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Abstract

Model Checking Logics of Social Commitments for Agent Communication

Mohamed El Menshawy Mohamed, Ph.D.

Concordia University, 2012

This thesis is about specifying and verifying communications among autonomous and possibly het-

erogeneous agents, which are the key principle for constructing effective open multi-agent systems

(MASs). Effective systems are those that successfully achieve applicability, feasibility, error-freeness

and balance between expressiveness and verification efficiency aspects. Over the last two decades, the

MAS community has advocated social commitments, which successfully provide a powerful represen-

tation for modeling communications in the figure of business contracts from one agent to another.

While modeling communications using commitments provides a fundamental basis for capturing

flexible communications and helps address the challenge of ensuring compliance with specifications,

the designers and business process modelers of the system as a whole cannot guarantee that an

agent complies with its commitments as supposed to or at least not wantonly violate or cancel them.

They may still wish to first formulate the notion of commitment-based protocols that regulate com-

munications among agents and then establish formal verification (e.g., model checking) by which

compliance verification in those protocols is possible.

In this thesis, we address the aforementioned challenges by firstly developing a new branching-

time temporal logic—called ACTL∗c—that extends CTL∗ with modal operators for representing

and reasoning about commitments and all associated actions. The proposed semantics for ACL

(agent communication language) messages in terms of commitments and their actions is formal,

declarative, meaningful, verifiable and semi-computationally grounded. We use ACTL∗c to derive

a new specification language of commitment-based protocols, which is expressive and suitable for

model checking. We introduce a reduction method to formally transform the problem of model

checking ACTL∗c to the problem of model checking GCTL∗ so that the use of the CWB-NC model

checker is possible. We prove the soundness of our reduction method and implement it on top of

CWB-NC. To check the effectiveness of our reduction method, we report the verification results of

the NetBill protocol and Contract Net protocol against some properties. In addition to the reduction

method, we develop a new symbolic algorithm to perform model checking ACTL∗c.
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To balance between expressiveness and verification efficiency, we secondly adopt a refined fragment

of ACTL∗c, called CTLC, an extension of CTL with modalities for commitments and their fulfill-

ment. We extend the formalism of interpreted systems introduced to develop MASs with shared

and unshared variables and considered agents’ local states in the definition of a full-computationally

grounded semantics for ACL messages using commitments. We present reasonable axioms of com-

mitment and fulfillment modalities. In our verification technique, the problem of model checking

CTLC is reduced into the problems of model checking ARCTL and GCTL∗ so that respectively

extended NuSMV and CWB-NC (as a benchmark) are usable. We prove the soundness of our re-

duction methods and then implement them on top of the extended NuSMV and CWB-NC model

checkers. To evaluate the effectiveness of our reduction methods, we verified the correctness of two

business case studies.

We finally proceed to develop a new symbolic model checking algorithm to directly verify com-

mitments and their fulfillment and commitment-based protocols. We analyze the time complexity

of CTLC model checking for explicit models and its space complexity for concurrent programs that

provide compact representations. We prove that although CTLC extends CTL, their model checking

algorithms still have the same time complexity for explicit models, and the same space complexity

for concurrent programs. We fully implement the proposed algorithm on top of MCMAS, a model

checker for the verification of MASs, and then check its efficiency and scalability using an industrial

case study.
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Chapter 1

Introduction

In this chapter, we introduce the context of our research which is about defining a computationally

grounded semantics for ACL (agent communication language) messages in terms of social com-

mitments within multi-agent systems (MASs), and developing and implementing model checking

techniques to automatically verify commitments and associated actions and commitment-based pro-

tocols. We identify the motivations, problems and research questions that we address in the thesis.

Moreover, we present the objectives, methodology and contributions of our research work. We

conclude with the structure of the thesis.

1.1 Context of Research

1.1.1 Agents and Multi-Agent Systems

An obvious way to open this chapter would be by presenting the term agent. After all, this is a thesis

about agent communication in MASs, we surely must all agree on what is an agent. Indeed, there is

no universally agreed on the actual meaning of the term agent, and there is much ongoing controversy

on this very subject. Several computer scientists have observed that the term agent typically denotes

a persistent computational entity enjoying some form of autonomy and other properties. An agent

has in a general consensus the following properties (adapted from [154]):

− Autonomy: an agent is capable of operating without direct intervention of others and has a

control over its local states and actions.

− Reactivity: an agent is capable of responding to external changes in the environment at certain

times to reach its goals.

1



− Proactivity: an agent is capable of behaving with respect to its goals by taking the initiative.

− Social ability : an agent is capable of interacting with other agents via exchanging messages in

an expressive ACL to reach the goals.

With those properties, Wooldridge [153] defined the term agent as follows.

An agent is a computer system that is situated in some environment, and that is capable

of autonomous action in this environment in order to meet its delegated objectives.

Nowadays, the world is witnessing an explosive growth in the number of Web services. Such services

are, for example, paying utility bills, booking airline and hotel reservations, buying and selling

goods, managing bank accounts, etc. Human’s services can be implemented with greater efficiency

and at a lower cost by software agents. Ideally, agents should be sufficiently intelligent to be able to

anticipate, adapt and actively seek ways to support human users. However, it is not necessary for

an agent to have human level intelligence. An intelligent agent is the one that particularly satisfies

the capabilities of reactivity, proactivity and social ability [154].

The term multi-agent system (MAS) is defined as a set of autonomous agents that are capable of

interacting with each other and operating in some environment [153]. Figure 1 illustrates the typical

structure of a MAS. In the figure, the system contains a number of agents, which can communicate

with one another. The agents are able to act in an environment and will also typically be linked by

 

                                                                      

environment

agent interaction society
sphere of 

influence 

Figure 1: Typical structure of a MAS [153].

other relationships; various agents have different “spheres of influence”, i.e., they will have control

2



over different parts of the environment. These spheres of influence may give rise to dependencies

among agents [153]. In some formalisms, including the ones employed in the thesis, the environment

itself may be modeled as an agent. Moreover, an agent may possibly satisfy the heterogeneity

property, which refers to the diversity of the agent constructions in terms of its goals. This property,

in turn, leads to a wide range of practical MASs.

We understand MASs as being inherently open: in general, MASs are designed in terms of

roles and the communication among them modeled with social relations and regulated by multi-

agent interaction protocols without reference to any specific agent. In this perspective, MASs can

be naturally employed in the description of complex business scenarios, which can be abstracted

successfully by ascribing high-level qualities to each agent in the system, and by assuming that

agents communicate with other agents to satisfy their goals.

1.1.2 Agent Communication and Protocols

Communication among autonomous and heterogeneous agents is a fundamental aspect to construct

effective open MASs. The reason for that is not only because of agents have the property of social

ability and our natural attitude to simulate a human society where communication is essential, but

also because of dynamic systems evolve through communication among participating entities. In

such systems and depending on the underlying objectives, entities must communicate to negotiate

deals, exchange information, cooperate and even compete with each other in order to satisfy their

individual and social goals that they cannot achieve alone. Another important reason is that most

applications of MASs ranging from digital libraries [23], cooperative engineering [154], artificial

institutions [64], electronic commerce [153], Web service compositions [93] to cross-organizational

business processes [139], have one thing in common: the agents operating in these systems have

to communicate. These systems consist of multiple agents that communicate in order to solve

some problems. If a problem is particularly complex, large, or unpredictable, the only way it can

reasonably be addressed is to develop a number of functionally specific and modular components

(agents) which are able to solve a particular problem aspect [136]. This decomposition allows each

agent to use the most appropriate paradigm to solve its particular problem. When interdependent

problems arise, agents must somehow communicate in order to coordinate with one another to ensure

that interdependencies are properly managed. Therefore, it is clear that the success of these systems

requires commonly understood languages: lingua franca for agents to ‘talk’ to each other to decide

what information to exchange or what action to take as well as powerful mechanisms (protocols) to

3



regulate and structure communication among participants within dialogues and conversations.

In the early days of MAS research, a promising way to model agent communication was widely

inspired by Searle’s speech act theory [116], which was particulary concerned with identifying actions

performed by agents to satisfy their intentions. This is the so-called mental approach that focuses

on achieving a rational balance between some notions of interacting agents such as beliefs, goals,

desires and intentions. Under this doctrine, it became apparent that a purely mental semantics for

ACL messages in terms of pre- and post-conditions of the agents’ mental states would necessarily

impose significant restrictions on the operational behavior of agents. For example, in the Agent

Communication Language of the Foundation for Intelligent Physical Agents (FIPA-ACL)1 that uses

this doctrine, the semantics of Inform act, where the sender tells the receiver a proposition p, says

that such an act may be only uttered if the sender believes the proposition p to be true in the pre-

condition part, called specifically sincerity condition. The problem with this approach is that the

addressee agents (or an external observer agent) cannot verify whether the speaker agent violates the

pre-conditions defined in such mental semantics or not [125] as of course there is no access to agents’

mental states. This problem is also known as the semantics verification problem [152]. Accordingly,

such a pure mental semantics cannot be used in proprietary open systems wherein sincerity cannot be

taken for granted as the interacting agents are heterogeneous [123, 125]. Moreover, the pure mental

semantics makes ACLs not general enough to capture the interoperability among heterogeneous

systems [123].

When conversing, agents do not exchange isolated messages, but a sequence of messages. The

developers of FIPA-ACL, for example, have addressed the challenge of incorporating ACLs and

protocols by proposing a set of conversation protocols, called FIPA-ACL protocols2. These protocols

can be viewed as specific ACLs designed for particular purposes, such as Request Interaction protocol,

English Auction Interaction protocol and Contract Net protocol. For instance, the English Auction

Interaction protocol is designed to help auction goods get a higher market price that is recently used

in mobile commerce and the Contract Net protocol is designed from online business point of view

to reach agreements among interacting agents. FIPA-ACL protocols have succeeded in specifying

the rules governing interactions and coordinating dialogues among agents by: (1) restricting the

range of allowed follow-up communicative acts at any stage during a dialogue; and (2) describing

the sequence of messages that FIPA compliant agents can exchange for particular applications.

However, these protocols are too rigid to be used by autonomous agents because they are specified

1See FIPA-ACL specifications (1997,1999,2001,2002), http://www.fipa.org/repository/aclspecs.php3
2See FIPA-ACL Interaction Protocols (2001,2002), http://www.fipa.org/repository/ips.php3
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so that agents must execute them without possibility of handling exceptions that appear at run

time, which restricts the protocols’ flexibility.

Therefore, the MAS community witnessed a shift from individual agent representations to social

interaction approaches to particulary overcome the shortcomings and inconveniences incorporated

with mental approaches [123]. Indeed, such a shift is recently asserted by agent communication com-

munity in [29]. Commitments are employed in some of these social approaches, which successfully

provide a powerful representation for modeling communications among autonomous and heteroge-

neous agents. In broad terms, commitments are social, public, objective [35] and help represent the

states of affairs at different instants in the course of multi-agent interactions. Conventionally, a social

commitment is made by an agent playing the role of debtor and directed towards another agent play-

ing the role of creditor to bring about a certain condition [124]. Recent communication approaches

based on social commitments have seen progress in a variety of areas, such as modeling business

processes [40, 137, 139], developing artificial institutions [64], defining programming languages [128],

modeling service-oriented computing [129], enhancing agent-oriented software engineering method-

ologies [97, 138, 45], developing Web-based MASs [143], developing agent-based Web services and

their communities [10, 45], specifying commitment-based protocols [159, 160, 5, 39, 98, 49], and spec-

ifying business protocols [40, 42, 47]. In particular, commitment-based protocols, specified simply

as a set of commitments and their actions, are more suitable for regulating and coordinating agent

interactions than FIPA-ACL protocols and traditional computer protocols formalized using finite

state machines and Petri nets, which only capture legal ordering of exchanged messages without

unduly considering the meaning of those messages. Missing such meaning limits the ability to verify

the compliance of agent behaviors with a given protocol. Also, expressing protocols using commit-

ments allows these protocols to be flexible, meaningful and verifiable [11, 48, 50, 160, 157] without

over-constraints on the communications [159, 160]. In commitment-based protocols, agents will not

reason about legal sequences but about concrete commitment states and possible paths3 to reach

them [158].

1.1.3 Verification of Agent Communication Protocols

The verification problem of agent communication protocols is fundamental for the MAS commu-

nity [11, 50]. It is unrealistic—in open systems—to presuppose that all autonomous agents will

behave according to the given protocols as they may not behave as they are committed to or at

least not wantonly violate or cancel their commitments. In this perspective, verification process is

3A path is an infinite sequence of system’s states.
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a noteworthy attempt to help protocol designers either detect unwanted and bad agents’ behaviors

to eliminate them or enforce desirable agents’ behaviors so that protocols comply with particular

specifications at design time. Verification process also reduces the cost of development process and

increases confidence on the safety, efficiency and robustness of protocols. In contrast to MASs, veri-

fication techniques—especially formal ones—for commitment-based protocols, social commitments,

and associated actions that manipulate commitments and capture dynamic behavior of interacting

agents, are still in their infancy because most contributed proposals: (1) abstract commitments as

predicates [35, 99, 135, 145], fluents [24, 67] or domain variables [6, 39, 65, 98, 107, 139, 156], which

lack real and concrete meaning of commitments; (2) model commitment actions as axioms on the

top of the commitment semantics [24, 26, 35, 41, 140, 160, 143], which do not account for interac-

tions that are central to real-life business scenarios and waive the interoperability and verification

issues; and (3) devote action logical languages to specify, model, execute and reason about protocols

[24, 26, 41, 140, 160], which cannot be directly model checked.

1.2 Motivations

To be able to communicate, agents should use a common communication mechanism, such as

commitment-based protocols. These protocols support flexible executions that enable agents to

exercise their autonomy by reasoning about their actions and making choices [159]. However, the

languages [24, 26, 41, 140, 160] used to specify such protocols are not suitable for model checking,

a formal and automatic verification technique. Our first motivation is to define a new specifica-

tion language of commitment-based protocols, which can be model checked and balance between

expressiveness and verification efficiency aspects.

In addition, in the domain of agent communication, formal semantics conventionally lays down

the foundation for a neat, concise and unambiguous meaning of agent messages, and provides ca-

pabilities to verify at design time if agent behaviors comply with the defined semantics and also

facilitates and improves the applicability of the proposed semantics. The only way to achieve these

goals is to follow current proposals that model commitments as modal operators and give them a

computationally grounded semantics by linking real situations to computational models. Thus, the

second motivation of this thesis is to develop a new computational logic (branching-time temporal

logic) by extending existing temporal logics with modalities to represent and reason about social

commitments and associated actions. The introduction of a new temporal logic is motivated by the

fact that the needed modal operators for reasoning about social commitments and associated actions
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cannot be expressed using existing temporal logics. The resulting logical language aims to derive a

formal specification language of commitment-based protocols, required in the first motivation.

Our third motivation is to contribute to the advance of research in this domain by investigating

the possibility of applying different model checking techniques to verify commitments and associated

actions together with commitment-based protocols, given some desirable properties so that the

specification of those protocols is error-free.

1.3 Problems and Research Questions

Current modal logic proposals for commitments [11, 12, 16, 17, 35, 46, 48, 125, 127] define first an

accessibility relation and then use it to define the semantic rules of the commitment modality. For

instance, in Singh’s proposal [125], the accessibility relation produces the set of accessible paths

along which the commitments made by one agent towards another agent hold. When the content of

commitment is true along every accessible path produced by the accessibility relation and emanated

from the commitment state, then the commitment modal formula holds. This type of rules capture

the semantics of commitment modality. However, these proposals do not clarify the intuition an

accessible path and state capture and how they are computed, which limits their applicability for

verification purposes. Thus, the first problem that we address in this thesis is to define a formal

(which is based on computational logic), declarative (which focuses on what the message means

instead of how the message is exchanged), meaningful (in which every message is expressed in

terms of commitments), and computationally grounded (which means modal formulae should be

interpreted directly with respect to a computational model and vice versa) semantics for ACL

messages in terms of commitments and associated actions. Indeed, defining a computationally

grounded semantics for commitments is entirely missing in the literature of agent communication.

The computationally grounded theories of agency have been first introduced by Wooldridge [151].

The notion of computationally grounded semantics is very useful when we are to consider agents’

commitments as a defacto formal specifications for computational MASs. As we mentioned, the

semantics of commitment actions is defined as axioms. These axioms are represented either as

reasoning rules [26, 66, 134, 159, 160], updating rules [36, 62, 63] or postulating rules [127] to evolve

the truth of commitment states and to reason about commitment actions to explicitly accommodate

exceptions that may arise at run time [159, 160]. However, the real meaning of commitment actions

themselves are not considered. Thus, our initial research questions are: How to define a suitable

and meaningful semantics of social commitments and associated actions? and How the semantic link
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between commitment and its fulfillment is defined?

Developing a new modal logic for commitments and their fulfillment is not an easy task as we need

to define our deemed appropriate axioms of commitments and their fulfillment, which correspond

to the properties of social accessibility relation. These axioms usually define a class of well-formed

formulae that are valid (i.e., those that are true in every state of every model) and capture the

properties of commitments and their fulfillment in a reasonable way without any reference to their

meanings. The reasonable question that we explore here is: How can we present deemed axioms of

commitments and their fulfillment?

In the literature about commitment representations, a compelling view is adopted to model the

interacting agents from high-level abstractions without considering agents’ states that constitute the

life cycle of each agent, agents’s actions and how agents can select their choices at each state. All the

above concepts need to be explored and the interacting agents should be modeled. The questions

that we explore here are: How should an agent and a system of agents be formalized? and How the

resulting formalism can be extended to account for communication?

To address the challenge of applying model checking to verify commitments and commitment-

based protocols, some proposals used: local testing technique [143]; static verification technique

[24, 98, 140, 160]; and semi-automatic verification technique [157] to identify the compliant and

non-compliant agents at the end of the protocol. These verification techniques can be considered

as simple reasoning tools about the correctness of protocols. Other proposals verified commitment-

based protocols using different model checking techniques. However, these techniques are based

on reducing commitments and their actions into domain variables using informal translation-based

approaches to be able to use existing model checkers. Such informal translation-based approaches

[12, 11, 48, 49, 66, 67] have the problem of forbidding verifying the real semantics of commitments

and associated actions as defined in the underlying logics. They only provide partial solution to

the problem of model checking commitments as they reduce commitment modalities into simple

variables [11, 39, 48, 65, 139]. Moreover, there are no tools supporting the informal translation-

based approaches to carry out the translation process. We then believe that a formal and automatic

translation-based approach is more suitable as it allows representing commitment modality in other

temporal modalities, which still preserve its meaning. Thus, the questions that we explore here

are: How can we formally define a new specification language of commitment-based protocols? and

How can we formally reduce the problem of model checking the proposed logic into an existing one?

Another solution to the problem is to develop new model checking algorithms for new modalities

and associated actions. The question that we consider here is: How can we develop and implement
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an algorithm for model checking commitments and their actions and commitment-based protocols? The

complexity analysis in terms of time and space of the new model checking algorithm of the proposed

logic must be addressed as well.

1.4 Objectives

The main objectives of this thesis are:

1. To develop a new branching-time temporal logic, which is particularly used to cater a rigorous

and well-understood framework for representing and reasoning about time, social commitments

and associated actions: this objective comprises the extension of Full Computation Tree Logic

(CTL∗) introduced by Emerson and Halpern [58] with modalities for social commitments

and associated actions. The election of CTL∗ is motivated by our objective to achieve a

high expressive and succinct logic as CTL∗ subsumes Linear Temporal Logic (LTL) [109] and

Computation Tree Logic (CTL) [31, 56].

2. To specify commitment-based protocols: this objective consists in using the proposed logic to

derive a new specification language of commitment-based protocols.

3. To investigate model checking techniques for the verification of commitment-based protocols:

this objective comprises the development of reduction tools that transform the problem of

model checking our logic into the problem of existing model checking algorithms in order to

directly use existing model checkers. We also aim to use our tools to automatically verify the

correctness of different business protocols, given desirable properties to evaluate the effective-

ness of our tools.

4. To develop a dedicated model checker for commitments and their fulfillment and commitment-

based protocols: this objective consists the development of a new symbolic algorithm for our

logic to implement a software tool for model checking commitments and their fulfillment and

commitment-based protocols so that industrial case studies can be verified.

1.5 Methodology

At the beginning of this thesis, we have studied research work done in the domain of agent com-

munication, particulary how computational logics can be devoted to define a formal semantics

for agent communication in terms of social commitments and their actions. We have noticed
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that the current formal semantics of commitments [12, 11, 48, 49, 125, 127] and their actions

[26, 36, 62, 63, 66, 134, 159, 160, 127, 145] used in this field are not for the most part grounded

(i.e., clear in their assumptions and computations). For this reason, such semantics are hard-wired

in their implementation and evaluation, and then restrictive the applicability of verification and

interoperability issues. More precisely, such a semantics cannot be directly verified using model

checking as they need to be translated first into a dedicated input language of an existing model

checker. With respect to the notion of computationally grounded theories of agency, we defined a

new computationally grounded semantics for commitments and their actions, which has the advan-

tages of having a concrete interpretation and being semantically verifiable. Thus, we believe that

such a semantics is useful for reasoning about commitments and computational MASs. Moreover,

we noticed that all logical models representing commitments and their actions waive discussing some

theoretical issues, such as valid axioms. We had the idea of presenting a set of reasonable axioms

capturing our deemed properties of commitment and fulfillment modal operators.

As the internal structure of an agent is a silent aspect in all existing agent communication models,

we used the formalism of interpreted systems [59], which provides a mainstream framework to model

MASs and explore their fundamental classes such as synchronous and asynchronous. It is also used

to interpret MAS properties expressed in different temporal logics, such as the logic of knowledge

(or epistemic logic). We advocated this formalism for many reasons, for instance, it allows us to

abstract from the details of the components and focus only on modeling key characteristics of the

agents and the evolution of their social commitments. More particulary, we extended this formalism

to account for communication among agents and introduced a set of shared and unshared variables

that can be seen as an abstraction of message-passing systems described in [59].

Although certain researchers recently started to emphasize the importance of verifying MAS, this

aspect has yet to be explored in the field of agent communication. In this field, only a small amount

of research work addressed this complicated issue, for examples [11, 39, 48, 65, 139]. Technically,

these examples suffer from many limitations resulting from the use of informal translation-based

approaches, as we mentioned above. For this reason, we have advocated two methods: (1) formal

translation-based approaches by developing reduction tools, which we call indirect method; and (2)

direct method by developing a new model checking algorithm in order to verify commitments and

their actions and commitment-based protocols. Indeed, each method introduces a number of benefits

with respect to existing approaches and allows us to automatically verify commitments and their

actions and protocols effectively and efficiently as we will show through this thesis. We implemented
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these tools on top of the CWB-NC model checker4, and the extended version of NuSMV model

checker [104], while our algorithm is implemented on top of the MCMAS model checker [92]. We

also analyzed its time and space complexity, which have not been addressed yet.

1.6 Contributions

The majority of the results presented in this thesis have been published in the proceedings of

various international conferences and workshops and international journals. In summary, the main

contributions are:

1. A semantics of commitments and all associated actions formalized by extending CTL∗ with

commitments and their actions to ACTL∗c [46, 48, 55], a formalization of commitment-based

protocols in the underlying logical model, and an automatic verification technique of these

protocols by means of reduction-based model checking the underlying logic [49, 47, 53, 54, 55].

2. A semantics of commitments formalized by extending CTL to CTLC (CTL for commitments),

which is the first proposal that uses the formalism of interpreted systems to model MAS in

which the communication among its members is modeled by social commitments [50].

3. Two model checking reduction methods for CTLC along with the model checking computa-

tional complexity [51].

4. A dedicated symbolic model checking algorithm for CTLC and its implementation on top of

MCMAS [8, 52].

The next section shows how different chapters are linked to those contributions.

1.7 Overview of the Dissertation

This thesis is divided into two parts.

Part I is about the state of the art, and it consists of two chapters:

− Chapter 2 introduces the notion of agent communication and philosophical foundations of

agent communication languages (ACLs). The chapter discusses very briefly two examples of

ACLs and their semantics as well as the notion of conversation protocols. Furthermore, the

chapter summarizes some background material on computational logics (e.g., propositional

4http://www.cs.sunysb.edu/cwb/.
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logic, predicate logic, etc.) and temporal model checking techniques and tools. This material

enables the introduction of some technical details needed in Chapter 3.

− Chapter 3 presents literature review of prominent proposals that have been devoted to com-

putational logics to define a semantics for ACL messages in terms of social commitments and

to specify commitment-based protocols. The chapter reviews how commitments are modeled

and their formal semantics (if any) as well as different verification techniques proposed to verify

these protocols. Also, the chapter explores other action logical languages proposed to specify

and execute protocols. The key point of this review is to highlight advantages, and limitations

in existing proposals. These limitations will be addressed in our thesis.

Part II consists of three chapters in which we present our contributions:

− Chapter 4 proposes a new logic-based language to specify commitment-based protocols, which

is derived from ACTL∗c, a logic extending CTL∗ with modalities to represent and reason about

commitments and all associated actions. To verify commitment-based protocols, the problem

of model checking ACTL∗c is reduced to the problem of model checking GCTL∗ so that the

CWB-NC model checker is possible. The soundness of our reduction method is proved. This

chapter presents our contribution 1.

− Chapter 5 investigates two different implementations for the problem of model checking a

fragment of ACTL∗c (CTLC) by means of a reduction method with respect to both automata-

based techniques and symbolic techniques and proves the correctness of the employed reduction

methods. This chapter presents our contributions 2 and 3.

− Chapter 6 presents a new devoted symbolic algorithm to perform model checking of CTLC

and analyzes the time complexity of CTLC model checking in explicit models and its space

complexity in concurrent programs, which provide compact representations. The implemen-

tation of the model checker MCMASC, an extended version of the MCMAS model checker, is

presented. The chapter then discusses the effectiveness and scalability of MCMASC against

an industrial case study. This chapter presents our contributions 3 and 4.

Chapter 7 summarizes the obtained results in this thesis, presents open issues and sketches possible

extension of this work.

Appendix A presents a new symbolic model checking algorithm dedicated to ACTL∗c.
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Chapter 2

Background

In this chapter, we present some preliminaries, which are relevant for the rest of the thesis. This

chapter is organized as follows. In Section 2.1, we discuss the notion of agent communication,

the philosophical foundations of agent communication languages (ACLs), the two popular languages

developed for ACLs and their semantics and the notion of conversation protocols and their formalisms

used for years in proprietary multi-agent systems (MASs). We finally highlight their limitations,

which we address in details in the next chapters. In Section 2.2, we briefly explore computational

logics exploited as the main ingredient in existing approaches to agent communication, which we will

review in Chapter 3. These logics are mainly used to define a formal semantics for ACL messages in

terms of social commitments. In Section 2.3, we provide the relevant background of model checking

techniques and tools, which we will be using in Chapter 3 to verify commitments and associated

actions and commitment-based protocols. Section 2.4 ends the chapter by a discussion about the

motivations of the thesis and the link of the present chapter with the rest of the thesis.

2.1 Agent Communication

In a typical multi-agent system, the knowledge and functionality of the system is distributed among

the constituent agents. Agents must have methods for sharing knowledge and taking advantage of

each other capabilities as needed. It would not be feasible for every agent to have complete knowledge

of the entire system, nor to have all possible capabilities. In order to cooperate effectively, agents need

to have standardized methods for exploiting each other resources. When an agent desires to achieve

a goal which it cannot satisfy alone, it needs to be able to find an agent which may be able to help

and a method by which it can expect to get that help. That is, it must communicate its needs using
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a standardized language and the recipient must be able to understand the request, and respond

appropriately. The language used needs to be sufficiently expressive to allow agents to transmit

complex information and goals. There is also a need for a system of agents to communicate to

negotiate some attributes of their deals such as price of goods, delivery terms or payment conditions

in order to achieve a mutual agreement about their internal goals. Agents also need to cooperate

with other peers in order to satisfy both their internal and collective goals generated by virtue of

their participation in the social community [83]. As a result, communication among agents is now

considered one of the key mechanisms for building MASs.

Wooldridge [153] has pointed out that communication has long been recognized as a topic of

central importance in concurrent systems, evident by the existence of many formalisms developed

for dealing with systems whose members can synchronously interact with one another. The com-

munication in such systems is treated in a low-level detail through shared data structures. Because

agents are autonomous, they can neither force other agents to perform some action, nor write data

into the internal state of other agents. However, this does not mean that agents cannot commu-

nicate. Indeed, what they can do is performing actions in an attempt to influence other agents

appropriately, i.e., linguistic communication is just a special type of actions.

Singh [123] has contended that interoperability and autonomy are the key concepts that set

agents apart from conventional objects, which always satisfy every method invoked on them and also

communicate by method invocation, while agents should be able to refuse an action. In fact, an agent-

based software integration was conceived to help heterogeneous software components modeled as

agents interoperate within modern applications like electronic commerce. So, how is communication

performed among interoperable agents? There is no choice for an agent, except to affect another

agent or similarly be affected by another agent, by performing an action.

We underline that communication differs from physical interactions, and is unique among the

kinds of agents’ actions that those agents may perform through their participation in conversations

and dialogues. Acting by speaking is the essence of communication. The artificial languages used

by agents for their communications are called agent communication languages (ACLs). Some ACLs

have already been developed but none has been widely adopted as a standard [123]. When agents join

a group, we need mechanisms for interactions, which have the properties we desire. A mechanism

(protocol) for an interaction is a set of rules by which the interaction will be conducted. These

protocols are inherently tied to an ACL. Research on agent communication has devoted a lot of

attention to languages and protocols; the literature contains many more proposals for semantic

definitions and protocol specification methods than it does complete ACLs.
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The remainder of this section is organized as follows. In Section 2.1.1, we present the philosophical

foundations of ACLs and the two most popular ACLs. In Section 2.1.2, we briefly look at different

approaches to the task of specifying conversation protocols and their limitations. In Section 2.1.3,

we discuss the main issues in mental approaches proposed to define the semantics for ACL messages

and social approaches and then establish the link with the next chapter.

2.1.1 Philosophical Foundations of ACLs

ACLs are based on a philosophical theory called Speech Act Theory (or sometimes called Illocutionary

Act Theory). This theory is a high-level theoretical framework that was developed by philosophers

to account for certain class of natural language utterances. It has originally been formulated by

the British philosopher John Langshaw Austin [3] and reproduced and extended by the American

John Rogers Searle [116] and by Searle and Vanderveken [117] to be a more general model for

communication among artificial agents.

Speech act theory defines a set of actions and associates a meaning with these actions. These

actions, called speech acts, have the characteristics of changing the state of the world in a way anal-

ogous to physical actions. For this reason, speech acts or communicative acts are often known as

performative verbs, but indeed they are not classified as being true or false. Austin distinguished

three different aspects of speech acts: (1) Locutionary act : saying something with a certain mean-

ing in a traditional sense, e.g., saying please make some tea; (2) Illocutionary act : have a certain

‘force’ to the receiver in saying something, e.g., informing, ordering, warning, undertaking; and (3)

Perlocutionary act : bring about or achieve something, e.g. convincing, persuading, deterring. For

example, if the illocutionary act was arguing, and if the receiver was convinced, then the perlocu-

tionary act is an act of convincing. Recall that all locutions do not count as illocutions, since some

of them may occur in an inappropriate state of the world, e.g., when no receiver is available. Also,

all perlocutions are not caused by appropriate illocutions, since some of them may occur because of

other contextual features. Searle [116] identified five illocutionary points:

− Assertives : statements may be judged true or false because they aim to describe a state of

affairs in the world (e.g., tell and claim).

− Directives : statements attempt to make the other person’s actions fit the propositional content

(e.g., command and request).

− Commissives : statements which commit the speaker to course of action as described by the

propositional content (e.g., commit and promise).
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− Expressives : statements that express the “sincerity condition of the speech act” (e.g., thank).

− Declaratives : statements that attempt to change the world by “representing it as having been

changed” (e.g., declare).

The illocutionary act is the minimal unit of linguistic communication. Illocutionary acts can be

decomposed into an illocutionary force and a propositional content [117]. Consider the acts per-

formed by the following two sentences: (1) John will leave the room; (2) John, leave the room. The

propositional content is clearly the same which is John performing the act of leaving the room; so we

can say that the proposition specifies the state of the world that it holds currently. The illocutionary

force is different, the first is a prediction (a type of assertion) while the second is an order. Moreover,

Searle [117] distinguished between two rules of interaction: (1) Constitutive rules or Definition rules

that create or define new forms of behavior and they do so by defining the semantics of acts; and

(2) Regulative or Behavior rules that govern types of behavior that already exist. In other words,

they rule the flow of previously constituted behavior.

Speech act theory has been adopted in the field of MASs in the early of 1990s, being used as an

important piece of the design of languages for communication among agents. Following the ideas of

the speech act theory [117], ACLs make a distinction between:

− The intentional part of the message (the message container). An ACL defines the syntax of

different types of messages, in a way that allows agents communicate their intentions. Usually

this is done by adding a performative field in the message structure to describe the illocutionary

force of the message. Each ACL defines a set of valid performatives and their semantics. These

semantics can be used by the receiver agent to interpret, from the performative in the message,

the intentions of the sender agent.

− The propositional content (the message body). Some ACLs define how the content of the

message should be expressed. When an ACL is mainly focused in the message body, it is

called Content Language.

Agent communication specifications usually deal with agent communication languages, messages

exchange, conversation protocols, communicative acts, and content language representations. Agent

communication languages define how messages should be structured in order to avert misunder-

standing between parties. The most popular ACLs are: KQML and FIPA-ACL. Both rely on speech

act theory, described in the above. The content of their performatives is not standardized, but varies

from system to system.
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A) KQML

In the early of 1990s, the DARPA knowledge sharing effort (KSE) began to develop the Knowledge

Query and Manipulation Language (KQML), which became the first de facto standard for ACL

[60] in several areas. KQML is a language and protocol for exchanging information and knowledge.

The overarching aim of the KSE is to develop techniques and methodologies for building large scale

knowledge bases which are sharable and reusable. Knowledge Interchange Format (KIF) is the

content language suggested by the KSE, but KQML messages can use any language for content.

The main primitives of this language are performatives (i.e., message types). As the term sug-

gests, the concept is related to the speech act theory. Performatives define the permissible actions

such as ask-about, tell, ask-if and ask-one that agents may attempt when communicating with each

other. The syntax of KQML messages consists of a performative and a number of parameters. The

following is an example of KQML message:

(ask-about

:sender Customer

:receiver Merchant

:language LPROLOG

:ontology selling and delivery goods

:reply-with id12345

:content(PRICE AAMAS PROC? price)

)

In KQML terminology, ask-about is a performative. The intuitive interpretation of the ask-about

message is that the sending agent is asking the receiving agent about some information where exactly

one reply is needed. The example indicates that the customer agent asks the merchant about

the price of AAMAS PROC (proceedings). The various other components of this message represent

its attributes. The message uses the LPROLOG language to describe the content and a particular

ontology named selling and delivery goods, which indicates the significance of the parameter

PRICE AAMAS PROC that will hold the value of the requested price. Any response to this KQML

message will be identified by id12345 in the filed reply-with.

The KQML does not specify how the language should be implemented, but it does define some

abstract requirements that are part of the KQMLmodel, these include: the ability to send and receive

KQML messages that access the knowledge of the agent; the ability to interact asynchronously with

more than one agent at the same time; and the presence of a facilitator agent. The communication
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facilitator is a special agent whose role is to coordinate the interactions of other agents. The original

specification for KQML did not give it a semantics, this was one of the major criticisms leveled

against it. Near the end of the 1990s, Labrou and Finin have proposed a framework to define

KQML’s semantics and limit the use of some performatives in order to avert confusion and ambiguity

problems [87]. This semantics is defined in terms of: (1) preconditions on the mental states of the

sender and receiver before exchanging the message; (2) postconditions that should hold after the

message is sent; and (3) completion conditions that indicate the message effect.

The semantics of KQML were never rigorously defined, in such a way that it was possible to

achieve the interoperability and heterogeneity issues [123]. The meaning of KQML performatives

was merely defined using informal, English language descriptions, which opens the door to different

interpretations. Moreover, Wooldridge has pointed out that the language of KQML was missing the

class of commissives, and it is difficult to implement many multi-agent scenarios without considering

commissives that appear to be important when agents are called to coordinate their actions or to

communicate with one another [153]. These grounded criticisms led researchers to define a new

language: FIPA-ACL.

B) FIPA-ACL

In the end of the 1990s, the Agent Communication Languages of the Foundation for Intelligent

Physical Agents (FIPA-ACL)1 arose from attempts to develop an industry and academia standard

for agent systems. It provides a set of specifications that can be utilized by agent system developers

as part of their solutions. The term performative is identified by a verb such as tell or ask which is

the core meaning of a speech act.

FIPA-ACL distinguishes two levels in communication messages. At the inner level, the con-

tent of messages can be expressed in any logical language. The outer level describes the locutions

that agents can use in their communication. The FIPA-ACL’s message contains the following at-

tributes: performative, sender, receiver, content, ontology, and language, which closely resemble

that of KQML. FIPA-ACL specifies 22 performatives. For instance, the informal meaning of the

request act is that the sender requests the receiver to perform some action. One important class of

the request act is to request the receiver to perform another communicative act.

Given that one of the most frequent criticisms of KQML was lack of an adequate semantics; it is

perhaps not surprising that the developers of FIPA-ACL felt the importance to give a formal seman-

tics to their language. Also, the hope is that FIPA-ACL’s formal semantics will offer a rigorous basis

1FIPA-ACL message structure specification. Available: http://www.fipa.org/specs/fipa00061/
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for interoperability. Such formal semantics were given with respect to a well-defined formal language

called Semantic Language (SL). FIPA-SL2 is a quantified multi-modal logic with several referential

(any, all) and action (feasible, done) operators. FIPA-SL is capable of representing propositions,

actions and representing objects including identifying expressions to describe the objects. Also,

FIPA-SL contains modal operators for beliefs, uncertain-beliefs, persistent goals, and intentions,

which form the mental model of an agent in which the semantics of these operators are given using

possible world approach. FIPA-SL2 is the most complete at the moment and allows first-order and

modal operators to be expressed. Indeed, the idea of SL semantics is to map each ACL message into

a formula of SL, which defines a constraint that the sender of the message must satisfy when it is

to be considered as conforming to the precondition of FIPA-ACL standard. FIPA-SL refers to this

constraint as the feasibility precondition. The SL semantics also map the postcondition of message

into the rational effect of the action: what an agent will be attempting to achieve by sending the

message. For example, the FIPA-SL semantics for the request act is defined as follows:

〈i, request(j, α)〉

feasibility precondition: Bi Agent(α, j) ∧ ¬BiIjDone(α)

rational effect: Done(α)

The SL expression Agent(α, j) means that j is the agent who performs the action α; and Done(α)

means that the action α has been done. Thus, agent i requesting agent j to perform action α means

that agent i believes that the agent of α is j, and so it is sending the message to the right agent and

agent i believes that agent j does not currently intend that α is done. The rational effect—what i

wants to achieve by sending this request message—is that the action is done. As FIPA-SL semantics

is belief-based [147], it appears to be repeating the same mistake of KQML of emphasizing mental

agency [123]. It is impossible to make such a semantics work for the interoperability of agents that

must be autonomous and heterogeneous as it requires the agents to reason about each other’s beliefs

and intensions and behave cooperatively and sincerely (i.e., it assumes that agents can read (or at

least model) each other’s minds [123]). FIPA’s assumption of the sincerity of agents has often been

criticized [81, 152]. For the fact that its semantics is not public and fails to be verifiable where

there is no way to test whether or not agents respect the semantics of the language whenever they

communicate [15, 29, 123, 125, 152]. These criticisms encouraged researchers to define new formal

semantics for ACLs to overcome these problems.

2FIPA SL content language specification. Available: http://www.fipa.org/specs/fipa00008/index.html
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2.1.2 Conversation Protocols

In the previous section, we have discussed the issues primarily related to the generation and inter-

pretation of individual ACL messages. However, agent communication is generally regarded as the

foundation for cooperative and competitive behavior of autonomous and heterogeneous agents, which

requires a sequence of interdependent messages, or conversations, rather than individual messages.

To take into account this aspect, every agent must implement decision procedures, which allow for

the selection and production of ACL messages that are appropriate to the agent’s goals and inten-

tions. These decision procedures can be used to ensure reliable communication among heterogeneous

agents by taking into consideration the context of prior messages to know which communicative acts

are possible for the next message in a conversational sequence. In fact, a communicative act does

not have absolute meaning, but its semantics relies on the conversation. Furthermore, Dignum and

Greaves [43] pointed out that decision procedures define patterns of communication, which “can

actually simplify the computational complexity of ACL message selection” by providing a context in

which ACL messages are interpreted. The specification of these conversations is achieved by means

of conversation protocols (also called conversation policies).

Many ACL designers have included conversation policies as part of the ACL definition. The spec-

ification of conversation protocols has been traditionally done by making use of natural language

descriptions [60]. A definite clause grammar has subsequently been used for KQML policy specifica-

tion [87]. Petri nets have also been used to formalize policies [37]. FIPA has additionally produced a

finite state machine style method by which conversation protocols, called agent interaction protocols

(AIPs), are specified diagrammatically. These specifications were only semi-formal, relying heavily

on accompanying text descriptions. To tackle these shortcomings, FIPA has subsequently employed

AUML(Agent UML)3 style diagrams and powerful graphic design languages for describing protocol

specifications in which a sequence diagram in AUML shows the chronological sequences of messages

between agents in a sequential order.

Unfortunately, the aforementioned formalisms vary widely in the degree of conversational rigidity

they entail, due to the fact that such protocols are specified so that agents must execute them

without possibility of handling exceptions that appear at run time, which restricts the protocols’

flexibility [15, 70]. Such rigid protocols are not suitable for structuring and coordinating interactions

among autonomous agents. Technically, such formalisms provide procedural meanings, which are

low-level details and are more appropriate for computational entities which lack the rationality to

3FIPA interaction protocol library specification, 2003. Available: http://www.fipa.org/specs/fipa00025/
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plan their own behavior. Multi agent systems are supposed to provide higher level abstractions than

traditional distributing systems [123]. When the protocol is the unit of communication and speech

acts are defined only in terms of possible replies, then communication becomes essentially an ordered

exchange of meaningless tokens and the language is not sufficiently expressive [125]. To solve this

problem, several researchers defined protocols, for example, using dialogue games. Dialogue games

are interactions between players in which each player moves by performing utterances according to a

predefined set of roles. The flexibility is achieved by combining different games to construct complete

and more complex protocols. For instance, Bentahar et al. formalized these dialogue games as a set

of conversation policies to define persuasion dialogue game protocol [15] and persuasive-negotiation

protocol [9].

2.1.3 Discussion

From the syntactic perspective (the different illocutionary acts, speech acts or performatives as

developed in speech act theory that agents can perform during a conversation), the definition of

an ACL poses no problem. Suppose that we are given an agent and an ACL with a well-defined

semantics. And we aim at determining whether or not the agent respects the semantics of the ACL.

Wooldridge [152] pointed out that syntactic conformance testing is of course easy. The situation is

very difficult when we need to determine whether or not a particular agent program respects the

semantics of the ACL. This is called semantic conformance testing [152, 153]. The reason for the

difficulty is that we would have to be able to talk about the mental states of agents—what they

believed, intended and so on. In fact, the FIPA-ACL specification acknowledges that conformance

testing “is not a problem which has been solved in this FIPA specification. Conformance testing

will be the subject of further work by FIPA”. While any ACL must have a well-defined semantics,

given that agents in a MAS may be heterogeneous, a clear understanding of semantics is essential.

Both KQML and FIPA-ACL have been given a mental semantics because they define the meaning

of speech acts in terms of the mental states of participants. This semantic definitions could be said

to constitute the mental approach that is fraught with the following issues:

1. It is difficult to verify compliance4 with a semantics which is based on internal states if those

states are inaccessible, as is the case in open systems where agents from different design need

4The issue of developing semantics for ACLs has been examined in [152], by considering the problem of giving a
verifiable semantics, i.e. a semantics grounded on the computational models. The author gives an abstract formal
framework, in which he defines what it means for an agent program, in sending a message while in some particular
state, to be respecting the semantics of the communicative action. The author also points out the difficulties of
carrying out the verification of this property when the semantics is given in terms of mental states, since we do not
understand how such states can be systematically attributed to programs.
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to understand each other [13, 125, 152, 153].

2. Agent’s autonomy is limited [123]. Indeed, any ACL specification limits execution autonomy by

requiring agents to be cooperative, competitive, and so on. However, the execution autonomy

is very low in FIPA-ACL as it constrains agents to satisfy sincerity condition.

3. Meaning of communication is locked in context [123, 153]. When a speech act is given a precise

meaning in terms of the participants’ mental states, there is a lack of flexibility to use the act

in a different context. Ideally, the meaning of an act should depend on the context in which it

is uttered [43].

To address these issues, the most promising approach, first proposed by Singh in [123], is the social

approach to define the semantics of ACLs in terms of social notions, emphasizing conventional

meaning and public perspective [125]. Following social approach, communicative actions affect the

“social state” of the system, rather than the internal (mental) states of the agents. The social state

records social facts, such as the commitments of interacting agents. The social approach allows

a high level specification of the protocol in terms of a set of commitments and their actions and

does not require the rigid specification of the allowed action sequences as in the above formalisms.

Representing commitments as an explicit first class object leads to flexibility when protocols are

realized on the fly in changing situations, for example electronic commerce. Commitment-based

protocols are flexibly formalized by means of commitment machines [158], which enable agents to

exercise their autonomy by dealing with exceptions and making choices. In addition to providing

flexibility during run time, social approach makes it possible to provide a meaningful basis for

compliance of agents with given protocols. This is because commitments can be stored publicly

and agents that do not satisfy their commitments at the end of the protocol can be identified as

non-compliant [160, 50]. To this end, social approach is well suited to deal with “open” multi-

agent systems, where the history of communications is observable, but the internal states of the

single agents may not be accessible. We conclude with the following three consensuses that have

been recently identified by the agent communication research community [29]: (1) “any semantics for

communication in open systems must be underpinned in social, not mentalist abstractions”; (2) “the

FIPA-ACL semantics is not suitable for specifying communication protocols in open settings”; and

(3) “the notion of commitment is an important abstraction for formalizing agent communication”.

In Chapter 3, we review and evaluate some proposals advocating social approach to define a formal

semantics for ACL messages in terms of commitments, and specify and verify commitment-based

protocols.
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2.2 Computational Logics

Software systems particulary those including intelligent components such as autonomous agents will

inevitably grow in scale and complexity. Because of this increase, the likelihood of introducing

errors is considerable. Moreover, some of these errors may cause a system failure, which leads to

catastrophic situations in terms of both human lives loss and economic damages (think of failing

safety property in control systems of nuclear power plants or aircraft control systems). Despite

this complexity, the major goal of software engineering is to enable developers to build systems that

operate reliably. One way of satisfying this goal is by making use of formal methods, which are math-

ematically based languages, techniques, and tools for representing, specifying and verifying those

systems [61]. Also, formal methods can be used to reason about the interactive behaviors of ongo-

ing autonomous agents and cater their key functionality. Reasoning about agents’ behaviors means

constructing arguments about them so that the arguments are valid and can be defended rigorously,

or invalid and need to be avoided [78]. However, as pointed out in [61, 78] formal methods do not a

priori guarantee that the systems will be error-free, but they can greatly increase our realizing and

understanding of those systems by means of revealing inconsistencies and incompleteness in those

systems, which might otherwise go undetected. To this end, such formal methods are best described

by means of computational logics, which are specifically designed to suit different scenarios.

In the last two decades, computational logics have gained popularity and many contributions

have been made in the field of agent communication from theoretical and practical perspectives.

