
Model Checking Large Software Specifications 

Pdchard J. Anderson* P a u l  B e a m e  S t e v e  B u r n s  W i l l i a m  C h a n  

D a v i d  N o t k i n  J o n  D.  R e e s e  

D e p a r t m e n t  o f  C o m p u t e r  Sc i ence  a n d  E n g i n e e r i n g  

U n i v e r s i t y  o f  W a s h i n g t o n  

B o x  352350  

S e a t t l e ,  W A  98195 -2350  

F r a n c e s m a r y  M o d u g n o  

Abstract 

In this paper we present our results and experiences of using 
symbolic model checking to study the specification of an air- 
craft collision avoidance system. Symbolic model checking 
has been highly successful when applied to hardware sys- 
tems. We are interested in the question of whether or not 
model checking techniques can be applied to large software 
specifications. 

To investigate this, we translated a portion of the finite- 
state requirements specification of TCAS II (Traffic Alert 
and Collision Avoidance System) into a form accepted by 
a model checker (SMV). We successfully used the model 
checker to investigate a number of dynamic properties of 
the system. 

We report  on our experiences, describing our approach 
to translating the specification to the SMV language and 
our methods for achieving acceptable performance in model 
checking, and giving a summary of the properties that  we 
were able to check. We consider the paper as a da ta  point 
that  provides reason for optimism about the potential for 
successful application of model checking to software systems. 
In addition, our experiences provide a basis for character- 
izing features that  would be especially suitable for model 
checkers built specifically for analyzing software systems. 

The intent of this paper is to evaluate symbolic model 
checking of state-machine based specifications, not to eval- 
uate the TCAS II specification. We used a preliminary ver- 
sion of the specification, the version 6.00, dated March, 1993, 
in our study. We did not have access to later versions, so 
we do not know if the properties identified here are present 
in later versions. 

1 Introduction 

Model checking, a technique for analyzing finite state spaces, 
has been applied very successfully to a wide range of hard- 
ware systems. It has been surmised that  there are two se- 

*Email addresses: {anderson, beame, burns, wchan, fro, notkin, 
jdreese}@cs.washington.edu. 

Permission to make digital/hard copy of part or all of this work for personal 
or classroom use is granted without fee provided that copies are not made 
or distributed for profit or commercial advantage, the copyright notice, the 
title of the publication and its date appear, and notice is given that 
copying is by permission of ACM, Inc. To copy. othenMse, to republish, to 
post on servers, or to redistribute to lists, requires prior specific permission 
and/or a fee. 

SIGSOFT'96 CA, USA 
© 1996 ACM 0-89791-797-9/96/0010...$3.50 

rious impediments that  make it difficult to effectively apply 
modeling checking to software systems. The first possible 
impediment is that  the technique is limited to handling fi- 
nite state machines, while software systems are generally 
specified as infinite s tate machines. Jackson [15] and Wing 
and Vaziri-Farahani [22] have addressed aspects of this con- 
cern, showing some techniques for approximating infinite 
s tate machines with finite s ta te  machines that  can then be 
used for model checking. The second possible imped imen t - -  
that  hardware systems tend to possess certain properties, 
such as regularity, that  allow model checking to succeed, 
while software systems may not exhibit similar p roper t ies - -  
is the one we address in this paper. Specifically, we provide 
a da ta  point by reporting on a positive experience in model 
checking a large software system requirements specification. 
With progress being made on these two fronts, it appears 
that  applying model checking to software faces a brighter 
future than previously conjectured. 

In our particular experiment, we translated (Section 3) a 
significant portion of a preliminary version of the TCAS II 
(Traffic Alert and Collision Avoidance System) System Re- 
quirements Specification [11] from the Requirements State 
Machine Language (RSML) [17] into a form suitable for in- 
put to the Symbolic Model Verifier (SMV) [18]. TCAS II 
is an aircraft collision avoidance system required on com- 
mercial aircraft with more than 30 seats, and was consid- 
ered "the most complex system to be incorporated into the 
avionics of commercial aircraft" [17, p. 685]. We were able to 
generate an internal representation of the transit ion relation 
of the system of an acceptable size so that  we could test a 
number of properties of the specification (Section 4). These 
include a number of general robustness properties as well as 
some safety properties specific to the domain (Section 5). 

Our objective was to test the effectiveness of model check- 
ing technology on software systems, so our experiences in 
applying model checking are more impor tant  than the in- 
dividual results. We convey some of the obstacles we faced 
and the techniques that  we used to overcome these obsta- 
cles to allow us to check formulae against the specification. 
Other software systems that  are often specified using finite 
s tate machines - -  for example, telephony and communica- 
tion systems, network and distr ibuted system protocols, and 
other reactive systems - -  might well yield to similar anal- 
yses. Based on our experience, and as an additional step 
towards making model checking of software specifications 
more practical, we discuss some of the l imitations of current 
model checking technology and suggest directions for devel- 
oping model checkers bet ter  suited to software (Section 7). 

156 



• , Specification 

(TCAS lI  Spec. 

in RSML) 

Translation I 
with Input for Model 

Simplifications Checker 

i (Model ofTCAS Ii 
Spec. in the SMV 
Input Language) 

_I 

Analyst's Feedback 

Model Checker (e.g. SMV) 

,n=al Ropr enta---- on ] I 
of Initial States and k I 
Transition Relation [ ~ . [ 

| Algorithm J 

Internal Representation l / / ~  
of Properties 

(BDDs) 1 

True 
or 

False with a 
Counterexample 

Figure 1: Model Checking a Specification 

2 Model Checking 

Model checking is the process of exploring a finite state space 
to determine whether or not a property holds. Figure 1 is a 
schematic of the process of model checking a specification, 
with the specific representations that we used for the com- 
ponents shown in parentheses. The specification is trans- 
lated to an input for the model checker, possibly with some 
simplifications. The input and the property that is being 
tested are then converted to the internal representation of 
the model checker. The representations are passed to the 
model checking algorithm. The result is either a claim that 
the property is true or else a counterexample (i.e. a sequence 
of state transitions starting from some initial state) show- 
ing that the property is false. The result can be analyzed 
by the software engineer to refine the model of the specifi- 
cation, the property tested, or even the specification itself. 
This iterative process is inherent in our work. 

The major problem of model checking is that the state 
spaces arising from practical problems are often huge, gener- 
ally making exhaustive exploration infeasible. An important 
advance in model checking was the introduction of symbolic 
representations of state spaces, which allowed direct explo- 
ration of the state space to be replaced by the manipulation 
of data structures representing the transition relation of the 
state space. 

The transition relation can be represented as a boolean 
function. A data structure that has been developed to rep- 
resent boolean functions is the Ordered B i n a r y  Decis ion Di- 

agram (OBDD, or BDD for short) [5]. A BDD is a directed 
acyclic graph that encodes the function based on a fixed or- 
dering of the variables. (One way to view it is as a decision 
tree with isomorphic sub-trees identified.) The properties 
that make BDDs useful in model checking include that they 
give a unique representation of functions, they can be com- 
bined efficiently, and there are algorithms that can manipu- 
late BBDs to test logical relations. Several hardware model 
checkers such as SMV, which we used in our study, have 
been constructed using BDDs as their internal representa- 
tion. These are successfully used for checking large circuits 
in both commercial and academic settings. The key for these 
checkers to work efficiently is that the BDD representation 
remains small even when the state space being explored is 
very large. This representation is frequently small although 
sometimes its size depends critically on the ordering of the 
variables. 

