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Abstract. Recent studies have demonstrated the possibility to build ge-
netic regulatory networks that confer a desired behavior to a living organ-
ism. However, the design of these networks is difficult, notably because
of uncertainties on parameter values. In previous work, we proposed an
approach to analyze genetic regulatory networks with parameter uncer-
tainties. In this approach, the models are based on piecewise-multiaffine
(PMA) differential equations, the specifications are expressed in tem-
poral logic, and uncertain parameters are given by intervals. Abstrac-
tions are used to obtain finite discrete representations of the dynamics
of the system, amenable to model checking. However, the abstraction
process creates spurious behaviors along which time does not progress,
called time-converging behaviors. Consequently, the verification of live-
ness properties, expressing that something will eventually happen, and
implicitly assuming progress of time, often fails. In this work, we extend
our previous approach to enforce progress of time. More precisely, we
define transient regions as subsets of the state space left in finite time by
every solution trajectory, show how they can be used to rule out time-
converging behaviors, and provide sufficient conditions for their identi-
fication in PMA systems. This approach is implemented in RoVerGeNe
and applied to the analysis of a network built in the bacterium FE. coli.

1 Introduction

The main goal of the nascent field of synthetic biology is to design and construct
biological systems that present a desired behavior. The construction of networks
of interregulating genes, so-called genetic regulatory networks, has demonstrated
the feasibility of this approach [1]. However, most of the newly-created networks
are non-functioning and need subsequent tuning [I]. One important reason is that
large uncertainties on parameter values hamper the design of the networks. These
uncertainties are caused by current limitations of experimental techniques but
also by the fact that parameter values themselves vary with the ever-fluctuating
extra- and intracellular environmental conditions.

In previous work [2I3], we have developed a method for the verification of dy-
namical properties of genetic regulatory networks with parameter uncertainty.
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In this approach, models are based on piecewise-multiaffine (PMA) differential
equations, dynamical properties are specified in temporal logic, and uncertain
parameters are given by intervals. Following an approach widely-used in hybrid
systems theory [4], we use a time-abstracting embedding transition system in
combination with discrete abstractions to obtain finite discrete representations
of the dynamics of the system in state and parameter spaces, amenable to algo-
rithmic verification by model checking [5].

In the context of gene network design, liveness properties, expressing that
something will eventually happen [6], are commonly-encountered. When prov-
ing liveness properties of a dynamical system, the implicit requirement that
along every behavior time progresses without upper bound plays a key role [7g].
However, spurious, time-converging behaviors created by the abstraction process
often cause the verification on the abstract system of liveness properties to fail.
This problem was early recognized but is still largely unsolved for continuous
and hybrid systems [7J9].

In this work, we address the above problem by enforcing progress of time in
the abstract systems. First, we define transient regions as subsets of the state
space that are left in finite time by every solution trajectory. Then, the simple
observation that if the system remains in a transient region, the correspond-
ing behavior is necessarily time-converging, provides us with a means to rule
out time-converging behaviors in abstract systems. Finally, we propose sufficient
conditions for the identification of transient regions of PMA systems. This ap-
proach has been implemented in a tool for Robust Verification of Gene Networks
(RoVerGeNe), and applied to the verification of a non-trivial liveness property of
a transcriptional cascade built in the bacterium E. coli. This case study demon-
strates the practical applicability of the proposed approach.

The remainder of this paper is organized as follows. In Section[3] the biological
problem is illustrated by means of an example: the analysis of the robustness of a
transcriptional cascade. In Sectiondl we present PMA models and briefly review
the approach described in [2I3] for their analysis under parameter uncertainty.
Our contribution to the verification of liveness properties is detailed in Section
and [6l More precisely, we show in Section 5l how transient regions can be used to
rule out time-converging behaviors in discrete abstractions, and in Section [6 how
transient regions can be computed for uncertain PMA systems. In Section[7], we
apply the proposed approach to the analysis of the transcriptional cascade. The
final section discusses the proposed approach in the context of related work.