They are particularly used to cater rigorous, unambiguous and well-understood frameworks for rep-

resenting and reasoning about agents’ mental states such as beliefs, desires, and intentions, which

are represented by modal operators (as we discussed in Section 2.1), and agents’ social states such

as protocols, social commitments (as we will discuss in Chapter 3) in the context of MASs. When

an appropriate logic is chosen, it can provide a level of abstraction close to the key concepts of

the software to be developed. Furthermore, computational logics play a fundamental role in debug-

ging specifications, validating system implementations and developing powerful tools such as model

checkers to verify the behaviors of interacting agents against given protocol specifications [11].

Our presentation is mainly focused on two aspects, which are incorporated with any logic: (1)

the well-formed formulae (wff) of the logic, which are the statements that can be made in it; and

(2) the model-theory that gives the formal meaning of the wff. The model-theory is usually called

semantics.

The remainder of this section is organized as follows. In Section 2.2.1, we present propositional

23



logic which forms the main basis for the next coming logics. In Section 2.2.2, we study predicate logic,

also called first-order logic, a much more expressive language than propositional logic. In Section

2.2.3, we proceed to present modal logic that extends propositional logic with new operators, usually

called possibility and necessity, in front of formulae. In Section 2.2.4, we present two versions of

temporal logic: linear-time temporal logic, and branching-time temporal logic, which extend modal

logic by temporal modalities.

2.2.1 Propositional Logic

Propositional logic (PL for short) is a very simple form of logic to construct arguments about situ-

ations we encounter. It is sometimes called two-valued logic [77]. Conventionally, when developing

logical languages, we are not concerned with what the declarative sentences truly mean, but only

with their logical structure.

Syntax of PL. Let PV={p, q, . . .} be a nonempty countable set of atomic propositions (also denoted

with the term propositional variables). In fact, the synonyms of proposition are statement and

assertion and such words are used to refer to what is stated or asserted about the real world, the

physical world we live in, or more abstract ones such as computer models, not to the act of stating or

asserting [77]. Every proposition, in principle, is either true or false, and no proposition is both true

and false. Truth and falsity are always said to be the truth-values of propositions. The set {ϕ, ψ, . . .}

of wff5 of propositional logic over PV is inductively defined by the following three formulation rules:

(1) any atomic proposition p ∈ PV is a wff; (2) if ϕ is a wff, so is ¬ϕ; and (3) if ϕ and ψ are wff, so

is ϕ ∨ ψ.

Any formula stands for a proposition that might hold or not, depending on which of the atomic

propositions are assumed to hold. Intuitively, the formula p stands for the propositions stating that

p holds. The intuitive meaning of the symbol ∨ is disjunction (“or”), i.e., ϕ ∨ ψ holds if and only

if one of propositions ϕ or ψ holds. The symbol “¬” denotes negation, i.e., ¬ϕ holds if and only

if ϕ does not hold. The remaining operators can be introduced via abbreviations in terms of the

above as usual. In particular, ϕ ∧ ψ � ¬(¬ϕ ∨ ¬ψ) (“conjunction”), ⊤ � p ∨ ¬p (“propositional

constant true”), ⊥ � ¬⊤ (“propositional constant false”), ϕ ⊃ ψ � ¬ϕ ∨ ψ(“material implication”

or implication for short), and ϕ ≡ ψ � (ϕ ⊃ ψ) ∧ (ψ ⊃ ϕ) (“equivalence”). The above inductive

definition of propositional formulae over the set PV can be rewritten as:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ

5We are concerned only with well-formed formulae, else are not.
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where p ∈ PV . The above can be understood as a casual notation for the Backus-Naur form of a

context-free grammar over the alphabet Σ = PV ∪ {¬,∨}. In this short-form notation, “::=” and

“|” are meta-symbols of the grammar and the symbol ϕ in the left hand side serves simultaneously

for: (1) a nonterminal symbol (variable) of the grammar; and (2) its derived words over Σ∗ (i.e.,

propositional formulae).

Semantics of PL. To formalize the intuitive meaning of propositional formulae, we first need a

precise definition of the context that declares which atomic propositions hold and which do not hold.

This is done by means of an evaluation, which assigns a truth value 0 (“false”) or 1 (“true”) to each

atomic proposition. Formally, an evaluation for PV is a function µ : PV → {0,1}, also called truth

function. The semantics of PL is specified by a satisfaction relation “|=” indicating the evaluations µ

for which a formula ϕ is true; so it is usually called truth value semantics. Intuitively, µ |= ϕ stands

for the fact that ϕ is true under evaluation µ. The satisfaction relation |= is inductively defined as

follows:

− µ |= p iff µ(p) = 1,

− µ |= ¬ϕ iff µ � ϕ,

− µ |= ϕ ∨ ψ iff µ |= ϕ or µ |= ψ.

Satisfiability and validity. Propositional formula ϕ is called satisfiable if there is an evaluation

µ with µ |= ϕ. A formula ϕ is valid (or it is often called a tautology) if µ |= ϕ for each evaluation

µ. Hughes and Cresswell [77] have used truth-table method and Reductio method (aka proof by

contradiction) to expeditiously test for validity from semantical perspective, which concerns with

the relationship between formulae and what they stand for. ϕ is unsatisfiable if ϕ is not satisfiable.

For example, p∧¬p is unsatisfiable, while p∨¬(p∧q) is a tautology. The formulae p∨¬q and p∧¬q

are satisfiable, but not tautologies. Thus, ϕ is satisfiable if and only if ¬ϕ is not tautology.

2.2.2 Predicate Logic

Predicate logic (which is also called first-order logic) takes the foundation of propositional logic and

builds a more expressive logic on that foundation, borrowing representational ideas from natural

languages while avoiding their drawbacks, such as ambiguity. What can propositional logic do with

modifiers like there exists and for all? Let us consider the following sentence:

Example 1 [78] Every son of my father is my brother.
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The only way to represent this assertion in propositional logic is by using an atomic proposition p,

for example. However, this brute way does not reflect the finer logical structure of that sentence.

Predicate logic addresses propositional logic’s limitation by introducing quantifiers (∀ reading “for

all” and ∃ reading “there exists”), and using variables, constants, functions, and predicates in lieu

of atomic propositions. Predicate logic is expressive enough to be advocated in a number of useful

programming languages, such as Prolog.

Syntax of predicate logic. Following [78], predicate logic formulae are made up of two sorts:

terms and formulae. The terms consist of predicate symbols or variables P, and function symbols

F applied to those. The part of formulae denotes truth values and expressions comprised of logical

connectives. Now the set of well-formed terms is inductively defined by the following rules: (1) any

variable in P is a well-formed term; and (2) if t1, t2, . . . , tn are well-formed terms and f ∈ F has n

arguments, so f(t1, t2, . . . , tn) is a well-formed term. In BNF grammar, we may write

t ::= x | f(t, . . . , t)

where x is a variable in P, and f ∈ F has n arguments. Recall that when a function symbol does

not take any arguments, it maybe used to denote constant symbol.

Given well-formed terms, we can now proceed to inductively define the set of formulae of predicate

logic over the two sets P and F as follows: (1) if P is a predicate taking n arguments where n ≥ 1

and if t1, t2, . . . , tn are well-formed terms, so P (t1, t2, . . . , tn) is a formula; (2) if ϕ is a formula, then

so is ¬ϕ; (3) if ϕ and ψ are formulae, then so is ϕ ∨ ψ; and (4) if ϕ is a formula and x is a variable

in P, then ∀xϕ is a formula. We can condense this definition using a BNF grammar:

ϕ ::= P (t1, . . . , tn) | ¬ϕ | ϕ ∨ ϕ | ∀xϕ

Notice that the arguments given to predicates are always terms. Other operators can be introduced

in a usual way (as in propositional logic). In particular, ∃xϕ � ¬∀x¬ϕ. The declarative sentence in

Example 1 can be translated into a predicate logic formula as follows: we choose a constant m for

‘me’, and we choose further the set {S, F,B} of predicates with the following meanings:

S(x, y): x is a son of y, F (x, y): x is the father of y, and B(x, y): x is a brother of y.

Thus, the symbolic encoding of this sentence is

∀x∀y(F (x,m) ∧ S(y, x) ⊃ B(y,m))
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which means that for all x and all y, if x is a father of m and if y is a son of x, then y is a brother

of m. Given a variable x, a term t and a formula ϕ, we define ϕ[t/x] to be a formula obtained by

substituting each free occurrence of variable x in ϕ with t wherein x is free in ϕ means that its value

has to be specified by some additional information.

Semantics of predicate logic. To compute the truth value of formulae in predicate logic that

involve only function and predicate symbols, a model M of the pair (F,P) consists of the following

set of data [78]: (1) a nonempty set A, including the universe of concrete values; (2) for each f ∈ F

with n arguments, a concrete function: fM : An → A from An (i.e., the set of n-tuples over A) to

A; and (3) for each P ∈ P with n arguments, a subset PM ⊆ An of n-tuples over A.

To interpret formulae of the form ∀xϕ or ∃xϕ, we need to check whether ϕ holds for all (resp.

some) value a in our model. While this is intuitive, we don’t have a way of expressing this notion

in the syntax of predicate logic. Therefore, we are forced to interpret formulae relative to an

environment e : var → A, which is a function (or a look-up table) from the set of variables var

to the universe of values A of the underlying model. Given a model M for a pair (F,P) and an

environment e, we inductively define the satisfaction relation, denoted by M |=e ϕ meaning that ϕ

computes to 1 (“true”) in the model M with respect to the environment e, as follows [78]:

− M |=e P (t1, t2, . . . , tn) holds iff by replacing all variables in the terms (t1, t2, . . . , tn) of the

set A with their concrete values and by computing any function symbol by means of fM

according to e, the resulting tuple of values (a1 , a2 , . . . , an) is in the set PM .

− M |=e ¬ϕ holds iff it is not the case that M |=e ϕ holds ,

− M |=e ϕ ∨ ψ holds iff M |=e ϕ or M |=e ψ holds ,

− M |=e ∀xϕ holds iff M |=e[x→a] ϕ holds for all a ∈ A where the look up table e[x → a]

maps x to a.

We conclude our introduction to predicate logic with the negative result.

Satisfiability and validity. Predicate logic formula ϕ6 is called satisfiable if there is some model

M with M |= ϕ. ϕ is called valid if M |= ϕ for each model M , so we can write |= ϕ. However, the

decision problem, does |= ϕ hold?, tends to be undecidable [56] as we cannot write a procedure that

works for all ϕ.

6When ϕ has no free variables at all, so M |=e ϕ holds or does not hold, regardless of the choice of an environment
e. In this case, [78] writes M |= ϕ.
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2.2.3 Modal Logic

Formulae of propositional and predicate logics are either true, or false, in any model. That is, they

do not allow for any further possibilities. From many points of view, however, this is inadequate.

For example, as in natural language, we often distinguish between various modes of truth, such

as necessarily true and true in the future. Recall that modal logic was originally developed by

philosophers to study different modes of truth. Specifically, modal logic extends the language of

propositional logic by adding to it some new monadic operators, which are interpreted in a non-

truth-functional way. In what follows, we only study a normal modal logic.

Syntax of normal modal logic. The language of normal modal logic is defined by the following

formulation rules: (1) if p ∈ PV, then p is a formula; (2) if ϕ, ψ are formulae, then so are ¬ϕ, ϕ∨ψ;

and (3) if ϕ is a formula, then so is �ϕ. We can rewrite this definition using a BNF grammar as

follows:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | �ϕ

The remaining connectives can be defined as abbreviations in the usual way as we shown in Section

2.2.1 for propositional logic. In particular, ♦ϕ � ¬�¬ϕ. The formula �ϕ is read ‘necessarily ϕ’, and

the formula ♦ϕ is read ‘possibly ϕ’. Necessity is called a modal notion, presumably because being

necessarily true has been thought of as a mode (or manner) in which a proposition can be true [77].

Note that � and ♦ are dual modalities, and any one of them can be defined from the other like the

quantifiers ∀ and ∃ in the predicate logic, but they do not take variables as arguments.

Semantics of normal modal logic. Formulae of propositional logic are interpreted by assigning

a truth value to each of the atomic formulae present in these formulae by means of an evaluation

function. In contrast, the interpretation of modal formulae requires labeled state-transition graphs,

known as Kripke models, which enable us to distinguish between different modes of truth. Given

a set PV, a kripke model for normal modal logic is an ordered triple M = (W,R, V ), where W is

a nonempty set of possible worlds, R ⊆ W × W is a binary relation (or an accessibility relation),

and V : W → 2PV is an evaluation function, which says for each world w ∈ W which atomic

propositions are true in w. The semantics of the language is given via the satisfaction relation,

denoted by M,w |= ϕ, which means a modal formula ϕ is true (or holds, or it is satisfied) at a world

w in a model M . The relation |= is inductively defined as follows:

− M,w |= p iff p ∈ V (w),

− M,w |= ¬ϕ iff M,w � ϕ,
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− M,w |= ϕ ∨ ψ iff M,w |= ϕ or M,w |= ψ,

− M,w |= �ϕ iff for all w′ ∈ W, (w,w′) ∈ R implies M,w′ |= ϕ.

Intuitively, �ϕ is true at a world w in a model M iff ϕ is true at all the worlds w′ that are accessible

via R from w. It is obvious that the truth-value of ϕ itself is not always sufficient to determine the

truth-value of �ϕ. Henceforth, we cannot define � in terms of any combination of the propositional

logic operators. Notice that a formula ϕ is true in a model M , denoted by M |= ϕ, iff M,w |= ϕ for

all w ∈ W .

The syntax specifies exactly the wff of normal modal logic, given a set of atomic propositions.

It is sometimes useful to talk about a set of formulae which have the same syntactic form; this is

called schema. For example, ϕ ⊃ �♦ϕ is a schema. Any formula which has the syntactic of a certain

schema is called instance of the schema. For example, p ⊃ �♦p, and (p ∧ ♦q) ⊃ �♦(p ∧ ♦q) are

instances of the schema ϕ ⊃ �♦ϕ. We can say that a model satisfies a schema if it satisfies all of

its instances.

Validity in normal modal logic. A formula ϕ of normal modal logic is said to be valid if

it is true in every world of every model; this is indicated by writing |= ϕ. Any propositional

tautology is a valid formula and so is any substitution instance of it. For example, since p ∨ ¬p is

a tautology, we may perform the substitution: p is defined as �p ∧ (q ⊃ p) and obtain the valid

formula (�p ∧ (q ⊃ p)) ∨ ¬(�p ∧ (q ⊃ p)).

Generally, to build a modal logic L, choose the schemas which you would like to have inside it.

These schemas are called axioms (or concrete valid formulae) of the logic. Then ‘close’ it under the

following conditions [78]:

1. L is closed under all tautologies of propositional logic.

2. L contains all instances of the schema K: �(ϕ ⊃ ψ) ⊃ (�ϕ ⊃ �ψ)

3. L is closed under Modus Ponens : if A,A ⊃ B ∈ L, then B ∈ L.

4. L is closed under the rule of necessitation: if ϕ is a theorem of L (this is usually denoted by

L ⊢ ϕ and read as “ϕ is derivable from the axioms of L”), then L ⊢ �ϕ.

Since the weakest modal logic must contain all propositional tautologies and all instances of the

schema K, together with other formulae which come from applying the above conditions 3 and 4,

this logic is conventionally called normal modal logic K. By convention, the set of axiom schemas,

together with the set of rules are denoted with the name of Hilbert-style inference system (or with

the name of axiomatic system). In this system, the theorems are those wff which can be derived
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from the axioms using appropriate inference rules of the logic L. A proof of a theorem ϕ in an

axiomatic system, say S, consists of a finite sequence of wff, each of which is either (1) an axiom of

S or (2) a wff derived from one or more wff occurring earlier in the sequence, by one of the inference

rules, ϕ itself being the last wff in the sequence.

Correspondence theory of normal modal logic. The axioms of any modal logic follow from

the properties of the accessibility relation R. Indeed, to every axiom (or schema, or simply formula)

there corresponds a property of R, this mathematical relationship is important as it helps understand

the logic being studied and makes sense for the application, too. The properties of binary relation

R may be:

− Reflexive: if ∀ w ∈ W,we have (w ,w) ∈ R.

− Symmetric: if ∀ w ,w ′ ∈ W , we have (w ,w ′) ∈ R implies (w ′,w) ∈ R.

− Transitive: if ∀ w ,w ′,w ′′ ∈ W , we have (w ,w ′) ∈ R and (w ′,w ′′) ∈ R imply (w ,w ′′) ∈ R.

− Euclidean: if ∀ w ,w ′,w ′′ ∈ W with (w ,w ′) ∈ R and (w ,w ′′) ∈ R, we have (w ′,w ′′) ∈ R.

− Serial : if ∀ w ∈ W , there is a w ′ ∈ W such that (w ,w ′) ∈ R.

A relation R is an equivalence if it is reflexive, symmetric, and transitive. To state the relationship

between formulae and their corresponding properties, we need the notion of a modal frame. A frame

F is an ordered pair F = (W,R) where W is a set of worlds and R ⊆ W ×W is a binary relation.

Simply put, a frame is just a set of worlds and the relationship among them with no information

about what atomic propositions are true at the various worlds. From any model, we can extract

a frame, by just forgetting about the evaluation function. A frame is reflexive (resp. symmetric,

transitive, serial) if its accessibility relation is reflexive (resp. symmetric, transitive, serial). However,

it is useful to say sometimes that the frame, as a whole, satisfies a formula. A normal modal logic

formula ϕ is satisfied in a frame F if, for each evaluation function and each w ∈ W , we have

M,w |= ϕ. Indeed, if a frame satisfies an instance of a schema, then it satisfies the whole schema.

This contrasts markedly with models. This claim is in fact true because frames do not contain any

information about truth or falsity of atomic propositions and cannot distinguish between different

atoms. To summarize, the following statements are equivalent: (1) if R has the property, such as

reflexive, transitive, and so forth, then the frame satisfies the schema; (2) if the frame satisfies the

schema, then it satisfies the instance of it; and (3) if the frame satisfies the formula, then R has the

property. The proof is presented in Theorem 5.14 [78].

With respect to definition of frame F , a model can be seen as a pair M = (F, V ) where V is

an evaluation function as we defined above; in this case, the model M is said to be based on F . A
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formula is valid in a frame F , denoted by F |= ϕ, if M |= ϕ for every model M = (W,R, V ) based

on F = (W,R) and every w ∈ W , M,w |= ϕ. Typically, to define a validity in a more general way,

we specify a certain class C of frames (e.g., the class of all frames in which the accessibility relation

is serial). A formula ϕ is valid with respect to C, denoted by C |= ϕ, if F |= ϕ for all frames F ∈ C.

Hughes and Cresswell [77] have extended Reductio method of propositional logic to test for validity

of normal modal logic. The idea is to attempt to find, for a given wff, a falsifying model based on a

frame in a class of frames. Some well-known correspondence results are presented as follows:

Table 1: Some correspondence theory and frame classes.
Logic Name Schema (axiom) Property of R Class of Frames

T �ϕ ⊃ ϕ Reflexive All reflexive frames
B ϕ ⊃ �♦ϕ Symmetric All symmetric frames
D �ϕ ⊃ ♦ϕ Serial All serial frames
4 �ϕ ⊃ ��ϕ Transitive All transitive frames
5 ♦ϕ ⊃ �♦ϕ Euclidean All Euclidean frames

2.2.4 Temporal Logics

Temporal logic (TL, for short) has been investigated and analyzed as a branch of logic and can be

seen as a special case of modal logic for several decades. TL was developed as a framework to reason

about temporal relations, qualitative aspects of time and to deal not only with the input/output

behavior of a program, but also with its entire execution sequence [109]. However, the semantics

of modalities, such as �p and ♦g is not limited to the evaluation of a single-step accessibility

relation, but it is provided to qualitatively describe and reason about how the truth values of

assertions (i.e., p and q) vary with time [56]. Furthermore, TL is a useful formalism for specifying and

verifying correctness of computer programs [108, 109]. Such a formalism is particulary appropriate

for reasoning about nonterminating or continuously operating concurrent programs [31] such as

hardware circuits, microprocessors, operating systems, banking networks, communication protocols,

automotive electronics, and more generally reactive systems.

While the term temporal suggests a relationship with the real-time behavior of program, this is

only true in an abstract sense in the term of the occurrence of events in the past and future without

referring to the precise timing of events. One can say that the modalities in TL are time-abstract

[4], which makes the formulation of specifications more natural and convenient. In most temporal

logics, modeling time is discrete. From the first introduction of TL formalism, there arose an essential

question which later almost developed into a controversy. More precisely, the question regards to

the nature of the underlying structure of time on which the formalism is based. The controversy is
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between the linear time approach, which considers time to be a linear sequence, and the branching

time approach, which advocates a tree-like structure time, allowing some instants to have more than

a single successor. The choice among linear and branching models should be prescribed by the type

of programs and properties, which one wishes to study.

A) LTL

Linear Temporal Logic (LTL, for short) was first proposed by Pnueli [109] as a formalism to specify

properties of concurrent programs and to reason about their behavior. Since then it has been widely

used for these purposes. In LTL perspective, each moment in time has a unique possible future.

Temporal modalities are thus provided for describing events along a single time line. The basic

ingredients of LTL formulae are built up from atomic propositions, Boolean connectives (∧,∨,¬,

and so forth) and two basic temporal modalities ♦ϕ (“sometime” ϕ; also read as “eventually”

ϕ), �ϕ (“always” ϕ; also read as “globally” ϕ), ©ϕ (“next time” ϕ), and ϕ U ψ (ϕ “until” ψ).

Such temporal modalities are also called LTL path temporal modalities. The unary operators bind

stronger than binary ones. Operators ¬,©,�, and ♦ bind equally strong. As an example, the

formula ¬ϕ U ψ is interpreted as (¬ϕ) U ψ. Temporal binary operators have stronger precedence

over ∧,∨, and ⊃.

Syntax of LTL. The set of formulae of LTL is generated by the following syntactic rules: (1) each

atomic proposition p ∈ PV is a wff; (2) if ϕ and ψ are wff, then ¬ϕ and ϕ∨ψ are wff; and (3) if ϕ and

ψ are wff, then ©ϕ and ϕ U ψ are wff. The other formulae can then be introduced as abbreviations

in the usual way. In particular, the propositional connectives (∧, ⊃) and logical constants false and

true (⊤, ⊥) are abbreviated as in propositional logic (cf. Section 2.2.1). The temporal operator

♦ϕ abbreviates (⊤ U ϕ) and �ϕ abbreviates ¬♦¬ϕ. Intuitively, ♦ϕ ensures that ϕ will be true

eventually in the future and �ϕ is satisfied iff it is not the case that eventually ϕ holds. Given a set

PV of atomic propositions, we can condense this definition using a BNF grammar as follows [108]:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | © ϕ | ϕ U ϕ

In this definition, p ∈ PV is an atomic proposition; the formula ©ϕ holds at the current moment,

if ϕ holds in the next moment. The formula ϕ U ψ holds at the current moment, if there is some

future moment for which ψ holds and ϕ holds at all moments until that future moment.

Semantics of LTL. The semantics of LTL-formulae is given in terms of transition systems. A

transition system T = (S,Rt, V, I) is a tuple in which S is a nonempty set of states, Rt ⊆ S × S

32



is a transition relation, V : S → 2PV is an evaluation function, and I ⊆ S is a set of initial states.

The transition relation Rt models temporal transitions among states: given two states s, s′ ∈ S,

(s, s′) ∈ Rt means that s′ is an immediate successor of s. Also, it is assumed that every state has

a successor state, i.e., the transition relation is serial (or total). Because most concurrent systems

are designed not to halt during normal execution, one can model a computation path π in T as an

infinite sequence π = (s0, s1, . . .) of states such that (si, si+1) ∈ Rt for all i ≥ 0. π(i) is the i-th

state in the path π. πi is the suffix of π starting at π(i), i.e., πi = π(i), π(i + 1), . . .. Satisfaction

of an LTL-formula ϕ with respect to a path π in a transition system T , denoted by T, π |= ϕ, is

inductively defined as follows:

− T, π |= p iff p ∈ V (π(0)),

− T, π |= ¬ϕ iff T, π � ϕ,

− T, π |= ϕ ∨ ψ iff T, π |= ϕ or π |= ψ,

− T, π |= ©ϕ iff T, π1 |= ϕ,

− T, π |= (ϕ U ψ) iff there exists k ≥ 0 such that T, πk |= ψ and T, πi |= ϕ ∀0 ≤ i < k.

For the propositions, Boolean connectives and temporal modalities, the relation |= is defined in the

standard manner. According to this satisfaction relation, an LTL-formula ϕ holds at s iff all paths

starting at s satisfy ϕ, it is written as s |= ϕ. The transition system T satisfies ϕ when ϕ holds in

all paths starting from an initial state.

Satisfiability and validity of LTL. An LTL formula ϕ is satisfiable iff there exists a transition

system T = (S,Rt, V, I) and a state s ∈ S such that s |= ϕ. In that case, such a transition system

defines a model of ϕ. We say that ϕ is valid and write |= ϕ for all transition systems T = (S,Rt, V, I)

and for all s ∈ S, we have s |= ϕ. As in modal logic, we can study the satisfiability and validity of

LTL formula in a frame F = (S,Rt, I) of a transition system T = (S,Rt, V, I).

B) CTL

In the early of 1980s, another strand of temporal logics called computation tree logic (CTL, for

short) for specification and verification purposes was introduced in [31] and studied in [57]. The

underlying structure of time in CTL is assumed to have a branching tree-like nature, which refers to

the fact that each moment in time may split into several possible futures matching those resulting

from nondeterminism in a program. In fact, this structure over which CTL formulae are interpreted

can be viewed as an infinite tree in which each node in the tree has at most one predecessor; so it
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is known that the past of each node is linear. Also, there exists a unique node, called the root, from

which all other nodes are reachable and that has no predecessors.

Syntax of CTL. CTL allows basic temporal operators of the form: a path quantifier—either A

(“for all paths”) or E (“for some path”)—immediately followed by a single one of the usual linear

temporal operators � (“always”), ♦ (“sometime”), © (“next time”) or U (“until”) to obtain a well-

formed state formula. The set of CTL formulae over the underlying set PV of atomic propositions is

inductively given by the following syntactic rules: (1) every atomic proposition p ∈ PV is a formula;

(2) if ϕ and ψ are formulae, then so are ¬ϕ and ϕ ∨ ψ; and (3) if ϕ and ψ are formulae, then so

are E © ϕ, E�ϕ, and E(ϕ U ψ). The symbols ¬ and ∨ have their usual meanings. E © ϕ is read

“there exists a path such that at the next state ϕ holds”, E�ϕ is read “there exists a path such

that ϕ holds globally along the path”, and E(ϕ U ψ) is read “there exists a path such that ϕ holds

until ψ holds”. Notice that CTL operators are composed of a pair of symbols: the first symbol is

a quantifier over paths (E), while the second symbol expresses some constraint over paths. We can

rewrite this definition using a BNF grammar as follows [57]:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | E © ϕ | E�ϕ | E(ϕ U ϕ)

The syntax of CTL traditionally includes the following temporal operators as well: A© ϕ, A�ϕ,

A(ϕ U ψ), E♦ϕ and A♦ϕ. These are read, respectively: “for all paths, in the next state ϕ holds”, “for

all paths, ϕ holds globally”, “for all paths, ϕ holds until ψ holds”, “there exists a path such that ϕ

holds at some future point” and “for all paths, ϕ holds at some point in the future”. These additional

CTL temporal operators can be used to ease the specification process of various requirements but

they are in fact definable in terms of the minimal set of CTL temporal operators E©, E�, and EU .

Semantics of CTL. As in LTL, the semantics of CTL-formulae is given in terms of transition

systems. A transition system T = (S,Rt, V, I) is a tuple in which S is a nonempty set of states,

Rt ⊆ S × S is a transition relation that must be serial, V : S → 2PV is an evaluation function, and

I ⊆ S is a set of initial states. As in LTL, a path π in T is an infinite sequence π = (s0, s1, . . .)

of states such that (si, si+1) ∈ Rt for all i ≥ 0. π(i) is the i-th state in the path π. We use the

standard notation to indicate truth in a transition system: T, s |= ϕ means that formula ϕ holds at

state s in a transition system T . The relation |= is defined inductively as follows:

− T, s |= p iff p ∈ V (s),

− T, s |= ¬ϕ iff T, s � ϕ,

− T, s |= ϕ ∨ ψ iff T, s |= ϕ or T, s |= ψ,
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− T, s |= E © ϕ iff there exists a path π such that π(0) = s and T, π(1) |= ϕ,

− T, s |= E�ϕ iff there exists a path π such that π(0) = s and T, π(i) |= ϕ ∀i ≥ 0,

− T, s |= E(ϕ U ψ) iff there exists a path π and for some k ≥ 0 such that π(0) = s we have

T, π(k) |= ψ and T, π(i) |= ϕ ∀0 ≤ i < k.

The interpretations of atomic propositions, Boolean operators and temporal modalities are as usual

(cf. for example [56]). Given the semantics above, the following equivalences hold for CTL [4]:

E♦ϕ ≡ E(⊤ Uϕ),

A© ϕ ≡ ¬E ©¬ϕ,

A�ϕ ≡ ¬E♦¬ϕ,

A(ϕ Uψ) ≡ ¬E(¬ψ U (¬ϕ ∧ ¬ψ)) ∧ ¬E�¬ψ,

A♦ϕ ≡ A(⊤ U ϕ) ≡ ¬E�¬ϕ.

C) CTL∗

CTL∗—called full computation tree logic—extends CTL by allowing basic temporal operators in

which the path quantifier (E or A) can prefix an assertion composed of unrestricted combinations

(i.e., involving arbitrary nestings and Boolean connectives) of the linear time operators ♦, �, ©

and U . It was proposed as a unifying framework in [58], subsuming CTL and LTL. Recall that the

underlying nature of time in CTL∗ is branching: each moment in time may split into alternative

courses representing different possible futures, which is suitable for reasoning about nondeterministic

and concurrent programs.

In CTL∗, one can distinguish between two types of formulae: state formulae and path formulae.

The state formulae—true or false of states—are assertions about the atomic propositions in the

states and their branching structure, while path formulae—true or false of paths—express temporal

properties of paths. Importantly, path formulae can be turned into state formulae by prefixing them

with the path quantifiers. Thus, in the branching time interpretation, a formula is true or false in a

state whereas in the linear time interpretation, a formula is true or false along a path.

Syntax of CTL∗. Given the set PV of atomic propositions, we inductively define a class of state

formulae using rules S1–3 and a class of path formulae using rules P1–3 as follows [58]:

S1 Each atomic proposition p ∈ PV is a state formula.

S2 If ϕ and ψ are state formulae, then so are ¬ϕ and ϕ ∨ ψ.
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S3 If ϕ is a path formula, then Eϕ is a state formula.

P1 Each state formula is also a path formula.

P2 If ϕ and ψ are path formulae, then so are ¬ϕ and ϕ ∨ ψ.

P3 If ϕ and ψ are path formulae, then so are ©ϕ and ϕ U ψ.

The set of state formulae generated by the above rules forms the language CTL∗. The other Boolean

connectives are introduced as above while the other temporal operators can then be introduced as

abbreviations in the usual way. Also, the universal path quantifier A can be defined using the

existential path quantifier and negation: Aϕ � ¬E¬ϕ. Thus, we could give a substantially more

terse syntax and semantics for CTL∗ language by defining all the other operators in terms of just

the primitive operators ©, U,¬, and ∨ and the quantifier E. This definition can be rewritten using

a BNF grammar as follows:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Eψ

ψ ::= ϕ | ¬ψ | ψ ∨ ψ | © ψ | ψ U ψ

Semantics of CTL∗. A formula of CTL∗ is interpreted with respect to a transition system T =

(S,Rt, V, I) where S, Rt, V and I have the same meaning as in CTL. We write T, s |= ϕ (respectively,

T, π |= ϕ) to mean that a state formula ϕ (respectively, a path formula ϕ) is true in a transition

system T at state s (respectively, of path π). We define the relation |= inductively as follows:

− T, s |= p iff p ∈ V (s),

− T, s |= ¬ϕ iff T, s � ϕ,

− T, s |= ϕ ∨ ψ iff T, s |= ϕ or T, s |= ψ,

− T, s |= Eϕ iff there exists a path π such that π(0) = s and T, π |= ϕ,

− T, π |= p iff T, π(0) |= p,

− T, π |= ¬ψ iff T, π � ψ,

− T, π |= ϕ ∨ ψ iff T, π |= ϕ or T, π |= ψ,

− T, π |= ©ψ iff T, π1 |= ψ,

− T, π |= ϕ U ψ iff for some k ≥ 0 we have T, πk |= ψ and T, πi |= ϕ ∀0 ≤ i < k.

A state s satisfies Eϕ if there exists a path π starting at s satisfies ϕ whilst a path satisfies a state

formula if the initial state of the path so does. ©ψ holds on a path π when ψ is satisfied on the
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path starting from the next state of the path π, and ϕ U ψ holds on a path if ϕ holds on the path

until ψ becomes true.

It is worth noticing that a transition system is a Kripke model. If some state in a transition

system is designated as the initial state, then the Kripke model (which is a finite computational

structure) can be unwound into an infinite tree with the initial state as the root. Since paths in the

tree represent the possible computations of the program, we will refer to the infinite tree obtained

in this manner as the computation tree of the program. However, the essential difference between

semantics of temporal logics and traditional Kripke semantics lies in how they handle branching in

the underlying computation tree. In LTL, temporal operators are provided for describing events

along a single computation path, whereas in CTL, temporal operators quantify over the paths

that are possible from the given state. Simply put, in Kripke semantics, formulae are interpreted

directly on the finite-state model (Kripke model) of the internal architecture of the system, while

the semantics of temporal logics’ formulae are interpreted on the possible computation paths arising

from the Kripke model. Figure 2 displays an example of a simple Kripke structure M = (S,Rt, V, I)
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Figure 2: The model M (a) and its corresponding branching (b) and its linear (c) computations.

with its branching and linear computations. In the figure, time flows from left to right along the

computations in the tree. The example uses a set PV ={p, q, r} of atomic propositions. M has

S = {s0, s1, s2, s3}, I = {s0} (indicated by the incoming arrow), and V given by V (s0) = {p},

V (s1) = ∅, V (s2) = {q}, and V (s3) = {r}. The transitions in Rt are all the directed edges between

states.
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Satisfiability and validity of CTL∗. We say that a state formula ϕ (resp. a path formula ϕ) is

valid provided that for every transition system T and every state s (resp. path π), we have T, s |= ϕ

(resp. T, π |= ϕ). A state formula ϕ (resp. a path formula ϕ) is satisfiable provided that for some

transition system T and some state s (resp. path π), we have T, s |= ϕ (resp. T, π |= ϕ).

The following results in CTL∗ is proven: CTL∗ is more expressive than both CTL and LTL [58]. It is

arguable that when considering conjunctions or disjunctions of some of CTL and LTL formulae, we

can construct a formula that is CTL∗ formula, but neither CTL nor LTL. Also, the main distinction

between CTL and CTL∗ is the type of LTL formula that can appear in the scope of a path quantifier.

In CTL, the formulae appearing in the scope of path quantifiers are restricted to be a single temporal

operator. In CTL∗, they can be arbitrary LTL formulae. Figure 3 graphically depicts that the
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Figure 3: Expressive powers of PL, LTL, CTL, and CTL∗.

aforementioned languages can be arranged in the following hierarchy of expressive power (where <

indicates “strictly less expressive than” and ≍ indicates “as incomparable as”): PL < LTL ≍ CTL

< CTL∗. Notice that the expressiveness of linear- and branching-time logics is incomparable. This

means that some properties that are expressible in LTL cannot be expressed in CTL and vice versa.

For example, there is no CTL formula that is equivalent to the LTL formula A(♦�ϕ). Likewise,

there is no LTL formula that is equivalent to the CTL formula A�(E♦ϕ).

2.3 Model Checking

As technology allows systems to grow and be more complex, verification, as the process of verifying

that a system complies with given specifications, has to play a fundamental role in the development

process to identify and remove unwanted behaviors. In particular, verification is more important in

MAS and especially agent communication, which involves autonomous interacting agents. Verifica-

tion includes a number of different techniques. The most common verification technique is called
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Testing. In this technique, the verification process is performed by running a number of possible

test cases and then checking that the required specifications hold in all possible tested runs. While

testing is sensitive to the defined set of test cases, it is generally hard and even impossible sometimes

to define all the possible test cases in the specification.

This thesis will not be concerned with the problem of testing the behaviors of interacting agents;

instead, the problem of formal verification for multi-agent interaction protocols will be investigated.

Formal verification can be performed by theorem proving and model checking. In theorem proving

approach, a proof construction, typically using various axioms and inference rules defined in an

axiomatic system, is performed manually. Such a proof construction is in general difficult and

requires a good deal of human ingenuity [78]. This is approach really worked for small programs

[33]. However, manual proof construction is not scale up well to large programs and fails “to be

of much help due to the inherent complexity of testing validity for even the simplest logics” [32].

The only extent of automation that one can hope for, is that the proof be checked by a machine.

A formal verification via model checking was developed independently by Clarke and Emerson [31]

and by Queille and Sifakis [110] in the early of 1980s to provide a practical alternative approach

that aims at addressing difficulties of manual proof construction.

2.3.1 Model Checking Problem

In a nutshell, the technical formulation of the model checking problem is as follows: Given an

abstract model M = (S,Rt, V, I) representing, for example, a hardware or software design, and a

specification expressed as a temporal logic formula ϕ, does M |= ϕ? for all s ∈ I such that M, s |= ϕ.

An alternative formulation is, given M and ϕ, calculating the set {s ∈ S |M, s |= ϕ} of states that

satisfy ϕ. Notice that:

− Model checking, unlike theorem proving, avoids proofs and requires no user expertise. In effect,

it is algorithmic in nature and can be completely automated [31].

− As checking that a single model satisfies a formula is much easier than proving the validity of

a formula for all models, it is possible to implement this technique very efficiently [31, 32].

− No particular requirements are usually imposed on M , even though, in most cases, M is

required to be finite. The fact that the system is finite is not a limitation [32] because many

concrete systems, such as communication protocols, hardware circuits and control systems can

be modeled as finite-state systems, which are amenable to automatic verification. As a result,

reasoning about real systems often implies reasoning about finite-state systems [56, 33].
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Model checkers typically have three main components: (1) a specification language, based on tem-

poral logic; (2) a way of encoding a state machine representing the system to be verified; and (3)

a verification procedure, that uses an intelligent exhaustive search of the state space to determine

if the specification holds. Model checkers provide automated methods for verification of correctness

and for bug detection. They terminate with the answer true, indicating that the model satisfies the

specification, or give a counterexample execution that demonstrates a behavior which falsifies the

specification. This faulty trace feature provides a priceless insight to understand the real reason for
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Figure 4: A model checker with counter and witness examples.

the failure as well as important clues for fixing the problem. Generally, model checkers are quite

fast and sometimes produce an answer in a matter of minutes! Furthermore, partial specifications

can be checked, so it is unnecessary to specify completely the system before useful information can

be obtained regarding its correctness [33]. Above all, most recent model checkers produce witness

examples for existential properties that are true (cf. Figure 4). As a practical matter, the separation

of system development from verification and debugging has facilitated model checking’s industrial

acceptance. The development team can focus on various aspects of the system under design and the

team of verification engineers can conduct verification independently.

2.3.2 Model Checking Techniques

Two general techniques to model checking are used in practice today. The first technique is called

temporal model checking and developed in [31, 110]. In this technique, specifications are expressed

in a temporal logic [108] in which systems as we mentioned are modeled as finite-state transition

systems. The idea is to develop an efficient search algorithm to check if a given transition system is

a model for the specification. In the second technique, the specification is defined as an automaton

and also the system is modeled as an automaton. The main idea of this technique is to compare the
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specification and system to determine whether system behavior conforms to that of the specification.

Vardi and Wolper [141] have showed how the temporal model checking problem could be recast in

terms of automata; so linking these two approaches.

A) Model Checking with Automata

Definition 1 A finite automaton over finite words is a tuple A =(Σ, Q,Q0, δ, F ) where Σ is a finite

alphabet, Q is a finite set of states, Q0 ⊆ Q is a set of initial states, δ ⊆ Q × Σ×Q is a transition

relation, and F ⊆ Q is a set of accepting states.

Essentially, an automaton can be viewed as a graph where the set of nodes is Q and the edges are

given by δ. The automata with labeling states are commonly referred to as Kripke structures and

the automata with labeled transitions are referred to as labeled transition systems. Figure 5 depicts

the automaton with labeled transitions. Such an automaton is characterized by Σ = {a, b}, Q =

{q0, q1, q2}, Q0 = {q0} (the initial state is marked with an incoming arrow), F = {q2} (the accepting

state is marked with a double circle), and δ = {(q0, a, q0), (q0, b, q0), (q0, b, q1), (q1, a, q2), (q1, b, q2)}.
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Figure 5: A finite automaton example.

Let σ = a1, . . . , an ∈ Σ∗ be a finite word (or string) of length |σ| = n. A run of A over σ is a finite

sequence of states q0, q1, . . . , qn such that q0 ∈ Q0 and (qi, ai, qi+1) ∈ δ for all 0 ≤ i < n. A run

q0, q1, . . . , qn over σ is called accepting if qn ∈ F . A finite word σ ∈ Σ∗ is called accepted by A iff

there exists an accepting run of A over σ. The accepted language by A, denoted with L(A), is the

set of finite words in Σ∗ accepted by A. Examples of runs of the automaton A in Figure 5 are q0 for

the empty word λ; q0, q1 for the word consisting of the symbol b; q0, q0, q0, q0 for, e.g., the words aba

and bba; and q0, q1, q2 for the words ba, and bb. The runs q0, q1, q2 for ba and bb and q0, q0, q1, q2 for

the words abb, aba, bba, and bbb are accepting. Thus, these words belong to L(A). The word aaa is

not accepted by A since it only has single run, namely q0, q0, q0, q0, which is not accepting.

Finite automata over infinite words accept words of infinite length from Σω, where ω indicates

an infinite number of repetitions. For instance, the infinite repetition of the finite word ab yields

the infinite word abababab . . . and is denoted by (ab)ω. The simplest automata over infinite words
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are called Büchi automata. The components of Büchi automata are similar to the components of

automata over finite words presented above, the only difference being the acceptance condition.

Different kind of acceptance conditions can be defined, and these correspond to different kind of

automata. A run ρ of a Büchi automaton over infinite word σ ∈ Σω is defined in a similar way as

a run of a finite automaton over a finite word, except that |σ| = ω, thus ρ is infinite, i.e., it visits

some state q ∈ Q infinitely often. Let inf (ρ) be the set of states appearing infinitely often in the

run ρ. Given a set F of accepting states, a run ρ of a Büchi automaton B =(Σ, Q,Q0, δ, F ) over an

infinite word is accepting iff inf (ρ)∩F is not equal to the empty set, which means that at least one

accepting state from F occurs infinitely often in ρ.

LTL Model Checking. It was first proposed in the 1980s by Vardi and Wolper [141] using the

automata-theoretic approach. In this approach, the model and specification are represented in the

same way. The connection between automata and temporal formula may not be apparent. Vardi and

Wolper pointed out this connection by viewing LTL formulae as language acceptors and LTL model

as model generators. More precisely, an infinite word σ is in the language of an LTL-formula ϕ iff σ

satisfies ϕ. They also shown that every LTL-formula ϕ can be translated into a Büchi automaton

that accepts the set of words satisfying the formula ϕ. As an example, the Büchi automaton

corresponding to the LTL-formula ©p is depicted in Figure 6.
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Figure 6: Büchi automaton for the formula ©p.

Given a model M and an LTL formula ϕ represented by a Büchi automaton, do all paths in M satisfy

the formula ϕ? With automata-based approaches, this problem reduces to check if all the runs of

M are accepted by the automaton. Suppose B(ϕ) is the automaton corresponding to ϕ. From [33],

the first easy task is to transform a model M to a Büchi automaton B(M) such that B(M) accepts

exactly the runs of M and all states of M are accepting. With this result, the problem of model

checking can be defined as language containment for Büchi automata representing M and ϕ, i.e.,

does L(B(M)) ⊆ L(B(ϕ))? However, checking for language containment involves complementation

of Büchi automaton of formula, which causes exponential complexity. Fortunately, Büchi automata

intersection can be done with linear complexity in the size of product automaton [141]. So instead

of complementing the automaton B(ϕ) corresponding to the formula ϕ, we negate the formula itself

and then check if L(B(M)∩B(¬ϕ)) is empty. From the acceptance condition, it follows directly that
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an automaton is nonempty iff there is at least one accepting run that ends in some accepting state.

Thus, checking for nonemptiness of an automaton is “equivalent to finding a strongly-connected

component7 that is reachable from an initial state and contains an accepting state” [33], i.e., there

exists a reachable cycle in the product automaton. When the interaction is nonempty, then there is

a counterexample, which is a run, generated from a periodic of finite sequence of states. Algorithm

1 describes a high-level description of model checking based on automata.

Algorithm 1 MC(ϕ,M): “yes” if the automaton is empty or “no” plus a counterexample

1: Construct the automaton B(M),

2: Construct the automaton accepting the language L(B(¬ϕ)),
3: Construct the automaton accepting the language L(B(M) ∩ B(¬ϕ)),
4: Check emptiness of L(B(M) ∩ B(¬ϕ)).

The procedures in steps 2, 3, 4, and 5 are presented in [33]. Different optimization techniques

can be employed to enhance the efficiency of Algorithm 1. For instance, the emptiness checking

for Büchi automaton can be done on-the-fly (or locally) [38]. On-the-fly model checking is an

optimization technique which avoids building the automaton B(M) in the first step of Algorithm 1.

Instead, using this technique the automaton L(B(¬ϕ)) is constructed first, and then the automaton

accepting L(B(M)∩B(¬ϕ)) is iteratively constructed by adding states of M to its automaton B(M)

when needed [33]. In this way, the intersection of the two automata is constructed ‘on demand’,

i.e., a new state is only considered if no accepting cycle has been encountered yet in the partially

constructed intersection of the automata.

CTL and CTL∗ Model Checking. Since branching-time temporal logics are interpreted over

Kripke structures, word automata are not appropriate for model checking such logics. Instead, the

automata-theoretic counterpart over infinite trees are presented (see for example [86] and references

therein). These automata, called tree automata, are designed to accept infinite trees as input.

Definition 2 A tree automaton is of the form (Σ, Q,Q0, δ, F ) where Σ is an alphabet, Q is the

set of states, Q0 ⊆ Q is a set of initial states, δ : Q × Σ → 2Q
k

is a transition function, and F

represents an acceptance condition wherein k represents the branching degree of the trees accepted

by the automaton.

A run of a tree automaton on a k-ary tree is a k-ary tree satisfying the following conditions:

− The root of the tree is labeled with Q0.
7A strongly-connected component (SCC) is a maximal subgraph in which every node in SCC is reachable from

every other node in SCC through a directed path completely contained in SCC [33].
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− If node σ (where σ is a k-ary word representing a node in a k-ary tree) in a run is labeled by

q and if node σ in an input tree is labeled by a then the i-th successor of σ is labeled by qi

where (q1, . . . , qk) ∈ δ(q, a).

A run of a tree automaton is accepting iff every path in the run satisfies the acceptance condition.

A different automata-theoretic approach to branching-time model checking, based on the concepts

of amorphous automata, was first introduced by Bernholtz and Grumberg [1993]. Technically, the

definition of an amorphous automaton is very similar to the above Definition 2, except that transition

function is from Q×Σ× int to 2Q
k

. For instance, δ(q, a, k) = {q1, . . . , qk} means from state q (which

has a k-ary transition on a) to the set of states q1, . . . , qk. While this constitutes a meaningful first

step towards applying automata-theoretic techniques to branching-time temporal model checking, it

is not quite satisfactory because the complexity of the resulting algorithm for CTL model checking is

quadratic in both the size of the specification and the size of the model, which makes this algorithm

impractical.