Properties to be checked are usually expressed in a tem- 
poral logic, such as Computation Tree Logic (CTL) [8], 
which is used by SMV. CTL is a branching time temporal 
logic, extending propositional logic with temporal operators 
that express how propositions change their truth values over 
time. In this paper we will only use two temporal operators, 
namely AG and AF. Each CTL formula is evaluated with 
respect to some particular state. The formula AG p holds in 
state s if p holds in all states along all computation paths 
starting from s, and we call such a property an invar ian t .  

The formula AF p holds if p holds in some  state along all 
computation paths starting from s. Therefore the formula 
AG (p ~ AF q) is true in state s if along all computation 
paths starting from s, whenever p is true, q will be true 
in some successor state along the path. CTL formulae are 
implicitly evaluated by SMV with respect to all the initial 
states. 

3 Translating RSML Specifications into SMV pro- 
grams 

Before we could apply the BDD model checking algorithms 
to the TCAS specification, we had to first translate the spec- 
ification from RSML into a form accepted by a BDD based 
model checker, such as SMV. We first briefly overview RSML 
and SMV, laying the foundation for our description of the 
translation. 

3.1 RSML 

RSML is a communicating state machine model similar to 
Statecharts [12], including features such as parallel state ma- 
chines (AND decomposition) and hierarchical abstraction 
into superstates. For the purposes of this paper, its most 
important semantic differences with Statecharts are a more 
restrictive interleaving (step) semantics and the separation 
of each trigger into a single positive triggering event and 
guarding conditions. 

Figure 2 is an example of an RSML state machine. It 
shows the state hierarchy and the transitions between the 
states. There are three kinds of states in RSML: OR states, 
in which exactly one substate is active at any given time (e.g. 
M, whose substates are P and Q), AND states, in which all 
the substates are executed in parallel (e.g. Q, whose sub- 
states are R and S), and atomic states (e.g. P), which have 
no substates. A substate of an AND state or an OR state 

157 



M P 1 

Figure 2: An Example of an RSML state machine. 

Transition(s): ~-~ --- ~] 
L o c a t i o n :  M c, Q t, S 

Trigger Event:  
Condit ion:  O R  

A [ R i n s t a t e U  [ ~ ~ 
N Alt > 1000 ft 
D t ~_ t(enteredIq)) +5 sec 

O u t p u t  Action:  y 

Figure 3: Transition from S1 to $2. 

can be an AND state, an OR state or an atomic state. In 
the figure, arrows without origins specify start states. For 
example, when the machine enters state Q, it is in states U1 
and S1. 

A transition consists of a source state, a destination 
state, a trigger event, and possibly a guarding condition 
and/or an output action. A transition is taken when its 
trigger event occurs and its guarding condition (if present) 
is true, thus producing an output action. The output ac- 
tion identifies an event that may trigger another transition 
in the system. The guarding conditions on a transition are 
expressed in a tabular representation of disjunctive normal 
form called AND/OR tables (see Figure 3.) The far-left col- 
umn of the AND/OR table lists the logical phrases. Each 
of the other columns is a conjunction of those phrases and 
contains the logical values of the expressions. The table 
evaluates to true if one of its columns is true. A column 
evaluates to true if all of its entries are true. A dot denotes 
"don't care." When two or more transitions out of a state 
are triggered simultaneously leading to different next states 
or output actions, the state transition is nondeterministic. 

Figure 3 shows a possible transition from S1 to $2. The 
transition is taken exactly when trigger event x is generated 
and the predicate specified by the AND/OK table is true. 
Event x may be triggered by some other transition in the 
system, or by the input interface as a result of receiving an 
external message from the environment. In the AND/OR 
table, t is a special variable in RSML that indicates the 
current time, while t(entered(Q)) is a function that returns 
the time when state Q was last entered. Therefore, the 
AND/O1% table specifies the predicate that either (column 
1) state 1% is in U and Alt is greater than 1000 ft or (column 

2) the machine entered state Q at least 5 seconds ago. Alt 
can be an input variable or a function. If the transition is 
taken, event y will be generated, possibly triggering other 
transitions in the machine. 

The cascading of events continues until no transitions 
are generated. At this point, the system becomes stable. A 
step is defined by the change in the system state from the 
point at which the initial event was received until the point 
when system becomes stable. Each interim state change in 
a step is called a microstep. A maximal set of mutually 
consistent transitions enabled at the start of each microstep 
fires simultaneously within that microstep. A step (and thus 
a microstep) is assumed to happen instantaneously. Once 
a step is initiated, no external messages can arrive until 
the system becomes stable. This assumption is called the 
synchrony hypothesis [17]. 

3.2 SMV 

SMV is a BDD-based tool for symbolic model checking of 
finite state systems against specifications written in the tem- 
poral logic CTL (see Section 2). It supports both determin- 
istic and nondeterministic models, and provides for modu- 
lar system descriptions. SMV contains boolean, scalar and 
fixed array data types. Below we summarize only the SMV 
features pertinent to our discussion. 

An SMV program is divided into modules, each of which 
specifies a finite state machine. A module contains variable 
declarations to determine its state space and descriptions of 
the initial state and transition relation of the machine, as 
well as a list of CTL formulae to be checked. Variable dec- 
larations are preceded by the keyword VAR. The preferred 
method of describing the initial state is by a collection of 
parallel assignments to various inlt(var) where vat is a vari- 
able. The expression next(vat)  is used to refer to the vari- 
able var in the next state. The preferred method of de- 
scribing the transition relation is by a collection of parallel 
assignments to these n e x t  versions of the variables. The 
i n i t  assignments are made simultaneously at the start and 
the n e x t  assignments are simultaneously executed once per 
step. The values for these assignments can be based on a 
wide assortment of expressions. Assignments are preceded 
by the keyword ASSIGN. 

SMV has a macro-like facility for defining a symbol to 
represent an expression. In this ease, a variable is not intro- 
duced in the BDD representation of the system. In addition, 
SMV also extends the semantics of the n e x t  operator to ap- 
ply to any expression expr that does not contain nex t .  That  
is, next(expr) gives the value of expression exprin the next 
state. This is equivalent to replacing each variable vat in 
expr by next(vat) .  Symbols are defined after the keyword 
DEFINE. 

Two sources of nondeterminism in SMV are relevant to 
us. An expression can be a set, and it nondeterministically 
evaluates to a value from that set. In addition, when the 
initial or the next state value of a variable is not defined, 
SMV nondeterministically assigns it a value of its type. 

