 〈〈Γ〉〉[ϕ1Uϕ2]: return SATU (ϕ1, ϕ2,Γ);
ϕ is 〈〈Γ〉〉Gϕ1 : return SATG(ϕ1,Γ);
ϕ is Ki(ϕ): return SATK(ϕ, i);
ϕ is EΓ(ϕ): return SATE(ϕ, Γ);
ϕ is CΓ(ϕ): return SATC(ϕ, Γ);
ϕ is DΓ(ϕ): return SATD(ϕ, Γ);
}

Figure 3: Model checking algorithm

SATX(ϕ, Γ) {
Y = {g|(∃a ∈ ActΓ, g′ ∈ G) s.t. (∀b ∈ ActΣ\Γ).[Rt(g, g′) and

t(g, (a, b), g′) and g′ ∈ SAT (ϕ) and (a, b) is consistent
with the protocols in g′]}

return Y ;
}

SATK(ϕ, i) {
X = SAT (¬ϕ);

Y = {g ∈ G s.t. RK
i (g, g′) and g′ ∈ X}

return ¬Y;
}

Figure 4: Support procedure for SATX and SATK

key difference in our work is the definition of temporal transitions
by means of interpreted systems’ parameters (i.e. actions, proto-
cols, evolution functions, etc.) as presented above. The procedure
SATX(ϕ,Γ) uses a double quantification on actions and returns
the set of states from which there exists an action for the agents
in Γ such that, for all actions of the agents in Σ\Γ, a transition is
enabled such that in the next state ϕ holds. In the support proce-
dures, by slight abuse of notation, we use a compact notation for
global states and actions instead of boolean variables and vectors;
the intended meaning should be clear from the context.

The algorithm presented above is designed to be compatible with
the representation of boolean formulae by means of Ordered Binary
Decision Diagrams (OBDDs, [5]): OBDDs are an efficient technique
for the representation and manipulation of boolean formulae. Due
to space limitation, we refer to [5] for more details about this tech-
nique.

The model checking algorithm above terminates by comparing
the OBDD representing the set of states in which a formula ϕ holds
with the OBDD for the set of reachable states. Notice that if the two
OBDDs are equal, then the Boolean formulae generating them are
propositionally equivalent, therefore IS |= ϕ.

4.2 Model checking Γuniform interpreted sys
tems

The algorithm presented in Figure 3 can also be used for the eval-
uation of formulae in Γ-uniform interpreted systems. Indeed, the
algorithm can be applied to the symbolic encoding of each model
associated to each interpreted system in {IS}Γ.

To evaluate epistemic, temporal, and ATL operators in Γ-uniform
interpreted systems, the set {IS}Γ is built as follows:

• The set of deterministic joint protocols2 PΓ is computed by
imposing that all the agents in Γ adhere to a deterministic

2A joint protocol extends the definition of protocol to a set of
agents. Formally, given a set of agents Γ, a joint protocol is de-

protocol, and by imposing that elements of PΓ are restric-

tions (in the sense of Section 3.3) of the protocols of IS . An
element of PΓ can be seen as a tuple of deterministic proto-
cols, one for each agent in Γ. Notice that there are at most
∏

i∈Γ

|Ai|
|Li| different elements in PΓ, where Ai is the max-

imum number of non-deterministic choices available to an
agent.

• For each element p ∈ PΓ, an interpreted system ISp is de-
fined as:

– The set of agents, their local states, actions, and evo-
lution functions for ISp are equal to the corresponding
elements of IS .

– The protocols for the agents in Γ in ISp are defined by
p, while the protocols for agents in Σ\Γ are equal to
the protocols in IS .

• The set of Γ-uniform interpreted systems {IS}Γ is defined
as {IS}Γ = {ISp|p ∈ PΓ}.

To check IS |=Γ ϕ, we check whether MISp |= ϕ for some
p ∈ PΓ.

It is worth noting that the time complexity of verifying IS |=Γ ϕ
by means of the algorithm presented above exceeds, in the worst
case, the time complexity of IS |= ϕ by a factor of

∏

i∈Γ

|Ai|
|Li|.

The space complexity of the verification, instead, remains the same
because the space employed in the verification of each model Ms

associated with Γ-uniform interpreted systems in {IS}Γ can be re-
used.

4.3 MCMAS
In this section we present MCMAS, a tool that implements the

algorithms presented in Section 4.2. In MCMAS, interpreted sys-
tems are described using the language ISPL (Interpreted Systems
Programming Language). Figure 5 gives a short example of this
language. We refer to the files available online [21] for the full
syntax of ISPL. Formulae to be checked are provided at the end of
the specification file.