Kupferman et al. [86] have argued that alternating tree automata are the key to a comprehensive

and satisfactory automata-theoretic framework for branching-time temporal logics. Alternating

tree automata generalize the standard notion of nondeterministic tree automata by allowing several

successor states to go down along the same branch of the tree, so transitions are of the form: δ(q, a) =

{(q11, . . . , q1k), . . . , (qm1, . . . , qmk)} where each k-tuple represents a possible next configuration of

the automaton. An alternative way of representing this transition is by making use of Boolean

expressions. In terms of Boolean expressions, the above transitions will be as follows: ((1, q11) ∧

. . .∧(k, q1k))∨ . . .∨((1, qm1)∧ . . .∧(k, qmk)), for each pair of the form (i, q), i represents the direction

and q represents the state in that direction.

When a tree automaton is used, the model checking problem reduces to the membership problem

for the tree automaton. The membership checking problem itself can be reduced to the emptiness

checking problem for a 1-letter alternating tree automaton (a 1-letter automaton refers to an au-

tomaton whose alphabet has exactly one symbol). However, emptiness checking for a general 1-letter

alternating automaton is not efficient [86]. But for special restricted versions of the automaton known

as Weak Alternating Automaton (WAA) and Hesitant Alternating Automaton (HAA), the emptiness

checking can be done in a linear time [86]. Thus, for CTL (resp. CTL∗), this approach gives rise

to a model checking technique which has time complexity linear (resp. exponential) in the length of

the formula and linear (resp. linear) in the size of the model.
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The automata-theoretic techniques can also be used to derive bounds on the space required for model

checking CTL and CTL∗. From [86], it can be shown that the emptiness checking problem for weak

and hesitant alternating automata with bounded alternation is NLOGSPACE-complete. Moreover,

if we fix the length of the formula, then the model checking problems for both CTL and CTL∗

(also called program complexity) are NLOGSPACE-complete. Further, if we consider a concurrent

program, the size of the global state space is “at most exponential in the size of the individual

components”. Therefore, CTL and CTL∗ model checking problems for a concurrent program are

PSPACE-complete.

State Explosion Problem. State explosion is a phenomenon often encountered when using model

checking based on automata-theoretic techniques [32, 33]. Such a problem means that the number of

global states in a model grows exponentially with the number of variables, or concurrent components,

constituting the modeled system. In fact, the state explosion problem has been the driving force

behind much of the research in the model checking approach and the development of new model

checkers. Great steps have been made on this problem over the past 28 years by what is now a very

large international research community.

In what follows, we discuss the Ordered Binary Decision Diagram (OBDD) technique, one of

existing techniques proposed to combat and reduce state space explosion during model checking.

B) Symbolic Model Checking with OBDDs

Before we present OBDDs based techniques for model checking, we study briefly labeling algorithms

for CTL, LTL and CTL∗.

CTL model checking was introduced in [31] and [32]. Let M = (S,Rt, V ) be a CTL model and

let ϕ be a CTL formula. CTL model checking algorithm, called labeling algorithm, takes ϕ and M as

input and operates by labeling each state s ∈ S with the set label(s) of subformulae of ϕ that are true

in s. The algorithm works on stages, i.e., during the i−th stage, subformulae with i-1 nested CTL

operators are processed. When a subformula is processed, it is then added to the labeling of each

state in which it is true. For example, if ϕ ≡ p∧ q, then ϕ should be placed in the label(s) precisely

when p and q are already added to label(s) in the previous stage. When the algorithm terminates,

we will have that M, s |= ϕ iff ϕ ∈ label(s). This explicit state model checking algorithm runs in

linear time in both the length of the formula and the model, that is in deterministic polynomial

time [31, 33]. In fact, CTL model checking is P-complete [115]. Notice that in some cases, a CTL

model includes a set of initial states. In these cases, formulae need to be only evaluated in the set
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of reachable states from the initial states [33].

Lichtenstein and Pnueli [89] have implicity used a tableau to develop LTL model checking algo-

rithm. Simply put, a tableau is a graph derived from the formula from which a model for the formula

can be extracted iff the formula is satisfiable. Let M = (S,Rt, V ) be an LTL model with s ∈ S

and let Aϕ be an LTL formula such that ϕ is a restricted path formula, i.e., its state subformulae

are only atomic propositions. The problem is to determine if M, s |= Aϕ. But since M, s |= Aϕ

iff M, s |= ¬E¬ϕ, it is sufficient to be able to check the truth of formulae of the form Eψ where

ψ is a restricted path formula. Lichtenstein and Pnueli’s algorithm consists of two steps. The first

step is to construct a graph that contains a path corresponding to the path in the model M sat-

isfying the formula ϕ. The second step is to identify “valid” nodes in the graph. To achieve this

aim, Lichtenstein and Pnueli defined α-SCC (a maximal strongly-connected component) with the

property that for every formula of the form ϕ U ψ that occurs in a node in the SCC, there exists a

node in the SCC that contains ψ. Then, they identified all nodes which are in an α-SCC or have a

path to an α-SCC as valid nodes. Hence, the problem of model checking is reduced to the problem

of finding the α-SCCs. Sistla and Clarke [132] have showed that the problem of model checking LTL

is PSPACE-complete.

Clarke et al. [33] have combined CTL model checking [31, 32] with LTL model checking [89] to

develop a state labeling algorithm for CTL∗ model checking. The idea is whether or not M, s |= Eϕ

wherein ϕ contains “arbitrary state subformulae”. The algorithm starts by assuming that the state

subformulae of ϕ is processed and then the state labels are updated. Then, each state subformula

is replaced by a “fresh atomic proposition” in both the labeling of the model and formula. Now,

let the new formula be denoted by Eϕ′. If the formula Eϕ′ is in CTL, then the algorithm applies

the CTL model checking. Otherwise, ϕ′ is a pure LTL path formula and the algorithm for LTL

model checking is used. In case of Eϕ is a complex CTL∗ formula, then the algorithm is repeated

after replacing Eϕ by a fresh atomic proposition. Such a process is repeated until the complete

formula is processed. The time complexity of CTL∗ model checking is linear in the size of the model

and exponential in the length of the formula (i.e., |M | · 2|ϕ|) [33, 115], and its space complexity is

PSPACE-complete [56, 115].

It is worth noticing that for concurrent systems with small numbers of processes, the number of

states is usually small and then CTL model checking algorithm [31, 32] is often quite practical. In

systems with many concurrent parts, the number of states in the global state-transition system is

too large to handle; so an explosion in the size of the model may occur [33].
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Binary Decision Diagrams (BDDs). One solution to the state explosion problem is to find

alternative representations for the state space that use any form of regularity in the state space [33].

Often practical systems do have significant regularity, so by using an appropriate method, it may

be possible to represent the state space compactly. Binary Decision Diagrams (BDDs) [102] are one

such solution.

BDDs represent the state space symbolically. BDDs are basically a canonical representation

of Boolean formulae [21]. Unlike binary decision trees, which are also used to represent Boolean

functions (i.e., functions from n Boolean variables {0, 1}n to Boolean variable {0, 1}), BDDs are

finite, Directed Acyclic Graphs (DAGs) with the property that any path from the root to a leaf

there is a strict ordering of Boolean variables, i.e., depending on the value assigned to the variable,

we take the left or the right branch. The leaves (terminals) in the BDD, which are either 0 or 1,

represent the result of evaluating a Boolean function. So, to evaluate a Boolean function for a given

assignment of the variables, we traverse the graph from the root, branching at each nonterminal

node depending on the value assigned to the corresponding variable, till we hit a leaf. The function

value then is the value of the terminal node we reach [102, 33, 78].

A reduced BDD (RBDD) is a BDD that has undergone the following optimizations, repeatedly,

until a fixed point has been reached [78]: (1) removing duplicate terminals; (2) removing redundant

tests; and (3) removing duplicate non-terminals. With these three reductions, BDDs can often be

quite compact representations of Boolean functions. It is also possible to perform many Boolean

operations on BDDs efficiently [21]. An ordered BDD (OBDD) is one which has an ordering for

some list of variables. The ROBDD representing a given Boolean function f is unique [21, 78].

To understand the uniqueness property, let B1 and B2 be two ROBBDs with compatible variable

orderings. If B1 and B2 represent the same Boolean function, then they have identical structure.

Finally, the operation of Boolean quantification can be applied on a BDD representing a Boolean

function. Formally, given a Boolean function f(x) where x is a Boolean variable, the operation

∃x.f(x) is defined as f [0/x] + f [1/x]; that is, ∃x.f(x) is true if f could be made true by putting x

to 0 or 1. The definition of the Boolean quantification can be extended to a quantification over a

set of variables x = (x1, . . . , xn) (cf. [33, 78] for more details).

Symbolic model checking CTL. The application of OBDDs techniques to model checking for

CTL has been investigated from the beginning of the 1990s by McMillan [102]. Model checking

using OBDDs is called symbolic model checking. The term emphasizes that individual states are

not represented; instead, sets of states are represented symbolically, namely, those which satisfy the
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formula being checked. Let �ϕ� = {s ∈ S | M, s |= ϕ} be a set of states satisfying ϕ.

Given a CTL formula ϕ and a CTL model M = (S,Rt, V, I), the idea of model checking using

OBDDs is to compute the set �ϕ� of states satisfying ϕ in M , which is represented in OBDDs

and then comparing it against the set of initial states I in M that is also represented in OBDD.

If I ⊆ �ϕ�, then the model M satisfies the formula; otherwise a counterexample can be generated

showing why the model does not satisfy the formula. The proof of the correctness of this approach

can be found in [33, 78].

As the key idea of this technique is to represent states and set of states as Boolean formulae

which, in turn, can be easily encoded as OBDDs. Following [33, 78], we show how sets of states and

transition relations among states are represented with OBDDs. Let S be the set of states of a model

M = (S,Rt, V, I) in which the set of states of M is assumed to be finite, and let N = ⌈log2|S|⌉

be the number of Boolean variables needed to represent the elements in S. Each element s ∈ S

is associated with a unique vector of Boolean variables v = (v1, . . . , vN ), i.e., each element of s is

associated with a tuple of {0, 1}N . Each tuple v = (v1, . . . , vN ) is then identified with a Boolean

formula, represented by a conjunction of variables or their negation. It is assumed that the value

0 in a tuple corresponds to a negation. Given both a model M = (S,Rt, V, I) and an encoding

of the set of states S using N Boolean variables (v1, . . . , vN ), the transition given by Rt may be

encoded as a Boolean function. To do this, a new set of“primed” variables (v′1, . . . , v
′
N ) is introduced

to encode the transition among two states s, s′ ∈ S. In particular, if (s, s′) ∈ Rt holds, then s is

encoded using the non-primed variables, s′ is encoded using the primed variables and the transition

step (s, s′) ∈ Rt is expressed as a Boolean formula by taking the conjunction of the encodings of s

and s′. The whole transition relation Rt ⊆ S × S is encoded as a Boolean formula by taking the

disjunction of all the transition steps.

The standard symbolic model checking algorithm for CTL was introduced in [102, 33, 78]. It

takes the model M and the formula ϕ as input and returns the set of states in M satisfying the

formula ϕ (cf. Algorithm 2). In particular, the algorithm operates recursively on the structure of

ϕ and builds the set �ϕ� of states using the following operations on sets: complementation, union,

and existential quantification. When sets of states are encoded using Boolean formulae, all these

operations on sets are translated into operations on Boolean formulae (e.g., the union of two sets

corresponds to the disjunction of the Boolean formulae encoding these two sets). In the basic cases

(i.e., when ϕ is an atomic proposition (line 1) and has Boolean connectives: negation and disjunction

(lines 2 and 3), the algorithm directly returns the Boolean formulae encoding the set �ϕ� of states

satisfying these cases. In lines 4 to 6, the algorithm calls the standard procedures SMCE©(ϕ1,M),
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Algorithm 2 SMC(ϕ,M): the set �ϕ� satisfying the CTL formula ϕ

1: ϕ is an atomic formula: return V (ϕ),

2: ϕ is ¬ϕ1: return S\SMC(ϕ1,M),

3: ϕ is ϕ1 ∨ ϕ2: return SMC(ϕ1,M) ∪ SMC(ϕ2,M),

4: ϕ is E © ϕ1: return SMCE©(ϕ1,M),

5: ϕ is E(ϕ1 U ϕ2): return SMCEU (ϕ1, ϕ2,M),

6: ϕ is E�ϕ1: return SMCE�(ϕ1,M).

SMCEU (ϕ1, ϕ2,M) and SMCE�(ϕ1,M) introduced in [78] to compute Boolean formulae encoding

the set �ϕ� of states satisfying the following forms of ϕ: E © ϕ1, E(ϕ1Uϕ2) and E�ϕ1. All the

computed Boolean formulae can then be easily represented using OBBDs [21]. Notice that Algorithm

2 provides a methodology to build the OBDD corresponding to the set �ϕ� in which a formula ϕ

holds in a given model M .

2.3.3 Model Checking Tools

The work of Clarke, Emerson, and Sifakis continues to be central to the success of this research area.

Their work over the years has led to the creation of new verification algorithms and tools. A huge

effort, performed by both academic and industrial teams, has been, and is being, devoted to the

development of model checking tools (aka model checkers), which can verify larger models and deal

with a wide variety of extended frameworks. Currently, there are tremendous tools developed to

serve different purposes. In this section, we briefly summarize four tools and their capabilities along

with their specification languages. The tools reviewed below have been employed by peer research

efforts to verify commitment-based protocols and thereby they have a relevant role with the material

we shall present in the next chapter.

A) SPIN

The model checker SPIN (Simple Promela INterpreter) is one of the most used model checkers. It was

originally developed in the early of 1980s at Bell Labs. SPIN has been available to the general public

since 1991, and it has been continually developed since then. Recall that the theoretical foundation of

SPIN for the verification is based on the automata-theoretic approach. So, SPIN employs the explicit

state model checking technique to do this automata-based verification. A general introduction to the

tool can be found in [74], while the theoretical foundations and a detailed user manual are presented

in the book [75]. The main characteristics of SPIN are:
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− It is a model checker for LTL.

− It is mainly aimed at efficient verification of protocols and software rather than hardware

verification. SPIN uses the programming language PROMELA (PROcess MEta LAnguage)

as its input language, which allows nondeterminism behaviors that reflects this intended use.

− It uses C language to implement an automata-based algorithm for model checking.

− It adopts various optimization techniques, such as on-the-fly and partial order reduction to

reduce the state explosion problem.

− It provides a graphical user interface (Xspin) developed using Tcl/Tk to the model checker

together with an interactive simulator.

The structure of a PROMELA program includes a declaration section for message types, channel

types, and global variables of various types. Notice that each command in PROMELA can be seen

as a guarded command. Various processes may be defined in a PROMELA program; each process

is defined by a name and a list of accepted arguments. The behavior of each process is defined in

its body, and each process may include a list of local variables. Processes communicate using global

variables and channels. Processes are initially created in the init section of the program. They are

executed concurrently and can be created by other processes. Since version 4, embedded C code

can be included into PROMELA models. Thus, it is possible to verify the implementation (in the

C language) of a system directly. A limitation of SPIN is that time and memory cost is still very

high when it verifies large systems.

B) CWB-NC

The model checker CWB-NC (Concurrency WorkBench of the New Century, it is previously called

ConcurrencyWorkbench of North Carolina) is based onAlternating Büchi Tableau Automata (ABTA),

which are a variation of alternating tree automata, such as deterministic and nondeterministic Büchi

automata. The original release was occurred in the middle of the 1990s at Stony Brook. The tool

and a detailed user manual can be download from http://www.cs.sunysb.edu/~cwb/DOWNLOADS/

CWB/current/user.ps. The main characteristics of CWB-NC are:

− It is a model checker for a variety of temporal logics (e.g., CTL, CTL∗, and GCTL∗) and

modal µ-calculus.

− It supports several process algebra languages for specifying the system behavior, such as Mil-

ner’s Calculus of Communicating Systems (CCS), version of CCS with prioritized actions
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(PCCS), version of CCS with times actions (TCCS), Hoare’s Communicating Sequential Pro-

cesses (CSP), and basic Lotos (LOTOS).

− It implements an automata-based algorithm for model checking.

− It adopts an on-the-fly technique so that the algorithm searches only the part of the state

space that needs to be explored to prove or disprove a certain formula. The state space is

never constructed a priori.

− It has a text-based user interface, which offers a set of Unix-like command for invoking various

analysis routines offered by the tool.

− It provides a general reachability analysis capability.

C) NuSMV

NuSMV [30] is a symbolic model checker written in ANSI C language. It is a reengineering, reimple-

mentation and extension of SMV (Symbolic Model Verifier), the very first model checker developed

at the beginning of the 1990s in CMU to implement the BDD-based symbolic model checking tech-

niques. NuSMV has been designed to be an open architecture for model checking, which can be

reliably used for the verification of industrial designs [30], as a core for custom verification tools, as

a testbed for formal verification techniques, and applied to other research areas. It is a well struc-

tured, open and flexible platform for model checking. The different components and functionalities

of NuSMV have been isolated and separated in modules. Interfaces between modules have been pro-

vided. This reduces the effort needed to extend NuSMV. The main novelty in the current version of

NuSMV is the integration of model checking techniques based on propositional satisfiability (SAT),

used in bounded model checking, and BDD.

NuSMV is able to process files written in an extension of the SMV language. In this input

language, it is possible to describe finite state machines by means of declaration and instantiation

mechanisms for modules and processes, corresponding to synchronous and asynchronous composi-

tion and to express a set of requirements in CTL and LTL. NuSMV can work in batch mode or

interactively, with a textual interaction shell. A NuSMV module is identified by a string, it may

accept input parameters, and it may include local variables. The initial value of the module and

the evolution of the variables are also defined. It is possible to introduce a derived variable, i.e., a

variable which is not part of the state space, but whose value may be derived from other variables.

The behavior of the system is described in the mandatory MODULE main. Finally, formulae to be
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checked are provided at the end of the main module. Further information on NuSMV can be found

at http://nusmv.irst.itc.it/.

D) MCMAS

MCMAS (Model Checker for Multi-Agent Systems) [92] is an OBDD-based symbolic model checker

developed particulary for multi-agent systems at the end of 2005s. It can check a variety of properties

specified as CTL formulae, epistemic, correctness and cooperation modalities that are distinctive of

agents and multi-agent systems. MCMAS is available for download from http://www-lai.doc.

ic.ac.uk/mcmas/download.html. Interpreted systems provide the formal semantics for MCMAS

programs. The dedicated programming language used for describing multi-agent systems in MCMAS

is ISPL (Interpreted Systems Programming Language). MCMAS has been implemented in the C++

language. The verification algorithm is presented in [111]. The main components and their structure

of implementation are summarized with the following order:

− The input to the model checker is an ISPL file, which is parsed using standard tools. The

main parameters of an ISPL file are stored in temporary lists. These parameters are:

1. Agents’ declarations to define a list of ISPL agents.

2. Evaluation function is defined as Evaluation <proposition> if <condition on states>

end Evaluationwhere<proposition> is an ISPL proposition and<condition on states>

is a truth condition that defines a set of global states for atomic propositions.

3. Initial states that define the set of initial state conditions.

4. List of formulae that need to be verified.

− The lists are traversed to build the OBDDs for the verification algorithm. OBDDs are created

and manipulated using the CUDD library. The set of reachable states is also computed.

− The formulae to be checked are read from the ISPL file and parsed appropriately.

− Verification is performed by running the algorithm. An OBDD representing the set of states

in which a formula holds is computed.

− The OBDD for the set of initial states is then compared to the OBDD corresponding to each

formula. In case of an equivalence the tool reports a positive output, otherwise a negative

output is produced.
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2.4 Discussion

Each application of temporal logic to verification can be investigated and analyzed by answering

the following questions: how is the program described? how is the desired property expressed? and

what is the model checking complexity? Expressiveness and efficiency are important criteria for

answering these questions.

Expressiveness means what properties can and cannot be captured by a temporal logic. Two

types of specifications were originally recognized [88]: safety and liveness properties. Manna and

Pnueli [100] have extended the liveness properties to give a standard classification of LTL formulae

in an appropriate way, such as guarantee, response, persistence, reactivity and fairness. The fairness

property is divided into unconditional, weak and strong fairness. In Figure 3, we showed that LTL

and CTL cannot be compared in expressiveness, here we present some examples supporting such

a fact. The safety properties have equivalent CTL formulae. For instance, from mutual exclusion

problem, the two processes will never be in their critical regions at the same time. This requirement

can be seen as safety property and expressed as: A�(¬C1 ∨ ¬C2) where Ci is the critical region

of the process i. Notably, this formula is CTL-formula, which has an equivalent LTL-formula:

�(¬C1 ∨ ¬C2). However, the guarantee property expressed as A♦(p ∧ ©p) is not expressible in

CTL [58]. On the other hand, every CTL formula that includes an existential path quantifier E

cannot be expressed in LTL. For example, the formula A�E♦p, which means that from all states

in the model it is possible to reach a state in which p holds, has not an equivalent LTL formula.

Finally, the conjunctions or disjunctions of LTL and CTL formulae can construct a CTL∗ formula

(e.g., A♦�p ∧ A♦A�q), which is not CTL and LTL.

When specifying properties that can be employed by a model checker, many aspects must be

considered. First, the capabilities of the temporal logic that we use. For example, if we can express a

property in both LTL and CTL, then LTL is preferable because LTL formulae are more succinct (or

compact) than CTL. Also, LTL does not require unnecessary path quantifiers before all the temporal

modalities. However, an argument against the use of LTL is that its model checking is exponential

in the length of the formula (cf. Table 2). Unfortunately, finding an equivalent CTL formula for

the LTL formula is not a good solution. For example, the LTL formula A(�p0 ∨�p1) has a longer

equivalent CTL formula A�(p0∨A�p1)∧A�(p1∨A�p0). For n disjuncts, A(�p0∨�p1∨· · ·∨�pn),

the translation into CTL is exponential in n [58]. Notice that the formula A(�p0 ∨ �p1) is also a

CTL∗ one. With these results, it is arguable that expressiveness in model checking is the most

fundamental characteristic [56].
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Efficiency is mainly related to the complexity of model checking algorithm for a logic. In the

complexity theory, an algorithm that has a lower complexity in actual use is preferred to one with

high complexity. Table 2 summarizes complexity results for the problems of model checking LTL,

CTL and CTL∗. It is worth noticing that the space complexity results in this table are analyzed

with regard to concurrent systems with n processes. From the table, we can observe that: (1) a more

expressive logic such as CTL∗ is less efficient than CTL; and (2) a more compact logic such as LTL is

probably to be more convenient (i.e., its properties can be easily and naturally expressed) even if it

is less efficient. Thus, it requires some experiences in order to reach a good tradeoff. Moreover, LTL

provides the advantage of simplicity, but in terms of significantly less expressiveness than CTL∗.

The greater expressiveness of fully branching-time temporal logic may get greater computational

complexity.

Table 2: The complexity of model checking CTL∗, CTL and LTL.
Complexity CTL∗ CTL LTL

Space PSPACE-complete PSPACE-complete PSPACE-complete
[32, 86, 132] [86] [32, 115, 132]

Time Exponential in the size Linear in both the Exponential in the size
of the formula and linear length of the formula of the formula and linear
in the size of the model and model [31, 32] in the size of the model
[33, 115] [33, 115] [89, 115, 141]

In this thesis, we shall investigate how agent communication modeled by social commitments is

formalized as temporal modalities in an expressive and succinct logic, ACTL∗c, in a convenience

manner (cf. Chapter 4). We also will investigate how to address the open issue of model checking

commitments and commitment-based protocols using an effective and efficient tool, the CWB-NC

model checker (cf. Chapter 4). As we mentioned, a model checking approach has been a very active

field of research for the last three decades because of its important applications in verification. Once

we have these experiences, we proceed to study and compare different techniques (automat-based

and OBDDs-based) to check commitments and commitment-based protocols to identify the suitable

one. We also study some theoretical results, such as axioms of commitments, and complexity analysis

of model checking commitments: time and space. Before that in Chapter 3, we assess the state of

the art in commitment logics and specification languages of commitment-based protocols in order

to identify the current limitations, which will be addressed in the proposed approach.
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Chapter 3

Computational Logics of Social

Commitments

In this chapter, we go through some prominent and predominate proposals to explore the state

of the art on how temporal logics can be devoted to define a formal semantics for ACL messages

in terms of social commitments and related concepts. We explain each proposal and point out

if and how it meets six crucial criteria, four of them introduced by Singh [125] to have a well-

defined semantics for ACL messages. Far from deciding the best proposal, our aim is to present

the advantages (strengths) and limitations of those proposals to designers and developers, so that

they can make the best choice with regard to their needs. We also explore and evaluate current

specification languages and different verification techniques that have been discussed within those

proposals to specify and verify commitment-based protocols. We finally investigate logical languages

of actions advocated to specify, model and execute commitment-based protocols in other contributed

proposals.

3.1 Introduction

Having seen that agent communication languages (ACLs) are fundamental mechanisms that enable

agents in MASs to interact with each other to satisfy their individual and social goals in a cooper-

ative and competitive manner. Social approaches [123, 125, 13, 16] are advocated to overcome the

shortcomings of ACL semantics defined using mental approaches. Commitments are employed in

some of these social approaches, which successfully provide a powerful representation for modeling
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complex multi-agent interactions [125, 160, 98, 11]. In Longman Dictionary, commitment is:

− a promise to do something or to behave in a particular way ; or

− something that you have promised you will do or that you have to do.

In such a definition, commitment imposes loyalty, dedication or devotion towards a person within

a social community. In broad terms, commitments are social, public, objective and help represent

the states of affairs at different instants in the course of multi-agent interactions. Conventionally,

social commitment is an engagement made by an agent, called the debtor, and directed towards

another agent, called the creditor, to bring about some condition [124]. While this concept reflects

the intuition that the debtor is committed to do something for the creditor, a commitment may be

directed toward one agent but the beneficiary might be another agent. For example, after a customer

sends the payment for a good to a merchant, a shipper then commits to the merchant to deliver the

good to the customer. It is obvious that the shipper is the debtor and the merchant is the creditor,

while the beneficiary is the recipient of the good, i.e., the customer.

The notion of social commitments provides many benefits for agent communication. First, the

main idea of social semantics is to solely define public aspects of ACL messages for further reference

from high-level abstractions without entirely reasoning about agent’s mental states and relinquishing

part of agents autonomy. To clarify this idea, commitments help us accommodate the tradeoffs

between autonomy and interdependency [29]. We would like to model our interacting agents as

being autonomous with regard to each other. On the other hand, when the agents are completely

autonomous, we then will not have an effective system of agents, but we will have only a number

of agents that live in the same environment. Second, in open systems, autonomous agents must be

able to cooperate and compete with each other. If there is no interdependence, the agents will be

approximately useless. As a result, commitments provide a natural way to characterize the degrees

of autonomy and interdependence without getting bogged down in low-level details. Interestingly,

all social states of the MAS that contain social facts such as commitments are global, accessible

and shared by all of the agents so that: (1) the satisfiability (soundness) [63] of agents’ behaviors

can be easily monitored and verified [134, 135, 140]; and (2) the agent interoperability between

heterogeneous systems can be achieved [27, 5]. Finally, an important aspect of social commitments

is that they can be manipulated by means of a set of actions called commitment actions, such as

Create, Discharge and Cancel [124, 143]. More precisely, such actions capture the dynamic behavior

of committing agents.
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Current proposals considered defining the formal semantics of ACL messages in terms of social

commitments by means of either temporal logics [13, 16, 17, 48, 96, 99, 125], which we call “logics

of commitments”; or logics of actions [24, 26, 41, 159, 160]. Through this thesis, we call these two

types of logics, computational logics of commitments. The main advantages of using computational

logics can be summarized as follows:

− The notation has a well-defined, and usually well understood, semantics. In other terms,

formal semantics conventionally lays down the foundation for a neat, concise and unambiguous

meaning of agent messages.

− They provide a high-level, yet concise, form of description consisting of a small range of

powerful constructs.

− They allow us to model not only static aspects of an agent state but also the dynamic behavior

of agents.

− There is a uniformity of style between the description of the agent behavior and the required

properties.

− They facilitate and improve the applicability of the proposed semantics.

Defining a clear and suitable semantics for ACL messages is not enough, we also need to use multi-

agent interaction protocols to regulate and coordinate interactive behaviors among automatous and

heterogeneous agents in conversations. This thesis adopts commitment-based protocols as they

overcome the main limitations of FIPA-ACL protocols and traditional protocols modeled in purely

operational terms such as through finite state machines or Petri nets that describe ordering and

occurrence constraints on the exchanged messages, but not the meaning of such messages. The

typical use of commitments in commitment-based protocols involves introducing the syntax for the

exchanged messages along with a formalization of the meaning of those messages expressed in terms

of the commitments of participants. Having such a declarative basis not only simplifies the modeling

of protocols—without over-constraints on the communications [159, 160]—being designed or ana-

lyzed, but also provides a good basis for flexible specifications that can be searched for correctness

[11, 48, 50, 160, 157]. Internally, in commitment-based protocols, agents will not reason about legal

sequences but about concrete commitment states and possible paths1 to reach them [158].

The motivation however is no longer just formally representing and reasoning about social com-

mitments and commitment actions, but becomes the application of various verification techniques,

such as full-automatic model checking, semi-automatic verification, local testing, static verification,

1A path is an infinite sequence of system’s states.
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monitoring, etc. in order to respectively: (1) verify the compliance of commitment-based protocols

with given specifications at design time; (2) identify the compliant and non-compliant agents at

the end of the commitment-based protocol at run time; or (3) track the evolution of commitment

statuses at run time. This verification is significant because there is a possibility that an agent

may fail to comply with its commitments as it is supposed to. More precisely, it is unrealistic—in

open systems (e.g., e-business, e-negotiation) or in any application wherein interacting agents are

implemented in different programming languages and having competing objectives—to assume that

all autonomous agents will behave (or act) according to the given protocols as they may not behave

as they are committed to or at least not wantonly violate or cancel commitments. Furthermore, a

formal verification technique, such as model checking, is necessary to help protocol designers either

detect unwanted and bad agents’ behaviors to eliminate them or enforce desirable agents’ behaviors

so that such protocols comply with given specifications. Thus, ensuring that only the desirable

interactions occur is one of the most challenging aspects of multi-agent system analysis and design.

The motivation and organization of this chapter are to go through prominent and predominate

proposals in the literature to explore the state of the art on how temporal logics can be devoted to

define a formal semantics for ACL messages in terms of social commitments and associated actions.

In our methodology to achieve this objective, we first begin by exploring the historical development

of commitments from philosophy, distributed systems and artificial intelligence (AI) perspectives up

to the time it gets landed on MASs, including as a special case agent communication (Section 3.2).

Second, in Sections 3.3, 3.4 and 3.5, we explore and evaluate current proposals that respectively

advocate LTL, CTL and CTL∗ not only to represent and reason about commitments and associated

actions, but also to specify commitment-based protocols. We specifically explain each proposal and

point out if and how it meets six crucial criteria, presented in Section 3.2. We also aim at exploring

and evaluating different techniques proposed to verify the correctness of commitment-based protocol

specifications introduced in those proposals. The point is not to declare one proposal as a winner,

but to highlight the advantages (strengths) and limitations of those proposals to designers and

developers, so that they can make the best choice with regard to their needs. In Section 3.6, we

proceed to succinctly present logical languages of actions such as event calculus, C+ and MAD-P,

which have been used to specify, model and execute commitment-based protocols. In Section 3.7,

we finally conclude by summarizing current limitations, which we will address in the next chapters.
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3.2 Historical Development of Commitments

In this section, we show that commitments in MASs and agent communication are different from

the ones having been discussed in various fields such as philosophy, AI and distributed systems.

In philosophy, the notion of commitment to a proposition goes back to at least the philosopher Ham-

blin [73]. In particular, Hamblin introduced the concept of commitment store as a public repository

for storing all commitments that have been made by each participant in the dialogue. Hamblin’s

notion has been further developed in contributions to dialogue games that cater a constructive

proof-theory for propositions in a classical logic by the philosophers Walton and Krabbe [148]. In

Walton and Krabbe’s model, each dialogue game comprises of five basic components, one of them

is called commitment rules, which define the circumstances under which participants express their

commitments to propositions. These commitments reflect the idea that the debtors are accepting a

claim as an assertion about the truth of those propositions.

In the AI planning literature, Sacerdoti [113] advocated an approach called least commitment

planning. This commitment is a psychological one as it is a state of mind. A planner, an essential part

of a single agent, creates plans that enable deferring decisions as only the partial ordering decisions

are recorded. A key aspect of least commitment strategy is keeping the track of past decisions and

their reasons. For example, if you purchase plane tickets (to satisfy the goal of boarding the plane),

you should be sure to take them to the airport. If another goal (say, having your hands free to open

the taxi door) causes you to drop the tickets, you should be sure to pick them up again. That is a

fine notion for a single agent. When least commitments are canceled or stop work for any reasons,

an agent is useless (as it is not capable of carrying out any decision).

In distributed systems, mutual commit protocols ensuring that a number of distributed processes

agree on some important action are widely acknowledged. The most famous of these protocols is

called two-phase commit (2PC) [69]. 2PC uses a single coordinator to reach agreement. In the

commit-request phase, each process votes Yes or No to perform some required changes. In the

commit-outcome phase, these votes are collected by the coordinator. If all processes voted Yes,

the coordinator announces a Yes decision. Otherwise a No decision is announced. This represents

some kind of commitment as the processes will behave according to the decision of the coordinator.

Representing a commitment as a flag inside each process is quite simple, but it is rigid, irrevocable

and suitable only for a single agent. Jennings [80] presented commitments as a fundamental notion

for efficient coordination in distributed systems. He also used the notion of conventions to monitor

the commitments and to define the conditions under which commitments should be reassessed and
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then to specify the associated actions which should be undertaken in such situations. The author

further reformulates different models of coordination in terms of commitments that provide a high-

level goal for which the agent must find a suitable course of action. In this work, commitments are

modeled as a mental notion, specifically as agent’s intentions, purely for the purposes of coordination.

In the early of 1990s, the notion of commitments was used in Belief-Desire-Intention (BDI) framework

to understand agent’s intentions by considering the relationship between agent’s persistent goals and

actions as stated in the rational interaction theory [34]. This approach is well suited to represent

a level of joint intentions (equally mutual beliefs) in individual agents’ architecture in order to

continually use the mental notions. Suppose p is a proposition. A mutual belief notion between

two agents means that each agent believes p and each agent believes that the other agent believes

p in a nested form. However, satisfying this notion is more difficult in practical applications. Such

a limitation (i.e., modeling commitments as a mental notion) incentives Singh [120] to differentiate

between two kinds of commitments: psychological commitment (i.e., a commitment of one agent to

itself) as it is exploited in AI and social commitment (i.e., a commitment of one agent to another to

do certain actions). The author concluded with the psychological commitment is a very restricted

form of commitments as it provides unidirectional relationship and once committed to a certain

belief or intention, an agent cannot reconsider it, even it gets some positive new evidence or even the

commitment contradicts its goal [121]. In order to overcome this problem, the author argued that

mutual beliefs are extremely fragile and hard to establish. Though psychological commitments and

social commitments are different notions, if the agents are not psychologically committed to their

social commitments, they would fail to act as a system as a whole.

Singh’s social notion of commitments has been further investigated by Castelfranchi [22] to un-

derstand the social interactions among members of groups and organizations by introducing another

agent, called witness agent, in the context of social commitment. The witness agent certifies the

creation of commitment and plays a very crucial role in identifying cheater agents. Castelfranchi

forcefully argued that social relationships are irreducible to the mental attitudes. The author only

focused on clarifying some concepts to be able to propose a descriptive ontology to the theory of

organizations without considering the computational aspects of social commitments.

Castelfranchi’s social and organizational metaphors provide a more straightforward way to think

of MASs in terms of commitments. Singh [122] started focusing solely on social commitment-

based MAS approach to tackle distributed artificial intelligence (DAI) problems in heterogeneous

and open information environments, called cooperative information systems. He found out that

the database approach for solving DAI problems is too hard-wired and restrictive while the agent
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approach gives flexible solutions. The author specifically gave the definition of commitments using

the approach called spheres of commitments, which incorporates social policies to handle the creation,

satisfaction and cancelation actions of commitments and relates commitments to organizational

structures of MAS, in which agents can only acquire commitments after adopting their role through

MAS execution.

Singh [123] was the first to clearly emphasize the need for defining the semantics for ACLs in

terms of social notions. The author pointed out the problem that none of the current ACLs (e.g.,

KQML) presupposes heterogeneous agents can communicate with each other not because of the lack

of practice towards building a formal and public semantics that promotes social agency, but because

the current practice is based solely upon mental agency such as beliefs and intentions, which failed

to make agents autonomous and heterogeneous. He also argued that reading agents’ minds is core

to the mental approach, which is not the right direction to deal with the problem. The author then

gave many design advantages of following the social approach over the mental one in terms of the

meaning of ACL messages and agents construction in the MAS. Singh proceeded to show that the

meaning of exchanged messages should be characterized by the following seven communicative acts,

namely assertives, directives, commissives, permissives, prohibitives, declaratives, and expressives.

Singh [124] refined his seminal work introduced in [122] in order to unify normative concepts and

commitments and hence coming up with a rich descriptive ontology of commitments that technically

generalizes Castelfranchi’s social notion of groups [22]. In this descriptive ontology, the relationship

between commitments and norms is given by making use of “meta-commitments”—a commitment

about a commitment—to create a community and its norms. Singh denoted social commitment c by

a 4-argument relation involving a proposition p and three agents (i, j, and G): C(i, j, G, p), which

means that i is committed towards j in the organizational context G—which maybe an agent or a

system of agents such as eBay—to satisfy the proposition p. The agent i that actively makes the

social commitment is called the committer (or debtor), the agent j to which the commitment is made

is called the committee (or creditor), and p is called the content of the commitment. The context

G includes the norms that apply to the group of agents wherein the commitment is established. Its

main relational is to resolve disputes between the debtor and creditor, so unacceptable behaviors of

the debtor and creditor can be managed. Recall that the debtor and creditor of the commitment

are members of the social context. To make the analysis simpler, such a context has been removed

from the notation of commitments in later proposals coming up from Singh and other researchers

(a commitment c is denoted C(i, j, p)). Singh elaborated other three actions, which are in turn used

with the actions defined in [122] to manipulate commitments. As we understood, such manipulations
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provide a principle way to capture the changes in the social state of commitments. El Menshawy

et al. [48] classified those actions into: two and three party actions. The former ones need only

two agents to be performed and the latter ones need an intermediate agent to be completed. In the

following, we present the intended meaning of those actions and who has the right to perform them.

Two-party actions:

− Create(i, c), performed by the debtor i to instantiate a new commitment c in the system and

make the commitment active.

− Discharge(i, c), when the commitment content is true, the commitment c is satisfied.

− Cancel(i, c), performed by the debtor i to revoke its commitment c which is no longer active.

− Release(j, c), performed by the creditor j to free the debtor from carrying out its commitment

c which is no longer active.

Three-party actions:

− Delegate(i, k, c), performed by the debtor i to shift its role to another debtor k, which creates

a new commitment c′ = C(k, j, p) in order to satisfy the current commitment on behalf of i.

− Assign(j, k, c), performed by the present creditor j to transfer the current commitment to

another creditor k, which becomes the creditor of a new commitment c′ = C(i, k, p).

In Singh’s approach [124], commitments and commitment actions are modeled respectively as ab-

stract objects with names and predicates. For example, Cancel(i, c) denotes a predicate-proposition

variable (i.e., a term in the predicate logic), which is true precisely when agent i cancels its commit-

ment c. However, there is no formal semantics for commitments.

Incorporating the notion of commitments into agent communication and advocating it to define

the semantics for ACL messages was first introduced in the early of 2000s by Singh [125]. We return

to Singh’s approach in Section 3.4 along with a discussion of proposals that use CTL to define a

formal semantics for ACL messages. A key strong point in Singh’s approach [125] is the introduction

of four crucial criteria to have a well-defined semantics for ACL messages. In this paper, we explore

and evaluate how current proposals in this area of research are handling feature dimensions of those

criteria. Our motivation is to highlight the advantages and limitations of those proposals (where they

exist). These limitations (or disadvantages) should not be considered fatal, but only a consideration

that must be taken. The criteria are:

1. Formal. The language must be formal (i.e., there exists a formal syntax and semantics) to

eliminate the possibility of ambiguity in the meaning of ACL messages and allow agents to

reason about them.
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2. Declarative. The semantics should focus on what the message means instead of how the

message is exchanged. Logics and reasoning techniques are central to this declarative aspect.

Also, declarative semantics would have the benefit that the resulting language is not only easy

to specify, model and implement, but also focusing on the aims of the interactions, which thus

avoids designing unnecessarily over-constrained interaction patterns.

3. Meaningful. The semantics should focus on the content and meaning of messages, not on

their representation as sequences of tokens.

4. Verifiable. We can check if agents are acting according to the given semantics, which implies

that the semantics is based on computational models.

Those criteria are agent communication driven. Because our focus is on commitments, we consider

two additional commitment-oriented criteria: (1) Commitment Modeling (i.e., how the com-

mitment is modeled as, for example, proposition, predicate, fluent, temporal modality); and (2)

Commitment Semantics, the motivation behind this criterion is to check whether or not there

exists a formal semantics for commitments.

3.3 LTL and Commitment-based Agent Communication

In this section, LTL modalities are extended with propositional dynamic logic, new operators such as

linear implication and linear operators for capabilities and resources, or past modality. The resulting

logical language caters a natural mechanism to: (1) specify commitment-based protocols; (2) define

protocol actions and their effects; and (3) express the content of commitments. LTL modalities are

also enriched with modalities to represent and reason about commitments. Furthermore, LTL is

used to express business properties and formalize regulative protocol specifications.

3.3.1 Giordano and Colleagues

Giordano et al. [66, 67] developed a logical framework based on Dynamic Linear Time Tempo-

ral Logic (DLTL), an extension of LTL with propositional dynamic logic (PDL) in which the until

operator is indexed with the regular expressions in PDL, to specify and verify commitment-based

protocols. In this framework, the protocol describes the meaning of communicative actions in terms

of their effects on the system’s social state, including commitments and some facts related to the

protocol’s execution. Such effects are expressed by means of “action laws”. The protocol specifies

a set of “precondition laws”, which define the execution of actions, a set of “causal laws” capturing
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the dependencies among social states, and a set of temporal constraints, which provide restrictions

on the possible correct behaviors of the protocol. In this approach, commitments are modeled as

fluents, which are true or false in a state and may change their truth values with the execution of

communicative actions [119]. For instance, the fluent C(Pn, i, j, α) means that agent i is committed

to agent j to execute action α in a protocol Pn. However, the approach does not introduce con-

ditional commitments (i.e., commitments that become active provided some condition holds) and

explicit actions on commitments. Instead, the authors introduced a causal law to define the opera-

tional semantics of discharge action. The causal law for discharging the commitment C(Pn, i, j, α)

is defined by indicating that in the next state (s), the fluent representing the commitment becomes

false whenever α holds in that state (i.e. s). This would be expressed as follows:

�(©α ⊃ ©¬C(Pn, i, j, α))

In the verification part, the authors discussed different types of verification problems depending

on whether the verification process is carried out at design time such as verifying protocol prop-

erties or at run time such as verifying agents compliance with a protocol. In particular, they

informally translate DLTL formulae into standard LTL formulae, and commitment-based protocol

into PROMELA (the input language of the SPIN model checker [74]) wherein commitments are

represented as PROMELA processes and protocol actions are represented as PROMELA message

channels, which are communicating interleaved processes. By informally, we mean that the transla-

tion rules are not defined in a systematic and formal way so the soundness of the mapping from DLTL

formulae into LTL formulae can be proved. The semantics of this approach is formal, declarative,

meaningful and verifiable using model checking. However, by modeling commitments as fluents, we

will have the issue discussed in the following remark. Further, the use of the SPIN model checker

has a limitation discussed in Remark 2

Remark 1 The fluents (or atomic propositions) are not suitable for representing and reasoning

about commitments and their actions as they do not reflect their intrinsic meaning and focus only

on the reference (i.e., truth values). So, when using fluents to model commitments, which are treated

as propositions, no formal semantics is given to commitments.

Remark 2 Because of the state explosion problem of automata-based model checking techniques

[31, 33], the SPIN model checker is usually not applicable in open systems (e.g., protocols) having a

large state space.
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3.3.2 Pham and Colleagues

Pham and Harland [107] introduced an approach that extends LTL with linear operators that model

resources, actions, and capabilities of interacting agents, the resulting logical language is called TLL.

This language is then used to flexibly specify commitment-based protocols from the internal view

of participating agents in terms of a set of agents’ capabilities, resources and pre-commitments.

Those pre-commitments can be negotiated among each other using inference rules and upon being

accepted, will form conditional commitments. The authors used negative formulae, which can be

regarded as formulae in demand and linear implication expressing the casual relationship in the

form of reasoning rules to represent and reason about unconditional and conditional commitments

respectively. When the conditions are satisfied, the linear implication will ensure that unconditional

commitments become effective. An unconditional commitment is fulfilled whenever the agent suc-

cessfully carries out the actions required by its commitment. This means the corresponding positive

formula—which can be regarded as formula in supply—in TLL is derived. For example, let an item

(resource) “a” located at “@” and owned by a merchant Mer be denoted by itema@Mer and a com-

mitment of Mer to deliver that item be represented in a negative formula as: itema@Mer⊥. Then,

the positive formula itema@Mer will fulfill the commitment itema@Mer⊥ and the two formulae are

automatically removed (i.e., the commitment is resolved):

itema@Mer ⊗ itema@Mer⊥ ⊢ ⊥

where ⊗ is a linear multiplicative conjunction and ⊢ is an inference relation. A commitment Com⊥

can be canceled, denoted by (Cond⊗Com)⊥ where the token Cond is simply generated by the agent’s

internal database when the agent tries to commit itself toward the commitment Com. As for the case

of fulfilling commitment, once Cond is generated, due to the inference rule Cond⊗(Cond⊗Com)⊥ ⊢

⊥, the commitment Com⊥ is removed and henceforth canceling the commitment of deriving Com.

Constructing protocols from the view of participating agents by making use of proof search and

putting the specification of commitments locally at the respective agents according to their roles

has an interesting advantage toward avoiding the mapping “from protocol actions to commitment

operations”. However, some issues are missing in this approach. The first one is syntactic: the

realm of commitment has only the debtor, which is not an effective representation as the two main

features of commitment representation are social and directive. The second one is in modeling

commitments as propositions, which waive formal semantics (cf. Remark 1). The third one is of

adopting the linear implication to obtain an unconditional commitment from the conditional one

when its condition is true. The linear implication “⊸” represents capabilities of agents in producing
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and consuming resources. Let p and q be agents’ resources, so p ⊸ q ensures that the condition

before p will be transformed into the condition after q in which p is removed after producing q. We

can think of the linear implication as the one dollar p is gone after using it to buy a chocolate bar

q. From our perspective, a linear implication functions as the material implication (p ⊃ q), which is

true when p is false, so we could have an unconditional commitment without satisfying its condition.

To evaluate the semantics of this approach, it meets the formal (in terms of introducing logic-based

approach to define the meaning of protocol actions via commitments) and meaningful criteria, but

it does not consider the verifiability issue. However, since protocols are specified in terms of what is

to be achieved rather than how the agents should act, the proposed semantics meets the declarative

criterion.