2 Preliminaries

All the notions and notations presented here are described at length in [2]. We
consider Kripke structures, also called transition systems, T = (S, —,II, ),
where S is a finite or infinite set of states, —C S x S is a total transition
relation, I is a finite set of propositions, and C S x I is a satisfaction re-
lation [5]. An ezecution of T is an infinite sequence e = (sg, s1,...) such that
for every ¢ > 0, s, € S and (s;,8;+1) €—. An equivalence relation ~C Sx S
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is proposition- preserving if Vs,s’ € S and « € II, if s ~ ¢ and s = 7, then
s’ = 7. The quotient transition system of T=(S,—, II, =) given a proposition-
preserving equivalence relation ~C Sx S is T/ = (S/~, —~, I, =), where
S/~ is the set of all equivalence classes R of S, —.C S/ x S/ is such that
R— . R’ iff there exist s € R, s’ € R’ such that s— ', and = C S/ xII is such
that R |=. m iff there exists s € R such that s = m. The strongly connected
components of a transition system 7' = (S, —, I, =) are the maximal strongly
connected subgraphs of the graph (S, —). We refer to [5] for the syntax and
semantics of LTL formulas interpreted over executions. A transition system T
satisfies an LTL formula ¢, denoted T |= ¢, iff every execution of T satisfies ¢.

Let S C R". S denotes its closure in R™, and hull(5), its convex hull. A
polytope P in R" is a bounded intersection of a finite number of open or closed
halfspaces. P is hyperrectangular if P = Py x...x P, where P,={z; € R | z =
(x1,...,2n) € P}, i € {1,...,n}. The set of points vq,...,v, € R” satisfying
P = hull({v1,...,v,}) and v; ¢ hull({v1, ..., 01, Vit1,...,0p}), ¢ € {1,...,p},
is the set Vp of vertices of P. A facet of a full-dimensional polytope P is the
intersection of P with one of its supporting hyperplanes. An affine function f:
R"—R™ is a polynomial of degree at most 1. A multiaffine function f:R"—R™
is a polynomial in which the degree of f in any of its variables is at most 1.
Stated differently, non-linearities are restricted to product of distinct variables.

Theorem 1. [10] Let f : R™ — R™ be an affine function and P be a polytope
in R™. Then, f(P)=hull({f(v) | v € Vp}).

Theorem 2. [T]] Let f : R™ — R™ be a multiaffine function and P be a hyper-
rectangular polytope in R™. Then, f(P) C hull({f(v) | v € Vp}).

3 A Motivating Example: Tuning a Transcriptional
Cascade

We consider the genetic regulatory network built in E. coli [I2] and represented
in Figure [la). It consists of 4 genes forming a cascade of transcriptional inhi-
bitions. The network is controlled by the addition or removal of aTc that serves
as controllable input. The output is the fluorescence intensity of the system,
due to the fluorescent protein EYFP. The cascade is ultrasensitive: at steady-
state, the output undergoes a dramatic change for a moderate change of the
input in a narrow interval. The cascade is expected to present at least a 1000-
fold increase of the output value for a two-fold increase of the input value, but
the actual network does not meet its specifications (Figure [[i(b)).

In [23], we investigated the possibility to tune the network by modifying some
of its parameters. To do so, we built a model of the system (Figure 2la)), iden-
tified parameter values using experimental data available in [12], specified the
expected behavior in LTL (Figure (b)), and searched for and found parameter
values for which the system satisfies its specifications (Figure [I(b)). It is im-
portant that the network presents a robust behavior, since it should behave as
expected despite environmental fluctuations. So, before actually experimentally
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Fig. 1. (a) Synthetic transcriptional cascade. The genes tetR, lacl, cI, and eyfp code for
the proteins TetR, Lacl, CI, and EYFP, respectively. When a gene is expressed, the cor-
responding protein is produced, which inhibits the expression of a gene downstream.
The input molecule, aTc, relieves the inhibition of lacl by TetR. (b) Steady-state 1/O
behavior of the cascade: measured (red dots), expected (region delimited by black
dashed lines), and predicted, before (red dashed line) and after (blue solid line) tuning.

tuning the network as suggested, we would like to use our model to evaluate the
robustness of the tuned system. More specifically, we would like to verify that
the tuned cascade satisfies its specification for all production and degradation
rate parameters varying in +10% intervals centered at their reference values.

4 Model Checking Genetic Regulatory Networks with
Parameter Uncertainty

4.1 PMA Models and LTL Specifications

We first present a formalism for modeling gene networks. The notations and
terminology are adapted from [13]. We consider a network consisting of n genes.
The state of the network is given by the vector x = (z1,...,2,), where z;
is the concentration of the protein encoded by gene i. The state space X is
a hyperrectangular subset of R": X = T[], [0, maz,,], where maz,, denotes
a maximal concentration of the protein encoded by gene i. Some parameters
may be uncertain: p = (p1,...,pm) is the vector of uncertain parameters, with
values in the parameter space P = [[]_, [min,,, maz,,], where min,,; and maz,,
denotes a minimal and maximal value for p;.
The dynamics of the network is given by a set of differential equations:

b= e =Y M@ -3 i@, e (L) ()

where P; and D; are sets of indices, ﬁ{ > (0 and 7{ > 0 are (possibly uncertain)
production and degradation rate parameters, and r] : X — [0, 1] are continuous,
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Fig. 2. (a) Model of the cascade. Tietr, Tiger, Tel, Teyfp denote protein concentrations,
UqTe, input molecule concentration, 0’s, threshold parameters, r’s, production rate
parameters, and 7’s, degradation rate parameters. 7+ and r~ are ramp functions rep-
resented in (b). The product of ramp functions in Eq. (2’) captures the assumption
that the expression of lacl is repressed when TetR is present and aTc absent, and
causes the model to be piecewise-multiaffine. Parameter values are indicated. Tuned
parameters are: kier = 2591, kel = 550, and Keyp = 8000. (b) Increasing (r*) and
decreasing (r~) ramp functions. (c) LTL specification of the expected behavior of the
cascade represented in Figure [[(b). FGp (“eventually, p will be always true”) is used
to express that the property p holds at steady state. ¢1 is a liveness property.

piecewise-multiaffine (PMA) functions, called regulation functions. As seen in
our example, PMA functions arise from products of ramp functions r* and
r~ used for representing complex gene regulations or protein degradations (see
Figure2(a) Eq. (2’) and Ref. [2]). The components of p are production or degra-
dation rate parameters. With the additional assumption that r” does not depend
on z; for j € D; [ it holds that f = (f1,--, fn) : XXP — R"™ is a (non-smooth)
continuous function of z and p, a piecewise-multiaffine function of x, and an
affine function of p. Note that production and degradation rate parameters may
be uncertain, but regulation functions (with their threshold parameters) must be
known precisely. Finally, Equation () is easily extended to account for constant
inputs u by considering u as a new variable satisfying @ = 0.

A number of dynamical properties of gene networks can be specified in tem-
poral logic by LTL formulas over atomic propositions of type x; < A or ; > A,
where A € Ry>¢ is a constant. We denote by II the set of all such atomic

! This assumption requires that a protein does not regulate its own degradation. In
practice, this assumption is generally satisfied.
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propositions. A PMA system X' is then defined by a piecewise-multiaffine func-
tion f defined as above and a set of atomic propositions IT: X' = (f, IT).

PMA models of gene networks were proposed in [I4] (see [I5] for a related,
piecewise-continuous formalism). The models considered here are also related to
the piecewise-affine (PA) models proposed in [16] (see also [13]). However, con-
trary to the step functions used in PA models, ramp functions capture the graded
response of gene expression to continuous changes in effector concentrations.

4.2 Embedding Transition Systems and Discrete Abstractions

The specific form of the PMA function f suggests a division of the state space X
into hyperrectangular regions (see Figure [ for our example network). Let A; =
{\ }ieq1,....1;3 be the ordered set of all threshold constants in f, and of all atomic
proposition constants in I7, associated with gene i, together with 0 and maz,,
i € {1,...,n}. The cardinality of A; is l;. Then, we define R as the following set
of n-dimensional hyperrectangular polytopes R C X, called rectangles:

R=A{Rc|c=(c1,...,cp) and Vi€ {1,...,n} : ¢; € {1,...,1; — 1}},

where
Ro={zecX|Vie{l,....n}: X} <z < A1)

The union of all rectangles in X is denoted by Xr: Xr = Uger R. Note that
Xr # X. Notably, threshold hyperplanes are not included in X. rect : Xg — R
maps every point x in Xr to the rectangle R such that x € R. Two rectangles
R and R/, are said adjacent, denoted R < R/, if they share a facet. Figure Bla)
shows 9 rectangles in a 2-D slice of the state space of our example network. R
and R? are adjacent (i.e. R' < R?), whereas R! and R® are not.

l‘zmﬁ . Rs_ . |:R: {(Riv, Wl)lgigg,
mat,,,, R @ [ ) o r (RZ, 7T4)1§i§9,
— | | " (R, 76)1<i<o,
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Fig. 3. Transcriptional cascade. (a) Schematic representation of the flow (arrows) in
a 2-D slice of the state space. Other variables satisfy: 0 < ug7c < 100, 0 < 2.7 < 600,
and 0 < Zeyp < 250. (b) and (c) Discrete abstraction Tz (p): subgraph of (R, —xr,p)
corresponding to the region represented in (a), and satisfaction relation |=r. Dots
denote self transitions.
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Formally, we define the semantics of a PMA system X' by means of a time-
abstracting embedding transition system [4lg].