SMV also has a somewhat more general but  less robust 
way to specify the initial state and transition relation us- 
ing INIT and TRANS constructs. These can be arbitrary 
propositional formulae involving the values of the variables, 
symbols, and their i n i t  and n e x t  versions. Although we did 
not use this feature in our translation of TCAS, it is use- 
ful for translating some RSML specifications, as we describe 
below. 

158 



Figure 4: The state hierarchy drawn as a tree. The square nodes 
represent AND states and atomic states, and the round nodes OR 
states. 

In SMV, 1 means true and 0 means false. The "and", 
"or" and "not" operators in SMV are &, I and ! respectively. 

3.3 Translating RSML to SMV 

In this section we present an overview of the general method- 
ology we derived for translating RSML specifications into 
SMV programs. 

Hierarchical States One of the keys to successful use of 
symbolic model checking is to represent objects efficiently. 
In translating an ordinary finite state machine into SMV it is 
most efficient to represent the current state of the machine 
by a variable whose type is an enumerated set consisting 
of the possible machine states. This has the advantage of 
permitting the underlying BDD representation produced to 
be a binary encoding of the state space. 

We extend this idea to a state hierarchy with parallel 
states in a natural way that preserves the Mternation of the 
hierarchy but flattens nested OR states and nested AND 
states. More precisely, let l~ be the set consisting of the 
root state, if it is an OR state, together with all OR states 
in the hierarchy that are children of AND (parallel) states. 
For each state A, let v(A) be its closest ancestor in l: (if 
A E /J then v(A) = A.) Let .A be the set consisting all 
atomic states together with all AND states in the hierarchy 
that are children of OR states. 

We create one SMV variable for each element A E F. Its 
type is an enumerated set consisting of all elements B E ~4 
such that v(B)  = A. Continuing our example from sec- 
tion 3.1 and following Figure 4, we declare: 

VAR 

M: {P, q}; 

R: {UI, U2, V}; 

S: {Sl, S2, $3}; 

The values of these variables completely determine which 
states of the machine are current (because of the parallelism 
there may more than one current state.) For each state B 
we express whether or not state B is current by defining 
SMV symbols according to the following rules: 

inB := 1; if B is the root state, 

inB := inA; if B is a child of AND state A, 

inB := inA & (A = B); i f B E , 4 a n d v ( B ) = A E 1 J ,  

inB := inB1 I inB2 I . . .  I inBk; i f B i s  an O1% state 
with children B1, B 2 , . . - ,  Bk and B ~ ]7. 

So for our state hierarchy, we have: 

DEFINE 

i~ := I; 

inP := inM R (M = P); inQ :-- inn & (M -- Q); 

inR := inQ; ins := inQ; 

inU := inUl I inU2; 

inU1 := inR ~ (R = UI); inU2 := inR & (R = U2); 

inV := inR & (R = V); 

inSl := inS & (S = SI); inS2 := inS & (S = S2); 

inS3 := inS ~ (S = $3); 

Events, Input Variables, and the Synchrony Hypothesis 
Each RSML event z is represented by a boolean variable 
x. RSML input variables are translated directly as SMV 
variables. If the RSML input variable has an enumerated 
type or is an integer with a specified range, the translation 
is straightforward. If the RSML input variable is an integer 
and its range is not explicit, we set the range of the SMV 
variable to be sufficiently large to encompass the constants 
with which it and its functions are compared in the specifi- 
cation. 

To model an unpredictable environment we allow SMV 
to nondeterministically assign values to the input variables. 
Of course there may be certain assumptions on changes in 
inputs that are necessary for the correct behavior of the sys- 
tem. If the assumptions are known, we can model them by 
specifying how the input variables change values. However, 
allowing SMV to nondeterministically set the variables en- 
ables us to examine the effects of violating these assumptions 
on properties of the system. 

We simulate each microstep of RSML by a step in SMV. 
Therefore, to maintain the synchrony hypothesis of RSML 
we have to restrict the environment to change only when the 
system is stable. So, we define a symbol S tab le ,  which is a 
conjunction of the negation of all the variables that represent 
events, and use it to guard all changes in input variables. 

For example, assuming x, y and z are the only events in 
the system we define: 

DEFINE 

S t a b l e  :=  ! x  ~Z ! y  & !z; 

and, assuming that event x is generated by the environment, 
we assign: 

ASSIGN 

next (x) := 

case 

Stable: {0,I}; 

1: O; 

esac; 

In a case expression, the expression before a colon, e.g. 
Stab le ,  serves as a guarding condition. If the guard evalu- 
ates to 1 (true), the case expression evMuates to the value 
of the expression after the colon, e.g. {0,1} (which in turn 
evaluates to 0 or 1 nondeterministicaily). The guards are 
considered in order. So the assignment specifies that x may 
be generated (set to 1) only if the system is stable in the 

159 



current state. Since all transitions taken that are triggered 
by an event (either internal or from the environment) occur 
in a single RSML microstep, events remain 1 for only one 
SMV step. 

Timing constraints Recall that in Figure 3 there is a timing 
constraint t _> t(entered(Q)) + 5 sec, which is equivalent to 
t - t ( en t e r ed (Q) )  > 5 sec. In order to model this constraint, 
we need the difference between the current time and the 
time when state Q was last entered. To avoid storing a 
potentially unbounded value for this difference, we create a 
variable Time_Since_Entered_Q to implement a timer: 

ASSIGN 

next(Time_Since_Entered_Q) := 

case 

!inQ ~ next(inQ) : O; 

Stable & Time_Since_Entered_Q < 5 : 

Time_Since_Entered_Q + I; 

1: Time_Since_Entered_Q; 

esac ; 

The assignment says that (case 1) if the machine enters state 
Q, reset the timer, (case 2) if the machine is stable and the 
timer is less than 5 seconds, advance the timer and (case 
3) otherwise, the timer remains unchanged. Limiting the 
domains of timers in this way is critical for the efficiency of 
the SMV translation. 

Notice that this implementation assumes that arrivals 
of inputs are separated by multiples of one second. This 
assumption also happens to be true in TCAS. If the time 
granularity is different, we can simply scale the constants 
accordingly, assuming that time is discrete. 

Transitions A transition in RSML is taken if and only if (1) 
the machine is in the source state of the transition, (2) the 
trigger event occurs, and (3) the guarding condition specified 
by the AND/OR table is satisfied. We define an SMV sym- 
bol for each transition. It is assigned a boolean expression, 
which is a logical conjunction of the above three conditions. 

For the transition in Figure 3 we define: 

DEFINE 

T_SI_S2 := 

inSl -- source state 

& x - -  t r i g g e r  event  
& ( (inU & A l t  > 1000) - -  guards (co l  1) 

I Time_Since_Entered_Q >= 5);  - -  (co l  2) 

(Comments in SMV start with ...... .) For the most part, 
the translation of the guards proceeds directly as in the first 
guard for this example in which inU is defined as above and 
Alt  is either an SMV variable or defined symbol whose value 
is compared to the constant 1000. Time_Since.Entered_Q is 
a timer discussed above. 