3.3.3 Singh and Colleagues

Desai et al. [39] proposed an interesting way to model business protocols in terms of social com-

mitments and their actions, which reduce the emphasis on the rigid sequence of actions that par-

ticipating agents must take and facilitate loose coupling among these agents. They also used a

particular language called OWL-P introduced in [40] to model business protocols. OWL-P supports

the specification and composition constructs to build standard business protocols and incorporates

the standard Web ontology language (OWL) for modeling well-defined business processes. The

authors argued that the correct composition of business processes can be expressed via individual

protocols and their composition constraints and thereby enabling the verification of a wide range of

composed processes. To verify properties geared toward the composition of business protocols, the

authors informally translated protocols into the PROMELA language, which allows modeling the

composition of protocols in terms of a set of processes and analyzing the resulting model with the

SPIN model checker. In this technique, as in [67], commitments and their actions are modeled in

terms of OWL-P rules, which are mapped respectively into PROMELA processes without capturing

all features of commitments such as evaluating the content of commitment at the proper time and

PROMELA messages. The checked properties are classified into general properties such as deadlock

and livelock freedom and protocol-specific properties that check a specific behavior of participating

agents. For example, it is important to ensure that after the buyer sends the payment, the shipper

should eventually ship the item represented as shipper shipOrder in which the received item is the

same as the one agreed before. This protocol-specific property would be expressed as follows:

�
(
gateway authOk ⊃ ♦(shipper shipOrder∧buyer acceptQuote itemID = receiver shipment item)

)
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In this formula, when the payment is received, the proposition gateway authOk holds. It is clear

that this semantics is formal, declarative, meaningful and verifiable. However, as far as commitment

is considered, no formal semantics is given because commitments are simply considered as simple

processes in the PROMELA language. In fact, a formal LTL-based framework is proposed to solely

express protocol properties. Moreover, three missing points in this approach are: (1) a formal model

for protocols; (2) a formal translation procedure; and (3) a formal semantics for commitment actions

themselves.

Singh [127] delineated the model-theoretic semantics for social commitments by postulating some

rules that can be used as ways to reason about commitments and solely detach and discharge actions.

A commitment becomes detached when its antecedent is true. A commitment that is detached but

fails to be discharged indicates a violation. This model particulary extends LTL with modalities

for two kinds of commitments: practical commitments, which are about what is to be done, and

dialectical commitments, which are about what holds. In this model, the semantics is interpreted

using Segerberg’s idea, which maps “each world into a set of set of worlds”. For instance, to define

the semantics of dialectical commitments, the author introduced a function

D : T×A×A× ℘(T) → ℘(℘(T))

that produces a set of propositions for each moment, an ordered pair of two agents and proposition

where T is a set of moments, A is a set of agents, and ℘(T) is the powerset of T. Each proposition is

a set of moments. This function yields a set where each member is a consequent proposition, which

captures what the debtor would be committed to if the antecedent is met. Thus, the semantics is

defined by computing the set of moments where the content holds �ϕ� and testing if those moments

are among the moments �τ� computed by D on the commitment antecedent τ :

M, s |= C(i, j, τ, ϕ) iff �ϕ� ∈ D(s, �τ�)

Notably, the author focused on identifying the logical terms between the antecedent and content

of commitment to avoid the problem of both the linear implication used in [107] and the “strict

implication” advocated in [125] to define the semantics of conditional commitments (cf. Section 3.4

for the problem of strict implication). When τ is true, the commitment with the consequent ϕ comes

into being, and when ϕ is true, the commitment is discharged and no longer active:

C(i, j, τ, ϕ) ∧ τ ⊃ C(i, j, ϕ)

ϕ ⊃ ¬C(i, j, ϕ)
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It is obvious that this semantics is formal, declarative and meaningful. However, how in practice the

function D is computed is not specified, which makes the possibility of implementing and applying

such an approach unclear [8]. As the semantics is not based on Kripke structures, verifying such a

semantics using model checking needs either defining an equivalent semantics using Kripke structures

or interpreted systems, or defining a completely new model checking approach for the extended logic

from scratch. The semantics of discharge action focusses upon checking whether the truth condition

of the commitment content holds or not, but we believe this should be a part of the semantics of

the commitment modality not the discharge one. The semantic rule of checking the truth value of

the commitment content should not be considered as a precondition but in fact as a postcondition

in the form of axiom, saying that when the commitment is discharged, then its content should be

true immediately. Throughout the paper, we refer to this problem as over-specification. Simply put,

such a problem occurs when some specifications are repeated in the semantics of different operators.

In our case, this problem happens because the truth condition of the commitment content is part of

not only the commitment operator, but also its discharge.

3.3.4 Baldoni and Colleagues

Baldoni et al. [5, 6, 7] observed that current specifications of commitment-based protocols do not

account for the regulative specifications and focus only on the constitutive specifications. The con-

stitutive specification defines the semantics of all agents’ actions in terms of how these actions affect

the social state while the regulative specification constraints the evolution of the social state. They

forcefully argued that the two specifications together define the meaning of the interaction (because

the only constraint by which we can say that an interaction governed by protocol is successful is that

all commitments are discharged), but it is well suited to distinguish between them. The authors

then introduced a framework to model commitment-based protocols that separates the constitutive

and regulative specifications. They also showed that the regulative specifications should be based

on commitments holding in social states not on the execution of actions in order to address the limi-

tations raised in previous proposals [66, 67] regarding the openness, interoperability, and modularity

of designing MASs, which in fact complicate the re-use of software agents’ actions. Furthermore, the

authors defined a first-class, declarative language, called 2CL, to represent the constraints among

commitments (i.e., only the regulative specifications). 2CL provides seven kinds of constraint rules,

such as correlation, co-existence, response, and before. Such constraint rules are defined by making

use of equivalent LTL temporal modalities. For instance, the constraint rule [6, 7]:
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C(i, p, assigned task(i , p)) −⊲• (refused task(p, i) ∨ C(p, i, solved task(p, i)))

means that a participant p cannot: (1) refuse the assigned task; nor (2) commit to solve it before

(−⊲•) the initiator i has taken a commitment to bring about assigning the task of interest to that

participant. In LTL, this constraint rule can be expressed as follows:

¬
(
¬C(i, p, assigned task(i , p) U

(
refused task(p, i) ∨ C(p, i, solved task(p, i))

))

Notice that the commitment of the participant and initiator are modeled as LTL atomic propositions.

This semantics is declarative and meaningful. When the protocol specification is used to define the

meaning of ACL messages, the semantics of this approach satisfies the formal criterion. However,

the approach waives the formal semantics for commitments as commitments are simply modeled by

propositions, which suffer from the same problem discussed in (Remark 1). Although the constraint

rules can be expressed directly by LTL modalities which opens the way to use different model checkers

to check, for example, whether or not agent behaviors comply with the protocol, the authors do not

consider the verification issues. To this end, separating the regulative rules from commitments has

been criticized recently by Marengo et al. [101]. In particular, Marengo et al. placed regulative

rules in the antecedents and consequences of commitments to identify the “duties and rights” of the

debtor and creditor.

3.3.5 Verdicchio and Colleagues

Spoletini and Verdicchio [134] developed an “automata-based monitoring module” to keep the inter-

actions of a single agent safe by checking whether the evolution of its commitments on the basis of

the events that have occurred in the system is compatible with some desirable properties defined in

agent’s specifications and expressed in LTL± (an extension of LTL with past and future modalities).

A commitment is modeled as a predicate with four components: an event e that has created the

commitment, a debtor i, a creditor j, and a content ϕ: Comm(e, i, j, ϕ). The content ϕ of a com-

mitment is represented by a first-order term and written ⌊ϕ⌋ in order to refer to the relevant LTL±

formula in which ⌊ϕ⌋ is called a “truth-preserving translation” of ϕ. The commitment is fulfilled

(resp. violated) when its content is true (resp. false):

Fulf (e, i, j, ϕ) � Comm(e, i, j, ϕ) ∧ ⌊ϕ⌋

Viol (e, i, j, ϕ) � Comm(e, i, j, ϕ) ∧ ¬⌊ϕ⌋

In the verification part, the monitoring module comprises of two components [135]: (1) “Word

Composer” responsible for collecting all data resulting from agent communication, keeping track
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of the relevant information, and then elaborating them to evaluate present and past time-stamped

words selected from these data; and (2) “Word Analyzer” that translates such words into Alternating

Modulo Counting Automata [133] functioning as a language acceptor. An unaccepted word means

that the state of the system does not satisfy the property expressed by the monitored formula, and

such violation is notified to the agent. This semantics meets formal (by using LTL±-based framework

to define the semantics for agent communication), declarative (where every communicative action is

seen as the modification of commitments binding the agent to the others) meaningful and verifiable

criteria. However, this approach lacks formal semantics for commitments because commitments are

modeled as predicates, which are reduced into propositions as stated by the authors as follows: “to

be able to write the properties to be monitored in the form of LTL± formulae, we need to translate

the first-order logic sentences into propositions”. The semantics of fulfillment and violation actions

suffer from the over-specification problem. The main limitation of pure predicate logic (or first-order

logic) [78] in modeling commitments is introduced in the following remark.

Remark 3 Consider the following example, a customer Cus commits to pay $100 to a merchant

Mer . A naive attempt to translate this declarative sentence into predicate logic might result in the

following: C(Cus ,Mer , pay $100). However, the commitment notion is referentially opaque—which

set up opaque contexts in which the standard substitution rules usually used in predicate logic [78]

cannot be applied. To illustrate this issue, let us assume that $100 is equivalent to e81 (for a

particular day), but we cannot simply say that the customer commits to the merchant to pay e81,

i.e., C(Cus ,Mer , pay e81) because maybe for Cus and Mer, e81 does not have the same value as

$100. Recall that semantic value of each term in predicate logic is dependent only on the denotations

of its arguments. The operators of predicate logic are said to be truth functional. On the other hand,

commitments are not truth functional. Thus, what is meant by referentially opacity is “substituting

equivalents into opaque context is not going to preserve meaning” as Wooldridge has eloquently

argued in [153].

By Remark 3, the ‘sense’ of the formula having opaque context is needed along with its truth

value. In the literature of agent communication semantics, there are few proposals that have been

introduced to address the limitation of pure predicate logic. For instance, Colombetti [35] proposed

an Extended First-Order Modal (EFOM) language to represent and reason about commitments. In

particular, the author introduced a new set of basic speech-act based ACL, which is named Albatross

(agent language based on a treatment of social semantics). This ACL is based on the social notion

of commitments. The semantics of the main elements of Albatross is based on the EFOM language.
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Concretely, the semantics of commitment modality is defined using a certain type of accessibility

relation: fc : Daction ×Dagent ×Dagent × S → 22
S

, which produces a family set of states for each

state, and a typed domain of individual sorts of action and a pair of two agents. The semantics is

defined by computing the set ||ϕ|| of states satisfying the commitment content and testing if this set

is among the set of states computed by fc. Formally:

M, s |= C(e, i, j, ϕ) iff ||ϕ|| ∈ fc(δ(e, s), δ(i, s), δ(j, s), s)

where C(e, i, j, ϕ) is called a modal predicate and means that the performance of action e commits i

relative to j to bring about ϕ, δ(e, s) and δ(x, s) where x ∈ {i, j} define respectively the denotation

of action e and agent x at s. The author showed that the commitment is violated when its content

is false. A violation of the commitment C(e, i, j, ϕ) is defined by the following semantic rule:

V (e, i, j) � C(e, i, j, ϕ) ∧ ¬ϕ.

As claimed by the author, the logic of commitment is “indeed very weak” and there is no “counterpart

of the D axiom”. Consequently, an agent can make conflicting commitments. However, the author

also claimed that inferential capacities are “sufficient to derive that at least one of two conflicting

commitments is going to be violated”. He also showed that reasoning on violations allows to deal with

conditional commitments. This semantics is formal, declarative and meaningful, but verifiability has

not been addressed. The weak aspect of this approach is that it suffers from the lack of intuition

and computation problem as it has not been ascribed how in practice the accessibility relation fc is

computed. Also, it does not define: (1) axioms of commitment logic; and (2) the semantics of other

commitment actions.

We conclude this section with Table 3, which summarizes the results of evaluating the contributed

proposals that advocate LTL (or an extension of LTL) to define the semantics for ACL messages. In

the table, we use For.,Dec.,Mea., andVer. to respectively refer to formal, declarative, meaningful,

and verifiable Singh’s criteria. We also indicate how the commitments are modeled (Mod.) and if

a formal semantics (Sem.) is defined for them. The last column refers to the verification method.

It should be understood that the verification method is not a new criterion. Also, when we classify

a semantics of an approach as not verifiable, we mean that the verifiability issue is not considered

but still there maybe a possibility to use a tool to verify it.
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Table 3: Summary of LTL and commitment-based agent communication.
Agent Communication Semantics Commitment Verification
For. Dec. Mea. Ver. Mod. Sem. Method

Giordano et
√ √ √ √

fluent model checking
al. [66, 67] (informal

translation
to SPIN)

Pham et
√ √ √

negative
al. [107] formula
Desai et

√ √ √ √
process model checking

al. [39] (informal
translation
to SPIN)

Singh [127]
√ √ √

temporal
√

modality
Baldoni et

√ √ √
proposition

al. [5, 6]
Spoletini et

√ √ √ √
predicate monitoring

al. [134, 135] techniques

3.4 CTL and Commitment-based Agent Communication

In this section, we investigate the role of CTL enriched with modalities or predicates to represent

and reason about commitments and associated actions. The resulting logical language can be then

exploited to define the semantics of ACL messages, specify commitment patterns, define a richer

temporal representation of the content of commitments, and specify commitment-based protocols.

Such protocols are essential to the functioning of open systems, such as those that arise in most

interesting Web applications, service engagements and business processes.

3.4.1 Singh and Colleagues

Venkatraman and Singh [143] introduced an approach for locally testing whether the behavior of an

agent in Web-based MASs complies with a commitment-based protocol specified in CTL with the

idea of potential causality, which is most applied in distributed systems. Their verification method

concentrates on the conditions under which an individual agent (called an observer, who participates

in the protocol) can check the satisfaction or violation of commitments made by each agent towards

each other by making use of a model checking-like technique. This technique is similar to model

checking, but it uses a different procedure and performs at run time. Technically, a model checking-

like approach can “only falsify (but not verify) the correctness of the construction of the agents” in

the MAS. That is, if the observer agent finds an inappropriate execution, this entails that the system

does not satisfy the protocol. Each commitment in this approach is a meta-commitment. The content
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of commitment is expressed as a CTL formula and commitment itself is modeled as a simple variable

in the form of abstract data type. In this modeling, there is no formal semantics for commitments.

However, when it comes to agent communication, the semantics of this approach is formal (since

the protocol is specified in CTL, the formal semantics of ACL messages is well defined), declarative,

meaningful (as the meaning of every message is expressed in terms of commitments) and verifiable.

Their verification technique is an effective one provided that the system under consideration has a

small state space. On the other hand, the semantics of commitment actions is not considered in this

work.

Based on Jürgen Habermas’s theory of communicative acts [72], Singh [125] proposed three-level

meanings for ACLs such that each communicative act is associated with three validity claims: (1)

objective claim meaning that the debtor is committed to send something that is true; (2) subjective

claim stating that the debtor is committed to sincerity, i.e., the debtor believes or intends what is

communicated; and (3) practical claim regarding to the debtor’s claim that it is justified in making

the communication. Recall that defining the meaning of communicative acts is not different from the

meaning of the messages specified in the protocols as argued in the approach proposed in [143]. To

avert the shortcoming of [143] regarding the representation of commitments as simple variables, the

author extended CTL modalities with three modalities for commitments, beliefs and intentions to

model interactions among agents. He particularly presented three accessibility relations to define the

semantics of those modalities. For instance, the semantics of the commitment modality is satisfied

at s in a model M iff the content is true along every accessible path π defined using an accessible

relation C(i, j, G, s) and emanating from the commitment state s, this would be expressed as follows:

M, s |= C(i, j, G, p) iff (∀π : π ∈ C(i, j, G, s) ⇒ M,π(s) |= p)

where ⇒ read as “implies” and the accessibility relation C: A×A×A×S → 2Π where A is a set of

agents and Π is a set of paths, produces the set of accessible paths along which the commitments

made by the debtor i towards the creditor j in the social context G hold at a state s ∈ S. The

author used the defined modalities to give the formal semantics of the ACL messages. For example,

an informative message inform(i, j, p) can be defined as one creating a commitment with its sender

i as debtor, its receiver j as creditor and its consequent asserting the truth of the proposition

p specified in the content of the message: C(i, j, p) (objective semantics). The subjective and

practical semantics of inform(i, j, p) are respectively defined as C(i, j, iBp) where iBp read as i

beliefs p and C(i, G, inform(i, j, p) � p) where � read as “strict implication”, which requires p to

hold when inform(i, j, p) holds. In fact, the strict implication is introduced to define the semantics

73



of conditional commitment. Its semantics is given as follows:

M, s |= p � q iff M , s |= p and (∀s′ : M, s′ |= p ⇒ (∀s′′ : s′ ≈ s′′ ⇒ M, s′′ |= q))

The formula p � q is satisfied at s in a model M iff p holds in the current state s and for all states

s′ in M , if p holds, then we have that q holds in all states s′′ similar to s′, i.e., s′ ≈ s′′. Given a

commitment-based semantics for ACL primitives, the author used it to derive a specification language

of commitment-based protocols. The new specification helps analyze the protocol by determining,

for example, the compliance of an agent with respect to a given protocol.

Although Singh’s approach satisfy formal, declarative and meaningful criteria, it does not clar-

ify the intuition that the accessibility relation C captures and how accessible paths are computed

(throughout the paper, we refer to this problem as lack of intuition and computation). More pre-

cisely, there is a lack of intuition if the meaning behind the fact that a state or a path is accessible

from the state where the commitment holds is not defined. Particularly, an accessibility relation

should specify the intuitive relation between a social commitment and accessible paths or states.

Furthermore, an accessibility relation should clarify how in a computational model one can determine

if a state or a path is accessible. To verify such semantics, the author suggested different levels of

verifiability. For example, “Every commitment to a putative fact can be verified or falsified by chal-

lenging that putative fact. Every commitment to a mental state can be similarly verified or falsified,

but only through the more arduous route of eliciting the agent’s beliefs and intentions”. Because

created and modified commitments can be recorded publicly, the observer agent as in [143] can be

used to test the compliance of other agents with a given protocol. However, when the semantics

is given in terms of mental states, Woolridge [152] pointed out that it is very difficult to carry out

the verification of this property since we do not understand how such states can be systematically

attributed to programs. Such a problem stems from the subjective semantics, which refers to a

mental component by claiming that communication should be sincere.

The first application of Singh’s descriptive ontology of commitments [124] to design coordinated

MAS was introduced by Xing and Singh [155]. They particularly proposed a set of commitment

patterns inspired by design patterns to composedly model agent interactions. Each pattern captures

an important scenario and can be specialized and applied to commitment actions. Different combi-

nations of patterns can yield different kinds of agent interactions. In this approach, each pattern is

expressed as a CTL formula. The commitments are simply modeled as abstract data types where the

content is a predicate with a vector of domain arguments v to pass data values: C(i, j, G,Pred(v).

Commitment actions are modeled as predicates (cf. Remark 3 to know why predicates are not

74



suitable to represent commitments). The following formula expresses the relationship between the

communication proposition Inform and action predicate Create:

∀i, j,Pred , v : A�[Inform(i, j,Pred(v)) ⊃ A♦[Create(i, C(i, j, G,Pred(v)))]]

This formula means that along all paths in all states when agent i informs agent j about a predicate

Pred(v), then along all paths there is a possibility that i creates a commitment to bring about

Pred(v) towards j in the context G. The authors used a statechart to specify the behavior model of

each agent. Indeed, the operational semantics provided by statecharts are used as a rigorous basis

for coordinating the interactions of agents. To relate such operational semantics with temporal logic

specifications, a CTL model is produced from agent’s statechart. The soundness of this transforma-

tion is proved. The authors continued their approach in [156] by developing: (1) an algorithm to

transform the statechart of behavior model of agent into CTL model; (2) a library of commitment

patterns; and (3) a library of behavior models of agents along with theorem proving which behavior

models comply with which patterns. Notably, the agent communication semantics of this approach

is formal, declarative, meaningful and verifiable (using theorem proving). When commitments are

considered, no formal semantics is given because they are simply modeled as abstract data types

and treated as propositions in CTL model. Recall that a formal CTL-based framework is proposed

to give only semantics for agent communication using commitments.

Mallya et al. [96] and [99] developed an extension of CTL with: (1) predicates to represent

and reason about commitments and associated actions; and (2) two temporal quantifiers (existential

and universal) to describe time points and intervals, to obtain a richer temporal representation for

the content of commitments particulary to capture real-life scenarios in a natural way. Concretely,

they introduced two predicates (Breached(c) and Satisfied(c)) to respectively define the semantics

of violation and fulfillment of the commitment c in question. For instance:

M, s |= Satisfied(c) iff
(
∃s3 : s3 ≤ s and M, s3 |= Discharge(i, c) and ,

(∃s1 : s1 < s3 and M, s1 |= Create(i, c), and

(∀s2 : s1 ≤ s2 < s3 ⊃ M, s2 |= Active(c)))
)

The semantics of the Satisfied(c) predicate at s in a model M is defined in terms of whether or not

the Discharge(i , c) of the commitment c that has been created in the past and still active holds.

A commitment is active if it is not canceled, delegated, assigned, released and discharged yet. The

authors assumed that the discharge action “brings about p, and conversely, if p occurs, the discharge
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action is assumed to have happened”. Thus, the performance of a discharge action is equivalent to

the satisfaction of p. In fact, this assumption raises many issues. More specifically, Verdicchio

and Colombetti [145], in the same proceedings, criticized such an assumption by showing that the

above semantics of the Satisfied(c) predicate seems bypassing “the problem instead of solving it”.

As the scop of the discharge action focuses on checking whether or not the truth condition of the

commitment content holds, it then suffers from the over-specification problem discussed in [127]. To

conclude, such a semantics straightforwardly supports formal, declarative and meaningful criteria

for agent communication but not the verifiable criterion. The authors also model commitments and

associated actions as predicates, which suffer from the problem discussed in Remark 3.

Mallya and Singh [98] have tried to solve the key tradeoff between flexibility of executing pro-

tocols and verification in designing those protocols wherein protocol is defined as a set of allowed

computation paths to achieve states that need to be reached in terms of commitments. They partic-

ularly proposed an approach for designing commitment-based protocols by extending refinement and

aggregation notions of traditional software engineering, so that protocol designers should be able to

create new protocols by either refining, reusing or composing existing protocols at design time whose

properties are well-understood. Concretely, to compose protocols, the authors presented an algebra

of protocol, which comprises of two operators: merge—to create a new refined protocol from exist-

ing ones—and choice—to choose between the computations belonging to different protocols. The

authors argued that a protocol that allows many computations is better than the one which allows

less computations, giving more choice and flexibility in protocol execution. To check compliance

of refined protocols, Mallya and Singh presented a “sound theory” of comparing and then refining

protocols using “subsumption of protocols” based on the notion of “state-similarity functions” that

help designers verify the correctness of protocol properties in which longer computations subsume

shorter ones, if they have similar occurring in the same order. The main idea of the state-similarity

function is to say that two states are similar when they are labeled by the same set of propositions.

As the protocol in this approach is used to define the meaning of ACL messages, this approach is

formal, declarative, meaningful and verifiable using sound theory, which it can be proven. In this

sense, the behavior of sound theory is similar to theorem proving, which in general cannot be fully

automated [78]. There is no formal semantics for commitments and their actions because they are

simply modeled as propositions (cf. Remark 1).

The approach proposed in [98] was further investigated in engineering cross-organizational busi-

ness processes using protocols having social semantics in a research proposal by Gerard and Singh

[65]. They introduced a formal model of protocols and their refinement by developing an analysis
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tool called “Proton”. In particular, they specify the protocol in terms of its agents, guarded mes-

sages, and the meaning of each message as a set of actions. To verify refinement of protocols, they

used model checking instead of Mallya and Singh’s theorem proving to compute whether a protocol

refines correctly another one under a given mapping that contains the essential elements for refining

any two protocols. Their verification technique first reads protocols and specifications expressed as

CTL formulae from files and then translates them into ISPL (the input language of MCMAS [92]).

The proposed agent communication semantics is formal, declarative, meaningful and verifiable. Un-

fortunately, the formal semantics of commitments is entirely missing because the authors modeled

commitments as objects that are mapped into domain variables in the ISPL language. These vari-

ables cannot represent the real and concrete meaning of commitments. Moreover, the operational

semantics of discharge action—“which occurs implicitly when the consequent becomes true”—suffers

from the over-specification problem.

Using the approach of Xing and Singh [155, 156], Telang and Singh [137, 139] introduced

an interesting business model that uses social commitments and agent-oriented concepts such as

goals and tasks inspired by Tropos software engineering methodology [20] to capture complex, long

lived business scenarios amongst business partners involved in service engagements [137] or cross-

organizational business processes that are the norms in today’s economic [139]. As in [156], the

authors developed a library of business patterns that model recurring business scenarios wherein

each pattern is defined in a highly abstract-level based upon the notion of commitments with some

attributes: name, intent, motivation, implementation, and consequence inspired by classical object-

oriented design patterns. In order to verify agent interactions, Telang and Singh proposed two

different methods to implement this process. In the former one, they [137] introduced a reasoning

algorithm, which takes a business model populated by a set of business patterns and business inter-

actions formalized using the UML sequence diagrams and returns a set of violated commitments. In

the latter one, they [139] exploited the NuSMV model checker [30] to verify whether an operational

model (a set of business interactions) correctly supports a business model. In such a case, a business

model pattern is formalized as a set of CTL formulae. For example, when a commitment is inactive

in the current state, then along all paths in the next state it could be inactive, active or detached.

This would be expressed as follows:

A�(Inactive ⊃ A© (Inactive ∨ Active ∨Detached))

A commitment is simply defined as an isolated SMV module, which can be instantiated as a domain

variable in the main module. To evaluate this semantics for agent communication against our criteria,
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it is formal (where a CTL-based framework is introduced to express business model patterns),

declarative, meaningful and verifiable. Interestingly, there is no formal semantics for commitments

as they are modeled simply as SMV modules. Also, formal semantics for commitment actions

themselves are not considered. With respect to the flexibility of classical commitment machines

[158], adopting the UML sequence diagram to model the behaviour of interacting agents forces the

temporal ordering of action executions, which looses the flexibility supported by the adoption of

commitments as shown in [5, 6].

3.4.2 Torroni and Colleagues

To enable a rich modeling of temporal aspects of commitments, Torroni et al. [140] extended Mallya

et al.’s work [99] by using “variables with domains” inside commitments. The authors showed

that without such an extension, Mallya et al.’s representation of commitments does not cover some

practical situations. For example, a commitment of i towards j to bring about p is going to hold at

a given moment in the interval beginning at t1 and ending at t2 would be represented in Mallya et

al.’s model as follows: C(i, j, [t1, t2]p). This modeling enables reasoning about the temporal aspect

without considering the p’s meaning, but it does not specify the time at which the commitment is

satisfied. In Torroni et al.’s model, p is defined as a variable, which is bound to a domain interval:

[T ]p, T ∈ [t1, t2]. So, the commitment above can be written as follows:

C(i, j, [T ]p), t1 ≤ T ≤ t2

When there exists a possible value of T in the range [t1, t2], the commitment is satisfied and this

value can be used for further inferences. This commitment is violated at time t (viol(C(i, j, [T ]p, t)))

“due to the elapsing at time t of a time interval in which p was supposed to be verified”. The

authors proposed a specification language called Commitment Modeling Language (CML), which

consists of a set of domain variables, constraints and rules. They used event calculus axioms not

only for reasoning about the effects of commitment actions, but also for a static verification of

properties and compliance checking, which tracks the evolution of commitment statuses at run time

by making use of Reactive Event Calculus (REC), which is implemented in SCIFF , abductive

logic programming proof-procedure [1]. In this approach, commitments are modeled as fluents and

then there is no formal semantics for commitments (cf. Remark 1 for more information about

the limitations of fluents). The proposed semantics for agent communication perspective is formal

(where event calculus axioms are used to model commitment actions capturing the meaning of ACL

messages), declarative, meaningful and verifiable.
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3.4.3 Bentahar and Colleagues

El Menshawy et al. [50] presented a framework comprises of three parts aiming at excluding spurious

aspects that plague some of the above approaches (e.g., lacking intuition and computation, modeling

commitments as fluents, propositions and predicates, and transforming commitments into domain

variables). In the first part, they introduced a new temporal logic, called CTLC, an extension of

CTL with modality for commitments. They defined a social accessibility relation Rsc to interpret

the semantics of commitment modality. This is the first approach that associates the formalism of

interpreted systems introduced in [59] to model MASs with the Kripke model in order to compute

the accessibility relation and define an intuitive semantics of commitments, which is missing in

existing proposals of agent communication models. In the formalism of interpreted systems, each

agent i ∈ A is characterized by a set of local states Li, a set of local actions, a local protocol, and

a local evaluation function. The set of all global states S is a subset of the Cartesian product of

all local states of n agents at a given time: S ⊆ L1 × L2 × . . . × Ln. The standard CTL model

M = (S,Rt, V, I) is extended to M ′ = (S,Rt, Rsc, V, I) where Rsc : S × A×A→ 2S is the social

accessibility relation for commitments. It is defined as follows:

s′ ∈ Rsc(s, i, j) iff ∃s ∈ S : li(s) = li(s) and lj(s) = lj(s
′)

where li(s) denotes the local state of agent i in the global state s. Intuitively, s′ is accessible from

s, i.e., s′ ∈ Rsc(s, i, j) iff there is an intermediate state s, so that there is no difference for the

debtor i between being in s and s; but, for the creditor j there is no difference between being in the

intermediate state s and accessible state s′. In the second part, the semantics of commitments is

formally defined as follows:

M ′, s |= C(i, j, ϕ) iff ∀s ′ ∈ S , if s ′ ∈ Rsc(s , i , j ), then s′ |= ϕ

which means that the content ϕ is true in every accessible state from the current state computed

using Rsc(s, i, j). In the last part, the authors shown how the problem of model checking CTLC

can be formally reduced, using a transformation function F , into the problems of model checking

CTLK (an extension of CTL with knowledge modality [105]) and ARCTL (an extension of CTL with

action formulae [104]) in order to be able to respectively use the MCMAS and extended NuSMV

[90]. The more interesting point in this approach is that the commitment modality is reduced into

the knowledge modality, not into domain variables, as follows:

F (C(i, j, ϕ)) = K̂iF (ϕ) ∧ E©K̂jF (ϕ)
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where K̂iϕ, read as “possible knowledge” of agent i [59], is the dual of agent knowledge Kiϕ (i.e.,

K̂iϕ � ¬Ki¬ϕ) and E © K̂j is read as there is a path such that in the next state agent j possibly

knows ϕ. The authors also implemented the reduction technique on top of the MCMAS and extended

NuSMV to automatically verify the Contract Net Protocol against some desirable properties, such as

reachability, safety and liveness. It is clear that our six criteria for agent communication semantics

using commitments are successfully met. However, the authors do not consider the semantics of

conditional commitments and commitment actions and their verification.

We conclude this section with Table 4, which summarizes our results of evaluating current pro-

posals that use CTL (or an extension of CTL) to define the semantics for ACL messages using

commitments and related concepts.

Table 4: Summary of CTL and commitment-based agent communication.
Agent Communication Semantics Commitment Verification
For. Dec. Mea. Ver. Mod. Sem. Method

Venkatraman
√ √ √ √

abstract model
et al. [143] data type checking-like
Singh [125]

√ √ √ √
temporal

√
model

modality checking-like
Xing et

√ √ √ √
abstract theorem

al. [155, 156] data type proving
Mallya et

√ √ √
predicate

al. [96, 99]
Mallya et

√ √ √ √
proposition theorem

al. [98] proving
Gerard et

√ √ √ √
object model

al. [65] checking
Telang et

√ √ √ √
module model

al. [139] checking
Torroni et

√ √ √ √
fluent REC

al. [140]
El Menshawy

√ √ √ √
temporal

√
model checking

et al. [50] modality (formal
translation to
MCMAS
and NuSMV)

El Menshawy
√ √ √ √

temporal
√

dedicated a new
et al. [52] modality model checking

algorithm

3.5 CTL∗ and Commitment-based Agent Communication

In this section, CTL∗ is extended with modalities or predicates to mainly define semantics of speech-

act based ACL with respect to social notions. The resulting logical model is exploited to derive a
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new specification language of commitment-based protocols.

3.5.1 Colombetti and Colleagues

Verdicchio and Colombetti [144, 145] introduced a logical framework for the definition of ACL

semantics based on the concept of social commitments resulting from the performance of speech

acts by presenting a branching-time temporal logic, called CTL±, which enriches CTL∗ with: (1)

“past-directed temporal operators”; and (2) meta-language predicates (or many sorted first-order

language) containing terms, which denote events, actions, commitments and commitment actions.

They also introduced a number of appropriate axioms to describe the constitutive effects of the action

types for commitment manipulation. In other terms, each axiom describes the state of affairs that

necessarily hold if a token of a given action type is successfully performed. There are basically two

possibilities to represent the content of commitment: (1) it can be represented as a CTL± formula,

in which case, a commitment can be modeled as a modal operator; and (2) it can be represented

as a first-order term, in which case, a commitment can be modeled as a first-order formula. The

authors forcefully argued that modeling a commitment as a first-order formula rather than a modal

operator has the advantage that the “technicalities required by a predicative representation are

simpler than the ones required by a modal representation”. Such a first-order term can be viewed as

the representation of a concrete Content Language (CL) statement. To achieve this goal, the syntax

of CL statement can be represented as a first-order term in CTL±. Technically, such a first-order

term, say ϕ, is represented as a CTL± formula using a “truth-persevering translation” ⌊ϕ⌋. As

Wooldridge pointed out in [153], using meta-language predicates containing many sorted first-order

terms to model notions that have opaque contexts solves the issues discussed in Remark 3. However,

modeling commitments using many sorted first-order terms waives the formal semantics and the

sense of formulae, which makes using model checking-based verification inappropriate. Inspired by

Reichenbach’s terminology [112], the semantics of fulfilling commitments is defined as follows:

Fulf (e, i, j, ϕ) � C(e, i, j, ϕ) ∧ A♦−(Happ(e) ∧ ⌊ϕ⌋)

where ♦− is read as “sometimes in the past”, the predicate Happ(e) means that an event e has

happened and ⌊ϕ⌋ is a truth-preserving translation of the commitment content ϕ into a CTL±

formula. The semantics of fulfillment means that the commitment is fulfilled at s′ (Reichenbach’s

point of event), when the commitment-inducing event e has been made at s (Reichenbach’s point of

speech) where the truth value of Happ(e) and ⌊ϕ⌋ are true at some state in the past of s′ on every

path starting from s and going throughout s′. Notably, this agent communication semantics meets
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the following criteria: formal, declarative and meaningful. However, the semantics of fulfillment

action suffers from the over-specification problem as it considers the truth value of the commitment

content, which is the main component of the semantics of commitment itself. The authors also do

not consider the verification issue. From our point of view, the verification of this logic by means of

model checking is hard to perform as: (1) the proposed logical model uses superfluous translation

of the commitment content and past operator that points to the state at which the commitment is

made; and (2) the model checking of predicate logic is undecidable as we cannot write a procedure

that works for all ϕ (the proof of this claim is introduced in [78]). Such a temporal language

has been extended with two interval operators, dates, and times to express a rich assortment of

temporal conditions such as deadlines in a natural way, which is missing in the CL expressions of

FIPA-ACL [146]. This approach could be considered as a generalization of the work introduced in

[99]. Colombetti et al. [36] and Verdicchio and Colombetti [147] shown that FIPA’s communicative

act library can be effectively redefined using a commitment-based semantics instead of FIPA’s mental

semantics with respect to their logical model introduced first in [144] and extended in [145].

3.5.2 Bentahar and Colleagues

The first work on combing social commitments as deontic notions and arguments into the paradigm

of ACL was done by Bentahar et al. [13]. In this hybrid approach, the social and public aspects of

conversational agents are captured by commitments and the reasoning aspects are defined by means

of arguments. The authors claimed that existing approaches introduced to define ACL semantics are

“not exclusive but rather complementary”. However, this approach waives defining formal semantics

of commitments, arguments and semantic link between them. In continuation of this work, Bentahar

et al. [14, 16, 17] adopted a temporal logic to address such limitations. In particular, they extended

CTL∗ with: (1) modalities for commitments and two-party actions; (2) argument modality; and

(3) a dynamic logic (DL), which captures the actions that agents are committed to achieve. They

then introduced two accessibility relations to define the semantics of commitment and argument

modalities. For instance, the accessibility relation dedicated to commitments [17] is defined as :

Rsc : A×A×S → 2Π, which associates with a state s a set of accessible paths along which an agent

commits towards another agent. Thus, the semantics of the commitment modality is given as follows:

M, s |= C(i, j, ϕ) iff ∀π : π ∈ Rsc(s, i, j),M, π |= ϕ

The commitment formula is satisfied in a model M at s iff the content ϕ is true along every accessible

path started at s and computed by Rsc. The semantics of the Satisfy (discharge) action is defined
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in terms of whether the commitment has been created in the past and still active and its content

holds or not. This would be expressed as follows:

M,π(s) |= Satisfy(i, C(i, j, p)) iff M,π(s) |= Active(C(i, j, p)) and ∃s′ : T (s′) ≤ T (s)

and M, s′ |= Create(i, C(i, j, p)) and M,π(s) |= p

where T (s) gives the time point associated to the state s. A commitment is active iff this commitment

was already created, and until the current moment, the commitment was not withdrawn.

M,π(s) |= Active(i, C(i, j, p)) iff M,π(s) |= ¬Withdraw (i, C(i, j, p)) U−Create(i, C(i, j, p))

where U− is interpreted as “since (in the past)”. To define dynamic conversations, the authors

interpreted a speech act not as an action performed on a commitment as usual, but also on a

commitment content to enable agents to defend and justify their commitment content and to attack

and challenge the commitment content of other agents. This semantics for agent communication

meets formal, declarative and meaningful criteria. However, the accessibility relation suffers from

the lack of intuition and computation problem. This semantics is also defined in a recursive manner

(i.e., the semantics of one action depends recursively on the semantics of one or more other actions),

which makes its model checking procedure hard. Also, the semantics of satisfy action suffers from

the over-specification problem as it focuses upon checking the truth condition of the commitment

content.

El Menshawy et al. [46, 48] addressed the limitations of [14, 16, 17] by developing a logical model

based on a new temporal logic, called CTL∗sc, which extends CTL∗ with: (1) past-directed temporal

modalities; and (2) modalities for commitments and all associated actions. The proposed logic is

used to derive a new specification language of commitment-based protocols to particulary define the

meaning of protocol messages in terms of commitments. In particular, the semantics of each action

does not depend upon other actions using the notion of accessible and non-accessible paths. For

instance, the semantics of fulfillment (discharge) action is satisfied in a model M along a path πi

starting at si iff: (1) the commitment was established in the past at sj (after performing the creation

action) through the prefix of π starting from sj denoted by πi ↓ sj ; (2) all paths starting at state

si+1 (the state resulting from the fulfillment action) using Rsc at state sj (where the commitment

has been established) are accessible paths; and (3) at the current state si, there is still a possible

choice of not satisfying the commitment since the prefix π′′
i ↓ sj of a non-accessible path π′′

i starting

at si exists. This would be expressed as follows:
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(M, si, πi) |= Fulfill(i, C(i, j, ϕ)) iff (1) ∃j ≤ i : (M, sj , πi ↓ sj) |= C(i, j, ϕ) and

(2) (si,Fulfill , si+1) ∈ Rt and

∀π′
i+1 ∈ Πsi+1 : π′

i+1 ↓ sj ∈ Rsc(sj , i, j) and

(3) ∃π′′
i ∈ Πsi : π′′

i ↓ sj /∈ Rsc(sj , i, j)

where Πsi is the set of paths starting at si. Thus, the semantics of fulfillment action is cured from the

over-specification problem raised in [99, 144, 145, 14, 16, 17]. The idea is that “being accessible means

that the content ϕ is true along all the paths π′
i+1 ↓ sj and fulfillment occurs automatically when the

content holds by the deadline”. They also proposed a new definition of assignment and delegation

actions by considering the relationship between the original and new commitment contents, which

is missing in the current approaches. The authors expressed in CTL∗sc a set of desirable properties

called “functional correctness”, such as fairness constraint, safety, and liveness. They also proposed

a symbolic verification technique based on reducing the problem of model checking CTL∗sc into the

problems of model checking LTLsc and CTLsc inspired by the notion introduced in [33] regarding the

reduction of model checking CTL∗ into the problems of model checking LTL and CTL. Notice that

LTLsc and LTLsc are the standard LTL and CTL extended with commitments and their actions. In

this technique, the participating agents in the protocol are defined either as modules using SMV (the

input language of NuSMV) or as a set of local states, local actions, local protocol, and local evaluation

function using the ISPL language. However, commitments and their actions are simply defined as

domain variables in the SMV and ISPL languages. To conclude this approach, its semantics is

formal, declarative, meaningful and verifiable.

To address the verifiability criterion, which is the main limitation of the approaches [14, 16,

17], Bentahar et al. [12, 11] presented a verification technique based on translating ACTL∗ (an

extension of CTL∗ with modalities for commitments, arguments and commitment actions) and

protocols into Alternating Büchi Tableau Automata (ABTA) so that they made use of the CWB-

NC model checker2. In this technique, commitments are defined as simple variables and agent actions

as atomic propositions using CCS (the input language of the CWB-NC). Notably, the approaches of

El Menshawy et al. [48] and Bentahar et al. [11] are still suffering from the following shortcomings:

(1) the lack of intuition and computation problem; and (2) the consideration of commitments as

variables in the CCS. Table 5 summarizes our results of investigating the proposals that adopt

2http://www.cs.sunysb.edu/cwb/.
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CTL∗ (or an extension of CTL∗) to: (1) represent and reason about commitments; (2) define the

semantics for ACL messages using commitments; and (3) specify commitment-based protocols and

express their properties.

Table 5: Summary of CTL∗ and commitment-based agent communication.
Agent Communication Semantics Commitment Verification
For. Dec. Mea. Ver. Mod. Sem. Method

Verdicchio et
√ √ √

predicate
al. [144, 145]
Bentahar et

√ √ √
temporal

√
al. [13, 14, 17] modality
Bentahar et

√ √ √ √
temporal

√
model checking

al. [12, 11] modality (informal
translation to
MCMAS and
CWB-NC)

El Menshawy
√ √ √ √

temporal
√

model checking
et al. [46, 48] modality (informal

translation to
MCMAS and
NuSMV)

3.6 Other Logical Languages

As aforementioned in the introduction, commitment-based protocols are flexibly specified outside

the agents and independently of their architecture in terms of creation, manipulation and satisfaction

of commitments between those interacting agents. Yolum and Singh [158] developed a formalism

called “commitment machines” to model, reason about and execute commitment-based protocols

using a CTL-like semantics introduced by Singh [125]. The main idea of the commitment machine

is to label states with commitments as well as some literals (if any) holding in those states, while

transitions among states are labeled with actions applied to these commitments. Such a formalism

is enabling agents to logically reason about their actions allowable in the protocol to compute their

“legal computations”. Fornara and Colombetti [62] pointed out that commitments lend themselves

to operationalization in a more traditional manner. As we understood, this is the idea of compiling

a commitment machine into a traditional representation such as a finite state machine (FSM) over

finite computations, so that “the desired effect can be obtained without representing and reason-

ing about declarative meanings at run time” [158]. In other terms, such compilation deletes the

opportunities for flexibility, which characterizes a commitment representation. Further, Yolum and

Singh [158] shown that FSMs resulting from compiling commitment machines are still beneficiary
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for interacting agents who waive the ability to reason logically. Winikoff et al. [150] used the event

calculus to revise some of Yolum and Singh’s proposals but without considering the compilation

of commitment machines into FSMs. In particular, they improved the methodology by which: (1)

commitments are discharged in certain situations, such as nested conditional commitments and sym-

metrical; and (2) pre-conditions are specified. Furthermore, Winikoff [149] extended the framework

of commitment machines to flexibly model interactions among autonomous agents in distributed

systems. The new version is called “distributed commitment machines”. The authors then proceed

to explore the properties of distributed and centralized commitment machines and to show how the

properties of distributed commitment machines can be used to provide “a simple implementation”

of commitment machine-based interactions in distributed settings. Recently, Singh [126] generalized

the formalism of commitment machines introduced in [150, 158] to include natural non-terminal

protocols (or those that have cycles) analogous to those in real-life business applications. Singh’s

commitment machine is compiled into Büchi automaton over infinite computations (i.e., its accep-

tance condition is infinite). Hereafter, we briefly present two approaches that use an action logical

language to specify commitment machines.

3.6.1 Action Logical Language: Event Calculus

Yolum and Singh [159, 160] specified commitment-based protocols using commitment machines

with the use of a subset of Shanahan’s event calculus [118]. Roughly speaking, event calculus (EC)

is a logical language for representing and reasoning about actions and their effects. The basic

components of EC are “fluents” (properties or atomic propositions holding during time intervals),

and “events” (or actions happening at time points) [118]. Fluents are initiated and terminated by

occurring events (i.e., events manipulate fluents). In this approach, EC is akin to many-sorted first-

order predicate calculus with eight predicates and a set of axioms to represent and reason about

actions wherein commitments are modeled as predicates (cf. Remark 3 about the problem resulting

from using predicates). For example, the discharge action, whose purpose is to successfully fulfill a

commitment, is axiomatically defined as follows:

Terminates(e(i), C(i, j, p), t) ⊂ Happens(e(i), t) ∧Discharge(e(i), C(i, j, p))

This axiom means that when an event e(i) has been carried out by i at time t and the commitment

is successfully discharged, the original commitment is terminated. Such a discharge axiom can be

defined in another way (cf. Winikoff et al.’s framework, Fig. 7 [150]) as follows :
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Terminates(e(i), C(i, j, p), t) ⊂

HoldsAt(C(i, j, p), t) ∧ Happens(e(i), t) ∧ Initiates(e, p′, t) ∧ Subsumes(p′, p)

The new axiom focuses on checking the status of commitment in question at time t and the existence

of a new fluent p′ initiated by occurring an event e(i) at the same time and subsumed the commitment

content p, and if so the commitment is terminated. Notice that the predicate Subsumes checks

implicity whether or not p holds (for other axioms that define other commitment actions, see [150]).

Yolum and Singh’s approach [159, 160] for defining the semantics of agent communication meets

formal, declarative and meaningful criteria. Moreover, the authors used an abductive EC planner

[119] to logically compute planning queries with respect to the EC axioms (in the form of reasoning

rules) that specify protocols: Given the initial protocol state, final protocol state and protocol

specification, the planner computes all possible protocol runs (i.e., the sequences of actions) that

can be generated between the initial state and final (goal) one. Agents can use the abductive

EC planner to logically calculate protocol runs leading to a desirable outcome. By keeping track of

agent’s commitments, we can check whether the agent behaviors comply with its commitments. This

technique is called static verification that should ideally be carried out at run time. The technique

seems promising, but computing all possible runs regarding the commitment in question is very

hard to apply when we check open systems having a large state space [2]. Yolum and Singh also

pointed out that their specifications achieve flexibility by means of enabling agents to adjust their

actions by taking advantages of opportunities and accommodating exceptions that arise at run time

by reconstructing plans as necessary. However, the flexibility resulting from reasoning capabilities

can be expensive and may increase the code of the agents [158, 126]. Thus, the authors suggested

that the specification of protocols can be compiled into FSMs [158] or Büchi automata [126]. Such

produced automata can be more complete to capture the important scenarios and consequently

be too large for designers to specify, analyze and verify manually. To address the limitation of

[159, 160] regarding the verification issue, Yolum [157] presented the main generic properties that

are required to help protocol designers analyze and correct the development of commitment-based

protocols by signaling possible errors and inconsistencies that arise at run time and determining

the applicability of protocols. Such properties are categorized into three classes: effectiveness,

consistency and robustness. Yolum then presented algorithms to semi-automatically verify those

properties using any available software tool at design time.