The tool automatically parses the specification and builds the rel-
evant parameters, stored as OBDDs by using the library provided
in [24]. As discussed in Section 3, formulae can be evaluated ei-
ther in models associated to non-deterministic interpreted systems,
or in the class of Γ-uniform interpreted systems. MCMAS accepts
a command-line parameter to select which class should be consid-
ered.

When the class of Γ-uniform interpreted systems is chosen, MC-
MAS determines the set Γ by including in Γ all the agents appearing
under the scope of ATL operators in ϕ (notice that other imple-
mentation choices are possible without modifying the structure of
MCMAS, for instance providing a separate list of uniform agents,
irrespective of ϕ). To optimise the verification process, the set PΓ

is computed first, and then for each p ∈ PΓ a model is generated as
in Section 4.2 and checked. If the formula is true in the model, the
verification process ends with success; otherwise, another element
p ∈ PΓ is chosen and the loop is repeated until all the elements of
PΓ have been tested, and the process terminates with failure.

MCMAS can be run from the command line, and accepts various
options to modify verbosity, to inspect OBDDs statistics and mem-
ory usage, to enable variable reordering in the OBDDs (see [24]),

fined as a function from the Cartesian product of the local states
of the agents in Γ to the power set of the Cartesian product of the
actions of the agents in Γ.

Agent SampleAgent

Lstate = {s0,s1,s2,s3};

Action = {a1,a2,a3};

Protocol:

s0: {a1};

s1: {a2};

s2: {a1,a3};

s3: {a2,a3};

end Protocol

Ev:

s2 if ((AnotherAgent.Action=a7);

s3 if Lstate=s2;

end Ev

end Agent

Figure 5: ISPL example

etc. These options can be used to determine the “critical” points,
and to fine tune the performance of the tool.

MCMAS is written in C/C++ and it has been successfully com-
piled on various platforms, including PowerPC (Mac OS X 10.2
and 10.3), Intel (various Pentium versions using Linux 2.4 and 2.6),
and SPARC (SunOS 5.8 and 5.9). The source code has been com-
piled with gcc/g++ from version 2.95 till version 3.3.

5. EXAMPLES AND EXPERIMENTAL RE

SULTS

5.1 Nim
Nim is a two player game where players in turns remove any

number of objects from one of a certain number of heaps. Typically,
3 heaps are presents and the game starts with 3 objects in the first
heap, 4 in the second, and 5 in the third. The player who takes
the last object wins. In a variation of this game, called Misère, the
player who takes the last object loses.

This is a game with perfect information. It is not difficult to
encode the game in the formalism of interpreted systems, by im-
posing that only one agent makes a move at any given time step.
The corresponding ISPL code is available for download from [21].

We considered two examples with 3-4-5 heaps, and with 5-5-5
heaps. We could confirm the known result that the first player can
force a win both for the Nim and the Misère scenario. To this end,
we checked the two formulae:

init → 〈〈player1〉〉[¬player2 removelast U player1 removelast]

init → 〈〈player1〉〉[¬player1 removelast U player2 removelast]

(where “init” is a proposition true in the initial state of the system).
We could verify these formulae in 18 seconds (for 3-4-5) and in

4 minutes and 8 seconds (for 5-5-5 heaps) using a 2.8GHz Intel
Pentium IV, 1Gb of RAM, running Linux 2.6.8. The model for 3-
4-5 heaps requires 51 boolean variables for the symbolic encoding,
while 57 boolean variables are needed for the encoding of the 5-5-
5 heaps (corresponding approximately to models of size 1015 and
1017 respectively).

5.2 A simple card game
This example is presented in [13] and in [15] to analyse the ef-

fects of incomplete information in MAS: an agent (the player) plays
a simple card game against another agent, the environment. There
are just three cards in the deck: Ace (A), King (K), and Queen (Q);
A wins over K, K wins over Q, and Q wins over A. In the initial
state no cards are distributed; in the first step, the environment gives

RoadRunner

Right

TunnelTunnel

Left

Left exit Right exit

Figure 6: Diagram for RoadRunner and Coyote

a card to the player and takes a card for itself. In the second step,
the player can either keep its card, or change it. A description of
this scenario in terms of interpreted systems can be easily obtained,
and it is available in the downloadable files from [21]. We want to
verify whether or not the player has a strategy to win the game in
the initial state, i.e. we want to verify the following formula:

init → 〈〈player〉〉F (player win)

Differently from the original intended meaning of ATL operators,
this formula is true when evaluated with MCMAS: indeed, the player
can always guess a move to win. However, the formula is false if
it is evaluated in the class of uniform interpreted systems. This re-
sult confirms the intuition that the player cannot enforce a winning
state.