To model the state change for S, we have an assignment: 

ASSIGN 

next  (S) := 
case 

T_S2_SI J T_S3_SI : Sl; 

T_SI_S2 I T_$3_$2 : $2; 

T_SI_S3 I T_$2_$3 : $3; 

!ins & next(inS) : SI; -- start state 

1 : S; 

e s a c  ; 

where T_S2_S1, T_S3_Sl, etc. would be defined similarly to 
T_SI_S2. Notice that the fourth line in the case expression 
specifies that the start state of S is S1. 

Observe that if multiple transitions out of a single state, 
such as T_Sl_S2 and T_SI_S3, are enabled simultaneously 
(they have the simultaneously fired trigger events and si- 
multaneously satisfiable guarding conditions), then, since 
SMV always evaluates the conditions in a case expression 
in order, this specifies a deterministic transition in SMV 
whereas it specifies a nondeterministic transition in RSML. 
Jaffe et. al. [16] argue that such nondeterministic transitions 
are usually design flaws in the specification and should be 
avoided. In Section 5.1 we will describe how to detect un- 
desired nondeterminism in this deterministically modeled 
specification. 

Given these deterministic transitions, output  actions (i.e., 
events) are modeled simply as a logical disjunction of the 
transitions that generate them. For example: 

ASSIGN 

next(y) := T_SI_S2 I T_UI_U2; 

assuming that the transitions from S1 to $2 and from U1 to 
U2 are the only transitions that trigger event y. 

Intentionally Nondetermlnist ic Transitions Nondetermin- 
istic transitions between different states, such as would be 
the case if T_SI_S2 and T_SI_S3 could be simultaneously en- 
abled, are nearly as easy to model in SMV. In this case 
the values of S and next  (S) can be used to determine which 
transition has been taken. For example, we can insert before 
the first line in the case expression above: 

T_SI_S2 & T_SI_S3 : {$2,S3}; 

The condition states that if the two transitions are enabled 
simultaneously, the machine will go to $2 or $3 nondeter- 
ministically. To generate the correct value for nex t  (y) we 
merely need to replace the disjunct T_SI_S2: 

ASSIGN 

nex t fy )  := (T_SI_S2 & n e x t f i n S 2 ) )  I T_UI_U2; 

This method is convenient when the number of nondeter- 
ministic options out a single state is small (the most likely 

reasonable case) but k such options would entail 2 k - k - 1 
additional cases. 

A potentially more concise but somewhat more cumber- 
some translation for this situation, using the TRANS state- 
ment of SMV as opposed to the ASSIGN statements used 
above, can be given as follows: 

( (T_SI_S2 & n e x t ( i n S 2 )  & ne x t ( y )  = 1) I 
(T_SI_S3 & n e x t ( i n S 3 )  & .. ) I 
(T_S2_S1 & n e x t ( i n S 1 )  & . .  ) I 
(!T_SI_S2 & !T_$2_$3 ~ !T_S2_Sl & nex t (S)=S) )  

& (!(T_SI_S2 & n e x t ( i n S 2 ) )  
& !T_UI_U2 & ne x t ( y )  = 0 ) 

The default case for state S would be included in all transi- 
tions that enter state O. 

In the unlikely case that a reasonable design includes 
parallel transitions between the same two states that can be 
triggered by simultaneously fired triggering events and have 
simultaneously satisfiable guarding conditions but generate 
different output actions, it is necessary to enlarge the SMV 
variable space by including a variable to record which of 

160 



the parallel transitions will be taken. Corbett  [9, p. 178] 
gives details of a similar translation, although his translation 
would use similar variables for all states, not just those with 
parallel transitions. 

Miscellaneous Our example does not contain all RSML 
constructs, such as PREV0, constants, macros, functions, 
statechart arrays, and transition buses. Roughly, PREV(e) 
returns the previous value of expression e. Modeling PREY 0 
requires introducing an auxiliary variable to "remember" the 
variable's previous state. Constants can be trivially imple- 
mented with SMV defined symbols, which do not add vari- 
ables to the BDD representations. Macros and functions 
without arguments can be modeled similarly. Macros and 
functions with arguments are somewhat trickier; they can 
be implemented as SMV modules that are instantiated at 
each call site. Statechart arrays can be implemented as an 
array of modules. The translation of transition buses is no 
different from that of ordinary transitions. 

Comparison with Statecharts In contrast to RSML step 
semantics, Statechart step semantics (as defined by Pnueli 
and Shalev [19]) build a set T of transitions that will fire 
in a step by iteratively computing a closure based on the 
enabled transitions at the start of the step. Only after the 
closure is computed do the transitions fire. This appears to 
be less efficient to model in SMV since one would seem to 
need an extra boolean variable for each transition in order 
to record whether or not it is in the set T computed during 
each step. 

4 Obstacles to Model Checking TCAS II with SMV 

After we derived the translation rules in the previous section, 
we had to overcome a number of obstacles to make model 
checking the TCAS II specification feasible. 

4.1 TCAS II 

TCAS II is an airborne collision avoidance system required 
on most commercial aircraft. The TCAS-equipped aircraft 
is surrounded by a protected volume of airspace. When an- 
other aircraft intrudes into this volume, TCAS II generates 
warnings (traffic advisories) and possibly escape maneuvers 
(resolution advisories) in the vertical direction to the pilot 
to avoid collision. Examples of resolution advisories (RAs) 
include Climb, Descend, Increase-Climb ("increase the cur- 
rent climb rate"), Increase-Descend, Climb-VSL0 ("do not 
descend"), Climb-VSLS00 ("do not descend more than 500 
f t /min") ,  etc. 

The specification of TCAS II, a 4o0 page document, was 
written in RSML. The first obstacle to analyzing the speci- 
fication was its sheer size. As a first at tempt we decided to 
try to model check a portion of it, namely a state machine 
called Own-Aircraft, which occupies about 30% of the spec- 
ification. Own-Aircraft has close interactions with another 
part of TCAS called Other-Aircraft, which tracks the state 
of other aircraft in the vicinity and possibly generates RAs. 
Up to 30 other aircraft can be tracked. From the RAs given 
by all the instances of Other-Aircraft, Own-Aircraft derives 
a composite RA and generates visual and audio outputs to 
the pilot. Figure 5 shows the state Composite-RA, one of 
the twelve parallel substates of Own-Aircraft. 

C o m p o s i t e - R A  

C l ~  
I 
I 
I 
I 
I 
I 
I 
t 
I 
I 
I 
I 
I 

Figure 5: Composite-RA in Own-Aircraft 

We treated Other-Aircraft as part of the environment of 
Own-Aircraft. That  is, we created variables for any states 
of Other-Aircraft that are referenced within Own-Aircraft. 
Like environment variables, their values were nondetermin- 
istic, except that we restricted when these variables could 
change to ensure correct synchronization. We focused on 
resolution maneuvers with one intruder aircraft and thus 
modeled only one instance of Other-Aircraft. 