Based on Yolum and Singh’s representation of commitment actions [160] in terms of the EC

axioms, Chesani et al. [24] proposed a framework composed of a logical language and a verification
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procedure. The language defines commitments, deadlines, and “compensations actions” that arise

when deadline is expired. The procedure is developed to monitor the commitment statuses at run

time. Technically, they formalized the EC axioms using an extension of abductive logic programming,

called SCIFF [1]. The main feature of SCIFF is that it is event-driven (reactive) and is based on

reactive event calculus (REC). In REC language, commitment and its associated action are modeled

as fluents. For instance, when a commitment C(i, j, p) has been established and the deadline has

not expired yet, a fluent Waiting(C(i, j, p)) holds. Formally:

Initiates(e,Waiting(C(i, j, p)), T ) ⊂ Create(e, i, C(i, j, p))

where e is an event, T is the absolute time at which the commitment has been established. By

occurring an event regarding to discharging this commitment, the Waiting(C(i, j, p) fluent is termi-

nated and a new Satisfied(C(i, j, p)) fluent is instantiated, which means the commitment has been

successfully discharged. This would be expressed as follows:

Terminates(e,Waiting(C(i, j, p)), T ) ⊂ HoldsAt(Waiting(C(i, j, p)), T ),

Discharge(e, i, C(i, j, p))

Initiates(e,Satisfied(C(i, j, p)), T ) ⊂ HoldsAt(Waiting(C(i, j, p)), T ),

Discharge(e, i, C(i, j, p))

A fluent d check (c, TD) is introduced to check whether a commitment C is satisfied by a time TD.

By defining the values of deadline within the corresponding fluent, the monitor process within the

verification procedure observes a set of events at run time reporting the violation of commitment in

question (if any). The semantics of this approach is formal, declarative, meaningful and verifiable.

However, the verification procedure is suitable for systems that have a small state space as each

commitment fluent has many associated fluents. For instance, in the above example, a commitment

fluent has two associated fluents and its discharge fluent has 8 associated fluents.

3.6.2 Action Logical Language: C+

Chopra and Singh [26] specified commitment-based protocols using “nonmonotonic commitment

machines” introduced first in [25] with the action logical description language C+ developed by [68].

A nonmonotonic commitment machine is a modification of a commitment machine [158] to consider

situations when agents must act with ”incomplete information”; so they need nonmonotonic or

defeasible reasoning. The authors adopted C+ as it is easy to add or remove certain interactions
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to an existing specification. As in EC, fluents and actions are the basic components in the C+

language. In this approach, a protocol specification consists of a set of causal laws, which link

messages specified as actions that occur at particular time points to their effect on commitments.

More precisely, action description describes a transition system of a protocol, a graph with states

and actions wherein commitments are modeled as “inertial fluents” (cf. Remark 1 about the problem

of using fluents to represent commitments). The interpretation (i.e., semantic value) of such fluents

persists from one state to the next state “unless changed by some other law”. The authors presented

a set of axioms to represent and define the intended meaning of commitment actions as follows [25]:

(1) Create(i, j, p) causes C(i, j, p) (2) Discharge(i, j, p) causes ¬C(i, j, p)

(3) Cancel(i, j, p) causes ¬C(i, j, p) (4) Delegate(i, j, p, k) causes ¬C(i, j, p) & C(k, j, p)

(5) Release(i, j, p) causes ¬C(i, j, p) (6) Assign(i, j, p, k) causes ¬C(i, k, p) & C(i, j, p)

For instance, the axiom of the discharge action means that when the discharge action happens,

then the commitment is disabled (¬C(i, j, p)) in “the next state” according to the following rule

[25]: a causes f , where a is an action and f is a fluent happening in the next state. Notably,

this approach meets formal, declarative and meaningful criteria. As in [160], the authors used a

static verification technique in the form of reasoning rules in order to verify the compliance of agent

behaviors against a given protocol’s state machine. As mentioned in the evaluation of [160], this

technique is inapplicable in complex systems as the verification procedure needs to record all possible

protocol runs from initial and final protocol states to search for commitment states in question.

Desai et al. [41] presented a modular action description geared towards protocols (MAD-P), an

extension of the causal logic C+ [68] to refine and compose protocols from existing ones. This ap-

proach enhances the approach of [26] for representing individual protocols. However, as in [26] Desai

et al.’s commitments are modeled as inertial fluents and the operational semantics of commitment

actions is defined as a set of axioms. Composition rules satisfying some requirements are also defined

as a set of C+ axioms without checking the correctness specification of a protocol composition. Such

a challenge is addressed in [39] (cf. Section 3.3). To conclude this section, the advantages and disad-

vantages of EC and C+ and the comparisons between them are discussed in [2]. Although promising,

the above languages EC, C+ and MAD-P are not suitable for model checking that provides a full

automatic verification and is effective in complex systems. Moreover, there is no formal semantics

for commitments as they are modeled simply as fluents (cf. Remarke 1). Table 6 summarizes our

results of evaluating the proposals that advocate logical languages of actions.
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Table 6: Summary of logical languages of actions and commitment-based agent communication.
Agent Communication Semantics Commitment Verification
For. Dec. Mea. Ver. Mod. Sem. Method

Yolum et
√ √ √ √

predicate abductive
al. [159, 160] EC planner
Winikoff et

√ √ √
predicate

al. [149, 150]
Chesani et

√ √ √ √
fluent REC

al. [24]
Chopra et

√ √ √ √
fluent static

al. [26] verification
Desai et al. [41]

√ √ √
fluent

3.7 Summary and Discussion

In this chapter, we reviewed and evaluated most prominent proposals that have advocated compu-

tational logics to define semantics for ACL messages in terms of social commitments and related

concepts and to use the resulting logical models to derive specification languages of commitment-

based protocols. We also investigated different verification techniques that have been proposed to

statically, semi-automatically and full-automatically verify these protocols. By highlighting the com-

monalities, advantages and disadvantages, we hoped that the designers can either make an informed

decision when choosing to take the advantages of ACL semantics that satisfy our six crucial criteria

or decide on an approach in terms of their own needs, including the availability of a verification

tool. We also reviewed other logical languages of actions adopted to specify, model and execute

commitment-based protocols. The overall conclusion is summarized in the following points, which

particulary state the limitations of those proposals from our perspective:

1. Representing commitments and their actions as predicates, fluents or domain variables waives

temporal reasoning, formal semantics and concrete meaning of commitments, which have

opaque context.

2. Using informal translation-based techniques to be able to use existing model checkers raises

the following issues:

− Such techniques have the problem of preventing verifying the real semantics of commit-

ments and associated actions as defined in the underlying logics.

− They only provide partial solution to the problem of model checking commitments as

they reduce commitment modalities into simple variables.

− There are no tools supporting the informal translation-based techniques to carry out the

translation process.
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3. The EC, C+ and MAD-P languages specifying commitment-based protocols are not suitable

for model checking-based verification.

The idea of representing commitments and associated actions as modal operators is in fact not

new. In the literature about agent communication, few research proposals have supported such idea

[17, 45, 48, 50, 52, 125, 127]. On the one hand, although developing such modalities is far from

being easy, it allows us to:

1. Combine the sense of formula along with its reference to qualify their truth values and to have

a standard form for representing and reasoning about social notions having opaque contexts.

2. Define appropriate axioms incorporated with modal operators. Thus, the validity of those

operators will be limited to models that only fulfill the constraints imposed by such axioms.

3. Develop dedicated and implementable model checking algorithms for commitments and their

actions and thereby commitment-based protocols.

On the other hand, many of those proposals however substantially suffer from: (1) the intuition

and computation problem, in fact, [50] addressed only the computation problem; (2) lacking formal

translation method; and (3) the over-specification problem, except [50]. Furthermore, from Tables

3, 4, 5 and 6, we can observe that the number of proposals that use the computational logics

LTL and CTL to define artificial languages that artificial agents can use in terms of social notions

(commitments and commitment-based protocols) are more than those based on CTL∗, although

CTL∗ is more expressive than LTL and CTL.

Many formal languages for agent communication are presented in the literature and discussed

in this paper. However, whether a universal language would be possible and whether it would even

be desirable are pressing questions. Comparing the situation with human languages, computational

programming and logical languages, we can understand why one unique language is not realistic

even inside the agent communication community (see Bentahar recent manifesto included in [29]).

Which formalism should be used for defining the language semantics and which model checking

technique should be used for verifying the correctness of the language semantics are other unsolved

problems preventing the definition of a universal language. The main motivations of the thesis are

to answer all these questions. In Chapter 4, we use the expressiveness aspect to improve Singh’s

formal criterion to determine the formalism that we should use to define the semantics of ACL

messages in terms of commitments. More precisely, we extend CTL∗—which is more expressive and

succinct than LTL and CTL—with temporal modalities for commitments and associated actions. In

the discussion of Chapter 4, we will show how to answer the rest of those questions.
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Chapter 4

An Integrated Approach for

Commitment: Logics and Model

Checking

In this chapter1, we propose a logic-based approach for defining a semantics of ACL messages in

terms of social commitments. This approach presents a new branching-time temporal logic, called

ACTL∗c, which extends CTL∗ introduced by Emerson and Halpern [58] with modalities for social

commitments and their actions. We then use ACTL∗c to formally derive a new specification language

of commitment-based protocols. This specification is intended to be expressive and suitable for model

checking. On the basis of this approach, we reduce the problem of model checking ACTL∗c into the

problem of model checking GCTL∗ proposed by Bhat et al. [19], which makes the use of CWB-NC

model checker possible.

4.1 Introduction

Conventionally, social commitments represent business contracts among autonomous agents with

different competing objectives in communicating multi-agent systems. In particular, social commit-

ments are used to define a semantics for ACL messages. Such social semantics supports flexible

executions that enable agents to exercise their autonomy by reasoning about their actions and mak-

ing choices [159]. This flexibility is also related to the accommodation of exceptions that arise at

1The results of this chapter have been published in the Journal of Expert Systems with Applications [55].
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run time by offering more alternative computations to handle them [98]. Social commitments pro-

vide declarative representations of commitment-based protocols by focusing on what the message

means and minimally constrain how the message is exchanged [159, 160]. Moreover, they provide a

principle basis for checking if the agents are acting according to given protocols [143, 125].

Previous approaches have considered defining the semantics of ACL messages in terms of social

commitments by means of computational logics [13, 16, 17, 127, 45, 48, 50, 125], which we called in

Chapter 3 logics of commitments. Although promising, these approaches are not sufficiently general,

rigorous, or clear in their assumptions. More precisely, as we showed in Chapter 3, they suffer from

two problems: the intuition and computation problem and the over-specification problem. Moreover,

the motivation is no longer just formally representing and reasoning about social commitments and

commitment actions, but becomes the application of formal and automatic verification techniques,

such as model checking, in order to verify commitments and commitment-based protocols. Specifying

commitment-based protocols that ensure flexible interactions is only necessary, but not sufficient to

automatically verify their conformance with given properties. Technically, in open environments,

the designers and business process modelers of the system as a whole cannot guarantee that an

agent complies with its commitments and protocols. A formal verification is beneficial to help them

detect and eliminate errors so that such protocols comply with specifications. It also reduces the

development cost and increases confidence on the safety, efficiency and robustness at design time.

In contrast to MASs, formal verification techniques for agent communication protocols (e.g.,

commitment-based protocols) are still in their infancy, due to the more complex nature of protocols

and autonomy of agents. As we showed in Chapter 3, few proposals have been proposed to address

the above challenge. Some proposals used: (1) local testing technique [143]; (2) static verification

technique [24, 26, 140, 160]; and (3) semi-automatic verification technique [157] to detect the com-

pliant and non-compliant agents at the end of the protocol. Although these approaches have made

significant progress, they have been criticized by Artikis and Pitt [2] as they are inefficiently appli-

cable in open systems, which have a large state space. Also, their specification languages, such as

EC, C+ and MAD-P, cannot be directly model checked because those languages are not based on

temporal logics. Other proposals have defined commitment-based protocols using existing computa-

tional logics to be more applicable in today’s economy such as e-negotiation [11], cross-organizational

business models [139] and business processes [67, 65, 47, 49]. Those protocols have been verified

using different model checking techniques. However, they reduced commitments and their actions

to simple abstract structures and types using informal translation-based approaches to be able to

use existing model checking tools. Such informal translation-based approaches [11, 48, 47, 49] have
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the problem of preventing verifying the real and concrete semantics of commitments and related

concepts as defined in the underlying logics. Those approaches only provide partial solution to the

problem of model checking commitments because they reduce commitment modalities into domain

variables. This stops distinguishing among various modes of truth such as necessarily true and true

in the future. Also, informal translation-based approaches use simple variables [48, 139] and abstract

processes [11, 39] that do not account for the meaning of commitments. Moreover, there are no tools

supporting the informal translation-based approaches to perform the translation process before the

actual verification process is undertaken. Model checking logics of commitments and their actions

and commitment-based protocols is then still an open issue.

The motivation of this chapter is to address the above challenges by: (1) formally specifying

commitment-based protocols using a new branching-time temporal logic dedicated to commitments

and associated actions; (2) automatically verifying commitment-based protocols against given prop-

erties using a reduction method to an existing model checker where the semantics is presented; and

(3) introducing a new symbolic model checking algorithm for the proposed logic. In fact, we believe

that a formal and automatic translation-based approach is more suitable as it allows representing

the commitment modality in other temporal modalities, which can still reflect its meaning.

Figure 7 gives an overview of our approach through the thesis, which consists of three parts.

In the first part (logic), we develop a new branching-time temporal logic by extending CTL∗ [58]

with modalities to reason about social commitments and associated actions. The introduction of

a new logic is motivated by the fact that the needed modal operators for reasoning about social

commitments and associated actions cannot be expressed using temporal operators of CTL [31, 56],

LTL [109] or even CTL∗. Furthermore, the election of CTL∗ is motivated by our objective to achieve

more expressive, succinct and convenient specifications to define the semantics of all commitment

actions as CTL∗ subsumes LTL and CTL. Called ACTL∗c, this new logic is particularly used to: (1)

express well-formed formulae of commitments and their contents; and (2) formally specify agent’s

commitment actions. In the second part (specification and reduction), we use social commitments

and associated actions to define a new specification language of commitment-based protocols and

use the proposed logic to express some protocol properties. These properties aim either to eliminate

unwanted and bad agents’ behaviors or enforce desirable agents’ behaviors at design time. Using

commitments as a principle basis for defining the intrinsic meaning of communicative actions in ACLs

and applying this idea to model communication protocols provide a general purpose to capture

a variety number of communicative actions, which can model different individual communication

protocols. Moreover, our approach aims at automatically verifying commitment-based protocols
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against properties expressed in this part (part 2). This verification step is implemented in the

third part by reducing the problem of model checking ACTL∗c used to specify commitment-based

protocols into the problem of model checking GCTL∗ (an extension of CTL∗ with action formulae)

[19] in order to directly use the CWB-NC model checker. The implemented reduction method has

been used to automatically verify the NetBill protocol, a motivated and specified example in the

proposed specification language and the obtained results are reported. In addition to this reduction

method, we also provide a new symbolic model checking algorithm dedicated to ACTL∗c logic. This

algorithm provides a methodology to compute the set of states satisfying ACTL∗c formulae, which

are encoded using Boolean functions that can be easily represented using OBDDs [21].
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Figure 7: A schematic view of our approach

Based on the experiences and results that we will obtain through the chapter and with some tech-

nical reasons that we will present in Section 4.5, we only focus on a refined fragment of ACTL∗c,

called CTLC, in Chapter 5. We also reduce the problem of model checking CTLC used to specify

commitment-based protocols into the problems of model checking GCTL∗ and ARCTL (an exten-

sion of CTL with action formulae [104]) to use the CWB-NC and extended NuSMV model checkers
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respectively. The motivation behind the use of these two model checkers is to compare between sym-

bolic OBDDs-based technique implemented in NuSMV and automata-based technique implemented

in CWB-NC. In Chapter 6, we develop a new symbolic algorithm dedicated to CTLC in lieu of

formal reduction method to directly model-check commitments and their actions and commitment-

based protocols. We also aim to analyze the time and space complexity of the proposed algorithm.

Our full implementation has been done on top of the MCMAS model checker. We call the new tool

MCMASC (MCMAS for commitments).

The remainder of this chapter is organized as follows. Section 4.2 presents the life-cycle of com-

mitments and the syntax and semantics of the proposed ACTL∗c. In Section 4.3, we use commit-

ments and associated actions to define a new specification language of commitment-based protocols.

The reduction of ACTL∗c model checking to the one of GCTL∗ is discussed in Section 4.4. The

properties of interest to be checked and the verification of the NetBill protocol using the CWB-NC

model checker along with experimental results are also reported in this section. Section 4.5 ends the

chapter by comparing our approach with other relevant approaches, identifying the motivations of

adopting a refined fragment of ACTL∗c, and linking the present chapter with the rest of the thesis.

4.2 Commitments and ACTL∗c

This section presents the first part of our approach, which is about describing the life-cycle of social

commitments and defining a new branching-time temporal logic, called ACTL∗c. The commitment

formalism defined by Singh and Huhns [130] has the following properties:

Multi-Agency: the agent who promises or commits to bring about some fact is called the debtor

and the other agent who wants the fact to be true is called the creditor. Formally, in our approach

social commitments are denoted by C(Ag1, Ag2, ϕ) where Ag1 is the debtor, Ag2 the creditor and ϕ

a wff in the proposed logic representing the commitment content. Intuitively, C(Ag1, Ag2, ϕ) means

that Ag1 publicly commits to Ag2 that ϕ holds. We can add a new argument to capture deadlines of

social commitments as in [17, 140] or define deadlines using temporal quantifiers over time points or

intervals as in [99]. In our approach, we can use the abstract timelines defined in temporal modalities

of the underlying logic to define deadlines that can be used to manipulate commitment states.

Conditionally: there are some situations where an agent wants to only commit about some

facts when a certain condition is satisfied. Formally, we denote conditional commitments by τ ⊃

C(Ag1, Ag2, ϕ) where Ag1, Ag2 and ϕ have the above meaning and τ is a wff in our logic representing

the commitment condition. This formulation has pros and cons. However, if we regard unconditional
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commitment as the result of an assertion, we are forced to choose this formulation: if the condition τ

of an assertion is true, then there is a way to end up with a commitment to bring about ϕ. Of course

this is weak solution as it uses the logical implication operator (cf. Section 3.3 in Chapter 3). We use

CC(Ag1, Ag2, τ, ϕ) as an abbreviation of τ ⊃ C(Ag1, Ag2, ϕ). In this case, we have C(Ag1, Ag2, ϕ) �

CC(Ag1, Ag2,⊤, ϕ). Another solution would be defining a new accessibility relation for CC to give

computationally grounded semantics to CC, but this is beyond the scope of this thesis and will be

investigated as future work.

Manipulability: commitments can be modified in a principled manner using agent’s actions,

called commitment actions [124]. As we mentioned in Chapter 3, these actions are classified into

two-party and three-party actions. Two-party actions are Withdraw (or Cancel), Fulfill (or Dis-

charge) and Release. Three-party actions are Delegate and Assign. Several approaches assume that

agents will respect their commitments. However, this assumption is not always guaranteed, espe-

cially in real-life business scenarios where a violation can occur if agents are malicious, deceptive,

malfunctioning or unreliable. It is crucial to introduce Violate action [35, 99, 17, 45, 48] of social

commitments along with their satisfaction and to use model checking to automatically verify agents’

behaviors with regard to those actions.

As the notion of commitment is profound to our approach, we now describe commitments in

greater detail. Figure 8 shows the life-cycle of a commitment by making use of a UML state dia-

gram. The rounded rectangles represent the states and the directed edges represent the transitions.

In particular, the label of a rectangle is the commitment state whilst the label of an edge is an

action or an event that causes the transition. At run time, commitments arise between agents, but

at design time we specify them between roles. A role helps specify a business relationship between

interacting agents in an abstract way. Suppose that a commitment is established by performing a

declarative or performative communicative action by an agent, given suitable conditions and conven-

tions. The life-cycle of that commitment proceeds as follows: the commitment could be Conditional

or Unconditional. This is represented by the selection operator. A conditional commitment can

move either to Negotiation state to negotiate the condition of commitment among the participants

or to Condition state to check the satisfaction of the condition. The conditional commitment could

be negotiated many times until reaching either a mutual agreement about the condition, meaning

that the negotiation’s outcome is a conditional commitment where the condition is negotiated and

agreed upon among the participants, or no agrement can be reached about the condition where the

commitment moves to the Final state. If the condition is not satisfied, the commitment also moves

to the Final state. When the unconditional commitment is established, then it may either move to
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the one of the following states: Fulfilled, Violated, Withdrawn, Released, Delegated, Assigned or move

to Negotiation state again but this time to negotiate the commitment content. When the participant
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Figure 8: Life-cycle of social commitment

agents reach an agreement, then the commitment moves to the one of the aforementioned states or

to the Final state if no agreement is reached. In this chapter, we consider all the actions except

negotiation, which needs other techniques such as game theory or dialogue games that are beyond

the scope of the thesis.

When the debtor performs the withdrawal action, the commitment is withdrawn. Specifically,

only the debtor is able to perform this action without any intervention from the creditor. The

commitment is fulfilled when the debtor reaches a state at which the content of commitment is

satisfied. The social commitment is violated when there is no way to reach a state satisfying

the content of commitment. The social commitment can be released by the creditor so that the

debtor is no longer obliged to carry out its commitment. The social commitment can be assigned

by the creditor, which results in releasing this creditor from the commitment and having a new

unconditional commitment with a new creditor. The social commitment can be delegated by the

debtor, which results in withdrawing this debtor from the commitment and delegating its role to

another debtor within a new commitment. In our approach, some actions such as delegation and

assignment can be applied on a commitment multiple times e.g., the delegated commitment can

be delegated again or move to another state such as fulfillment and so on. In fact, these actions

have the property of “leaving the agents sensitive to race conditions over commitments” [28]. Only

release, fulfillment, violation and withdrawal can be applied one time.
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4.2.1 Syntax of ACTL∗c

ACTL∗c extends CTL∗ with modalities to represent and reason about social commitments and

associated actions. It conceptualizes time as a tree-like structure whose nodes correspond to the

states (moments) of the system being considered. The branches or paths of the tree represent all

choices in the future that agents have when they participate in conversations, while the past is linear.

In what follows, we present the syntax according to which formulae in the proposed ACTL∗c can be

constructed. Like for CTL∗, these formulae are classified into state formulae S and path formulae P .

The state formulae are those that hold on a given state such as commitment formula, while the path

formulae express temporal properties of paths and action formulae. The state formulae constitute

the formulae of ACTL∗c.

Definition 3 (Syntax) The syntax of ACTL∗c formulae is given by the following BNF grammar:

S ::= p | ¬S | S ∨ S | EP | C

C ::= C(Agt,Agt,P)

P ::= θ | S | ¬P | P ∨ P | © P | P U P | α(Agt,Agt, C)

α ::= Wi | Fu | V i | Re | De | As

− p ∈ PV where PV is a set of atomic propositions and θ ∈ Φα where Φα is a set of atomic

action propositions.

− We use A = {Ag1, Ag2, Ag3, . . .} as a set of agent names. Agt is nonterminal corresponding

to the set A.

− The Boolean and temporal operators and their readings are introduced in Chapter 3.

− The modal connective C(Ag1, Ag2, ϕ) stands for social commitment. It is read as “agent Ag1

commits towards agent Ag2 that the path formula ϕ holds” or equivalently as “ϕ is committed

to by Ag1 towards Ag2”.

− The modal connective α(Ag1, Ag2, C) stands for commitment actions, in particular, modal oper-

ators Wi, Fu, V i, Re, De and As stand for Withdraw, Fulfill, Violate, Release, Delegate, and

Assign actions respectively. For instance, if α is a Delegate action, then De(Ag1, Ag3, C(Ag1,

Ag2, ϕ)) is read as “agent Ag1 delegates its commitment C(Ag1, Ag2, ϕ) to agent Ag3”.

− Other modal connectives can be abbreviated in terms of the above as usual, for examples,

♦ϕ � ⊤Uϕ (eventually) and �ϕ � ¬♦¬ϕ (globally).
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Notice that committing to path formulae is more expressive than committing to state formulae as

state formulae are path formulae and it is not the case that all path formulae are state formulae.

4.2.2 Semantics of ACTL∗c

We define the semantics of ACTL∗c formula ϕ with respect to the formal model M associated

with commitment-based protocols using a Kripke structure as follows: M = 〈S,A, ACT,Rt,Vs,Vα,

Rc,L, {≈x,y | (Agx, Agy) ∈ A2}, I〉 where:

− S is a finite set of reachable2 global states in which each global state is a tuple of local states

for all agents in the MAS at a given time,

− A is a set of agent names where each agent is characterized by a set of possible local states

representing its complete information about the system at different moments,

− ACT is a set of agent local actions including atomic and commitment actions,

− Rt ⊆ S×A×ACT × S is a total labeled transition relation,

− Vs : PV → 2S is a function assigning to each atomic proposition a set of states satisfying this

proposition,

− Vα : ACT → 2Φα is a function assigning to each action a set of atomic action propositions to

interpret this action,

− Rc : S × A × A → 2Π, where Π is the set of all paths, is a social accessibility relation, which

associates with a state s a set of accessible paths along which an agent commits towards

another agent,

− L : S → 2A×A is an agency function that associates to each state a set of pairs of two interacting

agents in this state such that the first one is the conveyer and the second one is the addressee,

− ≈x,y⊆ S×S is an accessibility relation defined by si ≈x,y sj for each pair of agents (Agx, Agy) iff

the local states of Agx in the global states si and sj are alternatives à la Hintikka’s accessibility

relation (i.e. indistinguishable) and the same thing for Agy such that (Agx, Agy) ∈ L(si), and

− I ⊆ S is a set of initial global states.

We assume that the set ACT of actions includes the special action ǫ for the “null” action. Thus,

when an agent performs the null action, the local state of this agent remains the same. Furthermore,

the underlying time domain in our model M is discrete, i.e., the present moment refers to the current

state, the next moment corresponds to the immediate successor state in a given path and a transition

2This set contains only states that are reachable from I using the transition relation Rt.
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corresponds to the advance of a single time-unit. As a modal logic, the temporal modalities of our

logic capture the abstraction view of timelines. This meaning is clarified in the following example.

Example 2 Consider p = deliverGoods , in the context of the NetBill protocol [131]. There, we

might want to define a commitment C(Ag1, Ag2, E♦≤7 deliverGoods ), meaning that a delivery of

goods is committed to agent Ag2 within bounded time, namely 7 days (i.e., time unit is day) by agent

Ag1 where ♦≤7p � p ∨©p ∨©© p . . . ∨© . . .©︸ ︷︷ ︸
6 times

p.

The formulation in the above example is motivated by the fact that we are interested in model

checking at the design time, so the model should be completely known as the one resulting, for

example, from compiling commitment machines into FSMs [158].

Instead of (si, Agx, θi, si+1), the labeled transitions will be written as si
Agx:θi−−−−→ si+1, which

means each transition is labeled with an agent and its action performed during this transition. The

paths that path formulae are interpreted over have the form π = 〈s0 Ag1:θ0−−−−→ s1
Ag2:θ1−−−−→ s2 . . .〉 such

that for all i, x ≥ 0, (si
Agx:θi−−−−→ si+1) ∈ Rt. A path in M is then an infinite sequence of reachable

global states and labeled transitions with agents and their actions. π(k) refers to the k-th state in

this sequence. The set of all paths starting at si is denoted by Πsi while 〈si, π〉 refers to the path π

starting at si. π ↑ si = 〈si Agx:θi−−−−→ si+1
Agx+1:θi+1−−−−−−−→ si+2 . . .〉 is the suffix of the path π starting from

the state si. π ↓ si is the prefix of π starting at si. When a state sj is a part of a path π, we write

sj ∈ π. Also, when a transition si
Agx:θi−−−−→ si+1 is part of a path π, we write si

Agx:θi−−−−→ si+1 ∈ π.

To address the spurious problem of intuition and computation regarding to the definition of the

accessible path that plagues existing approaches, a path π ∈ Rc(si, Ag1, Ag2) is an accessible path for

the two interacting agents Ag1 (the debtor) and Ag2 (the creditor) iff all global states along this path

are reachable and accessible states for the two interacting agents using the agency function, which

formally means: π ∈ Rc(si, Ag1, Ag2) iff si = π(0) and for all sj ∈ π we have (Ag1, Ag2) ∈ L(sj).

Intuitively, an accessible path for Ag1 and Ag2 from the state si is a possible computation of the

system for these two agents in the sense of reachability. Rc has the following properties:

1. Rc has a form of reflexivity as any accessible path should start from the state itself; i.e., if

π ∈ Rc(si, Ag1, Ag2) then si = π(0) (axiom T ).

2. If π ∈ Rc(si, Ag1, Ag2) then ∀sj ∈ π if π′ ∈ Rc(sj , Ag1, Ag2) then π′ ↓ sj ∈ Rc(sj , Ag1, Ag2).

This property is a form of transitivity (axiom 4).

3. If π ∈ Rc(si, Ag1, Ag2) then ∀sj ∈ π we have π ↑ sj ∈ Rc(sj , Ag1, Ag2).
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Thus, the logic of commitment is at least KT 4, which it is known as S4 (cf. Table 1 in Chapter

2 for the meaning of those axioms). An accessible state sj for Ag1 and Ag2 from the state si (i.e.,

si ≈1,2 sj) is an alternative state in the sense that the two local states of each agent in the global

states si and sj are indistinguishable and (Ag1, Ag2) ∈ L(si). It is easy to see that ≈x,y is transitive,

and if we assume that it is serial (as in any normal modal logic), we obtain that ≈x,y is also reflexive,

symmetric, and Euclidean. Thus, the logic of Withdraw, Fulfill, Violate, Release, Delegate or Assign

action is at least S5.

Definition 4 (Satisfaction) Satisfaction for an ACTL∗c state (resp. path) formula ϕ in the model

M at a global state si (resp. along the path π starting at global state si), denoted as M, 〈si〉 |= ϕ

(resp. M, 〈si, π〉 |= ϕ), is recursively defined as follows:

− M, 〈si〉 |= p iff si ∈ Vs(p),

− M, 〈si〉 |= ¬ϕ iff M, 〈si〉 � ϕ,

− M, 〈si〉 |= ϕ ∨ ψ iff M, 〈si〉 |= ϕ or M, 〈si〉 |= ψ,

− M, 〈si〉 |= Eϕ iff ∃π ∈ Πsi s.t. M, 〈si, π〉 |= ϕ,

− M, 〈si〉 |= C(Ag1, Ag2, ϕ) iff ∀π∈ Πsi s.t. π ∈Rc(si, Ag1, Ag2) we have M,〈si, π〉|= ϕ,

− M, 〈π〉 |= θ iff (π(0)
Agx:β−−−−→ π(1)) ∈ Rt and θ ∈ Vα(β) for an agent Agx,

− M, 〈si, π〉 |= ϕ iff M, 〈si〉 |= ϕ,

− M, 〈si, π〉 |= ¬ϕ iff M, 〈si, π〉 � ϕ,

− M, 〈si, π〉 |= ϕ ∨ ψ iff M, 〈si, π〉 |= ϕ or M, 〈si, π〉 |= ψ,

− M, 〈si, π〉 |= ©ϕ iff M, 〈si+1, π ↑ si+1〉 |= ϕ on the suffix π ↑ si+1,

− M, 〈si, π〉 |= ϕ U ψ iff ∃j ≥ i s.t. M, 〈sj , π ↑ sj〉 |= ψ and M, 〈sk, π ↑ sk〉 |= ϕ ∀i ≤ k < j,

− M, 〈si, π〉 |= Wi(Ag1, Ag2, C(Ag1, Ag2, ϕ)) iff M, 〈si〉 |= ¬C(Ag1, Ag2, ϕ) and

∃sj s.t. si ≈1,2 sj and M, 〈sj〉 |= C(Ag1, Ag2, ϕ) and π /∈ Rc(si, Ag1, Ag2),

− M, 〈si, π〉 |= Fu(Ag1, Ag2, C(Ag1, Ag2, ϕ)) iff M, 〈si〉 |= C(Ag1, Ag2, ϕ) and

∀sj s.t. si ≈1,2 sj we have M, 〈sj〉 |= C(Ag1, Ag2, ϕ) and π ∈ Rc(si, Ag1, Ag2),

− M, 〈si, π〉 |= V i(Ag1, Ag2, C(Ag1, Ag2, ϕ)) iff M, 〈si〉 |= C(Ag1, Ag2, ϕ) and ∀sj s.t. si ≈1,2 sj

we have M, 〈sj〉 |= C(Ag1, Ag2, ϕ) and M, 〈si, π〉 |= ¬ϕ,

− M, 〈si, π〉 |= Re(Ag2, Ag1, C(Ag1, Ag2, ϕ)) iff M, 〈si〉 |= ¬C(Ag1, Ag2, ϕ) and ∃sj s.t.

si ≈2,1 sj and M, 〈sj〉 |= C(Ag1, Ag2, ϕ) and π /∈ Rc(si, Ag1, Ag2),
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− M, 〈si, π〉 |= De(Ag1, Ag3, C(Ag1, Ag2, ϕ)) iff M, 〈si, π〉 |= Wi(Ag1, Ag2, C(Ag1, Ag2, ϕ))

and M, 〈si〉 |= C(Ag3, Ag2, ϕ)),

− M, 〈si, π〉 |= As(Ag2, Ag3, C(Ag1, Ag2, ϕ)) iff M, 〈si, π〉 |= Re(Ag2, Ag1, C(Ag1, Ag2, ϕ))

and M, 〈si〉 |= C(Ag1, Ag3, ϕ)).

Excluding commitment modality and action formulae, the semantics of ACTL∗c state formulae is as

usual (semantics of CTL∗). The state formula C(Ag1, Ag2, ϕ) is satisfied in the model M at si iff

the content ϕ is true in every accessible path from this state using Rc(si, Ag1, Ag2). The intuition

behind defining a commitment as a state formula is to reflect the fact that the debtor agent does

not know what will be happening in the future along the path.

The formula Wi(Ag1, Ag2, C(Ag1, Ag2, ϕ)), which means Withdraw action, is satisfied in the

model M at si through a path π iff the negation of the formula C(Ag1, Ag2, ϕ) holds at the current

state (i.e., si), but the commitment holds in a state sj which can be seen from the current state

si through the accessibility relation ≈1,2, and π is not accessible. The intuition we capture by

this semantics is that by withdrawing its commitment, the debtor agent selects a non-accessible

path where the commitment is no more active, but still there is an accessible state where the

commitment is active so it can be manipulated by fulfillment or violation. The semantics of the

formula Re(Ag2, Ag1, C(Ag1, Ag2, ϕ)), which means Release action, is defined in the same way.

The only difference is, however, in the accessibility relation ≈2,1 instead of ≈1,2 because in the

case of release, the creditor who performs the action. Figure 9 depicts the motivation behind
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Figure 9: The intuition of the proposed semantics.

the semantics of Withdraw (resp. Release) action, which is performed by an agent Ag1 (resp.
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Ag2) at sj through the path π3 (resp. π4), i.e., M, 〈sj , π3〉 |= Wi(Ag1, Ag2, C(Ag1, Ag2, ϕ)) (resp.

M, 〈sk, π4〉 |= Re(Ag2, Ag1, C(Ag1, Ag2, ϕ))).

The formula Fu(Ag1, Ag2, C(Ag1, Ag2, ϕ)), which means Fulfill action, is satisfied in the model

M at si through π iff (1) the commitment C(Ag1, Ag2, ϕ) holds both in the current state (i.e., si) and

every accessible state from it using ≈1,2; and (2) the path π starting at the current state is accessible

using Rc(si, Ag1, Ag2). The intuition this semantics captures is that Ag1 fulfills its commitment if the

commitment is still active in all alternative states and Ag1 selects an accessible path through which

the content holds. The commitment is violated in a state along a path π iff the commitment is active

in all alternative states and its content is false along the path. Intuitively, when an agent violates

its commitment (i.e., the commitment content does not hold), this implies that the agent selects a

non-accessible path, but the contrary is not always true (i.e., being on a non-accessible path does not

imply that the content is false along the path). Figure 9 shows the intuition of the semantics of Fulfill

(resp. Violate) action, which is performed by an agent Ag1 at si through the path π1 (resp. π2),

i.e., M, 〈si, π1〉 |= Fu(Ag1, Ag2, C(Ag1, Ag2, ϕ)) (resp. M, 〈si, π2〉 |= V i(Ag1, Ag2, C(Ag1, Ag2, ϕ))).

The semantics of the formulae De and As, which mean Delegate and Assign actions respectively, is

simply defined in terms of the formulae Wi and Re and new commitments. A path π in the model

M satisfies action proposition θ iff the label of the first transition on this path satisfies θ.

Notice that our semantics of commitment actions does not suffer from the over-specification

problem as those actions are defined in terms of accessible and non-accessible paths, particulary the

scope of each commitment action semantics does not check the truth condition of the commitment

content, which is the key point of the logical model of commitment, except for the Violate action.

Furthermore, the persistence of commitments is captured by giving the agent the chance to consider

certain accessible states at which those commitments are still active and ready to be manipulated

along accessible and non-accessible paths. Compared to CTL∗, ACTL∗c defines seven new modal-

ities: commitment and its action formulae. These seven modalities cannot be expressed in CTL∗

because their semantics are defined using the social accessibility relation Rc and accessibility rela-

tion ≈i,j which cannot be captured in any CTL∗ connector. For instance, C(Ag1, Ag2, ϕ) cannot be

expressed by ©ϕ because the content ϕ is true along every accessible path starting from the current

state; it cannot be expressed by ♦ϕ because C(Ag1, Ag2, ϕ) implies ♦ϕ, but the reverse is not always

true. Thus, any formula containing C(Ag1, Ag2, ϕ) cannot be expressed in CTL∗.

The notation |= ϕ refers to the validity of the formula ϕ meaning that ϕ holds for all models and

for all states and paths. The following proposition is a direct result from the proposed semantics.
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Proposition 1

1. |= Fu(Ag1, Ag2, C(Ag1, Ag2, ϕ)) ⊃ ¬V i(Ag1, Ag2, C(Ag1, Ag2, ϕ))

2. |= Fu(Ag1, Ag2, C(Ag1, Ag2, ϕ)) ⊃ ¬Wi(Ag1, Ag2, C(Ag1, Ag2, ϕ))

3. |= Fu(Ag1, Ag2, C(Ag1, Ag2, ϕ)) ⊃ ¬Re(Ag2, Ag1, C(Ag1, Ag2, ϕ))

4. |= Wi(Ag1, Ag2, C(Ag1, Ag2, ϕ)) ⊃ ¬V i(Ag1, Ag2, C(Ag1, Ag2, ϕ))

5. |= Wi(Ag1, Ag2, C(Ag1, Ag2, ϕ)) ⊃ ¬Re(Ag2, Ag1, C(Ag1, Ag2, ϕ))

6. |= V i(Ag1, Ag2, C(Ag1, Ag2, ϕ)) ⊃ ¬Re(Ag2, Ag1, C(Ag1, Ag2, ϕ))

4.3 Commitment-based Protocols

In this section, we proceed to the second part of our approach, which focusses on using the proposed

logical model to derive a new specification language of commitment-based protocols. While modeling

interactions among agents in terms of commitments provides a good basis for checking compliance,

this compliance is only determined by specifying the notion of protocols.

4.3.1 Protocol Specification

Our specification language of commitment-based protocols is defined using: (1) a set of commitment

actions without any constraint; (2) a set of autonomous agents (roles) that communicate by sending

messages to each other; and (3) a set of propositions related to the application domain of the protocol.

In addition to what and when messages can be exchanged, the proposed specification specifies the

meaning of messages in terms of their effects on the commitments. Each message is denoted by

Message(snd, rcv, ψ) where snd is the sender, rcv the receiver and ψ (a wff in ACTL∗c) the message

content representing the exchanged information. This message can be mapped into an action on

a commitment in which ψ is mapped into the commitment content. We assume that exchanging

messages among agents is reliable, which operationally means that messages do not get lost and

communication channels are order-preserving. In this manner, a protocol is public meaning that it

is published and stored in a public repository to be accessible by all participating agents. Notice

that our proposed specification can be called a constitutive specification to be compatible with the

literature about commitment-based protocol specifications.

The protocol specification begins by a message MSG , which can be followed by other messages

(in a recursive way) or ǫ message. This message MSG can be directly mapped into either commit-

ment actions or domain proposition actions. Specifically, MSG could either be Withdraw, Fulfill,
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Violate, Release, Assign, Delegate, Dom Pro or ǫ. These messages are defined in our logic with

action formula (α) and atomic action proposition θ respectively. The domain proposition such as

requestQuote, refund, etc. is mainly related to the application domain of the protocol. Each do-

main application can be represented by a suitable ontology. The formal specification language of

commitment-based protocols is defined in Table 7 using a BNF grammar with meta-symbols: “|”

and “;” for respectively the choice, and message sequence that captures the dependence among some

messages as for the delegate message that should follow with the new commitment.

Table 7: The formal specification of commitment-based protocols
Protocol ::= MSG

MSG ::=
[
Withdraw (Ag1, Ag2,COM) | Fulfill(Ag1, Ag2,COM)

| Violate(Ag1, Ag2,COM) | Release(Ag2, Ag1,COM)

| Assign(Ag2, Ag3, COM); COM

| Delegate(Ag1, Ag3,COM); COM | Dom Pro
]
;
[
MSG | ǫ

]

COM ::= CC(Ag1, Ag2,Pro,Pro)| C(Ag1, Ag2,Pro)

Pro ::= A well-formed formula in ACTL∗c

Dom Pro ::= Identify domain propositions

The above formal specification provides both flexibility and rigor wherein a participant agent may

use a protocol in any way it chooses as long as it fulfills all of its established commitments. Moreover,

the regulative specifications that restrict a set of acceptable executions are also hold in two levels.

In the first level, our formal specification uses the dependency operator “;” (it can be seen as a form

of causality) to control the follow among messages. In the second level, it uses the abstract timelines

incorporated in temporal modalities to place the regulative specifications within the conditions and

contents of commitments instead of separating them from the constitutive specifications as done

in [6]. From Example 2, the satisfaction of the proposition deliverGoods is constrained during an

execution by the temporal modality ♦≤7, which could be true either in the current moment or next

moment or next next moment and so one till 6 moment. As in [6], the constitutive and regulative

specifications of our formal language are mainly focused on commitments that hold in social states

and not on commitment actions, which allow us to re-use actions in different scenarios. This is

because the meaning of actions will be separated from the context of the protocol where it is used.

Moreover, we believe that our formal specification language emphasizes the business meanings of

the communications that are specified declaratively. It also includes temporal constraints, which are

106



usually well-related to challenges of real-life distributed computing.

4.3.2 Protocol Compilation

The proposed specification can either be used to reason about the commitment actions at run time

[159] or compiled into finite state machines (FSMs) at design time. At run time, the agents can

logically compute their execution paths that respect the given protocol specifications using some

reasoning rules as axioms. However, these rules are not enough to verify protocols against some

properties when the system is large and complex (cf. Section 3.6 in Chapter 3 for more details).

Moreover, “the flexibility comes at the price of reasoning with declarative representations at run

time, which can be expensive and may increase the code footprint of the agents” [159, 126]. For

these reasons, we adopt the second approach, which consists in compiling the commitment-based

protocol into a FSM where commitments hold on states and actions are labeling transitions. This is

compatible with our ACTL∗c where commitments are state formulae and actions are path formulae.

As in [126], the proposed protocol specifications are nonterminating analogous to those in real-life

applications. In this sense, compiling these protocols requires to consider Büchi automata, which are

automata over infinite words. The acceptance condition of Büchi automata handles nonterminating

paths (or computations) by considering acceptance states, which are visited infinitely often. From

Chapter 2, a Büchi automaton is a five tuple B= (Q,Σ, Q0, F, δ) where Q is a set of states; Σ is an

alphabet; Q0 ∈ S is a set of initial states; F ⊆ Q is a set of accepting states; and δ ⊆ Q × Σ × Q

is the labeled transition relation. Let inf (π) be the set of states that occur infinitely often in the

computation π. The computation π is accepting by B iff inf (π) ∩ F is not equal to the empty set.

4.3.3 Motivating Example: NetBill Protocol

Let us consider the NetBill protocol (NB) [131] taken from e-business domain to clarify the spec-

ification language of commitment-based protocols. The NB protocol is a security and transaction

protocol optimized for the selling and delivery of low-priced information goods over the Internet.

The original wording from [131] is as follows:

“The NetBill payment protocol is eight steps (cf. Figure 10). The first message requests a quote

based on the customer’s identity, to allow for customized per-user pricing, such volume discounts or

support for subscriptions. If the quote (step two) is accepted (step three), the merchant sends the

digital information to the customer (step four) but encrypts and withholds the key. The customer

software constructs an electronic payment order (EPO) describing the transaction and including
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Figure 10: The NB payment protocol [131].

cryptographic checksum of the goods received. The order is signed with the customer’s private key

and sent to the merchant, who verifies its contents, appends the key for decrypting the goods, endorses

the EPO with a digital signature and sends it on to the NetBill server. The NetBill server verifies

funds in the customer’s NetBill account, debiting the customer and crediting the merchant, and

digitally signed receipt, including the key to decrypt the goods, is sent first to the merchant and then

on to the customer. The customer software can now decrypt the purchased information and present

it to the customer”.

Figure 11 depicts an infinite Büchi automaton of the NB protocol where the dashed arrows show

the accessible states using the accessibility relation ≈Agx,Agy . In particular, the formal model M

(cf. Section 4.2.2) of the NB protocol is compiled using the Büchi automaton B as follows: Q=S

the set of states (nodes), Σ=A×ACT ∪ {≈Agx,Agy} the alphabet used to label transitions, Q0=I,

F={s6}, and δ=Rt ∪ {≈Agx,Agy | (Agx, Agy) ∈ A2} the union of the transition relation and the

accessibility relation ≈Agx,Agy . As in [48, 160], we omit the banking procedures by assuming that if

a merchant gets an EPO, it can take care of EPO successfully.

Our compilation begins by a request quote message on a path starting at s0 (the transition

between s0 and s1 is labeled with the requestQuote action proposition: s0
Cus:requestQuote−−−−−−−−−−−→ s1). In

this message, the customer (Cus) requests a price for some desired goods such as software pro-

grams. This request is followed by the merchant’s (Mer ) reply by presenting the price quote as

an offer. This present quote message generates the Mer agent’s commitment to deliver the re-

quested goods to the Cus agent after receiving the payment (CC(Mer ,Cus , pay , deliver )) at s2
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(the transition s1
Mer:presentQuote−−−−−−−−−−−−→ s2 is labeled with the presentQuote action proposition). The

Cus agent could either reject or accept this offer. Rejecting this offer means the Cus agent re-

leases the offer along a path starting at s′2, which is an equivalent state to s2 using ≈Cus,Mer )

(the transition between s′2 and s7 is labeled with the Release action) and the protocol passes

through the failure state s7 as the computation that cycles through states s0, s1, s2, s
′
2, s7, namely,

(s0
Cus:requestQuote−−−−−−−−−−−→ s1

Mer:presentQuote−−−−−−−−−−−−→ s2
Cus:null−−−−−→ s′2

Cus:Release−−−−−−−−→ s7 . . .) is not accepted by the

Büchi automaton, because it does not visit the state s6 infinitely often. Accepting this offer means

the Cus agent commits to send the payment to the Mer agent along another path starting at the

state s2 (the transition between s2 and s3 is labeled with the acceptQuote action proposition).