Definition 1. Let p € P. The embedding transition system associated with the
PMA system X = (f,II) is Tx(p) = (Xr, —xp, I, Ex) defined such that:

— —x pC Xr X Xg is the transition relation defined by (z,2') € —x  iff there
ezist a solution & of {d) and T € Rx¢ such that £(0) =z, £(7) = 2/, ¥t € [0, 7],
&(t) € rect(x) U rect(x’), and either rect(x) = rect(z’) or rect(x) < rect(z'),

— ExC Xg x II is the satisfaction relation defined by (z,7) € =x iff x =
(z1,...,2n) satisfies the proposition w (of type x; < X or x; > A) with the
usual semantics.

In Tx(p), a transition between two points corresponds to an evolution of the
system during some time. Quantitative aspects of time are abstracted away:
some time elapses, but we don’t know how much. Also note that not all solution
trajectories of () are guaranteed to be represented by our embedding. However,
one can show that our embedding describes almost all solution trajectories of
(@), which is satisfying for all practical purposes [2].

A PMA system X satisfies an LTL formula ¢ for a given parameter p € P if
Tx(p) = ¢, that is, if every execution of Ty (p) satisfies ¢.

We use discrete abstractions [4] to obtain finite transition systems preserving
dynamical properties of Ty (p) and amenable to algorithmic verification [5]. Let
~rC Xr x Xr be the (proposition-preserving) equivalence relation defined by
the map rect: © ~g x’ iff rect(z) = rect(z’). R is the set of equivalence classes.
Then, the discrete abstraction of T (p) is the quotient of Tx(p) given ~x%.

Definition 2. Let p € P. The discrete abstraction of Tx(p) is the quotient of
Tx(p) given ~g, denoted by Tr(p) = (R, —rp, I, ER).

For the cascade, the discrete transition system T (p) is partially represented in
Figure[B(b) and (c), with p denoting the tuned parameter values (Section[3]). As
suggested by the sketch of the flow in FigureBl(a), there exist solution trajectories

. . . 1 2 . .
reaching R? from R! without leaving R U R". Consequently, there is a discrete
transition from R' to R2. Also, for example, rectangle R! satisfies the atomic
proposition 71 : uar. <100, that is, (R, m) € Er.

4.3 Model Checking Uncertain PMA Systems

Because parameter values are often uncertain, we would like to be able to test
whether a PMA system X satisfies an LTL formula ¢ for every parameter in a
set P C P. This problem is defined as robustness analysis in [2I3]. Note that the
problem given in Section [3lis precisely an instance of this problem.

To describe the behavior of a network for sets of parameters P C P, we define
the transition systems T3 (P) and T} (P) as follows.
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Definition 3. Let P C P. Then TR(P) = (R,—% p,II,}=r) and T} (P) =
(R, —>¥17P, II, ER), where

- (R, R) 6—%)}; iff 3p € P such that (R, R') €—=r,p in Tr(p), and

~(R,R) =% p iff Vp€ P, (R,R) €=ryp inTr(p).

In words, T3(P) contains all the transitions present in at least one transition
system T (p), and T} (P) contains only the transitions present in all the transi-
tion systems Tr(p), p € P. Informally, T3 (P) and T} (P) can be considered as
over- and under-approximations of Tr (p) when p varies, respectively.

In [2I3], we have shown the following property.

if T2 (P) = ¢, then for every p € P, Tx(p) = ¢,

that is, the PMA system X satisfies property ¢ for every parameter in P. This
property is instrumental for proving robust properties of gene networks. However,
note that T3 (P) K~ ¢ does not imply that for some, nor for every parameter, the
property is false. P might still contain parameters for which the property is true,
called valid parameters. So we proposed an iterative procedure that partitions P
and that tests whether T3 (P’) = ¢ for each full-dimensional subset P’. Clearly,
this approach becomes very inefficient when P does not contain valid parame-
ters, since we keep on partitioning P. This situation can be detected by means of
T% (P). We have shown in [213] that if T;% (P) F~ ¢, then we should stop partition-
ing P. So T3 (P) and T} (P) are respectively used for proving robust properties of
the system and for preserving the efficiency of the approach. Finally, we showed
that T3 (P) and T (P) can be computed for polyhedral parameter sets using
standard polyhedral operations. The robustness of a number of dynamical prop-
erties can be tested this way. However, because model checking results are almost
always negative, this approach fails when applied to the verification of liveness
properties. As we will see in the next section, this problem is due to the presence
of spurious, time-converging executions in the abstract transition systems.