4.2 BDDs 

We knew a priori that there is no efficient BDD representa- 
tion for multiphcation and division under any variable or- 
dering [3, 20] so we realized that  we needed to avoid them. 
Two functions in Own-Aircraft do involve multiplication and 
division of values for measured altitudes and altitude rates. 
These are measurements of input variables that  we already 
modeled nondeterministically. So we made the conserva- 
tive simplification to treat the calculated values as nonde- 
terministic themselves. (We also eliminated from our model 
several input variables that  are only referenced by the two 
functions.) These simplifications did not cause problems for 
the properties that we checked and report in Section 5. 

4.3 SMW 

The performance of BDD-based algorithms is directly re- 
lated to the size of the BDDs. Some of our early at tempts at 
checking generated enormous BDDs: at one point the BDDs 
consumed 200 MB of physical memory, and other runs were 
terminated before the BDD was constructed. Our attempts 
to check formulae with the large BDDs were generaJly un- 
successful or too slow (our initial success in identifying non- 
determinism was an overnight run, although we can now find 
the nondeterminism in a few minutes). 

The size of the BDDs can be reduced by dynamic vari- 
able reordering and conjunctive partitioning [6], which are 
supported by SMV. These techniques dramatically improved 
the performance of checking some formulae; however, they 
did not solve all the problems. The BDD size was very sensi- 
tive to the ranges of the variables representing altitudes and 

1This section refers to SMV Release 2.4.4 which was the most 
recent version to which we had access. 

161 



Propert ies  [ R e s u l t  (sec.)Time[N°'Nodes°f BDD 

Building the Transit ion Relation [ N / A  [ 46.6 [ 124618 

Transi t ion Consistency False 387.0 717275 
Function Consistency False 289.5 387167 

Step Terminat ion True 57.2 142937 
Descend Inhibition True 166.8 429983 

Increase-Descend Inhibition False 193.7 282694 
Ou tpu t  Agreement  False 325.6 376716 

Memory 
Allocated (MB) 

7.1 

16.4 
11.5 
7.4 
11.8 
9.9 

11.6 

Table 1: Resources used to analyze the properties. The result column indicates whether the property was true. The (user + system) 
time, the number of BDD nodes and the memory allocated were reported by SMV. These include the resources used to construct the 
transition relation, evaluate the formula and find a counterexample (if the formula was evaluated false). The first row in the table tells 
the resources used just to build the transition relation. The experiments were performed on a lightly loaded Sun SPARCstation 10 
running SunOS 4.1.3 with 128 MB of main memory. 

al t i tude rates. Take al t i tudes for an example.  The  specifica- 
tion s tates  tha t  some al t i tude variables have granulari ty as 
fine as "1 to 10 feet." The  ranges of some al t i tude variables 
are not  specified, but  they are compared to constants  whose 
values range f rom 400 feet to 30500 feet. Therefore  at least 
13 to 15 bits are needed to represent altitudes. However ,  
we found tha t  with these values we could not  get the model  
checker to build the  BDDs in a reasonable amount  of time. 

Initially we got around the problem by redefining the 
constants  so tha t  they  f i t ted in a small range, for example,  
f rom 0 to 15 for al t i tudes and -4 to 3 for al t i tude rates. 
(Increasing the numbers  by one bit sometimes exploded the 
checking t ime from ten minutes  to more than  ten hours.) 
Al though we were able to build the BDDs in this way and 
check some formulae,  this ad hoc solution was unsatisfac- 
tory in many  ways. An obvious drawback is tha t  because 
of the small ranges, some dist inct  constants  in the specifica- 
tion became identical  after the mapping (for example,  both  
400 feet and 1000 feet might  become 1). This  caused some 
formulae tha t  are false for the specification to evaluate to 
t rue for the model.  

We could not  leave the results of addit ion and compari-  
son nondeterminis t ic  as we did with mult ipl icat ion and di- 
vision in Section 4.2, because addit ion and comparison are 
essential to the  logic of Own-Aircraf t .  For example,  any De- 
scend RA is prohibi ted when the difference between the cur- 
rent  a l t i tude of the own aircraft  and the es t imated ground 
level a l t i tude is less than  some threshold. If the subtract ion 
or the  comparison were modeled nondeterminist ically,  this 
safety requirement  would be violated trivially. 

We eventual ly realized tha t  the problem with the ranges 
was due to the variable ordering for the BDDs tha t  SMV 
was using to represent  integer addit ion and comparison.  The  
BDD for any bit  of the  sum of the integers X = x l x 2 . . ,  x,, 

and Y = ya y2 " '"  Yn has size O(n) if the  variables are in the 
order xa, yl ,  x2, y 2 , . . . ,  xn, yn but  requires exponential  size if 
the variables are in the order x l ,  x2, . . .  x , ,  y l , . . . ,  yn. SMV 
does not  interleave the bits among the variables it  is repre- 
senting when const ruct ing  the BDDs. Therefore,  al though 
comparison and addit ion have concise BDD representations,  
SMV produces exponent ia l  size BDDs for them. 

We considered two ways of a t tacking this problem, namely 
changing the  internals of SMV to interleave the bits, or doing 
addit ion and comparison at the source code level. Al though 
in principle the former  may  be a be t t e r  long te rm solution, 
the la t te r  me thod  seemed a simpler approach and we were 

able to use it with great  success. We wrote  some simple awk 
scripts for preprocessing the SMV program to allow param- 
eterized macro expansion, loop unrolling, etc.  Using these 
facilities, we implemented  efficient addit ion and comparison 
in the SMV program and manipula ted  all the  integer vari- 
ables and constants  at the bit level. We can now model  the 
alt i tudes and al t i tude rates wi th  the  precisions required by 
the specification. 

Another  performance problem was tha t  generat ing a coun- 
terexample  often took hours even though the  formula  was 
determined false within minutes.  Evaluat ing  the  formula 
and finding a counterexample  (in case the  formula  was false) 
were done by the model  checker as two separa te  searches in 
the teachabil i ty graph. For example,  to check for an invari- 
ant proper ty  with the formula AG p (i.e. p is t rue  in all the  
reachable states),  the  model  checker s ta r ted  f rom the  set of 
"bad" s tates  (in which p is false), and searched the  set of 
s tates  tha t  could reach the  "bad" s ta tes  by i terat ively apply- 
ing the backward t ransi t ion relation. If this set contained 
any initial s tate,  the model  checker would de termine  the  
formula false and s tar t  a second, forward search f rom such 
an initial s ta te  to find a counterexample .  We have modi-  
fied the model  checker by storing certain s ta te  informat ion 
during the first search, el iminating most  of the  work in the  
second search. As a result,  once a formula  representing an 
invariant proper ty  is evaluated false, a counterexample  can 
now be found almost  instantly. 

5 Results of Model Checking TCA$ II 

Once we overcame these obstacles, we were ready to do some 
analysis of the specification using the  model  checker. The  
propert ies tha t  we analyzed include general  proper t ies  tha t  
should hold in most  RSML specifications (Sections 5.1, 5.2, 
5.3 and Section 5.6) and domain-specific proper t ies  (Sec- 
tions 5.4 and 5.5). 