Suppose that the Cus agent accepts the received offer, then it has three choices: (1) to withdraw

its commitment through a path starting at s′3 (which is equivalent to s3 using ≈Cus,Mer ) and passing

through s7, which is not accepted the Büchi automaton; (2) to violate it through a path starting
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Figure 11: Extension of the NB protocol by considering commitments and actions.

at s3 and passing through s7; or (3) to fulfill it by sending the payment to the Mer agent along a

fourth path starting at the state s3 but passing through s4. The computation (s3
Cus:Fulfill−−−−−−−→ s4 . . .)

satisfies the formula Fu(Cus,Mer , C(Cus ,Mer , pay)), i.e., the message Fulfill indicates the compu-

tation through which the formula is satisfied. In a similar way, the computations (s3
Cus:Violate−−−−−−−−→
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s7 . . .), and (s′3
Cus:Withdraw−−−−−−−−−→ s7 . . .) satisfy the formulae V i(Cus ,Mer , C(Cus ,Mer , pay)), and

Wi(Cus ,Mer , C(Cus ,Mer , pay)) respectively.

According to the semantics of Delegate action, the Cus agent can delegate its commitment to a

financial company (say Bank1 ) to pay the Mer agent on its behalf along a path starting at the state

s′3 and passing through s11. As in [157], the Bank1 agent can delegate this commitment to another

bank (say Bank2 ), which delegates the commitment back to the Bank1 agent. The bank agents

(Bank1 and Bank2 ) delegate the commitment back and forth infinitely often and this is presented

by transitions that make a loop between states s11 and s′11. In a sound protocol, this behavior

should be avoided (in Section 4.4.3, we will show how to verify this issue). The Mer agent, before

delivering the goods to the Cus agent, can withdraw its offer on a path starting at s′4 (which is

equivalent to s4 using ≈Mer,Cus) and passing through s10 and then move to the recovery state s9

(which is not accepted by the Büchi automaton) after refunding the payment to the Cus agent, which

means performing the refund action on a path starting at s10. However, when the Cus agent pays

for the requested goods and the Mer agent delivers them, the Mer agent fulfills its commitment

along a path starting at the state s4 and passing through s5 and then moves to the acceptance

state s6 after sending the receipt to the Cus agent along a path starting at s5. The computation

that cycles through states s0, s1, s2, s3, s4, s5, s6, namely, (s0
Cus:requestQuote−−−−−−−−−−−→ s1

Mer:presentQuote−−−−−−−−−−−−→

s2
Cus:acceptQuote−−−−−−−−−−−→ s3

Cus:Fulfill−−−−−−−→ s4
Mer:Fulfill−−−−−−−→ s5

Mer:receipt−−−−−−−→ s6
Mer :null−−−−−−→ s0 . . .) is accepted by the

Büchi automaton because it visits the state s6 infinitely often.

Conversely, the Cus agent can pay for the requested goods without being delivered by the Mer

agent. In this case, the Mer agent violates its commitment on another path starting at s4 and

passing through s8 and then moves to the recovery state s9 after refunding the payment to the Cus

agent. As we mentioned, the state s9 is not accepted by the Büchi automaton. Finally, the Cus

agent, for some reasons, can assign the commitment of the Mer agent to deliver the goods to another

customer (say Cus1 ) along a fourth path starting at s′′4 (which is equivalent to s4 using ≈Cus,Mer)

but passing through s12. Specifically, the Cus agent releases the current commitment with the Mer

agent and a new commitment between Mer and Cus1 is created to deliver the requested goods to

the Cus1 agent. As for delegate scenario, the assign action can be repeated infinitely often among

interacting agents and this scenario, presented by transitions that make a loop between states s12

and s′12, is unwanted behavior in our protocol.
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4.4 Implementation

There are two methods to verify the proposed commitment-based protocols: (1) by a direct method

either by developing a new model checking algorithm from scratch (cf. Appendix A about our

symbolic model checking algorithm dedicated to ACTL∗c) or extending an existing model checker

(as we will do in Chapter 6 for CTLC); and (2) by a reduction (transformation) method into an

existing model checker as we present hereafter. In fact, we adopt a reduction method as it is easy

to implement. In particular, our implementation is performed in 4 steps as follows: (1) reduce

the problem of model checking ACTL∗c into the problem of model checking GCTL∗ [19] in order

to be able to use the CWB-NC model checker; (2) encode the NB protocol using CCS (the input

language of CWB-NC); (3) express protocol properties; and (4) run the verification of the extended

NB protocol against the expressed properties and report the experimental results.

4.4.1 Reducing ACTL∗c to GCTL∗

GCTL∗ ( read as “Generalized CTL∗”) extends CTL∗ [58] by allowing formulae to constrain actions

as well as states. The syntax of GCTL∗ is defined by the following BNF grammar [19]:

S ::= p | ¬S | S ∨ S | E P

P ::= θ | S | ¬P | P ∨ P | © P | P UP

where p ∈ PV, PV is a set of atomic propositions and θ ∈ Φα, Φα is a set of atomic action

propositions. In fact, this syntax is similar to the syntax of the proposed ACTL∗c where the formulae

generated by S and P are called state formulae and path formulae respectively. State formulae

are those that hold on a given state, while path formulae express temporal properties of paths.

State formulae constitute the formulae of GCTL∗. Other temporal modalities can be defined as

abbreviations as usual. To define the semantics of GCTL∗ formulae, we define the following model.

Definition 5 (Model of GCTL∗) A model MG = (SG, Ac, lS, lAc,→, IG) is a tuple where SG

is a nonempty set of states; Ac is a set of actions; lS : SG → 2PV is a state labeling function;

lAc : Ac → 2Φα is an action labeling function; →⊆ SG × Ac × SG is a transition relation; and

IG ⊆ SG is a set of initial states.

Intuitively, SG contains the states that the system may enter, and Ac the atomic actions that

the system may perform. In this sense, the labeling functions lS and lAc indicate which atomic

propositions hold on a given state and action respectively. The GCTL∗ semantics [19] follows a
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standard convention in temporal logic, such as CTL∗. A state satisfies Aϕ (resp. Eϕ) if every path

(resp. some paths) emanating from the state satisfies ϕ. A path satisfies a state formula if the initial

state in the path does, while a path satisfies θ if the path contains at least one transition and the

label of the first transition on the path satisfies θ. © represents the “next-time operator” and has

the usual semantics. ϕ U ψ holds of a path if ϕ remains true until ψ becomes true.

The reduction process from the problem of model checking ACTL∗c to the problem of model checking

GCTL∗ that allows us to a direct use of CWB-NC is defined as follows: given an ACTL∗c model

M = 〈S,A, ACT,Rt,Vs,Vα,Rc,L, {≈x,y | (Agx, Agy) ∈ A2}, I〉 and ACTL∗c formula ϕ, we have to

define a GCTL∗ model MG = F (M) and a GCTL∗ formula F (ϕ) using a transformation function

F such that M |= ϕ iff F (M) |= F (ϕ). The model F (M) is defined as a GCTL∗ model MG =

(SG, Ac, lS , lAc,→, IG) as follows:

− SG = S, IG = I, and lS = Vs.

− The set Ac is defined as follows: Ac = A × ACT ∪ {Agx,y| (Agx, Agy) ∈ A2} ∪ {ACCx,y|

(Agx, Agy) ∈ A2} whereA and ACT are already used to label temporal transitions in Rt, Agx,y

and ACCx,y are the actions labeling the transitions defined from the accessibility relations Rc

and ≈x,y respectively. Notice that for each element a of Ac, we have two cases:

1. a ∈ A × ACT , in this case a can be written as (aA, aACT ) such that aA ∈ A and

aACT ∈ ACT .

2. a ∈ {Agx,y| (Agx, Agy) ∈ A2} ∪ {ACCx,y| (Agx, Agy) ∈ A2}.

− The function lAc is then defined as follows:

1. if a ∈ A×ACT , then lAc(a) = lAc((aA, aACT )) = Vα(aACT ),

2. if not lAc(a) = ∅ (notice that ∅ ∈ 2Φα).

− The labeled transition relation → combines the temporal labeled transition Rt and the acces-

sibility relations Rc and ≈x,y under the following conditions: for states si, sj ∈ S, (Agx, Agy) ∈

A2,

1. (si, Agx, θ, sj) ∈→ iff (si, Agx, θ, sj) ∈ Rt,

2. (si, Agx,y, sj) ∈→ iff si ≈x,y sj ,

3. (si, ACCx,y, sj) ∈→ iff ∃s, π ∈ Rc(s, Agx, Agy) and (si,−,−, sj) ∈ π where the second and

third arguments of (si,−,−, sj) can take whatever value from A and ACT respectively.

With respect to the proposed semantics, the transformation of an ACTL∗c formula into a GCTL∗

formula is defined as follows:
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− F (p) = p, if p is an atomic proposition,

− F (¬ϕ) = ¬F (ϕ), and F (ϕ ∨ ψ) = F (ϕ) ∨ F (ψ),

− F (E © ϕ) = E © F (ϕ), and F (E(ϕ U ψ)) = E(F (ϕ) U F (ψ)),

− F (E�ϕ) = E�F (ϕ), and F (C(Ag1, Ag2, ϕ)) = A(� ACC1,2 ⊃ F (ϕ)),

− F (EWi(Ag1, Ag2, C(Ag1, Ag2, ϕ)))= F (¬C(Ag1,Ag2, ϕ)) ∧ E(Ag1,2 ∧©F (C(Ag1,

Ag2, ϕ))) ∧ E♦ ¬ACC1,2,

− F (EFu(Ag1, Ag2, C(Ag1, Ag2, ϕ)))= F (C(Ag1,Ag2, ϕ)) ∧ A(Ag1,2 ⊃ ©F (C(Ag1,

Ag2, ϕ))) ∧ E♦ ACC1,2,

− F (EV i(Ag1, Ag2, C(Ag1, Ag2, ϕ)))= F (C(Ag1,Ag2, ϕ)) ∧ A(Ag1,2 ⊃ ©F (C(Ag1,

Ag2, ϕ))) ∧ E(F (¬ϕ)),

− F (ERe(Ag2, Ag1, C(Ag1, Ag2, ϕ)))= F (¬C(Ag1,Ag2, ϕ)) ∧ E(Ag2,1 ∧©F (C(Ag1,

Ag2, ϕ))) ∧ E♦ ¬ACC1,2,

− F (EDe(Ag1, Ag3, C(Ag1, Ag2, ϕ)))=F (EWi(Ag1, Ag2, C(Ag1, Ag2, ϕ)))

∧ F (C(Ag3, Ag2, ϕ)),

− F (EAs(Ag2, Ag3, C(Ag1, Ag2, ϕ)))=F (ERe(Ag2, Ag1, C(Ag1, Ag2, ϕ)))

∧ F (C(Ag1, Ag3, ϕ)).

Notice that we formally reduced commitments and their actions into GCTL∗ formulae without losing

their real and concrete meanings in contrast to when those commitments are represented as simple

data structures [39] or domain variables [48, 11, 65, 139].

Remark 4 Since we formally reduced ACTL∗c formulae into GCTL∗ formulae, whether GCTL∗

would be more expressive than ACTL∗c and whether GCTL∗ would even be used to directly represent

and reason about commitments and their actions are pressing questions. As we have modal operators

in ACTL∗c (e.g., a commitment modality) that cannot be directly expressed in GCTL∗, our logic is

then more expressive. It is worth noticing that our reduction is in fact a kind of transformation. This

means that we transform a formula F1 in ACTL∗c to a formula F2 in GCTL∗, but F2 is not always

transformable to F1. Moreover, such a transformation is just a technical tool that allows us to model

check the formula F1 in ACTL∗c by model checking F2 in GCTL∗, but does not indicate that F1 and

F2 are equivalent. Thus, transforming a logic to another one using a transformation function does not

imply that the two logics have the same expressive power. Using GCTL∗ to represent commitments

will end up by coding commitments as atomic propositions. Consequently, the intrinsic meaning of

commitments as a way of communication will disappear. Moreover, no reasoning can be done on
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commitments so that fulfillment, violation and other commitment actions cannot be modeled. This

is because those commitment actions can only be coded as atomic action propositions (or atomic

propositions) in GCTL∗ without having any logical relation with the commitment itself.

As our reduction is done formally, we can prove its soundness (correctness).

Theorem 1 (Correctness) Let M and ϕ be respectively an ACTL∗c model and formula and let

F (M) and F (ϕ) be the corresponding model and formula in GCTL∗. We have M |= ϕ iff F (M) |=

F (ϕ).

Proof 1

We prove this theorem by induction on the structure of the formula ϕ:

If ϕ is a pure CTL∗ formula, the correctness is straightforward from the fact that GCTL∗ is also

an extension of CTL∗.

If ϕ is not a pure CTL∗ formula, by induction over the structure of ϕ, all the cases are straight-

forward once the following cases are analyzed.

− ϕ = C(Ag1, Ag2, ψ). We have M, 〈s〉 |= C(Ag1, Ag2, ψ) iff M, 〈s, π〉 |= ψ for every π ∈ Πs such

that π ∈ Rc(s, Ag1, Ag2). Consequently, M, 〈s〉 |= C(Ag1, Ag2, ψ) iff F (M), 〈s, π〉 |= F (ψ)

for every π ∈ Rc(s, Ag1, Ag2), which means for every π where the transitions are labeled by

ACC1,2. By semantics of A and θ in GCTL∗, we obtain F (M), 〈s〉 |= A(� ACC1,2 ⊃ F (ψ)).

− ϕ = EWi(Ag1, Ag2, C(Ag1, Ag2, ψ)). We have M, 〈si, π〉 |= EWi(Ag1, Ag2, C(Ag1, Ag2, ψ)) iff

M, 〈si〉 |= ¬C(Ag1, Ag2, ψ) and there exists an accessible state sj using the accessibility ≈1,2

(i.e., si ≈1,2 sj) where C(Ag1, Ag2, ψ) holds and π is not accessible path using Rc(si, Ag1, Ag2).

By consequently, M, 〈si, π〉 |= EWi(Ag1, Ag2, C(Ag1, Ag2, ψ)) iff F (M), 〈si〉 |= F (¬C(Ag1,

Ag2, ψ)) and there exists a path such that (si, Ag1,2, sj) ∈→ and F (M), 〈sj〉 |= F (C(Ag1, Ag2,

ψ)) and there exists a path where ¬ACC1,2 holds in some future, which makes the path not ac-

cessible. By semantics of E, ©, and θ in GCTL∗, we obtain F (M), 〈si, π〉 |= F (¬C(Ag1, Ag2,

ψ)) ∧E(Ag1,2 ∧©F (C(Ag1, Ag2, ψ))) ∧ E♦ ¬ACC1,2.

− In a similar way, we can complete the correctness prove of our transformation with respect

to the other cases: ϕ = EFu(Ag1, Ag2, C(Ag1, Ag2, ψ)), ϕ = EV i(Ag1, Ag2, C(Ag1, Ag2, ψ)),

ϕ = ERe(Ag2, Ag1, C(Ag1, Ag2, ψ)), ϕ = EDe(Ag1, Ag3, C(Ag1, Ag2, ψ)), and ϕ = EAs(Ag2,

Ag3, C(Ag1, Ag2, ψ)), so we are done. �

Remark 5 With the result of Theorem 1, whether or not ACTL∗c would be sound and complete is

an important question. In the one hand, as the two logics (i.e., ACTL∗c and GCTL∗) have different
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expressive powers, the correctness of our reduction tool cannot be used to infer the soundness and

completeness of ACTL∗c. As forcefully argued in Remark 4, our reduction is just a model checking

tool. On the other hand, there is no work done on proving the theoretical results of soundness and

completeness of GCTL∗.

4.4.2 Encoding the NetBill Protocol using CCS

Having defined the reduction process of ACTL∗c model and ACTL∗c formula, hereafter we present

our encoding of the NB protocol, formalized in the modelM (cf. Section 4.3.3), by the CCS language.

The syntax of the CCS language is given by the following BNF grammar [19]:

P ::= nil | α.P | (P + P) | (P||P) | proc C=P

where P refers to the CCS process; the process nil means no action whatsoever; if P is a process and

α is an action prefixing, then α.P is a process; if P1 and P2 are processes, then so is P1 + P2 using

the choice operator “+”; if P1 and P2 are processes, then so is P1 || P2 using the parallel composition

operator “||”; and the keyword proc is used to assign the name C to the process P.

A given model of the NB protocol can be encoded using the language CCS by associating each

agent, such as Cus, Mer , Cus1 , Cus2 , Bank1 and Bank2 to a set of processes in a recursive manner.

Each process represents an agent’s local state. Following standard conventions, a CCS process con-

ceptually uses communication channels to receive messages from other processes using input channels

and may send out messages after performing actions to other processes using output channels in a

complementary fashion. This meaning is graphically illustrated as follows:

 

C0 M1

'requestQuote 'presentQuote

requestQuote

where the process C0 is run in parallel with the process M1 (i.e., C0|M1) so that they communicate

by sharing the requestQuote message. This message is sent by the process C0 in a complement form

(′requestQuote) and received by the process M1 over a communication channel. Recall that com-

munication channels are reliable guaranteeing timely delivery of messages. Internally, commitment,

acceptance, failure and recovery states are defined as variables in the proc statement. The local

actions of each agent are explicitly represented using atomic action propositions in the proc state-

ment in order to define the agent’s behavior and capture the labeled transitions among commitment

states. For example, the customer Cus agent can be specified using the CCS language as follows:
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proc C0 =’requestQuote.C1

proc C1 =request.presentQuote.C2

proc C2 =CC MerCus pay deliver.(’acceptQuote.C3 + (’AgCus,Mer.’Release.C7 + ’null.’Release.C7))

. . .

which means the Cus agent initially produces the request quote message and evolves into the state

C1. The Mer agent replies by sending the present quote message, which makes the Cus agent enter

into the state C2. In the state C2, the Cus agent is willing to produce accept quote message and

enter into the state C3 or the state C7 after performing: (1) the atomic action AgCus,Mer and the

action release; or (2) the null and release actions, but before doing this (i.e. choosing between C3

and C7), it needs to receive the commitment from the Mer agent as an offer.

The above encoding of the NB protocol is written in the .ccs suffixed file and the following

protocol properties are first transformed into GCTL∗ formulae using our reduction tool and then

stored in a separate file whose name includes the .gctl suffix.

4.4.3 Protocol Properties

To achieve the flexibility that gives each agent a great freedom and compliance within the same

framework, we need to verify the commitment-based protocols against some properties that capture

important requirements in MASs. Guerin et al. [71] proposed three types of verification of multi-

agent interaction protocols depending on whether the verification process is done at either design

time or run time: (1) verify that an agent will always comply; (2) verify compliance by observation;

and (3) verify protocol properties. We adopt the third type of verification for three reasons:

1. The desirable properties play an important role in verifying multi-agent interaction protocols

[11, 48, 47, 50], which reduces the cost of development process at design time and restricts

agents’ behaviors by removing bad behaviors without loosing the flexibility.

2. Verifying the compliance of multi-agent interaction protocols with specifications requires adding

planner mechanisms equipped with reasoning rules in the code of each agent to reason about

its actions to select appropriate ones that satisfy its goals at run time, which can be expensive

and may increase the code of the agents [159, 126].

3. Protocol properties have a classification in both reactive and distributed systems to guide

designers to check protocol specifications (cf. Section 2.4 in Chapter 2 for more details).
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Some proposals have been put forward to classify properties that satisfy different requirements of

commitment-based protocols. Yolum [157] verified the correctness of commitment-based protocols

at design time with respect to three kinds of generic properties: effectiveness, consistency and

robustness. Desai et al. [39] classified protocol properties into two classes: general properties such

as deadlocks, livelocks and terminations and protocol-specific properties to verify commitment-based

protocols and their composition. Bentahar et al. [11] classified these properties into: safety, liveness

and deadlock-freedom. In this chapter, we specify a rich class of temporal properties: fairness,

safety, liveness, and reachability using the proposed logic. These properties are similar inspirit to

Lamport’s properties [88] and could involve Manna and Pnueli’s classes [100] widely recognized

in reactive and distributed systems. However, the later case is beyond the scope of the thesis.

They specifically include the properties introduced in [39] and satisfy the same functionalities of the

properties presented in [157]. We will call those properties with functional correctness properties.

The differences and similarities of our properties with the properties presented in [39, 157] are

explained in Section 4.5. Recall that the formulation of these properties is mainly related to capture

some specific properties in the NB protocol.

− Fairness constraint property. The motivation behind this property is to rule out unwanted

behaviors of agents and remove any infinite loop in our protocol. An example of unconditional

fairness constraint is given by ϕ1, which states that along all paths it is not the case that in

the future the Bank1 agent globally delegates the commitment to the Bank2 agent.

ϕ1 = ¬E♦� ¬De(Bank1 ,Bank2 , C(Bank1 ,Mer , pay))

This constraint allows us avoiding situations such as the bank agents delegate the commitment

back and forth infinitely often. Thus, by considering fairness constraints, the protocol’s fairness

paths include only the paths that the interacting agents can follow to satisfy their desired states

fairly.

− Safety property. This property means “something bad never happens”. In general, it is ex-

pressed by A� ¬p where p characterizes a “bad” situation, which should be avoided. For

example, in our protocol a bad situation is: the Cus agent fulfills its commitment by sending

the payment, but the Mer agent never commits to deliver the requested goods:

ϕ2 = A�¬
(
EFu(Cus ,Mer , C(Cus ,Mer , pay)) ∧A� ¬C(Mer ,Cus , deliver )

)

− Reachability property. A particular situation can be reached from the initial state via some
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computation sequences. For example, along a given path, it is eventually the case that there

is a possibility for the Mer agent to fulfill its commitment by delivering the requested goods:

ϕ3 = E♦ EFu(Mer ,Cus , C(Mer ,Cus , deliver ))

− Liveness property. This property means “something good will eventually happen”. For example,

along all paths it is globally the case that if the Cus agent fulfills its commitment by sending

the payment, then in all computations in the future the Mer agent will either (1) fulfill the

commitment by delivering the goods; (2) withdraw this commitment; or (3) violate it:

ϕ4 =A�
(
EFu(Cus ,Mer , C(Cus ,Mer , pay)) ⊃ A♦

[
EFu(Mer ,Cus ,C(Mer ,Cus , deliver ))

∨EWi(Mer ,Cus , C(Mer ,Cus , deliver ))

∨EV i(Mer ,Cus , C(Mer ,Cus , deliver ))
])

The above temporal properties can be generalized to verify the conformance of other multi-agent

interaction protocols as they have a corresponding classification in distributed systems to guide

protocol designers to check protocol specifications. They are also defined from a general perspective,

for example a formula having a future operator and “something good” with respect to the protocol

specification can be used to define liveness property. Notice that our reachability property do the

same function of reachability analysis in verifying the traditional protocol design errors in distributed

systems [76]. The idea of reachability analysis is to generate a reachability graph (tree) by recursively

exploring all possible transitions that lead to new state, given an initial state. Such a reachability

graph is used by some tools—some of them are combined within model checking approach—for

checking some design errors such as deadlock and livelock.

4.4.4 Experimental Results

We implemented our technique including a reduction tool (Com2Cwb)—that automatically trans-

forms the problem of model checking ACTL∗c into the problem of model checking GCTL∗—on top of

the CWB-NC model checker and provided a thorough assessment of this reduction tool by using two

case studies: (1) our extended version of the NB protocol; and (2) the Contract Net protocol (CN).

The CN protocol is designed from online business point of view to reach agreements among inter-

acting agents. These case studies were performed on a laptop equipped with the Intel(R) Core(TM)

i5-2430M clocked at 2.4GHz processor and 6GB memory running under x86 64 Windows 7.
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A) Verifying the Extended NB Protocol

Having respectively presented our extended version of the NB protocol and its encoding using the

CCS process algebra language in Sections 4.3.3 and 4.4.2, thereafter we present its automatic verifi-

cation using the CWB-NC model checker against the safety and reachability properties (cf. Section

4.4.3) as well as the deadlock property. The deadlock property mainly checks that all the fired

transitions are labeled with agents and their actions. Formally, E♦¬{−} [19]. In particular, we

conducted 7 experiments, which are reported in Table 8 wherein the number of agents (n); reachable

states (#States); transitions (#Trans) and the total time in seconds (i.e., the time for building the

model (TBM) plus the time for checking deadlock (TDL), safety (TSF), and reachability (TRE)

formulae) are given. These experiments start with a simple business scenario between two agents

(Cus and Mer ). This scenario initially begins by the Cus agent requests a quote for some goods and

the Mer agent commits to deliver them after it received the payment where each one of them has

possibilities to withdraw and violate its commitment. Thereafter, we start to give the Cus agent

another possibility to delegate its commitment to the Bank1 agent in experiment 2, which for some

reasons delegates its commitment to the Bank2 agent in experiment 3. In experiments 4 and 5,

the Cus agent can assign its commitment to the Cus1 agent, which for some reasons assigns its

commitment to the Cus2 agent. By experiment 5, the 6 participating agents in the extended NB

protocol are completely modeled.

Table 8: Verification results of the NB protocol
n #States #Trans TBM(sec) TDL(sec) TSF(sec) TRE(sec) Total Time(sec)

2 267 851 0.024 0.077 0.064 0.025 0.190

3 883 3878 0.123 0.336 0.254 0.033 0.746

4 5293 30206 1.160 3.154 2.232 0.089 6.635

5 18145 121965 6.031 15.227 10.569 1.033 32.860

6 108865 874916 56.194 138.253 92.316 0.171 286.932

7 254017 2302590 207.231 478.866 312.025 0.190 1684.409

8 428545 4288876 503.171 1119.284 687.520 0.235 5123.356

We underline that when the number of reachable states (which reflect the state space of the model)

is small, the total time is also small (cf. Exp.1 and Exp.2). However, when the number of reachable

states increases (as in Exp.4 and Exp.5), the total time is going to be much higher. In experiment 6,

we turned toward showing the effectiveness of our technique in terms of the total time and number of

reachable states by making more than one customer request a quote for some goods. For instance,

in experiment 6, we have two customers and each one of them can asynchronously communicate
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with five agents (2 Bank agents and 3 Merchant agents as we mentioned), so we have 7 participating

agents. Also, in experiment 7, we have 3 customers, 2 Bank agents, and 3 Merchant agents, so the

total number of participating agents is 8.

B) Verifying the CN Protocol

The CN protocol is already used to show how commitments and their actions can specify protocols in

business settings [157, 50]. It starts with a manager requesting proposals for a particular task. Each

participant either sends a proposal or a reject message. The manager accepts only one proposal

among the received proposals and explicitly rejects the rest. The participant with the accepted

proposal informs the manager with the proposal result or the failure of the proposal. As in our

modeling of the extended NB protocol, we associate the formal model M with the CN protocol and

then use the Büchi automaton B defined above to compile this protocol. The acceptance state is

when the participant agent fulfills its commitment by sending result to the manager.

Table 9 reports the verification results of the CN protocol against the three properties (safety,

reachability and deadlock) using our transformation method and the CWB-NC model checker on

four experiments wherein the number of agents (n), the number of reachable states (#States), the

number of transitions (#Trans) and the total time in seconds (as in Table 8) are given. In the first

experiment, we have three agents: the manager agent and two participating agents wherein the first

participant can delegate its commitment to the second participant. In experiments 2, 3 and 4, we

have one manager agent and respectively 5, 7 and 9 participant agents. It is obvious that when the

state space of the model increases, the total time is also going to be much higher.

Table 9: Verification results of the CN protocol
n #States #Trans TBM(sec) TDL(sec) TSF(sec) TRE(sec) Total Time(sec)

3 721 3040 0.093 0.030 0.198 0.015 0.336

5 1711 8308 0.325 0.027 0.569 0.018 0.939

7 2983 15812 0.784 0.029 1.268 0.021 2.102

9 4537 25552 1.627 0.035 2.411 0.030 4.103

Notice that the three tested formulae are valid (cf. Tables 8 and 9) and the reachability and deadlock

formulae show that the CWB-NC automata-based model checking is very powerful in such cases.

However, since the safety formula contains a universal path quantifier, it must be performed on

the whole model, thereby invalidating the on-the-fly technique implemented in the CWB-NC model

checker, which builds the intersection of the two Alternating Büchi Automata Tableau Automata
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(ABTA) of the model and the formula to be checked on demand without exploring the whole model

[19]. From our perspective, this is the main cause of a longer time of verification for the given

properties having this form (cf. Tables 8 and 9). We can conclude with the proposed technique is

efficient and effective in terms of the number of agents and reachable states. These results prove the

effectiveness of our reduction tool that allows checking the satisfiability of commitments and their

actions as temporal modal connectives and not as domain variables.

4.5 Discussion and Relevant Work

The novelty of our approach lies in presenting: (1) a new semantics for commitments and all asso-

ciated actions; (2) a new specification language of commitment-based protocols; (3) a new symbolic

model checking algorithm for ACTL∗c (cf. Appendix A); and (4) a new technique for reducing

the above language without missing or restricting real semantics and verifying commitment-based

protocols. Using two business protocols, we have experimentally evaluated the effectiveness of our

reduction tool and technique along with our verification approach implemented using the CWB-NC

model checker. These experiments also paint the following picture: the model checker was able to

verify a variety of complex formulae correctly and efficiently. Our approach is clearly not exhaustive

but helps protocol designers eliminate bad behaviors. This approach establishes the usability of the

approach by applying it to a large real-life business processes (approximately 4.2e+06 states). The

overall conclusion coincides with the usual considerations in that automatic verification methods

complement other static verification methods very well. When comparing our approach to other

approaches in the literature, we find that our approach considerably simplifies the specifications to

be checked and maintains the feasibility of the model checking approach.

The protocol properties introduced by Desai et al. [39] are specified using LTL and classified

into general properties such as deadlocks and livelocks and protocol-specific properties to check a

specific behavior of interacting agents. The SPIN model checker checks deadlocks and livelocks,

given end states, which is unlike our deadlock property. Technically, their deadlock properties can

result from the contradiction among axioms used to compose protocols. An example of protocol

specific properties is introduced in Chapter 3. In our approach, the protocol specific properties can

be successfully defined using safety and liveness properties, which have an original and standard

classification in distributed systems. However, the authors do not consider fairness and reachability

properties. Gerard and Singh [65] used CTL to define a set of properties to verify protocols refinement

using the MCMAS model checker. Compared to these approaches [39, 65], our specification language
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ACTL∗c is more expressive and compact than LTL and CTL adopted in [39, 65].

Yolum [157] presented three generic properties (effectiveness, consistency and robustness) that

are required to develop commitment-based protocols at design time. The effectiveness property is

mainly related to check if a given protocol effectively progresses. The consistency property checks

that the execution of protocol does not produce conflicting computations. A protocol is robust

when the intended tasks can be satisfied by different alternative paths. Our properties meet these

requirements in the sense that the reachability and deadlock-freedom can be used to satisfy the same

objective of the effectiveness property. The consistency property is achieved in our protocol by sat-

isfying the safety property. Moreover, the robustness property is satisfied by considering the liveness

property and fairness paths accompanied with recovery states that capture the protocol failures,

such as if the Mer agent withdraws or violates its commitment, then it must refund the payment to

the Cus agent. Finally, the proposed approach enhances Yolum’s semi-automatic verification with

full-automatic verification using model checking.

The tool CWB-NC is used in [11] to verify the NB protocol without delegation and assignment

actions, but exploiting a different encoding of the example and considering only two agents. This

encoding models each agent by describing its possible actions and each action is described by a

set of states, e.g., Withdraw action needs 2 states. There is also a separate process that models

the communication channels between two agents. Such an encoding is less efficient than the one

presented here, in that the internal states increase the agent model and separated communication

channel repeats various parameters for the protocol. While the encoding proposed in [11] allowed

for the verification of 2 agents only, the experimental results shown in Table 8 report scenarios with

up to 8 agents. The differences with the other proposals can be also discussed at the level of the

chapter introduction and motivation. We also presented some comparisons against some proposals

through the chapter. While [39, 65] and [11, 47] show that the model checking of commitment-based

protocols is feasible, in this chapter we focused on formal reduction technique, correctness, efficiency

and expressiveness considerations.

In a previous work [50], we presented an extension of CTL with commitment modality to formally

specify commitment-based protocols. We reduced the problem of model checking the underlying logic

into the problems of model checking CTLK and ARCTL in order to use the MCMAS and extended

version of NuSMV model checkers respectively. Our previous specification language is less expressive

than our current language. Furthermore, we used a symbolic model checking-based technique, which

is different from the technique we introduced in this chapter. In terms of reduction method, we only

reduced commitment modality without considering commitment actions.

122



To evaluate our semantics, it meets all Singh’s crucial criteria (formal based on an expressive logic,

meaningful, declarative and verifiable using full and automatic model checking approach). It is also

property-based in terms of formally defined protocol properties. Thus, we have a clear, intuitive

and computational semantics for ACL messages. However, whether the advocated model checking

technique would be efficient and whether the language semantics would even be computationally

grounded are the rasing questions. As the proved space complexity of the developed model checking

algorithm for ACTL∗c is PSPASE-complete (cf. Appendix A) and the proved time complexity of

model checking its CTL∗ fragment is exponential in the length of the formula and linear in the size of

the model [31, 33] (cf. Table 2 in Chapter 2), the proposed model checking technique is computation-

ally complex, due to the fact that being expressive probably means being computationally complex.

To develop an efficient model checking technique, a balance between expressiveness and verification

efficiency aspects should be considered. For these reasons, we adopt a refined fragment of ACTL∗c,

called CTLC in Chapter 5 because the time complexity of model checking CTL is linear in both the

length of the formula and model [32, 33], whereas its space complexity is PSPACE-complete [86]

with respect to concurrent programs (cf. Table 2 in Chapter 2).

As in modal logic, the proposed semantics is given with respect to Kripke-like models, which allow

us to remain silent with regard to the internal structure of interacting agents. Woorldridge [151]

and Jamroga and Ågotnes [79] pointed out that Kripke semantics are not computationally grounded.

Also, general Kripke structures do not always give enough help at design and implementation stages

[79]. Such a computationally grounded semantics means formulae should be interpreted directly with

respect to a computational model. The semantics of social commitment logic is given in terms of

accessible paths, but these accessible paths do not have a direct and concrete interpretation in terms

of the states of interacting agents; instead, we used an agency function, which checks for the existence

of two interacting agents at all states along the accessible path. However, this makes the semantics

semi-computationally grounded, which is not enough to say that social commitment formula crucially

represents the properties of those agents. A property of agents means that agents’ computations can

be understood as models for social commitment logic and in this sense, social commitment logic is

computationally grounded. In Chapter 5, we make the semantics full-computationally grounded by

considering local states of the two interacting agents in the definition of social accessibility relation

that we use to define the semantics of commitments. Moreover, we adopt the formalism of interpreted

systems introduced by Fagin et al. [59] to model a system of interacting agents.
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Chapter 5

On the Reduction of Model

Checking Commitments

In this chapter1, we focus on a refined fragment of ACTL∗c, called CTLC, to balance between expres-

siveness and verification efficiency. Our ultimate aim is to define a fully computationally grounded

semantics for commitments and their fulfillment. We extend the interpreted system formalism intro-

duced by Fagin et al. [59] to model MASs with shared and unshared variables to account for agent

communication. We present axioms of commitment and fulfillment modalities. With those theoreti-

cal foundations, we advocate a formal reduction method to transform the problem of model checking

CTLC into the problem of model checking ARCTL [104] and the problem of model checking GCTL∗

[18, 19] in order to be able to respectively use the extended NuSMV symbolic model checker and the

CWB-NC automata model checker as a benchmark. We also prove that our reduction methods are

sound. To illustrate the effectiveness of the proposed reduction methods, we provide two business

case studies along with their respective implementations and experimental results

5.1 Introduction

In Chapter 4, by extending CTL∗ with commitment and action modalities, we successfully painted

the following picture: the existing model checkers are feasible to verify the modalities of commitments

and their actions correctly without losing the intrinsic meaning. With this result, we go forward

to consider other interesting issues such as efficiency of model checking, computational grounding

1The results of this chapter have been published in the Journal of Autonomous Agent Multi-Agent Systems [51].
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definition, and determining effective model checking techniques. However, an argument against the

use of CTL ∗ is that its model checking algorithm is exponential in the length of the formula, which

is computationally intractable to automate, especially when the length of the formula is very large,

in opposite to that, CTL model checking algorithm is linear in the length of the formula (cf. Table

2 in Chapter 2). On the other hand, it is argued that in practice, space efficiency is more important

than time efficiency [19, 32, 86, 132]: an agent is quite prepared to wait 10 minutes for a model

checker to finish executing, but an agent learns nothing if after 10 seconds a model checker aborts

due to a lack of memory. Also, when the space complexity of two model checking algorithms is

computationally equal, but one of them performs faster than the other, then one can advocate the

faster one. Besides CTL model checking being fast, the standard classes of safety properties can

be expressed in CTL, which are used frequently and regularly. CTL formulae can be used to show

the absence of deadlock or livelock in reactive and distributed systems. Interestingly, most model

checkers available today are tailored for CTL, such as NuSMV and MCMAS. It must be noted here

that CTL model checkers, specifically those based on OBDDs, can perform LTL model checking

too, but it is known that model checking LTL is like CTL∗ exponential in the length of the formula.

The model checking community tends to favor CTL model checkers [32, 33, 102]. For these reasons,

we adopt a branching fragment of ACTL∗c, called CTLC, i.e., we only consider the formulae that

can be expressed both in ACTL∗c and CTLC with some refinements. More precisely, CTLC is an

extension of CTL [31] with modalities for reasoning about commitments and their fulfillment. Thus,

CTLC is expressive enough to represent and reason about the deontic notion of commitments. The

objective of this fragment is to provide a balance between expressiveness and verification efficiency.

Following the definition of computational grounding theory introduced in [151], computationally

grounded semantics for commitments and their fulfillment is not simply a desirable aspect that we

can choose to not consider. As when a logic of commitment is not computationally grounded, then

this open doubt on claiming that such a logic can be useful and fruitful for reasoning about com-

putational MASs. Moreover, when we are treating agents’ commitments as formal specifications for

computational MASs, their computationally grounded semantics is an issue that must be addressed.

With respect to model checking, we advocate in the present chapter a reduction method because

it is not only easy to implement, but also allows us to compare different verification techniques with

respect to the same logic. Our reduction method preserves the truth value of all formulae, and we

prove that it is sound (correct). The validity of the reduction method is then tested automatically.

The motivation of this chapter is to overcome the above challenges by addressing the three parts

discussed in Figure 7 in Chapter 4: logic (part 1), reduction (part 2) and implementation (part 3).
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In the first part, we introduce CTLC, which is a new branching-time temporal logic of commitments

including CTL temporal modalities and modalities for commitments and their fulfillment using the

formalism of interpreted systems. This formalism was introduced by Fagin et al. [59] to model MASs

and applied by many as a prime example of computationally grounded models of distributed systems.

We here extend this formalism with shared and unshared variables as part of agents’ local states

to account for the intuition that social commitments are conveyed through communication between

agents. Concretely, these variables and the local components of interacting agents are used to define

the social accessibility relation, which defines a full-computationally grounded semantics for com-

mitments and their fulfillment. We notice that this communication aspect has not been considered

in Chapter 4 wherein the semantics is only semi-computationally grounded. In fact, communication

between agents is considered as the first-class entity in our approach, which means commitments are

made through communication and for communication purposes and not via blackboard or implicitly.

So, social commitments in our approach can be called Communicative Commitments. In this part,

we: (1) consider the relationship between commitments and their fulfillment, which is still missing

in all the existing approaches; (2) remove the violation modality as used in Chapter 4; instead we

show how to express violation as property in the proposed logic; and (3) present the valid axioms

of commitment and fulfillment modalities.

In the second part, we reduce the problem of model checking CTLC into: (1) the problem of

model checking ARCTL, the combination of CTL with action formulae [104]; and (2) the problem

of model checking GCTL∗. The first reduction allows a direct use of the extended version of the

NuSMV model checker introduced in [90]. The second reduction makes using the CWB-NC model

checker possible. Two reasons have motivated the election of the extended NuSMV and CWB-

NC tools: (1) their models are characterized by labeled transitions with actions and during the

transformation of our model, these labeled transitions are used to capture the accessibility relations;

and (2) they use different model checking techniques namely, Ordered Binary Decision Diagrams

(OBDDs) implemented in extended NuSMV and Alternating Büchi Tableau Automata (ABTA)

implemented in CWB-NC, which gives us the possibility to compare these two techniques with

respect to the verification of commitments and their fulfillment.

To check the effectiveness of our approach—in the third part—we implement our reduction tools

on top of the model checkers (extended NuSMV and CWB-NC) and then report the experimental

results of verifying two case studies—widely used to clarify commitment-based protocols: (1) the

NetBill protocol; and (2) the Contract Net protocol against some desirable properties expressed in

our logic.
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The remainder of this chapter is organized as follows. In Section 5.2, we briefly summarize the

formalism of interpreted systems [59] and define the syntax and semantics of CTLC. We also present

the valid axioms of commitment and fulfillment modalities. Reducing the problem of model checking

CTLC into the problem of model checking ARCTL and GCTL∗ and the theorems that prove the

soundness of our reduction techniques are presented in Section 5.3. In Section 5.4, we present two

case studies widely studied in the literature of agent communication, the NetBill protocol and the

Contract Net protocol along with the implementation of our reduction techniques on top of extended

NuSMV and CWB-NC. Section 5.5 ends the chapter by a discussion about comparing our approach

with other approaches and identifying the motivations of developing a dedicated symbolic model

checking algorithm for CTLC in Chapter 6.

5.2 Interpreted Systems and CTLC

In this section, we present the logic part of our approach, which is mainly related to extend the

formalism of interpreted systems and present the branching-time temporal logic, CTLC, and axioms

of commitment and fulfillment modalities.

5.2.1 Interpreted Systems

The formalism of interpreted systems was potentially investigated by Fagin et al. [59]. This for-

malism provides a mainstream framework for modeling, reasoning and systematically exploring

fundamental classes of MASs, such as synchronous and asynchronous. We advocate this formalism

for many reasons summarized as follows:

1. It allows us to abstract from the details of the components and to focus only on modeling key

characteristics of the agents and the evolution of their social commitments, which is missing

in existing agent communication models.

2. It is a useful tool for ascribing autonomous [91, 92] and social behaviors of interacting agents

within open MASs [52].

3. It supports the interoperability between global (system) and local (agent) models [52, 59].

The formalism of interpreted systems provides a useful framework to locally model autonomous and

heterogeneous agents who interoperate within a global system via sending and receiving messages.

The concept of local states offers a flexible abstraction for the agents. Technically, local states can

be singletons, corresponding to a very high-level description of the agents. However, local states
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are allowed to have a more complex structure. For instance, local states could be a combination of

singletons and a set of variables as we will show later in this chapter.

Interpreted systems can be defined as follows [59]. Consider a set A = {1, . . . , n} of n agents

in which at any given time each agent in the system is in a particular local state. Intuitively, each

local state of an agent represents the complete information about the system that the agent has

at its disposal at a given moment. We associate a nonempty, countable and private set Li of local

states for each agent i ∈ A. To account for the temporal evolution of the system, the formalism

of interpreted systems associates with each agent i the finite set Acti of possible local actions that

the agent is allowed to perform. Differently from Li, Acti is “public”. As in interleaved interpreted

systems [91], to model synchronous communication among interacting agents, it is assumed that

null ∈ Acti for each agent i where null refers to the silence action (i.e., the fact of doing nothing).

The action selection mechanism is given by the notion of local protocol Pi : Li → 2Acti for each

i ∈ A. That is Pi is a function giving the set of enabled actions that may be performed by i in a given

local state. Notice that this definition may enable more than one action to be performed for a given

local state. Also, the local protocol enables an agent to consider its preferable policies or strategies

at its local states, which is functionally similar to the conversation policies in ACLs. The agents

act within an “environment” (e), which can be also modeled with a set of local states Le, a set of

local actions Acte, and a local protocol Pe. This can be seen as a special agent that can capture any

information that may not pertain to a specific agent. The local states for e are “public”, i.e., all the

remaining agents may access. For the sake of simplicity purposes, we remove the environment agent

from the interpreted system formalism as done in [90]. As in [59], we represent the instantaneous

configuration of all agents in the system at a given time via the notion of global state.

Definition 6 ([59]) Let G be the set of all global states and let g = (l1, . . . , ln) be a global state,

i.e., g ∈ G where each element li ∈ Li represents a local state of agent i, thus the set of all global

states G = L1 × . . .× Ln is the Cartesian product of all local states of n agents.

We use the notation li(g) to represent the local state of agent i in the global state g. I ⊆ G is a

set of initial global states for the system. As in [59], the global evolution (or transition) function is

defined as follows: τ : G×ACT → G where ACT = Act1× . . .×Actn and each component a ∈ ACT

is a “joint action”, which is a tuple of actions (one for each agent). In addition, the local evolution

function τi determines the transitions for an individual agent i between its local states. It is defined

as follows: τi : Li × Acti → Li where if τi(li(g), null) = li(g
′) for two given global states g and g′,

then li(g) = li(g
′). It easy to see that such a formalism provides a modular representation [79], in
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the sense that components can be replaced, removed or added, with little modifications to the whole

representation.

In this chapter, we extend the interpreted system formalism to account for communication that

occurs during the execution of MAS. This extension allows us to provide an intuitive and full-

computationally grounded semantics for social commitments that are established through commu-

nication between interacting agents. Thus, associated with each agent i ∈ A is a set V ari of n local

Boolean variables, i.e., |V ari| = n, which are used to represent communication channels (each agent

has one communication channel with each agent) through which messages are sent and received.

Each local state li ∈ Li of agent i is associated with different values obtained from different assign-

ments to variables in V ari. We denote the value of a variable x in the set V ari at local state li(g) by

lxi (g). Thus, if li(g) = li(g
′), then lxi (g) = lxi (g

′) for all x ∈ V ari. The idea is that, as in distributed

systems, for two agents i and j to communicate, they should share a communication channel, which

is represented by a shared variable between i and j. In this perspective, a communication channel

between i and j does exist iff ∃!x ∈ V ari ∩ V arj , which means |V ari ∩ V arj | = 1 (i.e., at least one

variable is shared between the two interacting agents). For the Boolean variable x ∈ V ari ∩ V arj ,

lxi (g) = lxj (g
′) means the values of x in li(g) for i and in lj(g

′) for j are the same. This intuitively

represents the existence of a communication channel between i (in g) and j (in g′) through which

the value of Boolean variable x has been sent by one of the two agents to the other, and as a conse-

quence of this communication, i and j will have the same value for this variable (cf. Figure 12). It

is worth noticing that shared variables only motivate the existence of communication channels, not

the establishment of communication. This aspect is addressed next.

The semantics of our modal language is interpreted using a model generated from the interpreted

system formalism. In fact, this model, as in [59], moves away from Kripke models while still benefiting

from most of its technical apparatus.

Definition 7 (Models) A model MC=(S, I, Rt, {∼i→j | (i, j) ∈ A2},V) that belongs to the set of

all models M is a tuple where

− S ⊆ L1 × . . .× Ln is a set of global states for the system in which it contains only states that

are reachable from I by means of Rt,

− I ⊆ S is a set of initial global states for the system,

− Rt ⊆ S × S is a transition relation defined by (s, s′) ∈ Rt iff there exists a joint action

(a1, . . . , an) ∈ACT such that τ(s, a1, . . . , an)=s′,
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− For each pair (i, j) ∈ A2, ∼i→j⊆ S × S is a social accessibility relation defined by s ∼i→j s′

iff (1) li(s) = li(s
′) and (2) ∃!x ∈ V ari ∩ V arj such that lxi (s)= lxj (s

′) and ∀y ∈ V arj−V ari

we have lyj (s)= lyj (s
′). We also assume that for any pair i, j ∈ A, we have that for any s ∈ S,

the set ∼i→j (s) is not equal to the empty set wherein ∼i→j (s) is the set of accessible states

from s, i.e., ∼i→j (s) = {s′ ∈ S | s ∼i→j s
′}, and

− V : S → 2PV is a valuation function where PV is a set of atomic propositions.