5 Transient Regions and Liveness Checking

The analysis of counter-examples returned by model-checkers reveals why the
verification of liveness properties generally fails. For example, the execution
er1 = (RY, RY, RY,...) of Tr(p) (FigureBIb)), is a counter-example of the live-
ness property ¢1 given in Figure [Z(c). However, from the sketch of the flow
in Figure Bl(a), it is intuitively clear that the system leaves R! in finite time.
Consequently, the execution er; that describes a system remaining always in
R! conflicts with the requirement that time progresses without upper bound.
Such executions are called time-converging [7[9]d. Because they do not rep-
resent genuine behaviors of the system, these executions should be excluded
when checking the properties of the system.

2 Time-converging executions are sometimes called Zeno executions [79]. However, we
prefer the former term since the latter is also used in a more restricted sense [17].
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5.1 Time-Diverging Executions and Transient Regions

Definition 4. Let p € P.

An execution ex = (xo,21,...) of Tx(p) is time-diverging iff there exists a
solution & of [@) and a sequence of time instants T = (19,71,...) such that
&(1i) = x4, for all i >0, and lim;_, o 7; = 00.

An executioner = (Ro, R1,...) of Tr(p) is time-diverging iff there exists a time-
diverging execution ex = (xo,x1,...) of Tx(p) such that x; € R;, for alli > 0.

Intuitively, an execution of the embedding transition system Tx(p) is time-
diverging if it represents at least one solution on the time interval [0, 00). Also,
an execution of the discrete transition system Tz (p) is time-diverging if it is
the abstraction of at least one time-diverging execution of Tx(p). Here, we iden-
tify two causes for the absence of progress in the abstract system Tx(p). The
first one is due to the time-abstracting semantics used. The time-elapse cor-
responding to a transition in T (p) can be infinitesimal such that the sum of
all time-elapses of the transitions of an execution of T (p) can be finite. The
second one is due to the discrete abstraction, since the abstraction process intro-
duces the possibility to iterate infinitely on discrete states of Tk (p). While the
first problem appears only for dense-time systems, the second problem is also
present in untimed systems and has been studied in the model checking com-
munity [I8/T9]. Examples of time-converging executions of Tx(p) for our exam-
ple network include eg; = (R', R*, R,...), and egs = (R?, R®, R?, R>, R?,...)
(Figure Bla) and (b)).

The notion of time-diverging executions can be extended to T3 (P) and T (P)
as follows.

Definition 5. Let P C P.

An execution er of T%(P) is time-diverging, if for some p € P, er is an
execution of Tr(p) and is time-diverging.

An execution er of T (P) is time-diverging, if for all p € P, er is a time-
diverging execution of Tr(p).

Finally, we define transient regions as subsets of the state space X’ that are left in
finite time by every solution. For a reason that will become clear later, we focus on
regions corresponding to unions of rectangles. As suggested by the sketch of the
flow in FigureBl(a) and proved later, R! and Uj€{27578}Rj are transient regions.

Definition 6. Let p € P and U C X be a union of rectangles R € R. U is
transient for parameter p if for every solution & of {dl) such that £(0) € U, there
exists T > 0 such that £(1) ¢ U.

5.2 Ruling Out Time-Converging Executions

From the maximality of strongly connected components (SCCs), it follows that
an infinite execution of a finite transition system remains eventually always in
a unique SCC. With T being either T (p), T2(P), or T} (P), and er being
an execution of Tz, we denote by SCC(er) C X the union of the rectangles of
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the strongly connected component of Tz in which eg remains eventually always.
Then, it is clear that if an execution e of Tk (p) is time-diverging, that is, repre-
sents at least a solution trajectory on a time interval [0, c0) (Definition @), then
SCC(er) can not be a transient region. Proposition [l captures this intuition
and establishes a link between time-diverging executions and transient regions.

Proposition 1. Let p € P. If an execution er of Tr(p) is time-diverging, then
SCC(er) is not transient for p.

Proof. Let p € P and eg = (Ro,R1,...) be a time-diverging execution of
Tr(p). By definition of SCC(er), there exists i > 0 such that for every j > i,
R; C SCC(@R) Let 693 = (Ri7Ri+17' . ) be a suffix of ex and U = Uj>iRj C
SCC(er). It holds that e/, is a time-diverging execution of Tz (p). By Defini-
tion M, there exists a time-diverging execution e’ = (zo,21,...) of Tx(p) such
that for all j > 0, x; € R*™* C U. Then by Definition [, this implies the ex-
istence of a solution & of ([l) such that V¢ > 0, 37 > ¢ such that (1) € U .
Also, Vt > 0, £(t) € U because every rectangle visited by £(t) is necessarily in
U (Definitions [[l and ). Consequently U is not transient for p (Definition []).
Because U C SCC(er), the same necessarily holds for SCC/(er).