Verification of this scenario took 0.15 seconds on a 2.8GHz Intel
Pentium IV, 1Gb of RAM, running Linux 2.6.8.

5.3 RoadRunner and Coyote
This example illustrates further the different meaning of ATL op-

erators in Γ-uniform interpreted systems and in non-deterministic
interpreted systems.

RoadRunner is running in a hilly region of the desert; the main
road splits in two small lanes just before the entrance of two tunnels
below a mountain. RoadRunner can pick randomly either tunnel;
the tunnels are identical and very narrow. Coyote knows RoadRun-
ner has to take one of the two tunnels, and so he has bought a spe-
cial tunnel-blocking device from ACME Inc. to catch RoadRunner.
The device may be placed in front of either exit of the tunnel (see
Figure 6).

The example can be modelled as an interpreted system IS by
taking two agents, one for Coyote and one for RoadRunner. Road-
Runner is described by means of two local states, “left” and “right”,
and by means of the single action “run”; local states for RoadRun-
ner do not change. Coyote is modelled by means of three local
states: “planning”, “catch”, and “fail”. The initial state of Coyote
is “planning” and in this local state Coyote is allowed to perform
one of the two actions “place Left” or “place Right” denoting where
he places the special device. The evolution function for Coyote pre-
scribes that the next local state for Coyote is “catch” if he places the

special device in front of the tunnel chosen by RoadRunner.
We introduce the proposition “catch”, which is true if Coyote

catches RoadRunner. The source code of the example is available
from [21]. By using MCMASCoyote discovers that:

IS |= init → 〈〈Coyote〉〉X(catch)

i.e. it is the case that in the initial state Coyote has a strategy to
catch RoadRunner.

In fact, any external observer could verify that Coyote knows this
very well:

IS |= KCoyote(init → 〈〈Coyote〉〉X(catch))

Unfortunately, immediately after placing the ACME device in
front of the tunnel, Coyote realises that he was assuming a lucky

guess on where to place the device. Indeed, under the assumption
Coyote is uniform Γ = {Coyote} , the formula turns to be false

IS
′ 6|=Γ init → 〈〈Coyote〉〉X(catch)

and, as expected, Coyote miserably fails in catching RoadRunner.
From RoadRunner’s point of view, however, it is more useful and

prudent to reason about what the clumsy Coyote may bring about.
Thus, RoadRunner should be more interested in the verification of
the non-deterministic interpreted system to discover that it is possi-
ble that Coyote catches him. In other words, to analyse the scenario
from RoadRunner’s point of view, we can check:

IS |= KRoadRunner(init → 〈〈Coyote〉〉X(catch))

and also

IS |= KRoadRunner(init → EX(catch)).

Given this Coyote should perhaps not be laughing so much.
Verification of all the formulae above took 0.19 seconds on a

2.8GHz Intel Pentium IV, 1Gb of RAM, running Linux 2.6.8.

6. CONCLUSIONS
In this paper we have identified three classes of interpreted sys-

tems to evaluate temporal, epistemic, and ATL operators. In the
first class agents may guess moves; here, ATL operators express
what agents may bring about. The second class is constituted by
deterministic agents; therefore, ATL operators express what agents
may enforce. The third class comprises Γ-uniform interpreted sys-
tems, non-deterministic systems in which a group of agents Γ chooses
consistently to perform certain actions. We introduced model check-
ing algorithms for these classes together with an implementation.
Examples have also been presented to motivate the use of the vari-
ous classes.

Acknowledgements

We gratefully acknowledge Michael Wooldridge and Wojciech Jam-
roga for their valuable comments on an earlier version of this paper.
Any current mistakes rest with the authors.

7. REFERENCES
[1] T. Agotnes. Action and knowledge in Alternating-time

Temporal Logic. Synthese, 2005. Special issue on
Knowledge, Rationality and Action.

[2] R. Alur, T. Henzinger, F. Mang, S. Qadeer, S. Rajamani, and
S. Tasiran. MOCHA: Modularity in model checking. In
Proceedings of the 10th International Conference on

Computer Aided Verification (CAV’98), volume 1427 of
LNCS, pages 521–525. Springer-Verlag, 1998.

[3] R. Alur, T. A. Henzinger, and O. Kupferman.
Alternating-time temporal logic. Journal of the ACM,
49(5):672–713, 2002.