The social accessibility relation ∼i→j from a global state s to another global state s′ (s ∼i→j s′)

captures the intuition that there is a communication channel between i and j (∃!x ∈ V ari ∩ V arj)

and s′ is a resulting state from this communication initiated by i at s. The channel is thus filled

in by i in s, and in s′ j receives the information (i.e., the channel’s content), which makes the

value of the shared variable the same for i and j (lxi (s) = lxj (s
′)). As i is the agent who intentionally

initiates the communication, the source and target (or resulting) states s and s′ are indistinguishable

for i (li(s) = li(s
′)) as i is not learning any new information. And as j is the agent who receives

the communication, s and s′ are indistinguishable with regard to the variables that have not been

communicated by i, i.e. unshared variables (lyj (s) = lyj (s
′) ∀y ∈ V arj − V ari). Finally, as our focus

in this thesis is agent communication, we assume the existence of communication channels between

any two agents in any state, which motivates the assumption that ∼i→j (s) has at least one accessible

state. This social accessibility relation formalized in terms of relations over the states of a model

differs from the ones presented in [52, 50] in terms of considering shared and unshared variables.

Figure 12 illustrates an example of establishing a communication channel among two global states.

In this example, two agents are communicating and the shared and unshared variables for those

agents are as follows. Agent i: V ari = {x1, x2}. Agent j: V arj = {x1, x3}. In the figure x1 is

the shared variable (i.e., it represents the communication channel between i and j), and x3 is a j’s
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Figure 12: An example of social accessibility relation ∼i→j .
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variable unshared with i. Notice that the value of the variable x1 for j in the state s′ is changed to

be equal to the value of this variable for agent i, which illustrates the message passing through the

channel. However, the value of the unshared variable x3 is unchanged.

It is worth to mention that shared variables are used solely to model communication channels to

define the social accessibility relation, which in turn will be used to define the semantics of commit-

ment, meaning that shared variables are entirely independent or unrelated to commitment content.

In fact, our modeling can be seen as an abstraction of message-passing systems described in [59].

Specifically, in message-passing systems, process’s local state contains information including internal

actions that can change the value of a variable and the messages that it has sent and received. So

each agent can directly control and manage communication channels by means of its actions. Fur-

thermore, our extension of the interpreted system formalism by using variables for communication

is, to some extent, related to the modular interpreted systems approach proposed in [79] where vari-

ables are also used for communication purposes. Specifically, modular interpreted systems include

a component In, which represents interaction alphabet and two interaction functions: (1) out i that

illustrates the influence that an action of an agent i may have on the external world; and (2) ini that

illustrates the influences of other agents on the agent i depending on its local state. However, unlike

modular interpreted systems, our extension is not meant to focus on the influences of agents through

interaction, but on the existence of a communication channel through which two agents can com-

municate. While communication is the first-class citizen in our perspective, the direct interactions

are modeled by means of social commitments.

Modeling complex and open systems such as MASs using the formalism of interpreted systems is

typically conducted by using logic-based formalisms as formal tools to express desirable properties

[59, 91, 92].

5.2.2 CTLC

The syntax of CTLC, which is a combination of branching time CTL introduced by Clarke et al.

[31] with modalities for social commitments and their fulfillment, is defined as follows:

Definition 8 (Syntax of CTLC)

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | E © ϕ | E�ϕ | E(ϕ U ϕ) | Ci→jϕ | Fu(Ci→jϕ)

where:

− p ∈ Φp is an atomic proposition;
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− E is the existential quantifier on paths;

− ©, �, and U are CTL path modal connectives standing for “next time”, “globally”, and “until”

respectively;

− The Boolean connectives ¬ and ∨ are defined in the usual way; and

− The modal connectives Ci→j and Fu stand for “commitment” and “fulfillment of commitment”

respectively.

In this logic, Ci→jϕ is read as “agent i commits towards agent j that ϕ”, or equivalently from

communication perspective as “i is conveying information ϕ to j”, or simply as “ϕ is committed to”

when i and j are understood from the context. Fu(Ci→jϕ) is read as “the commitment Ci→jϕ is

fulfilled”. Other temporal modalities can be defined in terms of the above as usual. For example,

E♦ϕ � E(⊤ Uϕ), A © ϕ � ¬E © ¬ϕ, and A�ϕ � ¬E�¬ϕ where ♦ and ⊤ stand for eventually

(future) and propositional constant true respectively. We use Ĉi→j as a modality dual to Ci→j . It

stands for “possibility of committing” and abbreviates as Ĉi→jϕ � ¬Ci→j¬ϕ. We read Ĉi→jϕ as

“agent i considers it possible to commit towards agent j that ϕ” or also “ϕ is compatible with what

i commits to towards j”.

Computation paths. A computation path π = (s0, s1, . . .) in MC is an infinite sequence of global

states in S such that for all i ≥ 0, (si, si+1) ∈ Rt. π(k) is the k-th global state of the path π. The

set of all paths is denoted by Π, whilst Π(si) is the set of all paths starting at the given state si ∈ S.

Definition 9 (Satisfaction) Given the model MC , the satisfaction of a CTLC formula ϕ in a

global state s, denoted by (MC , s) |= ϕ is recursively defined as follows:

− (MC , s) |= p iff p ∈ V(s),

− (MC , s) |= ¬ϕ iff (MC , s) � ϕ,

− (MC , s) |= ϕ ∨ ψ iff (MC , s) |= ϕ or (MC , s) |= ψ,

− (MC , s) |= E © ϕ iff there exists a path π starting at s such that (MC , π(1)) |= ϕ,

− (MC , s) |= E�ϕ iff there exists a path π starting at s such that (MC , π(k)) |= ϕ

for all k ≥ 0,

− (MC , s) |= E(ϕ U ψ) iff there exists a path π starting at s such that for some k ≥ 0,

(MC , π(k)) |= ψ and (MC , π(j)) |= ϕ for all 0 ≤ j < k,

− (MC , s) |= Ci→jϕ iff for all global states s′ ∈ S such that s ∼i→j s
′, we have

(MC , s
′) |= ϕ,
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− (MC , s) |= Fu(Ci→jϕ) iff there exists s′ ∈ S such that (MC , s
′) |= Ci→jϕ and s′ ∼i→j s.

For the propositions, Boolean connectives, and temporal modalities, the relation |= is defined in the

standard manner.

The state formula Ci→jϕ is satisfied in the modelMC at s iff the content ϕ holds in every accessi-

ble state obtained by the accessibility relation ∼i→j . In the specific context of agent communication,

which is the focus of this thesis, when i commits towards j that ϕ, ∼i→j captures the intuition that

for a commitment to take place, a communication channel should exist between the communicating

agents (shared variables), and the accessible state s′ (where ϕ holds) is indistinguishable from the

current state s for i (which reflects the persistence of i towards its commitment) as i is the agent who

is committing; however, for j who is receiving the commitment, the two states are different as new

information is obtained from i through the communication channel and this is why in the accessible

state, j has the same value as i has for the shared variable (i.e., the content of the communication

channel). Furthermore, the accessible state is not completely different from the current state for j

as some information is still the same, and this is why for the unshared variables, the current and

accessible states for j are indistinguishable (cf. Figure 12). As mentioned earlier, there is no relation

between the content ϕ and the local Boolean variables (shared and unshared), which are only used

to define the accessibility relation. Notably, this semantics is full-computationally grounded because

it has a direct interpretation in terms of the local states of interacting agents and represents the

property of interacting agents (cf. Section 4.5 in Chapter 4).

The state formula Fu(Ci→jϕ) is satisfied in the modelMC at s iff there exists a state s′ satisfying

the commitment (called here the commitment state) from which the current state (i.e., s) is “seen”

via the accessability relation ∼i→j . The idea behind this semantics is to say that a commitment is

fulfilled when we reach an accessible state from the commitment state. The commitment is fulfilled

because its content holds in this accessible state. Although the semantics of fulfillment proposed in

Chapter 4 uses not only accessible states but also accessible paths, the two semantics have the same

intuition. However, the new semantics differs from the one proposed in [11, 48, 50, 52] in which the

current state s should not only be accessible but also reachable from the commitment state s′. In

our semantics, the reachability condition is omitted. In fact, being reachable from the commitment

state is not a part of the meaning of fulfilling a commitment, but a condition that can be checked

as a property as follows:

A�(¬E(¬Ci→jϕ U (¬Ci→jϕ ∧ Fu(Ci→jϕ))))
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The property is a condition saying that in all states of every computation, it is not the case that

there is a computation where fulfilling a commitment occurs in its future without such a commitment

has been established before. What is more interesting is that this property, which guarantees that

a commitment cannot be fulfilled without being active (i.e., established or created), is satisfied in

every model, so valid (the validity proof is given in the next section). The main advantage of having

a property that can be checked (or proved as validity) instead of adding it as a part of the semantics

is to simplify such a semantics, which means making its model checking simpler. This is extremely

important as far as time and space complexity of model checking is an issue.

Example 3 Let us assume the models depicted in the Figure 13. The state s1 in MC1 is labeled with

the commitment from i to j to bring about E©p because: (1) there is only one accessible state s2; and

(2) the formula E©p is true at s2. The other models are the same but with different commitment

contents. According to the semantics of fulfillment, the state s2 in MC1 is also labeled with the

fulfillment of the commitment because: (1) s2 is accessible from s1; and (2) such a commitment has

been established at s1.
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Figure 13: Illustration of the semantics of commitment and its fulfilment

Furthermore, our logic does not include an additional operator for violation as we did in the previous

chapter and as in [11, 48]; instead weak and strong violations can be expressed as follows:

¬A�(Ci→jϕ → A♦(Fu(Ci→jϕ))) ≡ E♦(Ci→jϕ ∧ E�(¬Fu(Ci→jϕ)))

and

¬A�(Ci→jϕ → E♦(Fu(Ci→jϕ))) ≡ E♦(Ci→jϕ ∧ A�(¬Fu(Ci→jϕ)))

The weak violation takes place when there is a computation so that in its future a commitment is

established but from the moment where the commitment is active there is a possible computation
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where globally the fulfillment never happens. The strong violation comes out when after having the

commitment, the fulfillment does not occur in all states of every possible computation.

Figure 14 shows the relationship between a commitment and its fulfillment and its violation, from

semantics perspective. Consider an example of a commitment made by a merchant (Mer) towards

a customer (Cus) about ϕ, for example about delivering a given item. At the commitment state

s1, there are three choices available to the merchant, two of them satisfy its commitment and the

other does not. Specifically, when the merchant reaches one of the accessible states s2 or s3 from

the commitment state s1, the commitment is fulfilled (the commitment content holds at s2 and s3),

which means two different ways to fulfill the commitment are possible. However, the commitment

is not fulfilled at s4 where the merchant fails to deliver the item. In fact, the computation (s1, s
∗
4),

where ∗ means infinite repetition, corresponds to a violation of the commitment as in the future

of this path, fulfillment will never take place. If we change the example so that s2 and s3 are not

reachable from s1, then the commitment is strongly violated.
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Figure 14: Illustrative example of commitment, its fulfilment, and its violation

The following proposition is a direct result from the semantics.

Proposition 2 When the commitment is fulfilled, then there is no way to violate it in the future

and vice versa.

As we showed in Chapter 4 that ACTL∗c is semantically different from CTL∗, by the same arguments,

we can show that CTLC is also semantically different from CTL. For instance, Ci→jϕ cannot be

expressed by E © ϕ because the accessible state is not always the next state in a given path; it

cannot be expressed by ♦ϕ either because Ci→jϕ ⊃ E♦ϕ, but E♦ϕ ⊃ Ci→jϕ is not always true.

135



Thus, any formula containing Ci→jϕ cannot be expressed in CTL.

Definition 10 (Validity) A formula ϕ is valid (we write |= ϕ) iff (MC , s) |= ϕ for all models MC

of M and for all s of S.

5.2.3 Axiomatization

We here investigate the logical properties that the models MC of M inherit from the axiomatic

point of view. The axiomatic method is the standard way to usually define a class of well-formed

formulae (axioms) without any reference to their meanings. These axioms are plausible in some way

which lead us to explore their consequences. As these axioms correspond the properties of our social

accessibility relation, an immediate consideration comes from the following lemma.

Lemma 1 The social accessibility relation ∼i→j is serial, transitive and Euclidean.

Proof 2

− ∼i→j is serial: this follows from the assumption that for any pair of agents (i, j) ∈ A, we have

that for any s ∈ S, the set ∼i→j (s) is different from the empty set.

− ∼i→j is transitive: assume s ∼i→j s
′ and s′ ∼i→j s

′′, for any pair i, j ∈ A, , according to the

definition of ∼i→j, it is the case that s ∼i→j s′′ as li(s) = li(s
′) = li(s

′′), ∃!x ∈ V ari ∩ V arj

such that lxi (s) = lxi (s
′) = lxj (s

′′), lyj (s) = lyj (s
′) = lyj (s

′′) ∀y ∈ V arj − V ari.

− ∼i→j is Euclidean: assume s ∼i→j s′ and s ∼i→j s′′, for any pair of agents (i, j) ∈ A,

according to the definition of ∼i→j, we have s′ ∼i→j s′′ as li(s
′) = li(s) = li(s

′′), ∃!x ∈

V ari ∩ V arj such that lxi (s
′) = lxi (s) = lxj (s

′′), lyj (s
′) = lyj (s) = lyj (s

′′) ∀y ∈ V arj − V ari. �

According to this observation, we can immediately conclude that the logic of commitments that

deals with agent communication via social commitments is at least as strong as KD45n (where n

is the number of agents) which is to be expected. This logic is different from the one introduced in

our previous work [52], which is KB5n (for more details about the standard systems of modal logic,

see for example [77, 103]). From Lemma 1, we obtain the following straightforward corollary.

Corollary 1 The social accessibility relation ∼i→j is shift reflexive, i.e. if s ∼i→j s
′ then s′ ∼i→j s

′.

As our objective in this thesis is to investigate the practical problem of model checking commitments

for communicating agents, the completeness issue of the proposed logic will not be considered, so that

the thesis is more focused on the implementation (cf. Section 5.3), algorithmic and computational

complexity (cf. Chapter 6) aspects of the verification problem. In the following, we only study the

136



individual validities (axioms) of commitment and fulfillment modalities with respect to Definition

10. The validities of commitment modality are:

Proposition 3 (Axioms of commitments)

1. |= Ci→j(ϕ ⊃ ψ) ⊃ (Ci→jϕ ⊃ Ci→jψ) (axiom K)

2. |= Ci→jϕ ⊃ Ĉi→jϕ (axiom D)

3. |= Ci→jϕ ⊃ Ci→j(Ci→jϕ) (axiom 4)

4. |= Ĉi→jϕ ⊃ Ci→j(Ĉi→jϕ) (axiom 5)

Using the definition of the accessibility relation ∼i→j and the semantics of Ci→jϕ and Ĉi→jϕ,

it is easy to check that the above validities hold. In light of the literature in this area (see for

instance [103]), the proposed logic should be seen as supporting a bird’s eye view of the properties

of MASs. Therefore, the first validity of axiom K should seem relevant and reasonable. It means

the commitment is closed under implication, that is if both the implication ϕ ⊃ ψ and antecedent

ϕ are committed to, then also the conclusion ψ is committed to.

The second validity, which corresponds to serial frames, expresses that if agent i commits towards

agent j that ϕ, then ϕ is compatible with what i commits to towards j. Consequently, |= ¬Ci→j⊥,

which means that one cannot honestly, truthfully and justifiably state to commit to something that

is false, which guarantees that the commitments of each agent are consistent.

The third and fourth validities are called the positive and negative introspection axioms. Intro-

spection is the process of examining agent’s own commitments. The positive introspection axiom

corresponds to transitive frames. It is perhaps not as strong as a first reading might suggest. It

should be read and understood that when an agent commits to ϕ, it should consider the action of

committing as a commitment itself. In fact, it would be unreasonable to allow an agent to commit

to ϕ without indicating that it is committing. Let us consider the example of an agent i conveying

an information ϕ to another agent j, it is reasonable to say that i is conveying the information that

it is conveying ϕ. More importantly, this will allow to account for the intentional commitment as

the agent is committing that it is committing to ϕ. The commitment about commitment can be

considered as a meta data (or meta information) prescribing a fact of committing as a commitment.

The negative introspection axiom, which corresponds to Euclidean frames, expresses that if the

agent considers it possible to commit that ϕ, then it commits to what is possible to commit to.

Another way of reading axiom 5 is to note that if the agent does not commit to not ϕ, then it

commits to the fact that it does not commit to not ϕ, which again reflects the intentionality of
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commitments. It is worth noticing that positive and negative introspection axioms are desirable

and relevant as they encapsulate the fact that agents are aware of their commitments and have full

control on what they do commit and do not commit to.

The validities of fulfillment modality are:

Proposition 4 (Axioms of fulfillment)

1. |= Fu(Ci→jϕ) ⊃ ϕ (axiom T )

2. |= Ci→jϕ ⊃ Ci→j(Fu(Ci→jϕ))

3. |= Ci→j(Fu(Ci→jϕ)) ⊃ Ci→jϕ

4. |= Fu(Ci→jϕ) ⊃ Ci→jϕ

It is easy to check that the above validities hold using the definition of the accessibility relation

∼i→j and semantics of Ci→jϕ and Fu(Ci→jϕ). The first validity, which corresponds to axiom T ,

expresses that if the commitment is fulfilled, then its content holds, which is very reasonable. The

second validity says that if the agent commits to then it commits to fulfill its commitment, which is

also a reasonable axiom. The third validity says that if the agent commits to fulfill a commitment

about ϕ, then it is committing about ϕ, which, in other words, means the commitment is active

when the agent commits to satisfy it. This is very reasonable and desirable as an agent cannot

commit to satisfy a nonactive (nonexisting) commitment. In fact, putting the second and third

validities together shows that committing to something is equivalent to committing to satisfy this

commitment, which is very logical. From the semantics of Fu(Ci→jϕ) and axiom 4 of commitments

(where ∼i→j is transitive, Proposition 3), we can entail the fourth validity. This validity says that

if the commitment is fulfilled, the commitment appears in the same state as its fulfillment and is

important for the logic of communicative commitments. This is because it technically allows us to

have the following proposition (Proposition 5) saying “the commitment should be active when it

comes time to its fulfillment”, which is very important as it implies the impossibility of fulfilling a

nonexisting commitment (cf. Figure 15).

Proposition 5 The following validity holds:

|= A�(¬E(¬Ci→jϕ U (¬Ci→jϕ ∧ Fu(Ci→jϕ))))

Proof 3

Let us assume the opposite is true, which means: E♦(E(¬Ci→jϕ U ¬Ci→jϕ ∧ Fu(Ci→jϕ))). Ac-

cording to the semantics of until, ¬Ci→jϕ U (¬Ci→jϕ ∧ Fu(Ci→jϕ)) is satisfied in a path if it has
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¬Ci→jϕ ∧ Fu(Ci→jϕ) in its future. However, from the fourth validity of Proposition 4, this cannot

be the case; so the proposition. �

It is important to mention that the commitment Ci→jϕ in the fourth validity is not a new com-

mitment that is being activated in the current state s but an existing commitment that has been

activated in another state s′ from which the state s emanates through ∼i→j . Figure 15 depicts the

connection between commitment and its fulfillment in which s′ is the state of activating the commit-

ment (i.e., the commitment state) and s is the state of fulfilling the commitment (the current state).

Notice that the commitment Ci→jϕ activated in s′ is still active in s as the accessibility relation is

shift reflexive.
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Figure 15: Link between commitment and its fulfillment.

In some approaches, for instance [127], instead of the fourth validity, the following axiom (called

here (DA)) holds: Fu(Ci→jϕ) ⊃ ¬Ci→jϕ. However, DA has two problems. The first one is that

it forces the fulfillment of commitments to be in the absolute future, so no commitment can be

fulfilled in the same state at the moment of its activation. From our perspective, for communicative

commitments such as those we are considering in this thesis, they can be fulfilled in the present, for

example when an agent i conveys an information that already holds to an agent j. Thus, with DA

axiom, committing about tautologies, atomic propositions and formulae without temporal operators

is not supported. The second problem is that commitments can be fulfilled without being activated,

which means another axiom (probably with past operators as in [144, 145]) is needed to prevent

fulfilling a commitment which has not been activated or does not exist, or forcing the model to have

the property discussed in the Proposition 5.

To summarize, interesting properties are then captured with our logic in terms of connection

between commitments and their fulfillment, which are not addressed in the existing commitment

logics and cannot be captured with a less strong logic, for instance a normal modal logic.
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5.3 Model Checking CTLC using Reduction

In this section, we proceed to present our reduction techniques to model checking commitments and

commitment-based protocols (the second part in our approach). In these techniques, we reduce the

problem of model checking CTLC into the problem of model checking ARCTL and into the problem

of model checking GCTL∗. Before that, we define the problem of model checking CTLC: in a

nutshell, given a MAS represented as an interpreted system MC and a CTLC-formula ϕ describing

a property, the problem of model checking CTLC can be defined as establishing whether or not

MC |= ϕ (i.e., ∀s ∈ I : (MC , s) |= ϕ).

5.3.1 Reducing CTLC into ARCTL

We very briefly review ARCTL logic (an extension of CTL with action formulae) [104]. We then

show how the problem of model checking CTLC can be reduced to the problem of ARCTL model

checking. An ARCTL mixes state formulae and action formulae by restricting path formulae to paths

whose actions satisfy a given action formula. The syntax of ARCTL is defined by the following BNF

grammar [104]:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Eα © ϕ | Eα(ϕ U ϕ) | Eα�ϕ

α ::= b | ¬α | α ∨ α

where ϕ is a state formula, α is an action formula, p ∈ PV is an atomic proposition, and b ∈ Φb is

an atomic action proposition.

Definition 11 (Model of ARCTL) A model MA = (SA, IA, Act, TR, VS, VAct) is a tuple where

SA is a nonempty set of states; IA ⊆ SA is a set of initial states; Act is a set of actions; TR ⊆

SA × Act× SA is a labeled transition relation; VS : SA → 2PV is a function assigning to each state

a set of atomic propositions to interpret this state; and VAct : Act → 2Φb is a function assigning to

each action a set of atomic action propositions to interpret this action.

The semantics of this logic [104] is given by defining the α-restriction of MA = (SA, IA, Act, TR,

VS , VAct) as follows Mα
A = (SA, IA, Act, TR

α, VS , VAct) where TR
α is a transition relation such that

(s, a, s′) ∈ TRα iff (s, a, s′) ∈ TR and a |= α wherein |= is defined as follows:

− a |= b iff b ∈ VAct(a);

− a |= ¬α iff not (a |= α) and ;

− a |= α ∨ α′ iff a |= α or a |= α′.
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The motivation behind the α-restriction is to focus each time on specific transitions whose labels

satisfy a given action formula, so all the other transitions are disregarded. This is useful when

a formula has to be checked because only relevant transitions should be considered. Pecheur and

Raimondi [104] have considered finite and infinite paths to define the semantics of ARCTL. However,

we only consider the general case of infinite paths. Πα(s) is the set of paths (called α-paths) whose

actions satisfy a given action formula α and starting at s. Now, we define the satisfaction relation

(Mα
A, s) |= ϕ, or concisely s |= ϕ, as follows (we omit the semantics of Boolean connectives and

propositional atoms):

− s |= Eα © ϕ iff there exists a path π ∈ Π α(s) and π(1) |= ϕ,

− s |= Eα(ϕ U ψ) iff there exists a path π ∈ Π α(s) such that for some k ≥ 0 , π(k) |= ψ and

π(j) |= ϕ for all 0 ≤ j ≤ k-1,

− s |= Eα�ϕ iff there exists a path π ∈ Π α(s) such that π(k) |= ϕ for all k ≥ 0.

The reduction process is defined as follows: given a CTLC model MC = (S, I, Rt, {∼i→j | (i, j) ∈

A2},V) and a CTLC formula ϕ, we have to define an ARCTL model Mα
A = F (MC) and an ARCTL

formula F (ϕ) using a transformation function F such that MC |= ϕ iff F (MC) |= F (ϕ). The

model F (MC) is defined as an ARCTL model Mα
A = (SA, IA, Act, TR

α, VS , VAct) as follows:

− SA = S; IA = I; VS = V ,

− The set Φb is defined as follows: Φb = {ǫ, α1→1, α1→2, . . . , αn→n} ∪ {β1→1, β1→2, . . . , βn→n},

and then Act = {αo, α11, α12, . . . , αnn}∪ {β11, β12, . . . , βnn} where αo and αij are the actions

labeling transitions respectively defined from the transition relation Rt and the accessibility

relation ∼i→j , while βij is the action labeling transitions added when there exists a transition

labeled with αij and needed to define the transformation of the formula Fu(Ci→jϕ),

− The function VAct is then defined as follows:

1. VAct(α
o) = {ǫ}, i.e., ǫ is the atomic action proposition forming αo,

2. VAct(α
ij) = {αi→j} for 1 ≤ i ≤ n and 1 ≤ j ≤ n, i.e., αi→j is the atomic action

proposition forming αij ,

3. VAct(β
ij) = {βi→j} for 1 ≤ i ≤ n and 1 ≤ j ≤ n, i.e., βi→j is the atomic action proposition

forming βij .

− The labeled transition relation TRα combines the temporal labeled transition Rt and the

accessibility relation ∼i→j under the following conditions: for states s, s′ ∈ S,
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1. (s, α0, s′) ∈ TRǫ if (s, s′) ∈ Rt,

2. (s, αij , s′) ∈ TRαi→j if s ∼i→j s
′,

3. (s, βij , s′) ∈ TRβi→j if (s′, αij , s) ∈ TRαi→j .

From the definition of F (MC), it is clear that F (S) = SA. Let us now define the transformation

of a CTLC formula ϕ (i.e., F (ϕ)) by induction on the form of ϕ.

− F (p) = p, if p is an atomic proposition,

− F (¬ϕ) = ¬F (ϕ), and F (ϕ ∨ ψ) = F (ϕ) ∨ F (ψ),

− F (E © ϕ) = Eǫ © F (ϕ), and F (E(ϕ U ψ)) = Eǫ(F (ϕ) U F (ψ)),

− F (E�ϕ) = Eǫ�F (ϕ), and F (Ci→jϕ) = Aαi→j
© F (ϕ),

− F (Fu(Ci→jϕ)) = Eβi→j
© F (Ci→jϕ).

Thus, this reduction allows us to model-check CTLC formulae by model checking their reductions

in ARCTL using the extended NuSMV tool introduced in [90]. Figure 16 illustrates the reduction

process of the fulfillment formula. The following theorem proves the soundness of our reduction

from CTLC to ARCTL.
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Figure 16: An example of the reduction process from CTLC to ARCTL.

Theorem 2 (Soundness of F) Let MC and ϕ be respectively a CTLC model and formula and

let F (MC) and F (ϕ) be the corresponding model and formula in ARCTL. We have MC |= ϕ iff

F (MC) |= F (ϕ).

Proof 4

We prove this theorem by induction on the structure of the formula ϕ. All the cases are straightfor-

ward once the following two cases are analyzed:

− ϕ = Ci→jψ. We have (MC , s) |= Ci→jψ iff (MC , s
′) |= ψ for every s′ ∈ S such that

s ∼i→j s′. Consequently, (MC , s) |= Ci→jψ iff (Mαi→j

A , s′) |= F (ψ) for every s′ ∈ SA such

that (s, αij , s′) ∈ TRαi→j . As ∼i→j is shift reflexive, we obtain an infinite path π ∈ Παi→j (s)

such that π(1) = s′ and (Mαi→j

A , π(1)) |= F (ψ) (cf. Figure 16). By semantics of Aαi→j
© in

ARCTL, we obtain (Mαi→j

A , s) |= Aαi→j
© F (ψ).
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− ϕ = Fu(Ci→jψ). We have (MC , s
′) |= Fu(Ci→jψ) iff (MC , s) |= Ci→jψ for a state s ∈ S

such that s ∼i→j s
′. Consequently, (MC , s

′) |= Fu(Ci→jψ) iff (Mαi→j

A , s) |= F (Ci→jψ) for a

state s ∈ SA such that (s, αij , s′) ∈ TRαi→j . As ∼i→j is shift reflexive, we obtain s′ ∼i→j s′

and so (s′, αij , s′) ∈ TRαi→j . Consequently, (s′, βij , s′) ∈ TRβi→j . There is then an infinite

path π ∈ Πβi→j (s′) such that π(1) = s′ and (Mβi→j

A , π(1)) |= F (Ci→jψ) (cf. Figure 16). By

semantics of Eβi→j
© in ARCTL, we obtain (Mβi→j

A , s′) |= Eβi→j
© F (Ci→jψ), so we are

done. �

Remark 6 By using the same arguments introduced in Remark 5 in Chapter 4, we cannot claim

that CTLC is sound and complete as a corollary of Theorem 2. However, we can extend the stan-

dard decision procedure of CTL proposed by Emerson and Halpern [57] to prove the soundness and

completeness of an axiomatic system for CTLC, but such issues are beyond the scope of the thesis

and will be explored as future work.

5.3.2 Reducing CTLC into GCTL∗

As in the reduction of CTLC into ARCTL, we start with introducing the syntax of GCTL∗ and the

model of GCTL∗, which are given and discussed in Chapter 4. Here, we recall the syntax of GCTL∗:

S ::= p | ¬S | S ∨ S | E P

P ::= θ | ¬P | S | P ∨ P | © P | P U P

where p ∈ PV is an atomic proposition and θ ∈ Φb is an atomic action proposition. The GCTL∗

model is a six-tuple MG = (SG, Ac, lS, lAc,→, IG) where SG is a nonempty set of states; Ac is a set

of actions; lS : SG → 2PV is a state labeling function; lAc : Ac → 2Φb is an action labeling function;

→⊆ SG ×Ac × SG is a transition relation; and IG ⊆ SG is a set of initial states. The semantics of

GCTL∗ formulae is defined in Chapter 4.

The reduction process from the problem of model checking CTLC to the problem of model

checking GCTL∗ that allows us to a direct use of CWB-NC is defined as follows: given a CTLC

model MC = (S, I, Rt, {∼i→j | (i, j) ∈ A2},V) and a CTLC-formula ϕ, we have to define a

GCTL∗ model MG = H (MC) and a GCTL∗ formula H (ϕ) using a transformation function H

such that MC |= ϕ iff H (MC) |= H (ϕ). The model H (MC) is defined as a GCTL∗ model

MG = (SG, Ac, lS , lAc,→, IG) as follows:

− SG = S; IG = I; lS = V ,
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− To define the set Ac, let us first define the set of atomic action propositions Φb = {ǫ, α1→1,

α1→2, . . . , αn→n}∪{β1→1, β1→2, . . . , βn→n}, then Ac = {αo, α11, α12, . . . , αnn} ∪{β11, β12, . . . ,

βnn} where αo and αij are the actions labeling transitions respectively defined from the transi-

tion relation Rt and the accessibility relation ∼i→j , while β
ij is the action labeling transitions

added when there exists a transition labeled with αij and needed to define the transformation

of the formula Fu(Ci→jϕ),

− The function lAc is then defined as follows:

1. αo ∈ Ac, then lAc(α
o) = {ǫ},

2. lAc(α
ij) = {αi→j} for 1 ≤ i ≤ n and 1 ≤ j ≤ n,

3. lAc(β
ij) = {βi→j} for 1 ≤ i ≤ n and 1 ≤ j ≤ n.

− The labeled transition relation → combines the temporal labeled transition Rt and the acces-

sibility relation ∼i→j under the following conditions: for states s, s′ ∈ S,

1. (s, α0, s′) ∈→ if (s, s′) ∈ Rt,

2. (s, αij , s′) ∈→ if s ∼i→j s
′,

3. (s, βij , s′) ∈→ if (s′, αijs) ∈→.

From the definition of H (MC), it is clear that H (S) = SG. Let us now define H (ϕ) by induction

on the form of ϕ.

− H (p)=p, if p is an atomic proposition,

− H (¬ϕ) = ¬H (ϕ), and H (ϕ ∨ ψ) = H (ϕ) ∨ H (ψ),

− H (E © ϕ) = E © H (ϕ), and H (E(ϕ U ψ)) = E(H (ϕ) U H (ψ)),

− H (EGϕ) = E�H (ϕ), and H (Ci→jϕ) = A(αi→j ⊃ ©H (ϕ)),

− H (Fu(Ci→jϕ)) = E(βi→j ∧©H (Ci→jϕ)).

Theorem 3 (Soundness of H ) Let MC and ϕ be respectively a CTLC model and formula and

let H (MC) and H (ϕ) be the corresponding model and formula in GCTL∗. We have MC |= ϕ iff

H (MC) |= H (ϕ).

Proof 5

We can prove this theorem by induction on the structure of ϕ in a way similar to the proof of

Theorem 2. �
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Remark 7 GCTL∗ and ARCTL logics can both express properties of state-based and action-based

models and a careful analysis of the semantics of these two logics reveals that GCTL∗ subsumes

ARCTL. In fact, in GCTL∗, a path satisfies θ iff the path contains at least one transition and

the label of the first transition on the path satisfies θ where θ is an atomic action proposition, and

an action a satisfies θ iff θ ∈ lAc(a). In ARCTL, the actions of the whole path, not only of the

first transition, should satisfy an action formula α as the transitions in the model of ARCTL are

α-restricted. In fact, ARCTL allows quantification over action-labelled paths, so a path formula is

evaluated on α-paths, which means paths where all transitions are α-restricted, which can also be

done in GCTL∗. For example, for a path formula γ, Eαγ in ARCTL means there is an α-path where

γ holds, which can be expressed in GCTL∗ as: E(�α ∧ γ). However, although GCTL∗ subsumes

ARCTL, their model checking techniques are different and our motivation behind using these two

logics is to be able to use their respective model checkers, which are based on two different model

checking techniques: automata-based technique for GCTL∗ and symbolic, OBDD-based technique for

ARCTL.

5.4 Case Studies

One of the main motivations of this chapter is to check the effectiveness of our reduction techniques

and experimentally compare between automata-based and symbolic OBDDs-based techniques.

We implemented the reduction techniques presented in Section 5.3 on top of the extended NuSMV

and CWB-NC. Such tools have been used to check action formulae as well as state formulae. Specifi-

cally, NuSMV has been successfully adopted to model checking Web service composition [84], multi-

agent interaction protocols [48], and business models [139]. One limitation is that it does not support

model checking epistemic properties in a system of agents. The extended NuSMV is used to over-

come such a limitation [90, 104]. It has also been used to verify commitment-based protocols [50].

CWB-NC is used for model checking large-scale protocols in agent communication [11] and security

pattern composition [44]. Concretely, the reduction from CTLC to ARCTL using the transforma-

tion function F is performed by Com2Arctl tool we have implemented using a library of M4 macros.

M4 is a general-purpose macro processor available on most UNIX platforms. The reduction from

CTLC to GCTL∗ using the transformation function H is performed by Comm2Cwb tool we have

implemented too. As shown in Figure 17, the solely manual intervention is the provision of the input

file describing the problem to be verified.

On the one hand, the extended NuSMV is a symbolic model checker based on OBDDs, where the
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Figure 17: Verification work flow for commitment-based protocols.

states of the model and formula to be checked are represented by means of Boolean functions, which

can be easily represented using OBDDs and the set of states of the model satisfying an ARCTL

formula is also represented as a Boolean function, which is encoded as an OBDD too. By comparing

the later set with the set of initial states encoded also as an OBDD, it is possible to establish whether

or not a formula holds in a given model. As a result, the problem of model checking ARCTL is

reduced to the comparison of OBDDs. In the extended NuSMV, models are described by means of

a modular language called extended symbolic model verifier (extended SMV) with respect to a finite

state machine formalism.

On the other hand, the CWB-NC is an automata-based model checker based on ABTAs, which

are a variation of alternating tree automata to support efficient model checking wherein the algo-

rithm searches only the part of the state space that needs to be explored to prove or disprove a

certain formula [19]. That is, the state space is never constructed a priori because the CWB-NC

model checker implements an on-the-fly technique. Specifically, in CWB-NC, instead of building

the automata for both the formula and the model first, it only builds the ABTA of the formula. It

then uses the formula’s ABTA to guide the construction of the model’s ABTA while computing the

intersection. As a result, the problem of model checking GCTL∗ is reduced to check the emptiness

condition of the ABTA intersection of the ABTA accepting the model and the ABTA accepting the

formula. In CWB-NC, the models are described into a process algebra language called CCS.

Two case studies for which we have been able to carry out the above motivations are the NetBill

protocol (NB) and Contract Net protocol(CN), already applied to show how commitments can

specify protocols in business settings as we pointed out in Chapter 4, for example.
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5.4.1 Verifying the NetBill Protocol

Having shown in Chapter 4 that our formal specification language is employed successfully to specify

the NB protocol that orchestrates and regulates interactions between the merchant (Mer ) agent and

the customer (Cus) agent. We also used our model to formalize the protocol and compiled it using

a Büchi automaton. As our specification language provides modularity aspect (as it is defined in

terms of a set of patterns where each pattern involves one or more commitment actions), then it is

easy to remove or add patterns regarding to the current business scenarios in order to only focus

on commitments and their fulfillment and violation. In particular, here we remove patterns that

define Release, Withdraw, Delegate and Assign actions. Figure 18 depicts the compilation of the NB

protocol formalized in our model MC=(S, I, Rt, {∼i→j | (i, j) ∈ A2},V) using the Büchi automaton

B= (Q,Σ, Q0, F, δ) in which Q=S the set of global states, Σ=A×ACT ∪ {∼i→j | (i, j) ∈ A2} the

alphabet used to label transitions, Q0=I, F={s9}, and δ=Rt ∪ {∼i→j | (i, j) ∈ A2} the union of

the transition relation and the accessibility relation ∼i→j . In the figure, each transition connecting
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Figure 18: The NB protocol representation using our model MC .

global states is labeled by an agent and its local action which implicity means the local action of

other agent is null . The global states are numbered and also identified with their local states of the

two interacting agents. Also, the dashed arrows refer to the social accessibility relation using ∼i→j .

The transition loops are added at some global states to make the two accessibility relations for the
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two interacting agents serial, so each state should have a minimum of two accessibility relations.

This compilation can be easily extended to any number n of agents greater than two as we

show next in our experiments. To automatically verify the NB protocol using the extended NuSMV

model checker, we have to encode it using its input language namely, the extended SMV. In partic-

ular, the participating agents in the NB protocol are encoded as a set of isolated modules MODULE

anAgent<name> in which each agent module is instantiated in the main module at run time using

the VAR keyword, which generally defines the SMV variables. The main module also includes the

SPEC keyword to specify formulae that need to be checked using the ARCTL syntax. For each agent,

we can use the VAR keyword to define its local states including the commitment states (s3 and s5),

fulfillment states (s5 and s7), violation states (s4 and s10), acceptance state (s9), recovery state

(s11), other reachable global states in the form of enumeration type. The local actions of each agent

are represented as input variables using the IVAR keyword. Agent’s protocol is defined as a relation

between its local state and local action variables through the TRANS statement. The labeled transi-

tions among states are encoded using the TRANS statement with the next and case expressions that

represent agents’s choices in a sequential manner, and initial conditions using the INIT statement.

The main components of agent definition as an SMV module are defined as follows:

MODULE main -- main module

VAR Cus : Customer(args1,args2); -- customer agent

Mer : Merchant(args1,agrs2); -- merchant agent

SPEC <formulae_list>; -- list of formulae

MODULE Customer(args1,agrs2) -- customer agent module

VAR local_state: {...}; -- customer’s local states

IVAR local_action: {...}; -- customer’s local actions

INIT(...); -- initial condition

TRANS(local_action = case ... esac); -- customer’s protocol

INIT(...); -- initial condition

TRANS(next(local_state)= case ... esac); -- customer’s evolution function

Notice that “- -” defines comments in the SMV program. Many properties can be checked in the

NB protocol as we showed in Chapter 4, such as fairness constraints, liveness, safety, reachability,

deadlock freedom, livelock freedom. Two examples of these properties formalized using CTLC are

listed in Table 10. The first formula is given in the universal form and the second one uses the

existential form. The first formula expresses an example of the standard safety property. As we
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mentioned in Chapter 4, the safety property can be expressed by A�¬p where p characterizes a “bad”

situation that we must be avoided. In our protocol, a bad situation happens when the customer

fulfills its commitment by sending the payment, but the merchant never commits to deliver the

requested goods. The motivation behind this property is to check if the protocol is consistent, i.e.,

the NB protocol should not yield conflicting computations.

Table 10: Examples of tested formulae
ϕ1 = A�¬

(
Fu(CCus→Merpay) ∧ A�¬ CMer→Cus deliver

)

ϕ2 = E♦Fu(CMer→Cus deliver )

The formula ϕ2 is an example of the standard reachability property, i.e., given the initial state,

we can reach a certain state via some computation sequences. It states that along a given path,

it is eventually the case that there is a possibility for the merchant to fulfill its commitment by

delivering the requested goods. This property checks if the NB protocol is effective, i.e., the protocol’s

transitions should be enough to confirm that it can be executed and ended successfully.

Our experimental results were performed on a laptop equipped with the Intel(R) Core(TM)

i5-2430M clocked at 2.4GHz processor and 6GB memory running under Ubuntu Linux 8.04 with a

vanilla 2.6.24-28-genericKernel. We reported 5 experiments in Table 11 wherein the number of agents

(#Agent), number of reachable states (#States), execution time (Time) in seconds (sec), which is

the summation of the time required for building all OBDDs parameters and the actual execution

time for the verification, and memory in use (Memory) in MB are given. From Table 11, we notice

that the number of reachable states (which reflects the state space) and execution time—especially

from experiment 3—increase exponentially when the number of agents increases. In contrast, the

memory usage does not increase exponentially, but only polynomially when augmenting the number

of agents.

Table 11: Verification results of the NB protocol using extended NuSMV
#Agents #States Time(sec) Memory(MB)

2 12 0.020 4.241

3 446 0.184 5.507

4 4224 2.736 12.957

5 33454 63.687 15.432

6 238787 630.914 83.839

Notice that from experiment 2 we rewrite the defined formulae in a parameterized form, for example

in experiment 5:
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ϕ′
2 = E♦ (

5∧

i=1

Fu(CMer→Cusi deliveri))

This formula captures the reachability property in the NB protocol that intuitively means the mer-

chant along a given path has a possibility to eventually fulfill its commitment by delivering the

requested goods to the five customers paid for these goods.

The encoding of the NB protocol formalized and compiled respectively using our model and a

Büchi automaton with the CCS language to use CWB-NC as a benchmark is similar to the one

explained in Chapter 4. Experimental results for the verification of the NB protocol are reported

in Table 12. These experiments were performed on a laptop equipped with the Intel(R) Core(TM)

i5-2430M clocked at 2.4GHz processor and 6GB memory running under x86 64 Windows 7. The

execution time, in seconds, (i.e., the summation of the time required for building all ABTAs param-

eters and the actual execution time for the verification) and memory usage (in MB) are reported

in Table 12. This table shows only the results of checking ϕ2 and its parameterized form because

as ϕ2 is satisfied and includes the existential path quantifier, it only performs on a fragment of the

model, whilst ϕ1, as it is satisfied and has the universal form, needs to be performed on the whole

model. Notice that unlike the case with the automata-based CWB-NC, the verification results for

model checking using extended NuSMV, which is based on OBDD techniques, are not affected by

the structure of the formula being verified [90]. Moreover, we put “N/A” in Table 12, which means

that CWB-NC is not applicable regarding to the state explosion problem (cf. Subsection 2.3.2 in

Chapter 2 for more details about this problem). Here again the number of reachable states and

execution time increase exponentially when the number of agents increases while the memory usage

increases only polynomially.

Table 12: Verification results of the NB protocol using CWB-NC
#Agents #States Time(sec) Memory(MB)

2 325 0.035 4.020

3 6501 1.785 10.340

4 128327 58.872 25.470

5 N/A N/A N/A

5.4.2 Verifying the Contract Net Protocol

The CN protocol is designed from online business point of view. It is enhanced with commit-

ments and their actions, which specify business meanings of the protocol’s messages in high-level
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abstractions [157, 50]. In this case study, we have n agents, which represent the managers (Mgr )

and participants (Prt) that interact with each other to send results about a particular task. As

we mentioned in Chapter 4, the CN protocol is started when the manager calls for proposals

about a particular task of interest. Each participant has two choices: (1) sending a proposal

message; or (2) sending a reject message. At this stage, the manager accepts only one proposal

among the received proposals and explicitly rejects the rest. The complete description of the pro-

tocol is introduced in Chapter 4. The protocol is self-described in Figure 19 using our model

MC=(S, I, Rt, {∼i→j | (i, j) ∈ A2},V). As we did in the previous case study, the protocol is compiled

using the Büchi automaton B= (Q,Σ, Q0, F, δ) as follows: Q=S; Σ=A×ACT ∪ {∼i→j | (i, j) ∈ A2};

Q0=I; F={s7}; and δ=Rt ∪ {∼i→j | (i, j) ∈ A2}. Notice that legal choices (polices) of agents at

local states are enabled by using the local protocol function in the formalism of interpreted systems.

For instance, in Figure 19, the local protocol P of the participant Prt enables reject and proposal

actions at the local state P1, i.e., PPrt(P1) = {reject , proposal}. An example of the safety property
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Figure 19: The CN protocol representation using our model MC .

in this protocol can be expressed by the formula ϕ3 stating a bad situation: the manager fulfills

its commitment by sending reply message, but the participant never commitments to deliver the

results of the proposal. The formula ϕ4 is an example of the standard reachability property in the

CN protocol, which means along a given path, there is a possibility for the participant to fulfill its

commitment by sending the results performing its proposal.
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ϕ3 = A�¬(Fu(CMgr→Prt reply) ∧ A�¬ CPrt→Mgr results)

ϕ4 = E♦ Fu(CPrt→Mgr results)

Table 13 shows the CN protocol verification results with the extended NuSMV using the same

machine as in the previous case study. Because the number of reachable states that are effectively

considered in the CN protocol is much more smaller, its execution time is shorter than in the NB

protocol with the extended NuSMV. Table 14 reports the verification results of the CN protocol

using CWB-NC. In both cases, the memory usage increases polynomially when augmenting the

number of agents as we expected.

Table 13: Verification results of the CN protocol using extended NuSMV
#Agents #States Time(sec) Memory(MB)

2 9 0.044 4.226

3 528 0.1 4.734

4 4121 0.908 14.414

5 30346 11.285 14.835

6 217631 145.913 31.610

Table 14: Verification results of the CN protocol using CWB-NC
#Agents #States Time(sec) Memory(MB)

2 257 0.038 3.013

3 5655 1.219 7.112

4 114717 50.754 18.022

5 N/A N/A N/A

We should underline that CWB-NC is efficiently applied to check satisfiability of existential formulae

(i.e., for checking that a universal formula does not hold), which validate the main ABTA idea of

finding counter-examples without exploring the whole model. It is also efficiently applicable when

the model of MAS formalized using the interpreted systems is getting larger. To that end, we do not

compare the results of the present chapter with the results of Chapter 4 regarding the two adopted

protocols because these results are based on two different models and encodings. For instance, the

local actions of each agent in Chapter 4 are more than the ones used here; so agent’s model has

more reachable states than the agent’s model in this chapter (cf. for example the first experiment).

The encoding in Chapter 4 does not consider the local protocol function as it is not defined in the

underlying model.
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5.5 Discussion and Related Work

The first contribution of this chapter lies in presenting a new full-computationally grounded se-

mantics for communicative commitments and their fulfillment using CTLC, an extension of CTL

with modalities for commitments and their fulfillment. This semantics excludes spurious aspects

that plague existing approaches by balancing between expressiveness and verification efficiency. It

also establishes a new link between commitments and their fulfillment, which is entirely missing in

the literature about commitment representations. The valid axioms of commitment and fulfilling

commitment modal formulae and a new formal reduction tools that transform the problem of model

checking the above language into the problems of model checking ARCTL and GCTL∗ without

missing or restricting real and concrete semantics are also introduced. Moreover, we proved the

soundness of the proposed reduction techniques. Regarding to the business protocols used, we have

experimentally evaluated the effectiveness and efficiency of our reduction techniques and our verifi-

cation approach implemented using two different model checkers (extended NuSMV and CWB-NC).