Consider again the executions ex; = (R!,R', R',...) and ers = (R? R°, R?,
R° R?,...) of Tr(p) (Figure B(b)). Then, as mentioned earlier, SCC(er1) =
R' and SCC(erz) = Ujea5,83 R’ are transient regions for parameter p. By
Proposition[Il eg1 and ers are consequently time-converging for p.

The following property is a generalization of Proposition [II

Proposition 2. Let P C P.

(a) If an evecution er of Ta(P) is time-diverging, then for some p € P,
SCC(er) 1is not transient for p.

(b) If an execution e of T (P) is time-diverging, then for allp € P, SCC(er)
1s not transient for p.

Proof. First note that we can not use directly Proposition[I], since by definition,
SCC(er) differs depending on whether ex is an execution of T3 (P), T%(P)
or Tr(p), p € P. However, with ex an execution of T3(P) (resp. of T%(P)),
we can show exactly as in the proof of Proposition [Tl the existence of a set U
included in SCC(er) and non-transient for some (resp. every) parameter p€ P.
The conclusion follows immediately.

To summarize, let us denote by T either Tr(p), Ta(P) or T (P) and inter-
pret “transient” as transient for p, for every p € P or for some p € P, respectively.
Then, using the contrapositive of Proposition [Il or Bl we obtain that given a
strongly connected component of Tz, if the corresponding region U C X is tran-
sient then every execution of T’r remaining in U (i.e. being eventually always in
U) is time-converging and should not be taken into account when checking the
properties of the system. Provided that transient regions can be identified, this
suggests a method to rule out time-converging executions. To do so, we define
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a new atomic proposition m = ‘transient’ in II and label as ‘transient’ all and
only rectangles R in transient SCCs. Then, instead of testing whether

Tr = ¢,

we test whether
Tr E ¢, with ¢’ = -FG(‘transient’) — ¢.

The executions of T satisfying FG(‘transient’) necessarily remain in a tran-
sient SCC, and are consequently time-converging (Proposition [ or 2)). So, only
time-converging executions are ruled out this way. However, because Proposi-
tions[dland Blgive only necessary conditions for an execution to be time-diverging,
not all time-converging executions are guaranteed to be ruled out.

Consider again our example network. As said earlier, R' is a transient region.
Because R! forms a (single-state) SCC, it is labeled ‘transient’ in Tz (p). Then,
the execution ep; = (RY, R!, R!,...), satisfying FG(‘transient’), is not a counter-
example of ¢, and will not cause the property to be falsely invalidated anymore.

6 Transient Region Computation for PMA Systems

The approach presented in the previous section is rather general in the sense that
it solely requires the capacity to characterize transient regions. In this section,
we provide sufficient conditions for their identification in PMA systems. More
precisely, we provide conditions for proving that regions corresponding to SCCs
in the discrete abstractions are transient for a given parameter (Proposition [J),
for some parameter (Proposition [), or for all parameters in a polyhedral set
(Proposition Hl). Using sufficient conditions, not all transient regions are guar-
anteed to be identified. However, only time-converging executions will be ruled
out using the approach presented in Section Bl More precisely, Propositions [3]
M and Bl are used in combination with (the contrapositive of) Propositions [,
2(a) and 2(b), respectively. These properties rely on the fact that in a rectangle
R the function f is multiaffine and hence is a convex combination of its value
at the vertices of R (Theorem [2]). Our focus on PMA systems is motivated by
biological applications. However, Theorem [ for affine functions on polytopes
is similar to, and in fact stronger than Theorem [2 for multiaffine functions on
rectangles, such that the results in this section also hold for similarly-defined
continuous, piecewise-affine systems on polytopes.

Proposition 3. Let p € P and U C X be a union of rectangles R € R. If
0 ¢ hull({f(v,p) | v € Vg, R CU}),
then U is transient for parameter p.

Proof. Let p € P and U C X be a union of rectangles R € R. Assume 0 ¢
hull({f(v,p) | v € Vg, R C U}). Using the separating hyperplane theorem, there
exists a € R™ such that for all z € hull({f(v,p) | v € Vg, R C U}), a’z > 0. For
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every rectangle R C U, f(x,p) is a multiaffine function of x on R, so it holds
that for every x € R, f(z,p) € hull({f(v,p) | v € Vgr}) (Theorem ). Then,
for every x € U, f(z,p) € Ugcyhull{f(v,p) | v € Vg}), which is included
in hull({f(v,p) | v € Vg, R C U}). Consequently o f(z,p) > 0. Since U is
compact (union of compact sets R) and f is continuous, o f(U,p) is compact,
which implies that there exists ¢ > 0 such that the velocity in the direction of
a’ is always larger than c. Consequently, U is left in finite time.