Table 1 reports  the resources needed to analyze the prop- 
erties. The  BDD representat ion of the  SMV program has 
227 boolean variables, 10 of which are for events,  36 for the  
states of Own-Aircraf t ,  19 for the s tates  of Other-Aircraf t ,  
134 for al t i tude and al t i tude rates,  22 for inputs  o ther  than  
al t i tude and al t i tude rates, and 6 for o ther  purposes.  The  
size of the s ta te  space is about  1.4 x 1065. The  size of the 
reachable state  space 2 is at least 9.6 × 1056. 

2We obtained this lower bound by executing SMV with the corn- 

162 



Displayed-Model-Goal = 

M a x (  O wn-Track-Alt-Rate, 
Prev(Displayed-Model-Goal), 
1500 f t /min)  

M in( Own-Track- Alt-l~at e, 
Prey(Displayed-Model-Goal), 
-1500  f t /min)  

i f  Composite-RA n o t  in  s t a t e  Positive 

i f  (New-Climb o r  New-Threat)  a n d  

n o t  N e w - I n c r e a s e - C l i m b  a n d  

n o t  ( Increase -Cl imb-Cance l l ed  o r  

Increase-Descend-Cancelled) a n d  

Composi te-RA in  s t a t e  Climb 

i f  (New-Descend or  New-Threat)  a n d  

n o t  N e w - I n c r e a s e - D e s c e n d  a n d  

n o t  ( Increase -Cl imb-Cance l l ed  o r  

Increase-Descend-Cancelled) a n d  

Composite-RA in  s t a t e  Descend 

/*  case 1 */  

/*  case 2 * /  

/* case 3 */ 

2500 f t /min  i f  New-Increase-Climb /*  case 4 * /  

-2500  f t /min  i f  New-lncrease-Descend /*  case 5 */  

Max(Own-Track-Air-Rate,  i f  Increase-Climb-Cancelled a n d  /*  case 6 */  
1500 f t /min)  n o t  New-Increase-Climb a n d  

Composite-RA in  s t a t e  Positive 

Min(Own-Track-Alt-Rate,  i£ Increase-Descend-Cancelled a n d  /*  case 7 * /  
-1500  f t /min)  n o t  New-Increase-Descend a n d  

Composite-P~A in  s t a t e  Positive 

Prey ( Displayed-Model- Goal) Otherwise /*  case 8 */  

Figure 6: Definition of Displayed-Model-Goal in the TCAS specification. Most of the identifiers are RSML macros or abbreviations, 
the definitions of which are omitted here due to limited space. (Their truth values depend on Composite-RA and Other-Aircraft.) 

5.1 Transition Consistency 

There are known nondeterministic transitions in earlier ver- 
sions of the TCAS specification. So, our first attempt was 
to find such transitions in one of these versions with the 
model checker. (For the other properties that we checked, 
we worked with a later draft TCAS specification [11], in 
which there is no unintentional nondeterminism.) These 
nondeterministic transitions had previously been identified 
by Heimdahl and Leveson [13] using a different technique. 
We were interested in checking these properties to verify 
that model checking could match previous results. In Sec- 
tion 6 we will summarize the differences between our model 
checking approach and the technique used by Heimdahl and 
Leveson. 

In our example in Figure 2, there are possible nondeter- 
ministic transitions from state S. For example, the transi- 
tions from S1 to $2 and from S1 to $3 would be enabled 
at the same time if their trigger events were the same and 
their guarding conditions were simultaneously satisfied. We 
can check this with the model checker by the following CTL 
formula: 

AG ! (T_SI_S2 & T_SI_S3) 

Recall that T_SI_S2 is true when the transition from $1 to 
$2 is enabled; similarly for T_SI_S3. So the CTL formula 
specifies that the two transitions are never enabled simulta- 
neously. Applying this technique to all the states, the model 
checker was able to find the nondeterministic transitions in 
that version of the specification. 

mand line option -f but  without running it to completion. This option 
forces SMV to find the reachable s ta te  space before evaluating any 
formula. 

5.2 Function Consistency 

Displayed-Model-Goal, shown in Figure 6, is a function whose 
value is displayed to the pilot. It represents the optimal alti- 
tude rate at which the pilot should aim (a positive value indi- 
cates the upward direction). The function definition consists 
of eight cases, which are supposed to be mutually exclusive. 
It is not obvious whether this is the case since the mutual 
exclusion depends on logic elsewhere in the specification. 

Checking for mutual exclusion of the cases is similar to 
checking for nondeterminism. We defined a boolean symbol 
Case-1 for the first Case, and Case-2 for the second case, 
and so on, and checked an CTL formula of the form: 

AG ! ( (Case-1  ~ Case-2) I (Case-1 & Case-3)  I 
. . .  ] (Case-6 & Case-T))  

The model checker found a counterexample showing that the 
formula was false. After carefully examining the counterex- 
ample, we decided that the scenario was due to the oversim- 
plified model of Other-Aircraft, which we had considered as 
a part of the nondeterministic environment. In the coun- 
terexample, Other-Aircraft reverses from an Increase-Climb 
RA to an Increase-Descend RA in one step, which is prohib- 
ited by the logic in the specification. After we changed the 
code to prevent Other-Aircraft from making such spurious 
transitions, no counterexamples were found. 

5.3 Step Termination 

A step in an RSML state machine may not terminate if the 
machine contains a cycle of events under the transition rela- 
tion. However, usually the events in an RSML specification, 
such as the TCAS specification, form a partial ordering un- 
der the transition relation, so it is easy to see that  the state 
machine will always terminate. Alternatively, in our frame- 
work we can check for termination with the CTL formula: 

163 



AG ( ! S t a b l e  -> AF S t a b l e )  

which states that whenever the state machine is not stable, 
it will always become stable eventually. This formula was 
evaluated true for our model of the TCAS specification, as 
expected. 

5.4 Inhibition of Resolution Advisories 

A TCAS document [10] states that (1) all Descend RAs 
are inhibited when the own aircraft is below 1000 feet above 
ground level, and (2) all Increase-Descend RAs are inhibited 
below 1450 feet above ground level. The logic that guaran- 
tees these safety properties resides in both Own-Aircraft and 
Other-Aircraft. We imposed the necessary constraints on 
the transitions of Other-Aircraft in order to check whether 
the part of the logic in Own-Aircraft is correct. The model 
checker found that while the first property is satisfied, the 
second is not. The formula that we checked for the second 
property was similar to the following: 3 

AG ((Radio-Altimeter-Status = Valid 

& 0wn-Alt-Radio <= 1450) 

-> ! Increase-Descend) 

where 0wn-Alt-Radio is an input representing the altitude of 

the own aircraft above ground level, Radio-Altimeter-Status 

an input indicating whether 0wn-Alt-Radio is valid, and 

Increase-Descend an expression evaluating to true when 

an Increase-Descend RA is issued. The counterexample it 

gave revealed a typographical error in a guarding condition 
in the specification (> instead of <).4 The effect of the er- 
ror was that the Increase-Descend RA was inhibited for only 
one step, thus allowing the safety property to be violated. 