[4] R. H. Bordini, M. Fisher, C. Pardavila, and M. Wooldridge.
Model checking AgentSpeak. In J. S. Rosenschein,
T. Sandholm, W. Michael, and M. Yokoo, editors,
Proceedings of the Second International Joint Conference on

Autonomous Agents and Multi-agent systems (AAMAS-03),
pages 409–416. ACM Press, 2003.

[5] R. Bryant. Graph-based algorithms for boolean function
manipulation. IEEE Transaction on Computers,
35(8):677–691, 1986.

[6] E. M. Clarke, O. Grumberg, and D. A. Peled. Model

Checking. The MIT Press, Cambridge, Massachusetts, 1999.

[7] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi.
Reasoning about Knowledge. MIT Press, Cambridge, 1995.

[8] P. Gammie and R. van der Meyden. MCK: Model checking
the logic of knowledge. In Proceedings of 16th International

Conference on Computer Aided Verification (CAV’04),
volume 3114 of LNCS, pages 479–483. Springer-Verlag,
2004.

[9] V. Goranko and W. Jamroga. Comparing semantics for logics
of multi-agent systems. Synthese, 139(2):241–280, 2004.

[10] W. Hoek, W. Jamroga, and M. Wooldridge. A logic for
strategic reasoning. In AAMAS ’05: Proceedings of the

fourth international joint conference on Autonomous agents

and multiagent systems, pages 157–164, New York, NY,
USA, 2005. ACM Press.

[11] W. Hoek and M. Wooldridge. Tractable multiagent planning
for epistemic goals. In M. Gini, T. Ishida, C. Castelfranchi,
and W. L. Johnson, editors, Proceedings of the First

International Joint Conference on Autonomous Agents and

Multiagent Systems (AAMAS’02), pages 1167–1174. ACM
Press, 2002.

[12] W. Jamroga. Some remarks on alternating temporal
epistemic logic. In B. Dunin-Kȩplicz and R. Verbrugge,
editors, Proceedings of the International Workshop on

Formal Approaches to Multi-Agent Systems (FAMAS’03),
pages 133–140, 2004.

[13] W. Jamroga. Using Multiple Models of Reality. On Agents

who Know how to Play Safer. PhD thesis, University of
Twente, Enschede, The Netherlands, 2004.

[14] W. Jamroga and W. van der Hoek. Agents that know how to
play. Fundamenta Informaticae, 62:1–35, 2004.

[15] G. Jonker. Feasible strategies in alternating-time temporal
epistemic logic. Master’s thesis, University of Utrech, The
Netherlands, 2003.

[16] M. Kacprzak and W. Penczek. A SAT-based approach to
unbounded model checking for alternating-time temporal
epistemic logic. Synthese, 142:203–227, 2004.

[17] A. Lomuscio. Knowledge Sharing among Ideal Agents. PhD
thesis, School of Computer Science, University of
Birmingham, Birmingham, UK, June 1999.

[18] R. C. Moore. A formal theory of knowledge and action. In
J. Allen, J. Hendler, and A. Tate, editors, Readings in

Planning, pages 480–519. Kaufmann, San Mateo, CA, 1990.

[19] W. Nabialek, A. Niewiadomski, W. Penczek, A. Pólrola, and
M. Szreter. VerICS 2004: A model checker for real time and
multi-agent systems. In Proceedings of the International

Workshop on Concurrency, Specification and Programming

(CS&P’04), volume 170 of Informatik-Berichte, pages

88–99. Humboldt University, 2004.

[20] S. Otterloo, W. van der Hoek, and M. Wooldridge.
Knowledge as strategic ability. ENCTS, 85(2):1–23, 2003.

[21] F. Raimondi and A. Lomuscio. MCMAS - A tool for
verification of multi-agent systems.
http://www.cs.ucl.ac.uk/staff/f.raimondi/MCMAS/.

[22] F. Raimondi and A. Lomuscio. Automatic verification of
multi-agent systems by model checking via OBDDs. Journal

of Applied Logic, 2005. To appear in Special issue on
Logic-based agent verification.

[23] P. Y. Schobbens. Alternating-time logic with imperfect
recall. In International workshop on Logic and

Communication in Multi-Agent Systems (LCMAS03), volume
85(2), pages 1–12, 2004.

[24] F. Somenzi. CUDD: CU decision diagram package - release
2.4.0. http:/ /vlsi.colorado.edu/
∼fabio/CUDD/cuddIntro.html, 2005.

[25] M. Wooldridge, M. Fisher, M. Huget, and S. Parsons. Model
checking multiagent systems with MABLE. In Proceedings

of the First International Conference on Autonomous Agents

and Multiagent Systems (AAMAS-02), Bologna, Italy, July
2002.