The conditions of the above property are satisfied by R! and Uj€{27578}Rj , which
proves that these regions are transient, as hypothesized earlier. Propositions [
and [B] are generalizations of Proposition [3] to polyhedral parameter sets.

Proposition 4. Let P C P be a polytope and U C X be a union of rectangles
ReR.If0 ¢ hull{f(v,w) | v € Vg, R C U,w € Vp}), then U is transient for
all parameters p € P.

Proof. Using Proposition [3 we only have to prove that if 0 ¢ hull({f(v,w) | v €
Vr,RCU,w € Vp})thenVp € P,0 ¢ hull({f(v,p) | v € Vg, R CU}). We prove
its contrapositive. Let p € P be such that 0 € hull({f(v,p) | v € Vg, R C U}).
Then since f is affine in p, by Theorem [ it holds that 0 € hull({hull({ f (v, w) |
w € Vp}) | v € Vg, R C U}), or more simply 0 € hull({f(v,w) | v € Vg, R C
Uwe Vp})

Proposition 5. Let P C P be a polytope and U C X be a union of rectangles
R € R. If for some w € Vp, 0 ¢ hull({f(v,w) | v € Vg,R C U}), then U is
transient for some parameters p € P.

By Proposition Bl Proposition [l is obviously sufficient for proving that a region
is transient for some parameter in a polyhedral set. However, it may seem very
conservative to test whether 0 ¢ hull({f(v,w) | v € Vg, R C U}) is true only at
the vertices of P instead of testing whether this is true for every parameter in
P. The following proposition states that this is in fact equivalent.

Proposition 6. Let P C P be a polytope and U C X be a union of rectangles
R e R. Ip € P such that 0 ¢ hull({f(v,p) | v € Vg, R CU}) iff Jw € Vp such
that 0 ¢ hull({f(v,w) | v € Vg, R CU}).

Proof. The necessity is trivial. We prove sufficiency by contradiction. Let p € P
and let I and J be two sets of indices labeling the vertices in Urcy Vg and Vp:
UrcuVr = {vi}ier and Vp = {w,};cs. Then, there exists {y;};cs such that
> jes Hjw; = p, with p; >0, Vj€J, and 37, ; pu; = 1. Also, it holds that

hall({ f (vi, p) Yier) = hull({32,c ; pi f(vi,w;) Yier) //f is affine in p
=@, ¢, hull({x; f(vi,w;)}ier) //Minkowski sum of convex hulls

Then, for every w; € Vp, 0 € hull({ f(v;, w;)}ier) implies that 0 € hull({x; f(v;,
wj)}ier). So, by definition of Minkowski sum, we have 0 ¢ hull({ f(vs, p) }ier)-
Contradiction.
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computational number of uncertain parameters
time (in minutes) 0 2 5 8 11
number of 3 0.03 0.04 0.07 - -
continuous 4 0.20 0.27 0.59 2.66 -
variables 5 2.60 3.28 6.46 29.11 207.76

Fig. 4. Computational time for the verification of a liveness property as a function of
the number of variables and uncertain parameters. The 3- and 4-dimensional systems
correspond to similar but shorter transcriptional cascades (see [12]).

From a computational point of view, it is important to note that the conditions in
PropositionsBl @l and [, can be simply evaluated by solving a linear optimization
problem. The implementation of the approach described in Sections [ and [6] re-
sulted in a new version of a publicly-available tool for Robust Verification of Gene
Networks (RoVerGeNe) (http://iasi.bu.edu/~batt/rovergene/rovergene.htm).
RoVerGeNe is written in Matlab and uses MPT (polyhedral operations and linear
optimization), MatlabBGL (SCC computation) and NuSMV (model-checking).

7 Analysis of the Tuned Transcriptional Cascade

As explained in Section Bl in previous work we have predicted a way to tune
the transcriptional cascade such that it satisfies its specifications, using a PMA
model of the system. Before tuning the cascade experimentally, it is important
to evaluate its robustness. To do so, we have tested whether the system satisfies
the liveness property ¢; (Figure 2l(c)) for all of the 11 production and degra-
dation rate parameters varying in £10% intervals centered at their reference
values. Because the network has no feedback loops, it is not difficult to show
that oscillatory behaviors are not possible. Consequently, every (time-diverging)
execution necessarily eventually remains in a single (non-transient) rectangle,
instead of SCC in the general case (see Proposition [2). We have consequently
applied Propositions @] and [ to rectangles only, to obtain tighter predictions.