5.5 Output Agreement 

In addition to the value of Displayed-Model-Goal, the state 
of Composite-RA in Figure 5 is also shown to the pilot. 
Therefore it seems safety-critical that Composite-RA and 
Displayed-Model-Goal agree with each other. We checked 
for several such properties. For example, one would expect 
that if Composite-RA is in state Climb, then Displayed- 
Model-Goal should be at least 1500 ft /min. However, the 
model checker revealed that this is not true. In fact, it 
showed that when Composite-RA is Climb, Displayed-Model- 
Goal could be negative. The CTL formula we checked was 
roughly: 

AG (Composite-RA = Climb -> 

Displayed-Model-Goal >-- 1500) 

The counterexample given by the model checker was a three 
step scenario: 

1. At time to, there is an intruder aircraft and Other- 
Aircraft gives a Descend RA. As a result, Composite- 
RA is in state Descend and by case 3 of the definition 
of Displayed-Model-Goal, it is < -1500 ft /min. 

2. At time tl > to, Other-Aircraft realizes that an in- 
crease in descend rate is necessary and issues an Increase- 
Descend RA, which puts Displayed-Model-Goal at -2500 
f t /min  by case 5. 

3The actual formulae differ slightly due to some implementation 
details. 

4The authors had discovered the typographical error by observa- 
tion during the translation process. 

3. At time tl + 1, the situation has changed and Other- 
Aircraft projects that a climb would result in greater 
separation from the intruder. So it reverses its RA to 
Climb, making Composite-RA enter state Climb. At 
that point, case 7 apphes and Displayed-Model-Goal 
becomes < -1500 ft /min, resulting in contradictory 
outputs. 

5.6 References to  Uninitialized Values 

It is possible for an AND/OR table or function to refer to 
the previous value of some variable (e.g., an input variable, 
state, or function reference) even though the variable was 
not yet defined in the previous step. In such a case the 
value of PREV 0 is undefined. The model checker handles 
such undefined references in the same way that it handles 
environment variables. That  is, it nondeterministicaily as- 
signs values in an attempt to find a counterexample to the 
formula. So while analyzing for the properties mentioned 
above, the model checker also discovered situations in which 
a variable is referenced before it is defined, e.g., referring to 
PREV 0 in the first step. 

5.7 Discussion 

As shown in Section 5.2, the model checker sometimes found 
incorrect counterexamples due to the simplifications of the 
system that we made. It may seem that the repeated process 
of getting an incorrect counterexample and eliminating it is 
an undesirable artifact of the incomplete translation of the 
specification. There are several reasons why leaving part of 
the model nondeterministic is in fact a useful technique: 

• A specification may be so complex that model checking 
it in its entirety is infeasible. This approach, then, al- 
lows model checking to be beneficially applied to parts 
of the specifications without fully considering all the 
remaining components. 

• A software engineer can use the information obtained 
from analyzing the counterexamples to clarify the re- 
lationship between parts of the specification, in par- 
ticular between those parts that are fully modeled and 
those that are partially modeled. 

• Development and analysis of the specification can be 
interleaved so that potential problems can be found 
or avoided earlier. For example, when developing the 
TCAS specification, an engineer could have specified 
Own-Aircraft first and have left Other-Aircraft nonde- 
terministic. Then an analyst could have model checked 
Own-Aircraft and discovered the assumptions on the 
behaviors of Other-Aircraft that are necessary for Own- 
Aircraft's correct operations. This information then 
could have been used to develop Other-Aircraft, which 
could be model checked later to see whether the as- 
sumptions hold. 

This iterative approach appears to have benefits for anal- 
ysis and shows potential for iterative development of speci- 
fications, as well. 

164 



6 Related Work 

Sreemani and Atlee [21], in work independent of ours, an- 
alyzed the A-7E aircraft software requirement specification 
with SMV, and were also able to successfully check several 
temporal properties. While their motivations were similar, 
our studies differ in several ways because of differences in the 
specifications. The A-7E aircraft requirements were written 
in the Software Cost Reduction (SCR) requirements nota- 
tion [1, 14], which does not contain features such as hierar- 
chical states and does not make assumptions like the syn- 
chrony hypothesis. In addition, the environment of the A- 
7E specification is abstracted as a set of predicates, whereas 
the inputs to our system include numerical values. Numer- 
ical calculation and comparison are abundant in the TCAS 
specification, and they introduce significant problems in the 
model checking process. 

There are a number of other widely researched approaches 
to handling the state space explosion problem. Corbett re- 
cently classified these techniques into several categories [9]. 
In contrast to our work, which studies a single data point 
for a single approach, Corbett compared three approaches, 
model checking, partial order space state reduction, and in- 
equality necessary conditions, all in the context of detecting 
deadlock in Ada tasking programs. For deadlock, Corbett 
observed that '~no technique was clearly superior to the oth- 
ers, but rather each excelled on certain kinds of programs [9, 
p. 179]." 

The two translations into SMV that Corbett used differ 
from ours. One translation represented asynchrony by arbi- 
trary sequential interleavings of transitions, eliminating the 
parallelism that we exploit. The other translation, which he 
found less successful, represented asynchrony in parallel us- 
ing extra variables to indicate which transition was executed 
in each state machine whereas our translation only requires 
extra variables where parallel nondeterministic transitions 
occur between the same two states. Use of our translation 
may have changed the outcome of Corbett 's comparison, but 
further work is needed to determine which approaches are 
most effective for checking particular properties on certain 
classes of systems. 

Heimdahl and Leveso~ [13] took a different approach. 
They analyzed the TCAS specification without exploring the 
state space. They deduced global properties of the system 
by composing results of local analysis. Their technique differ 
from ours in two ways. 

First, the properties that we checked were different. Their 
concerns were transition consistency and completeness [16], 
which are domain-independent robustness properties. In 
Section 5.1 we discussed how we checked for a source of 
transition inconsistency. (They also discussed other sources 
of transition inconsistency, which we have not addressed.) 
Completeness intuitively means that a response is specified 
for every input; more specifically, it means that the disjunc- 
tion of the guarding conditions of all the transitions with 
the same triggering event from a particular state form a 
tautology. In principle this can also be checked in our frame- 
work similar to the way consistency is checked. In general, 
our approach permits analysis of properties that can be ex- 
pressed as CTL formulae, and is therefore capable of check- 
ing domain-specific properties as well (Sections 5.4 and 5.5). 

Second, their tool is more efficient for checking transition 
consistency and completeness. On the other hand, it some- 
times produced many spurious errors due to the predicates 
involving arithmetics in the AND/OR tables, because the 

predicates were modeled as independent boolean variables. 
To eliminate the spurious reports they would have to find 
out the relationships among the predicates. In contrast, we 
modeled the numbers directly in the BDDs and interleaved 
their bits in the binary representation to improve perfor- 
mance. In this way, we were able to handle addition and 
subtraction. Because we explore the reachable state space 
we generate fewer spurious errors. 