Using RoVerGeNe, we have been able to prove this property in <4 hours (PC,
3.4 GHz processor, 1 Gb RAM). Given that the problem was to prove that a non-
trivial property holds for every initial condition in a 5-dimensional state space
(1 input and 4 state variables) and for every parameter in an 11-dimensional
parameter set, this example illustrates the applicability of the proposed approach
to the analysis of networks of realistic size and complexity. Computational times
for smaller instances of this problem are given in Figure [

The same test has been performed for £20% parameter variations and a nega-
tive answer has been obtained (<4 hours). We recall that from negative answers,
one can not conclude that the property is false for some parameters in the set.
Nevertheless, the analysis of the counter-example given by the model checker has
revealed that the system can remain in a (non-transient) rectangle in which the
concentration of EYFP is below the minimal value allowed by the specifications

(5 10%), when the production rate constants ngyfp and Keypp are minimal and the
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degradation rate constant 7eys is maximal, in the £20% intervals. As a conse-
quence, the property is not robustly satisfied by the system for +20% parameter
variations. This analysis illustrates that relevant constraints on parameters are
identified by this approach.

8 Discussion

This work addresses the problem of the verification of liveness properties of ge-
netic regulatory networks modeled as PMA systems. It extends previous work on
the verification of PMA systems with parameter uncertainty [2I3]. Abstractions
are used to obtain discrete representations of the dynamics of the system in state
and parameter spaces, amenable to model checking. However, the abstractions
introduce spurious behaviors along which time does not progress, called time-
converging behaviors. The presence of these behaviors in the abstract systems
generally causes the verification of liveness properties, expressing that something
will eventually happen, to fail.

In this work, we proposed an approach to identify and rule out these behav-
iors, thus enforcing the progress of time in the abstract systems. We introduce
the notion of transient regions as subsets of the state space that are eventu-
ally left by every solution trajectory, and established a simple relation between
time-converging executions and regions corresponding to SCCs of the abstract
discrete transition systems: executions that remain in a transient SCC are neces-
sarily time-converging. Then, we provide sufficient conditions for characterizing
transient regions in PMA systems. The approach is described for fixed parame-
ters and systematically extended to deal with (polyhedral) sets of parameters.
This approach is implemented in a tool called RoVerGeNe. Its capacity to pro-
vide meaningful results for non-trivial problems on networks of biological interest
is illustrated on the analysis of a transcriptional cascade.

The use of model checking for the analysis of biological networks has attracted
much attention [20021122]2324]. The verification of true (i.e. unbounded) live-
ness properties is not possible when the semantics is based on a set of necessarily
time-bounded solution trajectories obtained by numerical simulation of ordinary
differential equation models [20123]. For discrete [22/23] or hybrid [21] models,
fairness properties can be added in an ad hoc manner for the system at hand.
So, although liveness properties are commonly encountered in biological appli-
cations, no systematic approach has been proposed yet for their verification.

More generally, this work addresses the problem of the verification of liveness
properties of continuous or hybrid systems having dense-time semantics. In com-
parison with the amount of work done for the verification of safety properties
of these systems, not much work has been done for liveness properties [9]. It
has been proposed that the difficulty to enforce progress of time in dense-time
systems makes liveness properties comparatively more difficult to analyze [9].
Tools supporting the verification of true (i.e. unbounded) liveness properties of
dense-time systems are Uppaal [25], TReX [I8] and RED [9]. However, their ap-
plicability is limited to timed automata, which have very restricted continuous
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dynamics. In contrast, our approach applies to any discrete abstraction provided
that transient regions can be characterized. As mentioned in Section [l a similar
problem arise in untimed systems for the verification of liveness properties when
abstractions are used [I819]. Progress of the abstract system is then enforced by
the addition of fairness constraints, expressing that the system can not always
remain in a given set of states. Because —FG(‘transient’) (= GF(—‘transient’),
Section[) is a fairness constraint, our approach precisely amounts to deduce fair-
ness constraints from the computation of transient regions. Consequently, our
work can be regarded as an extension of an approach previously proposed for
untimed systems and as a first step in the direction of the verification of liveness
properties for general classes of continuous or hybrid systems. We envision that
the notion of transient set can play for liveness properties a role symmetrical to
the well-established role of positive invariant sets for safety properties.
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