7 Conclusions 

We have shown that it is feasible to translate part of a large 
finite state specification into a form suitable for a model 
checker, and have been able to check several non-trivial 
properties. Our approach to analyzing the specification iter- 
atively, by modeling some components nondeterministically 
and then refining them, proved to be quite powerful. These 
are critical steps towards realizing symbolic model check- 
ing as an effective tool in the process of analyzing software 
specifications. 

What else is needed to make model checking as ubiqui- 
tous for software systems as it is already for hardware sys- 
tems? This is hard to predict with certainty, but a number 
of directions seem especially promising. 

First, Bryant and Chen [4] introduced the BMD (Bi- 
nary Moment Diagram), a data structure that, in contrast 
to BDD's, can be used to represent multiplication concisely. 
With a variant of this data structure, the *BMD, they were 
able to verify division circuits. A hybrid approach where 
BMD's are used to represent arithmetic variables and BDD's 
are used to represent control variables, as suggested by Clarke 
and Zhao [7], may be attractive. Building model checkers 
that can handle arbitrarily complicated numeric calculations 
is almost certainly intractable. However, rudimentary arith- 
metic, coupled with an understanding of the appropriate no- 
tions of approximation, might be sufficient to handle many 
applications. 

Second, automating the translation from RSML to input 
for SMV (or another model checker) appears to be straight- 
forward. It might be reasonable to develop a model checker 
that directly accepts languages such as RSML or State- 
charts, eliminating the need for any source-level transla- 
tion at all. This is a good example of a place where model 
checkers developed specifically for software might have some 
leverage, since the way in which engineers define the state 
machines often seems to differ between hardware and soft- 
w a r e .  

Third, it might be possible to exploit the general struc- 
ture of the derived transition relation to improve perfor- 
mance. (Although we only showed how to translate the 
TCAS specification, we believe that this is a generalizable 
approach.) Our SMV description of an RSML specification 
had variables to represent the state space, time, environ- 
ment, and internal events. Although we treated these uni- 
formly in our translation to SMV, they were used in different 
ways. It is possible that a model checker that incorporated 
some of the semantics of time into the internal algorithms 
could outperform a checker that handled time with ordinary 
numeric variables. More generally, by exploiting common 
properties of software specifications that represent process 
control systems like TCAS, one might be able to build model 
checkers that perform better and are easier to use. 

We believe that this investigation contributes to an in- 
crease in optimism that symbolic model checking can over- 

165 



come predicted impediments and thus be successful in the 
analysis of realistic software specifications. 

Acknowledgments 

We wish to thank the other members of the Winter 1996 
CSE 590MC seminar at the University of Washington. 

References 

[1] T. Alspaugh, S. Faulk, K. Britton, R. Parker, D. Par- 
haS, and J. Shore. Software requirements for the A-7E 
aircraft. Technical report, Naval Research Lab., March 
1988. 

[2] J. M. Atlee and A. M. Buckley. A logic-model seman- 
tics for SCR software requirements. In Proceedings of 
the International Symposium on Software Testing and 
Analysis, pages 280-292, January 1996. 

[3] R. E. Bryant. On the complexity of VLSI imple- 
mentations and graph representation of boolean func- 
tions with applications to integer multiplication. 1EEE 
Transactions on Computers, 40(2):205-213, February 
1991. 

[4] R. E. Bryant and Chen Y.-A. Verification of arithmetic 
circuits with Binary Moment Diagrams. In Proceedings 
of the 32nd ACM/IEEE Design Automation Confer- 
ence, pages 535-541, June 1995. 

[5] R.E. Bryant. Graph-based algorithms for boolean func- 
tion manipulation. 1EEE Transactions on Computers, 
C-35(6):677-691, August 1986. 

[6] J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMil- 
lan, and D. L. Dill. Symbolic model checking for se- 
quential circuit verification. IEEE Transactions on 
Computer-Aided Design of Integrated Circuits and Sys- 
tems, 13(4):401-424, April 1994. 

[7] E. Clarke and X. Zhao. Word level symbolic model 
checking: A new approach for verifying arithmetic cir- 
cuits. Technical Report CMU-CS-95-161, School of 
Computer Science, Carnegie Mellon University, May 
1995. 

[8] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Auto- 
matic verification of finite-state concurrent systems us- 
ing temporal logic specifications. ACM Transactions 
on Programming Languages and Systems, 8(2):244-63, 
April 1986. 

[9] J.C. Corbett. Evaluating deadlock detection methods 
for concurrent software. IEEE Transactions on Soft- 
ware Engineering, SE-22(3), March 1996. 

[10] Federal Aviation Administration, U.S. Department of 
Transportation. Introduction to TCAS II, March 1990. 

[11] Federal Aviation Administration, U.S. Department of 
Transportation. TCAS H Collision Avoidance Sys- 
tem (CAS) System Requirements Specification, Change 
6.00, March 1993. 

[12] D. Harel. Statecharts: A visual formalism for complex 
systems. Science of Computer Programming, 8:231- 
274, 1987. 

[13] M.P.E. Heimdahl and N.G. Leveson. Completeness 
and consistency analysis of state-based requirements. 
In Proceedings of the 17th International Conference on 
Software Engineering, pages 3-14, April 1995. 

[14] K. Heninger. Specifying software requirements for 
complex systems: New techniques and their applica- 
tions. 1EEE Transactions on Software Engineering, SE- 
6(1):2-12, January 1980. 

[15] D. Jackson. Abstract model checking of infinite specifi- 
cations. In Proceedings of FME 'g4: Industrial Benefit 
of Formal Methods, Second International Symposium of 
Formal Methods Europe, pages 519-31. Springer-Verlag, 
October 1994. 

[16] M. S. Jaffe, N. G. Leveson, M. P. E. Heimdahl, and 
B. E. Melhart. Software requirements analysis for real- 
time process-control systems. IEEE Transactions on 
Software Engineering, 17(3):241-258, March 1991. 

[17] N.G. Leveson, M.P.E. Heimdahl, H. Hildreth, and J.D. 
Reese. Requirements specification for process-control 
systems. IEEE Transactions on Software Engineering, 
SE-20(9), September 1994. 

[18] K.L. McMillan. Symbolic Model Checking. Kluwer Aca- 
demic Publishers, 1993. 

[19] A. Pnueli and M. Shalev. What is in a step: On the se- 
mantics of Statecharts. In Proceedings of International 
Conference on Theoretical Aspects of Computer Soft- 
ware, pages 245-264. Springer-Verlag, September 1991. 

[20] S. Ponzio. A lower bound for integer multiplication 
with read-once branching programs. In Proceedings of 
the 27th ACM Symposium on Theory of Computing, 
pages 130-139, May 1995. 

[21] T. Sreemani and J. Atlee. Feasibility of model checking 
software requirements: A case study. Technical Report 
CS96-05, Department of Computer Science, University 
of Waterloo, January 1996. 

[22] J.M. Wing and M. Vaziri-Farahani. Model checking 
software systems: A case study. In Proceedings of 
SIGSOFT'95 Third ACM SIGSOFT Symposium on the 
Foundations of Software Engineering, pages 128-139, 
October 1995. 

166 