These experiments paint the following picture: the model checkers were able to verify a variety of

complex formulae correctly and efficiently. This chapter establishes the practical usability of the

approach by applying it to a large business protocol having approximately 2.3e+06 states, thanks

to the OBDDs-based symbolic encodings used in extended NuSMV. The final conclusion confirms

the the observation that automatic verification using symbolic techniques is moderately better than

automata-based techniques in terms of the execution time and the number of interacting agents.

In what follows, we compare our approach with the recent extension of the formalism of inter-

preted systems. Lomuscio and Sergot [94] extended the interpreted system formalism to model the

“correct and incorrect functioning behaviors of the agents” by dividing global states into “green”

and “red” states. The resulting logic of deontic interpreted systems is stronger than the standard

deontic logic. They also presented the axioms of this logic and proved theoretically its soundness

and completeness. The semantics of correct functioning behavior is defined using a new accessibility

relation Ri for each agent i on the global states as follows: for any i ∈ A, (l1, . . . , ln)Ri(l
′
1, . . . , l

′
n)

if l′i ∈ Gi (the set of green states for i). This deontic accessibility relation defines accessible states

(green states) independently from the current state. From this deontic perspective, there are some

similarities between this logic and the logic of commitments. However, the deontic accessibility re-

lation is different from our accessibility relation, which considers both current and accessible states.

Furthermore, our accessibility relation accounts for communication between the participating agents

by considering the communication channels. It is also unclear how in the deontic interpreted systems
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the green and red states are determined for each agent. The authors also defined a modality K̂j
i ϕ,

called “doubly-indexed operator”, which can be read as “agent i knows ϕ under the assumption

that agent j is functioning correctly”. This modality attempts to combine deontic and epistemic

modalities to specify what an agent is permitted to know. It indirectly captures the interaction

between agents, but it differs from our commitment modality Ci→jϕ as i does not assume anything

about j and it has the possibility of fulfilling its commitment (i.e., correct functioning behavior) or

violating it (i.e., incorrect functioning behavior), but in both cases, the commitment’s content holds

in all accessible states, and the commitment is fulfilled if the agent can be in one of these states,

otherwise it is violated. Thus, reasoning about social commitments is different from reasoning about

doubly-indexed operator.

While formal reduction techniques are to be preferred to informal ones, they add overhead over

the actual verification process to perform the translation preprocessing step. They are also hard

to scale up well our model to include many agents, (say, 15 agents). In Chapter 6, we develop a

new symbolic model checking algorithm to directly and automatically verify commitments and their

fulfillment and commitment-based protocols.
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Chapter 6

Symbolic Model Checking

Commitments and its Complexity

Analysis

In this chapter1, we develop a new symbolic algorithm for model checking the proposed logic, CTLC,

in Chapter 5. We proceed to analyze the time complexity of CTLC model checking for explicit mod-

els (i.e., Kripke-like structures) and its space complexity for concurrent programs, which provide

succinct representations. We prove that although CTLC extends CTL, their model checking algo-

rithms still have the same time complexity for explicit models, which is P-complete with regard to

the size of the model and length of the formula, and the same space complexity for concurrent pro-

grams, which is PSPACE-complete with regard to the size of the components of these programs. We

fully implement the proposed algorithm on top of the multi-agent model checker MCMAS so that

communicative commitments and their fulfillment and violation and commitment-based protocols

can be directly verified. Furthermore, we provide in this chapter simulation results of an industrial

case study, called Insurance Claim Processing, to check the effectiveness of our algorithm.

1The results of this chapter have been published in the Journal of Autonomous Agent Multi-Agent Systems [51] and
Journal of Knowledge-Based Systems [8] regarding respectively to complexity analysis and logical and implementation
parts.
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6.1 Introduction

Using a logic of commitments to analyze communicative multi-agent systems is of a great significance.

For instance, when informally reasoning about a MAS, one often makes statements such as: a

merchant agent cannot commit to deliver requested goods to a customer until the customer agent

commits to send the agreed payment to the merchant. A logic of commitments formalizes such

reasoning. In Chapter 5, we defined a language CTLC for reasoning about such systems. The

language is that of the multi-agent social commitment logic defined by enriching CTL with the

addition of two new modal operators Ci→j and Fu for representing and reasoning about commitment

and fulfillment respectively. Here we recall the syntax of CTLC:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | E © ϕ | E(ϕ U ϕ) | E�ϕ | Ci→jϕ | Fu(Ci→jϕ)

where p ∈ PV is an atomic proposition, ©, � and U stand for “next time”, “globally” and “until”

respectively, and E is the existential quantifier on paths. The semantics of the language is presented

via the satisfaction relation |=, which holds between pair of the form (MC , s) and formula of the

language. Here, s is a global state, and MC is a structure (S, I, Rt, {∼i→j | (i, j) ∈ A2},V). This

structure is called interpreted system satisfying technical apparatus of Kripke-like structure.

The plan of this chapter is organized as follows. In Section 6.2, we develop a new symbolic

algorithm to perform model checking CTLC. An obvious question to ask is what is the complexity

results of developing this algorithm. In Section 6.3, we investigate the time complexity of CTLC

model checking in explicit models (i.e., Kripke-like structures) and its space complexity in concurrent

programs, which provide compact representations. We prove that: (1) the time complexity of CTLC

model checking for explicit models is P-complete with regard to the size of the model and length of

the formula; and (2) the space complexity of the same problem for concurrent programs is PSPACE-

complete with respect to the size of the program’s components. Consequently, our model checking

algorithm has the same complexity as model checking CTL with regard to both explicit models [115]

and concurrent programs [86]. The motivation behind considering the complexity of model checking

for concurrent programs is that explicit representations are not feasible in practice, by actual model

checking systems. In fact, practical model checkers such as MCMAS (for CTL), NuSMV (for CTL

and LTL), SPIN (for LTL), and CWB-NC (for CTL∗) have the flavour of succinct model specification

languages that differ on details and provide the verifier with a relatively high-level way of defining

concurrent programs. These programs are composed of n concurrent processes Pi where each process

is described by a transition system (the formal definition is given later in Section 6.3). Those
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processes are implemented as agents or modules depending on the model checker. More precisely,

the Kripke-like structures that are used to model the systems’ configurations are in fact obtained by

making several components interact altogether, leading to a combinatorial explosion of the number

of possible configurations, so the need for compact representations. In such representations, states

and transitions are not enumerated explicitly as global states and transitions for the system, but

only local states and transitions of each component are represented, so that the actual system can

still be represented by combining local states and transitions to build reachable states. In general,

the relation between explicit models, which are very large and concurrent programs, which provide

compact representations of the systems to be checked, is as stated in [86]: “the Kripke structures

to which model checking is applied are often obtained by constructing the reachability graph of

concurrent programs”. In other terms, the explicit models are obtained as the product of the

components Pi of concurrent programs. The size of explicit models is thus exponential in the size of

processes Pi as the system’s evolution results from joint actions of the components [79]. In Section

6.4, we show how the proposed algorithm is fully implemented on top of the MCMAS model checker

[92] to directly verify communicative commitments and their fulfillment and violation. To check the

effectiveness of our approach, we report on the experimental results of verifying a concrete industrial

case study, called Insurance Claim Processing, which is widely used in the literature.

6.2 Symbolic Model Checking CTLC Formulae

Symbolic approaches have been recently proven as an efficient technique to automatically verify

MASs [90, 92, 93, 52]. Hereafter, we adopt those approaches because: (1) they use less memory

than automata-based approaches; and (2) their algorithms are applied to Boolean functions not

to Kripke-like structures. In practice, space requirements for Boolean functions that can be easily

encoded in OBDDs [21] are exponentially smaller than for explicit representations. As a result,

symbolic approaches alleviate the state explosion problem, but cannot eliminate it totally as the

space still increases when the model is getting larger.

As mentioned in Chapter 2, symbolic model checking techniques alleviate the state explosion

problem by computing the set �ϕ� of states satisfying ϕ in the model MC= (S, I, Rt, {∼i→j | (i, j) ∈

A2},V), which is represented as Boolean function that can be in turn encoded in OBDD, and then

comparing it against the set I of initial states in MC that is also encoded in OBDD. If I ⊆ �ϕ�,

then the model MC satisfies the formula; otherwise a counterexample is generated. By reducing

the problem of symbolic model checking into a comparison of Boolean functions, we proceed as
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follows. The number nv(i) of Boolean variables required to encode the local states of an agent i is

nv(i) = ⌈log2|Li|⌉. Similarly, to encode the agent actions, the number na(i) of Boolean variables wi

required is na(i) = ⌈log2|Acti|⌉. Thus, a global state s ∈ S can be encoded as a vector of Boolean

variables (v1, . . . , vN ), where N =
∑

∀i∈A

nv(i). A joint action a ∈ ACT can be encoded as a vector

of Boolean variables (w1, . . . , wM ), where M =
∑

∀i∈A

na(i). Every Boolean vector can be identified

with a Boolean formula, represented by a conjunction of Boolean variables or their negation. For

instance, the Boolean vector (1, 1, 0, 1) is identified with the Boolean function f(v1, v2, v3, v4) =

v1 ∧ v2 ∧¬v3 ∧ v4, where xi is a Boolean variable and the formula v1 ∧ v2 ∧¬v3 ∧ v4 is called Boolean

formula. In this way, the set of global states (or actions) can be identified with a Boolean formula

by taking the disjunction of all Boolean formulae encoding each global state in the set. Having

encoded local states, global states, and actions by means of Boolean formulae, all the remaining

parameters can also be expressed as Boolean formulae. Indeed, a local protocol for each agent i

can be translated into a Boolean formula and then a Boolean function representing a joint protocol

is obtained by taking the conjunction of the Boolean formulae representing the local protocols of

agents. The Boolean function BRt
(s, s′) representing the temporal transitions can be obtained from

the transition relation Rt by quantifying over the Boolean variables encoding joint actions (see

details of encoding the transition relation in Chapter 2). This quantification can be translated into

a Boolean formula using a disjunction (see [33] for a similar approach to Boolean quantification).

The set of initial states and the set of states in which the atomic propositions hold can be easily

translated into Boolean formulae. In addition to the parameters presented above, the BDD-based

algorithms presented below require the definition of n Boolean functions B∼i→j
(s, s′) (one for each

pair of interacting agents) representing the accessibility relations for the commitment operator. The

Boolean function B∼i→j
(s, s′) is defined in a similar way as the Boolean function BRt

(s, s′) with

respect to Definition 7 introduced in Chapter 5.

The standard symbolic model checking algorithm SMC presented in Section 2.3 in Chapter 2

for CTL can be applied to compute the set �ϕ� of states in MC satisfying the formula ϕ. The

symbolic model checking algorithm ESMC that extends SMC with BDD-based algorithms of the

new modalities in our logic (lines 7 and 8) is reported in Algorithm 3. Notice that all operations

on sets of global states appearing in Algorithm 3 may be translated into operations on Boolean

functions that can be effectively manipulated by making use of OBDDs. The standard procedures

ESMCE©(ϕ1,MC) (line 4), ESMCEU (ϕ1, ϕ2,MC) (line 5) and ESMCE�(ϕ1,MC) (line 6) are

introduced in [33, 78].
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Algorithm 3 ESMC(ϕ,MC): the set �ϕ� satisfying the CTLC formula ϕ

1: ϕ is an atomic formula: return V(ϕ);
2: ϕ is ¬ϕ1: return S\ESMC(ϕ1,MC);

3: ϕ is ϕ1 ∨ ϕ2: return ESMC(ϕ1,MC) ∪ ESMC(ϕ2,MC);

4: ϕ is E © ϕ1: return ESMCE©(ϕ1,MC);

5: ϕ is E(ϕ1 U ϕ2): return ESMCEU (ϕ1, ϕ2,MC);

6: ϕ is E�ϕ1: return ESMCE�(ϕ1,MC);

7: ϕ is Ci→jϕ1): return ESMCc(i, j, ϕ1,MC);

8: ϕ is Fu(Ci→jϕ1)): return ESMCfu(i, j, ϕ1,MC).

6.2.1 BDD-based Algorithm of Commitment

Algorithm 4 reports the procedure for the social commitment modality, which returns the set of

states satisfying Ci→jϕ, i.e., �Ci→jϕ�. First, the algorithm computes the set X of states satisfying

¬ϕ; then constructs the set Y as a subset of X satisfying the fact that all the shared variables

between i and j have the same values; then builds the set Z of states that are indistinguishable

for i from the states in Y and indistinguishable for j from the same states in Y with regard to the

unshared variables with i. In a nutshell, the set Z includes every state that can “see” by means

of the social accessibility relation ∼i→j a state satisfying ¬ϕ. Finally, the procedure returns the

complement of the set Z.

Algorithm 4 ESMCc(i, j, ϕ,MC): the set �Ci→jϕ�

1: X ← ESMC(i, j,¬ϕ,MC);
2: Y ← {s ∈ X | lvi (s) = lvj (s) ∀v ∈ V ari ∩ V arj};
3: Z ← {s ∈ S | ∃s′ ∈ Y such that li(s) = li(s

′) and lwj (s) = lwj (s
′) ∀w ∈ V arj − V ari};

4: return S − Z.

We can calculate the states satisfying Ĉi→jϕ by calculating the complement of the set of states

satisfying Ci→j(¬ϕ) using Algorithm 4.

6.2.2 BDD-based Algorithm of Fulfillment

The procedure ESMCfu(i, j, ϕ,MC) (see Algorithm 5) starts by computing the set X of states

satisfying the commitment Ci→jϕ. It then constructs the set Y of states that are indistinguishable

Algorithm 5 ESMCfu(i, j, ϕ,MC): the set �Fu(Ci→jϕ)�

1: X ← ESMCc(i, j, ϕ,MC);
2: Y ← {s ∈ S | ∃s′ ∈ X such that li(s) = li(s

′) and lwj (s) = lwj (s
′) ∀w ∈ V arj − V ari};

3: Z ← {s ∈ Y | lvi (s) = lvj (s) ∀v ∈ V ari ∩ V arj};
4: return Z.
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for i, and indistinguishable for j with regard to unshared variables with i, from the states in X .

Afterwards, the algorithm builds the set Z as a subset of the set Y including only states where the

shared variables between i and j have the same values. Finally, the procedure returns the set Z.

Simply put, the algorithm computes and returns the set Z of accessible states that are “seen” by

means of the social accessibility relation ∼i→j from a state in X .

The correctness of Algorithm 3 is established by the correctness of: (1) the model checking

procedures for temporal operators, which in fact derives from the correctness of the procedures

employed in the verification of standard CTL models [33, 78]; and (2) commitment and fulfillment

operators using the following lemma whose the proof is straightforward from the calculation steps

of Algorithms 4 and 5.

Lemma 2 When Algorithm 4 terminates2, we have that for every s′ ∈ S of the form s ∼i→j s′,

(MC , s) |= Ci→jϕ iff (MC , s
′) |= ϕ. Also, when Algorithm 5 terminates, then there exists s′ ∈ S of

the form s ∼i→j s
′, (MC , s

′) |= Fu(Ci→jϕ) iff (MC , s) |= Ci→jϕ

6.3 Complexity Analysis

Researchers usually analyze the complexity of model checking of their logics in order to back the

usefulness of the proposal with a formal argument and to compute resources necessary and sufficient

for solving all problem’s instances, including the hardest (worst) case. The theoretical complexity

results conduct us to a clearer understanding of why model checking works well (or does not work)

[115]. They also give us a meaningful picture of the actual computational difficulty behind the

problem and allow us to compare different model checking approaches and logical formalisms. It is

possible to establish a hierarchy for complexity classes, comparing both time and space classes. The

inclusions of the most common used complexity classes are defined as follows: L ⊆ NL ⊆ P ⊆ NP ⊆

PSPACE ⊆ NPSPACE ⊆ EXP, which are respectively read as logarithmic space, nondeterministic

logarithmic space, polynomial time, nondeterministic polynomial time, polynomial space, nondeter-

ministic polynomial space, and exponential time. The complexity of model checking is always relative

to the size of the model and formula representation that we use. For this reason, it is necessary to

state how we represent the input and how we measure its size.

2Our procedures reported in Algorithms 4 and 5 terminate successfully because: (1) since we implement them on
top of the MCMAS model checker [92], then the set of reachable states S employed in such procedures and easily
computed by a monotonic operator has a fix-point; and (2) they have the same structure like the temporal operator
A©. A similar arguments apply to prove the termination and correctness of the procedures employed for epistemic
operators, which have the same structure used in MCMAS.
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In this section, we will first analyze the time complexity of model checking CTLC with regard to the

size of the model MC and length of the formula to be checked, under the assumption that states and

transitions are listed explicitly. Thereafter, we will analyze the space complexity of model checking

CTLC for concurrent programs with respect the size of the components of these programs and length

of the formula.

6.3.1 Time Complexity

We here start by proving that model checking CTLC is P-complete, so it can be done in polynomial

running time in the size of the model and length of the formula.

Theorem 4 The model checking problem for CTLC can be solved in time O(|MC | × |ψ|) where

|MC | and |ψ| are the size of the model and length of the formula respectively.

Proof 6

CTLC extends CTL, and it is known from [32] that the model checking problem for CTL is linear

in the size of the model and length of the formula. We just need to analyze the time complexity of

Algorithms 4 and 5. Steps 2, 3, and 4 in these two algorithms are simple and it is easy to see that

they can be done in linear running time in the size of the model as they are simply constructing

sets by performing comparison operations on states. Step 1 in Algorithm 4 calls the model checking

procedure recursively on the subformula ϕ of the formula ψ = Ci→jϕ. The algorithm is recursively

called till a CTL subformula is encountered. Thus, the depth of the recursion is bounded by the

length of the formula ψ (i.e., linear in the length |ψ|). As again model checking CTL is linear in

both the size of the model and length of the formula, we conclude that this algorithm has the same

complexity. As Algorithm 5 is simply calling Algorithm 4, the result follows. �

Theorem 5 The model checking problem for CTLC is P-complete.

Proof 7

Membership in P (i.e., upper bound) follows from Theorem 4. Hardness in P (i.e., lower bound)

follows by a reduction from model checking CTL proved to be P-complete in [115]. �

6.3.2 Space Complexity

Having discussed the motivation behind the consideration of space complexity for concurrent pro-

grams in the introduction, hereafter, we will prove that the complexity of CTLC model checking
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for concurrent programs is PSPACE-complete. Before that, we give the proof idea and technical

background about automata-theoretic approach that we will use in our proof.

Proof Idea. To analyze the space complexity of model checking CTLC in concurrent programs, we

use a methodology similar to the one presented in [86]. The idea is as follows. First, we analyze the

complexity of model checking GCTL∗ in the explicit modelMG introduced in Definition 5 in Chapter

5, and show that by using an on-the-fly (local) and top-down algorithm, it is possible to perform

model checking GCTL∗ in space polynomial in the length of the formula, but only poly-logarithmic

in the size of the explicit model. It is important to mention that the algorithm is on-the-fly, which

means we do not hold the whole structure to be checked in memory at any one time, and this is the

reason behind the poly-logarithmic space complexity in the size of the explicit model. As in [86],

our approach is an automata-theoretic approach, and makes use of a special class of automata called

Alternating Büchi Tableau Automata (ABTA) [12, 19], which will be introduced later. The approach

is based on building an ABTA, combining the model MG and the automaton of the formula to be

verified, and checking its nonemptiness. This combined ABTA is computed on-the-fly and limited

to its reachable states, which avoids exploring the parts of the model MG that are irrelevant for the

formula to be checked. The type of ABTA employed allows using a top-down, space-efficient model

checking algorithm. Then, we prove that the explicit structure complexity of GCTL∗ model checking

(i.e., by fixing the formula) is NLOGSPACE-complete, which means that model checking GCTL∗

is NLOGSPACE-complete in the size |MG| of the explicit model. Thereafter, we use the previous

results to obtain the complexity of model checking GCTL∗ for concurrent programs, exploiting the

fact that the combined ABTA whose the nonemptiness has to be checked is obtained as the product

of the components of a concurrent program and this product is at most exponentially larger than the

program itself. Thus, the fact that: (1) the space complexity of model checking GCTL∗ is polynomial

in the length of the formula and poly-logarithmic in the size of the explicit model; and (2) the model

checking algorithm is on-the-fly, imply that GCTL∗ model checking for a concurrent program can

be done in polynomial space with respect to the size of this program rather than of the order of

the exponentially larger combined ABTA as is the case of bottom-up approaches to model checking.

By logspace reduction to GCTL∗ model checking with respect to explicit models, we analyze the

explicit structure complexity of CTLC model checking and prove that is NLOGSPACE-complete,

which, as the case of GCTL∗, implies that CTLC model checking can be done in polynomial space

with respect to the size of concurrent programs.
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A) Preliminaries

We start this subsection by defining ABTA and associated concepts needed to analyze the complexity

of model checking GCTL∗. Definition of concurrent programs will follow. We use L = PV ∪{¬p | p ∈

PV} to denote the set of state literals and Lact = Φb ∪ {¬θ | θ ∈ Φb} to denote the set of action

literals. Let Θ be a typical subset of Lact. An ABTA is defined as follows [19]:

Definition 12 (ABTA) An ABTA B is a tuple (Q, h,→B, qI ,F), where Q is a finite set of states;

h : Q → L∪ {¬,∧,∨, [Θ], 〈Θ〉} is the state labeling function; →B⊆ Q ×Q is the transition relation;

qI ∈ Q is the start state; and F ⊆ 2Q is the set of sets of accepting states. →B should also satisfy:

|{q′|q →B q′}|

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

= 0 if h(q) ∈ L

= 1 if h(q) ∈ {¬, [Θ], 〈Θ〉}

≥ 1 if h(q) ∈ {∧,∨}

Also if h(q) = ¬, then q does not appear on a cycle.

ABTAs have the advantage of supporting efficient model checking for different logics and are

used to define the system properties using tableau proof rules [18]. They are used to encode how the

properties are to be proved and allow us to encode top-down proofs for temporal formulae (GCTL∗

formulae in this case). Indeed, an ABTA B encodes a proof schema in order to prove, in a goal-

directed manner, that a model MG satisfies a temporal formula. Let us consider the example of

proving that a state s in a model MG = (SG, Ac, lS , lAc,→, IG) satisfies a temporal formula of the

form F1 ∧ F2, where F1 and F2 are two formulae. Regardless of the structure of the system, there

would be two subgoals if we want to prove this in a top-down, goal-directed manner. The first would

be to prove that s satisfies F1, and the second would be to prove that s satisfies F2. Intuitively,

an ABTA for F1 ∧ F2 would encode this proof structure using states for the formulae F1 ∧ F2, F1,

and F2. A transition from F1 ∧ F2 to each of F1 and F2 should be added to the ABTA and the

labeling of the state for F1 ∧ F2 being “∧”. Indeed, in an ABTA, we can consider that: (1) states

correspond to “formulae”; (2) the labeling of a state is the “logical operator” used to construct the

formula or a state literal from L; and (3) the transition relation represents a “subgoal” relationship.

Thus, to show that a model state s satisfies an ABTA state q labeled with ∧, one needs to show

that s satisfies each of q’s children. Regarding the labels [Θ] and 〈Θ〉, for a model state s to satisfy

an ABTA state q labeled with [Θ] (resp. 〈Θ〉), one needs to show that for each s′ (resp. some s′)

such that (s, α, s′) ∈→ for some α “satisfying” Θ (i.e. θ ∈ lAc(α) for every θ ∈ Θ), s′ must satisfy

the unique successor of q.
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In order to decide about the satisfaction of formulae, the notion of accepting runs of an ABTA B

on a model MG is used. These runs are infinite and cycle infinitely many times through accepting

states. Formally, a run is defined as follows, where the notation (s,Θ, s′) ∈→ means (s, α, s′) ∈→

for some α ∈ Ac satisfying Θ:

Definition 13 (Run of ABTA) A run of an ABTA B = (Q, h,→B, qI ,F) on a model MG =

(SG, Ac, lS , lAc,→, IG) is a maximal tree in which the nodes are classified as positive or negative and

are labeled by elements of Q× SG as follows.

− The root of the tree is a positive node and is labeled with (qI , iG) where iG ∈ IG

− If σ is a positive (resp. negative) node with label (q, s) such that h(q) = ¬ and q →B q′, then

σ has one negative (resp. positive) child labeled (q′, s)

− For a positive node σ labeled with (q, s):

– If h(q) ∈ L then σ is a leaf.

– If h(q) = ∧ and {q′| q →B q′} = {q1, . . . , qm}, then σ has m positive children labeled by

(qi, s), 1 ≤ i ≤ m.

– If h(q) = ∨, then σ has one positive child3 labeled by (q′, s) for some q′ ∈ {q′| q →B q′}.
– If h(q) = [Θ], q′ is such that q →B q′, and {s′| (s,Θ, s′) ∈→} = {s1, . . . , sm}, then σ has

m positive children labeled by (q′, si), 1 ≤ i ≤ m.

– If h(q) = 〈Θ〉 and q′ is such that q →B q′, then σ has one positive child labeled by (q′, s′)

for some s′ such that (s,Θ, s′) ∈→.

− Otherwise, for a negative node σ labeled with (q, s):

– If h(q) ∈ L then σ is a leaf.

– If h(q) = ∧, then σ has one negative child4 labeled by (q′, s) for some q′ ∈ {q′| q →B q′}.
– If h(q) = ∨ and {q′| q →B q′} = {q1, . . . , qm}, then σ has m negative children labeled by

(qi, s), 1 ≤ i ≤ m.

– If h(q) = [Θ] and q′ is such that q →B q′, then σ has one negative child labeled by (q′, s′)

for some s′ such that (s,Θ, s′) ∈→.

– If h(q) = 〈Θ〉, q′ is such that q →B q′, and {s′| (s,Θ, s′) ∈→} = {s1, . . . , sm}, then σ has

m negative children labeled by (q′, si), 1 ≤ i ≤ m.

Every infinite path in a well-formed ABTA has a suffix that contains either only positive or only

negative nodes [19]. If only positive (resp. negative) nodes are included, the path is said to be

positive (resp. negative). A successful run is then defined as follows:

3We only consider one positive child in a run when the node is positive and disjunctive (i.e., labeled by ∨ or 〈Θ〉)
as only one branch in the product graph (see Definition 16) is chosen.

4Similar to the positive case, we only consider one negative child in a run when the node is negative and conjunctive
(i.e., labeled by ∧ or [Θ]) because again only one branch in the product graph is selected.
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Definition 14 (Successful run of ABTA) Let R be a run of an ABTA B on a model MG.

− A positive leaf of R labeled (q, s) is successful iff s satisfies h(q) or h(q) = [Θ] and there is no

s′ such that (s,Θ, s′) ∈→.

− A negative leaf of R labeled (q, s) is successful iff s does not satisfy h(q) or h(q) = 〈Θ〉 and

there is no s′ such that (s,Θ, s′) ∈→.

− A positive path is successful iff for each F ∈ F some q ∈ F occurs infinitely often.

− A negative path is successful iff for some F ∈ F there is no q ∈ F that occurs infinitely often.

R is successful iff every leaf and every path in R is successful.

Model Checking GCTL∗. Let ψ be a GCTL∗ state formula. The automata-based model checking

procedure for GCTL∗ proposed in [19] works as follows:

1. Translating ψ into a variant of ABTA: and-restricted Alternating Büchi Tableau Automaton

(arABTA). The resulting automaton is denoted by Bψ.

2. Exploring the product graph of MG and Bψ to check if it contains a successful run. If such a

run does exist, the formula is satisfied and MG is said to be accepted by Bψ (i.e., MG |= Bψ),

otherwise, the formula is not satisfied. The product graph is denoted by BMG,ψ.

Definition 15 (arABTA) An ABTA B is and-restricted (arABTA) iff every state q ∈ Q satisfies:

− If h(q) = ∧ then there is at most one q′ such that q →B q′ and there is a path from q′ back to

q.

− If h(q) = [Θ] and q →B q′, then there is no path from q′ back to q.

In an arABTA, the strongly-connected component of a state labeled by ∧ can contain at most

one of its state’s children and a state labeled by [Θ] is guaranteed to belong to a different strongly-

connected component that its child. Thanks to this restrictedness, the handling of recursive children

(i.e., children where there is a path from them back to the parents) is simplified, particularly when

space is concerned. This makes simple the treatment of recursive calls needed for some GCTL∗

formulae, which allows for space-efficient model checking this logic (this will be made clear later

when we will analyze the complexity of model checking GCTL∗). As argued in [19], arABTAs play

the same role in model checking GCTL∗ that do Hesitant Alternating word Automata (HAAs) in

model checking CTL and CTL∗ [86] although the two automata are conceptually different5. In

5arABTA would be hesitant if for every strongly-connected component Qi ⊆ Q and every node q ∈ Qi either
h(q) ∈ {∧, [Θ]} or h(q) ∈ {∨, 〈Θ〉}. Details about HAAs are out of scope of this paper and interested reader can refer
to [86].
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fact, it has been shown that HAAs are the key to the space-efficient model checking algorithms for

CTL and CTL∗ thanks to their restricted alternation structure (every nontrivial6 strongly-connected

component of HAAs is either (1) existential, so contains only nodes that are disjunctively related;

or (2) universal, so contains only nodes that are conjunctively related). In this chapter, we will

show that arABTAs are the key to the space-efficient complexity of the problem of model checking

GCTL∗ and to the NLOGSPACE membership of the explicit structure complexity of this model

checking problem.

Intuitively, the product graph can be seen as an encoding of all the runs of the arABTA. Formally:

Definition 16 (Product graph) The product graph BMG,ψ of an arABTA Bψ = (Q, h,→B, qI ,F)

and a model MG = (SG, Ac, lS, lAc,→, IG) where F = {F0, . . . , Fn−1} has vertex set V er = Q ×

SG×{0, . . . , n−1} and edges Edg ⊆ V er×V er. The edges are defined by: ((q, s, i), (q′, s′, i′)) ∈ Edg

iff

− there exist nodes σ and σ′ in some run of Bψ on MG labeled (q, s) and (q′, s′) respectively such

that σ′ is a child of σ; and

− either q /∈ Fi and i′ = i, or q ∈ Fi and i′ = (i + 1) mod n

A vertex (q, s, i) is said to be accepting iff q ∈ F for some F ∈ F and i = 0.

Bhat has proved in [18] that an arABTA can be partitioned uniquely to ordered sets Q1, . . . , Qn,

which correspond to its strongly-connected components. The number n of these sets is the depth of

the arABTA. Finally, we define the sizes of Bψ, MG, and BMG,ψ as follows:

− |Bψ| = |Q|+ |F| + | →B | where |Q| and | →B | are the respective cardinalities of the sets Q

and →B, and |F| is the number of component sets in F .

− |MG| = |SG|+ |Ac|+ | → |.

− |BMG,ψ| = |V er|+ |Edg|, where the vertex set is bounded in size by |Q| · |SG| · |F|.

Concurrent programs. Let us now define concurrent programs. As introduced in [86], a concur-

rent program Pr is composed of n concurrent processes. Each process Pi is described by a transition

system Di defined as follows: Di = (APi, ACi, Si,Δi, s
0
i , Hi) where APi is a set of local atomic

propositions, ACi is a local action alphabet, Si is a finite set of local states, Δi ⊆ Si × ACi × Si

is a local transition relation, s0i ∈ Si is an initial state, and Hi : Si → 2APi is a local state labeling

function. A concurrent behavior of these processes is obtained by the product of the processes and

6A strongly-connected component Qi is nontrivial if |Qi| > 1 or Qi = {q} and q has a self loop.
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transition actions that appear in several processes are synchronized by common actions. The joint

behavior of the processes Pi can be described using a global transition system D, which is computed

by constructing the reachable states of the product of the processes Pi and synchronization is ob-

tained using common action names. Let AP =
⋃n

i=1 APi,

AC =
⋃n

i=1 ACi,

S = Πn
i=1Si,

s0 = (s01, s
0
2, . . . , s

0
n),

H(s) =
⋃n

i=1 Hi(s[i]) for every s ∈ S, and s[i] be the ith component of s. Thus,D = (AP,AC, S,Δ, s0, H)

where (s, a, s′) ∈ Δ iff (s[i], a, s′[i]) ∈ Δi or s[i] = s′[i] for all 1 ≤ i ≤ n.

B) Space complexity of GCTL∗

Hereafter, we prove two results: (1) the explicit structure complexity of GCTL∗ model checking (i.e.

by fixing the formula) is NLOGSPACE-complete; and (2) model checking GCTL∗ for concurrent

programs with respect to the size of the components Pi and the length of the formula being checked

is PSPACE-complete.

Let cl(ψ) be the closure of ψ defined as the smallest set such that the following hold:

− ψ ∈ cl(ψ)

− If ¬ψ′ ∈ cl(ψ) then ψ′ ∈ cl(ψ)

− If ψ1 ∧ ψ2, ψ1 ∨ ψ2 ∈ cl(ψ) then ψ1, ψ2 ∈ cl(ψ)

− If E(ψ′) ∈ cl(ψ) then ψ′ ∈ cl(ψ)

− If A(ψ′) ∈ cl(ψ) then E(¬ψ′) ∈ cl(ψ)

− If E(ψ1 ∧ ψ2) ∈ cl(ψ) then E(ψ1, ψ2) ∈ cl(ψ)

− If E(ψ1 ∨ ψ2) ∈ cl(ψ) then E(ψ1), E(ψ2) ∈ cl(ψ)

− If E(ψ1 U ψ2) ∈ cl(ψ) then ψ1, ψ2, E © (ψ1 U ψ2) ∈ cl(ψ)

− If E © ψ′ ∈ cl(ψ) then ψ′ ∈ cl(ψ)

We start by presenting the following proposition from [18] and [12], where |ψ| denotes the length of

the formula ψ measured as the number of elements in cl(ψ).

Proposition 6 Let ψ be a GCTL∗ state formula and |ψ| be its length.

1. |BMG,ψ| = O(|MG| · |Bψ|)

2. |Bψ| = O(2|ψ|)
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Theorem 6 Given a GCTL∗ formula ψ, we can construct an arABTA Bψ of size O(2|ψ|) and of

depth O(|ψ|) such that every state in IG, the set of initial states of MG, satisfies ψ iff MG |= Bψ.

Proof 8

Assuming that Bψ is an arABTA, which will be shown later in this proof, the first part of the

theorem is simply from Proposition 6. For the second part, the algorithm to generate arABTAs from

GCTL∗ formulae uses goal-directed rules aiming to build tableaux from formulae. The formulae

have the form E(Φ) and A(Φ) where Φ is a set of path formulae, so E(Φ) denotes E(
∧

ϕ∈Φ ϕ), A(Φ)

denotes A(
∨

ϕ∈Φ ϕ), and E(¬Φ) denotes E(
∨

ϕ∈Φ ¬ϕ). Furthermore, we write E(Φ, ψ) to represent

the formula of the form E(Φ∪ {ψ}) and similarly E(Φ, ψ1, . . . , ψn) represents E(Φ ∪ {ψ1 . . . , ψn}),

where ψ, ψ1, . . . ψn are path formulae and Φ is possibly empty. When Φ is empty, we can also write

E(ψ1, ψ2) to represent E(ψ1 ∧ψ2), which also represents E({ψ1} ∪ {ψ2}). To build an arABTA Bψ

from a state formula ψ ≡ E(Φ), one first generates the states and transitions. The initial state is

the formula ψ itself and in general, states correspond to state formulae and transitions are linking

formulae to their subformulae as defined by the closure of these formulae. The subformulae (in the

sense of the closure) are obtained by applying the tableau rules shown in Table 15 in the order R1 to

R10, where the top part of each rule being the goal and the bottom part being the subgoals. Assuming

a state already associated with a formula ψ, one applies the rules R1-R10 to generate new states by

comparing the form of ψ with the formula in the goal part of the rules starting from R1. When ψ and

the goal formula match, the label of the rule becomes the label of the state and the subgoal formulae

obtained from the rule are added as states and transitions from ψ to these states are added. Leaves

are labeled by the state literals and the process stops when no new states are added. The soundness

and termination of this algorithm are presented in [19].

Table 15: Tableau rules for GCTL∗

R1 ∧ : ψ1 ∧ ψ2

ψ1 ψ2
R2 ∨ : ψ1 ∨ ψ2

ψ1 ψ2
R3 ∨ : E(ψ)

ψ
R4 ¬ : ¬ψ

ψ
R5 ¬ : A(Φ)

E(¬Φ)

R6 ∧ : E(Φ,ψ)
E(Φ) E(ψ) R7 ∧ : E(Φ,ϕ1∧ϕ2)

E(Φ,ϕ1,ϕ2)
R8 ∨ : E(Φ,ϕ1∨ϕ2)

E(Φ,ϕ1) E(Φ,ϕ2)

R9 ∨ : E(Φ,ϕ1 U ϕ2)
E(Φ,ϕ2) E(Φ,ϕ1,©(ϕ1 U ϕ2))

R10 〈Ψ1〉 : E(Ψ,©ϕ1,...,©ϕn)
E(ϕ1,...,ϕn)

Ψ is an ordered set of action literals and Ψ1 is a subset of Ψ containing only the first element of Ψ

Let us now show that the obtained automaton Bψ is an arABTA. We start first by proving that

Bψ is an ABTA. From the tableau rules R1-R10 and the explanation above, we can see that states

are labeled by a subset of {¬,∧,∨, [Θ], 〈Θ〉}, and: (1) leaves (states without children) are labeled

by elements of L; (2) states labeled by {¬, 〈Θ〉} have only one child (rules R4, R5, and R10); (3)

states labeled by {∧,∨} have at least one child (rules R1, R2, R3, R6, R7, R8, and R9); and (4)
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states labeled by ¬ using rules R4 and R5 do not appear on a cycle as there are no rules linking ψ

to ¬ψ or E(¬Φ) to A(Φ) since ¬ψ and A(Φ) do not appear as subgoal formulae in any of the rules.

Consequently, Bψ satisfies all the conditions of ABTAs (Definition 12), so it is an ABTA. To show

that it is an arABTA, we only need to show that (1) states labeled by [Θ] have no recursive children;

and (2) states labeled by ∧ have at most one recursive child, which means in rules labeled by ∧, at

most one subgoal can be recursive, so it can include the formula identified in the goal. The first

part is straightforward as no state is labeled by [Θ] in Bψ. For the second part, three rules should be

discussed: R1, R6, and R7. R1 produces two children, but no one is recursive as there are no rules

linking ψ1 or ψ2 back to ψ1 ∧ψ2. R6 generates two children: E(ψ) and E(Φ), but the child E(ψ) is

not recursive as the only available rule to be applied once E(ψ) is obtained is R3, which will generate

a state labeled by ψ and from ψ a formula having the form E(Φ, ψ) cannot be produced. Thus, R6

can produce at most one recursive child, which could be from E(Φ). Finally, R7 generates only one

child, so again at most one is recursive.

The partition of the obtained arABTA Bψ to Q1, . . . , Qn proceeds as follows: qI ∈ Qn and for

each state q ∈ Qi we have:

− If h(q) ∈ {∨, 〈Θ〉} then for every q′ such that q →B q′, q′ ∈ Qj and j ≤ i.

− If h(q) ∈ {[Θ],¬} then for every q′ such that q →B q′, q′ ∈ Qj and j < i.

− If h(q) = ∧ then there is exactly at most one state q′ from the set {q′| q →B q′} such that

q′ ∈ Qj and j ≤ i. For the other states q′ we have q′ ∈ Qj and j < i.

Thus, since each state is associated to a subformula as defined in the closure, this partition shows

that each subformula (in the sense of the closure) of a formula ψ induces at most one set Qi in ψ.

Therefore, the depth of Bψ is linear in |ψ|. �

The following is an example from [18] showing the tableau and arABTA obtained from a given

GCTL∗ formula.

Example 4 Let Ac = {send, receive}. Consider the formula A�(send ⊃ ♦(receive)). The tableau

of the formula along with the applied rules are shown in Table 16. The obtained arABTA is depicted

in Figure 20. It is worth noticing that in the first application of R9 (to obtain the formulae in row

3 of Table 16), we have in the goal part Φ is empty, ϕ1 ≡ true, and ϕ2 ≡ send ∧ G(¬receive). In

the subgoal part, we use the form with “,” instead of “∧” for the left side formula. This choice is

simply motivated by the fact that the two components (i.e., send and G(¬receive)) become clearly

separated, which allows this row (i.e., row 3) to match the goal part of rule R9. By so doing, it
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Table 16: Tableau of A�(send ⊃ ♦(receive))
¬ : A�(¬ send ∨ ♦(receive)) (R5)
∨ : E♦(send ∧�(¬ receive)) (R9)
∨ : E(send,�(¬ receive)) (R9) 〈true〉 : E © (♦(send ∧�(¬ receive)))(R10)
〈send〉 : E(send,¬ receive,©�(¬ receive))(R10) E♦(send ∧�(¬ receive))
∨ : E�(¬ receive) (R9)
〈¬ receive〉 : E(¬ receive,©�(¬ receive))(R10)
E�(¬ receive)

becomes clear that in the second application of R9 (to obtain the formula in row 4), Φ = {send} and

ϕ1Uϕ2 ≡ G(¬receive). Then we apply R10, where Ψ = {send,¬receive} and Ψ1 = {send}. For

simplicity, we abuse the notation and label the first and second R10 respectively 〈send〉 and 〈¬receive〉

instead of 〈{send}〉 and 〈{¬receive}〉. The application of the other rules is straightforward.

¬

V

<true>

<send>

V

<¬receive>

V

Figure 20: arABTA of A�(send ⊃ ♦(receive))

Remark 8 In the tableau rules shown in Table 15, there is a rule labeled by 〈Ψ1〉, but no rule is

labeled by [Ψ1]. The reason is that those rules are mainly dealing with existential formulae and

whenever a universal formula is encountered, it is transformed to an existential one using the rule

R5. In fact, a rule labeled by [Ψ1] would be used to deal with universal formulae having the form

A(Ψ,©ϕ1, . . . ,©ϕn) and the rule would have the form: [Ψ1] :
A(Ψ,©ϕ1,...,©ϕn)

A(ϕ1,...,ϕn)
. Having the rule R5,

the rule [Ψ1] would be redundant because applying this new rule followed by R5 (the only rule possible

when A(ϕ1, . . . , ϕn) appears) is equivalent to applying first R5 to A(Ψ,©ϕ1, . . . ,©ϕn) followed by

〈¬Ψ1〉. In both cases we will end up with E(¬ϕ1, . . . ,¬ϕn). Although the new rule is redundant,

adding it will still produce arABTAs because there is no rule that can produce A(Ψ,©ϕ1, . . . ,©ϕn),

so states labeled by [Ψ1] will not have recursive children. On the other hand, notice that it is
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possible to replace the rules R3, R5, R6, R7, R8, R9, and R10 by other rules dealing with universal

formulae. In this case, R5 would have the form ¬ : E(Φ)
A(¬Φ) and the rule [Ψ1] would be used instead of

R10. Technically, this means the ABTAs obtained can contain either states labeled by 〈Ψ1〉, or [Ψ1],

but not both, which still complies with the ABTA’s definition. However, using rules with universal

formulae will not necessarily produce arABTAs because applying the new rule replacing R9 together

with the rule [Ψ1], a node labeled by [Ψ1] will have recursive children.

Theorem 7 The model checking problem for GCTL∗ can be solved in space O(|ψ|(|ψ|+log |MG|)2).

Proof 9

As explained in the preliminaries, the problem of model checking GCTL∗ is the problem of determin-

ing if the product graph BMG,ψ contains a successful run, which means checking the nonemptiness of

the arABTA BMG,ψ. Here we present the on-the-fly algorithm presented in [19] and then we analyze

its space complexity, which has not been done in [19]. The algorithm avoids the storage penalty as-

sociated with the construction of strongly-connected components7 and uses two depth-first searches,

DFS1 and DFS2. The algorithm is a top-down marking algorithm. DFS1 recursively marks nodes as

either true or false and DFS2 is lunched whenever an accepting node is found to check if the node is

reachable from itself via nodes not previously traversed by DFS2. In fact, the success of DFS2 means

the existence of runs with successful infinite paths. Thus, the motivation behind the requirement for

nodes of not being previously traversed by DFS2 is to avoid unnecessary re-computation of successful

paths already found. This is because a node N is already traversed by DFS2 if it is an accepting state

and a recursive child of another accepting state which has been already found by DFS1 so that the

successful infinite path to which N belongs has been already identified. When executing DFS1, some

nodes are not directly marked true or false, but are marked as dependant on their recursive children,

which are previously traversed by DFS1 but not marked yet, so they are marked true (resp. false)

once the nodes on which they depend are marked true (resp. false). This procedure is called mark

propagation and happens in a strongly-connected component because the nodes previously traversed

can be marked later by exploring other branches in the same component. Thus, once a node N is

marked true or false, the mark is propagated to reachable nodes from N that are marked dependant

on N , which means already traversed using DFS1. This needs to record a dependency set for each

node N . In fact, those dependant nodes (i.e., the elements of the dependency set) are the parent

nodes of N that are reachable from N and already traversed. The algorithm proceeds by exploring the

7By storage penalty, we mean the memory cost of constructing and recording the strongly-connected components
of the product graph to be checked, which is needed by some automata-based model checking algorithms. As the
strongly-connected components should be stored prior to any exploration by those algorithms, the memory (or space)
cost is high.
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label of the states, which are partitioned into negative, conjunctive and disjunctive states. Negative

states are those labeled by ¬; conjunctive states are those labeled by ∧ and [Θ]; and disjunctive states

are those labeled by ∨ and 〈Θ〉. The following recursive procedure illustrates the marking algorithm.

1. Start at the initial state.

2. At a leave (q, s, i), mark the node true if s satisfies h(q); otherwise, mark the node false.

3. At a negative node, evaluate the state by recursively applying the procedure to the non recursive

child, and mark the node true if the child is marked false; otherwise mark the node false.

4. At a conjunctive node N , proceed as follows:

(a) Start by non-recursive children and evaluate the node N by applying the procedure recur-

sively to those children. Label N false if one of the children is labeled false and propagate

the mark (i.e., mark the dependant nodes on N (if any) true or false depending on the

mark of the node N).

(b) If all the children are evaluated true and there is no recursive child of the node N , then

mark the node true and propagate the mark.

(c) Otherwise, if the unique recursive child has not been already traversed, then apply the

procedure recursively to this unique child and mark the node N true if the child is marked

true; otherwise, mark the node false and propagate the mark.

(d) If the recursive child has been already traversed but not market yet, then mark the node

N as dependant on the recursive child.

(e) If the node N is not marked true or false and if it is accepting, then mark N true and

propagate the mark if it is reachable from itself using states not marked false. Mark N

false and propagate the mark if not.

(f) If none of the previous cases apply, mark the node false.

5. At a disjunctive node N , proceed as follows:

(a) Start by non-recursive children and evaluate the node N by applying the procedure recur-

sively to those children. Label N true if one of the children is labeled true and propagate

the mark.

(b) If all the children are evaluated false and there is no recursive children of the node N ,

then mark the node false and propagate the mark.

(c) Otherwise, search for a recursive child that has not been traversed yet, and if found, then

apply the procedure recursively to this child and mark the node N true if the child is

marked true and propagate the mark.
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(d) Otherwise, if all the recursive children are already traversed, then mark the node N as

dependant on its recursive children.

(e) If the node N is not marked true or false and if it is accepting, then mark N true and

propagate the mark if it is reachable from itself using states not marked false. Mark N

false and propagate the mark if not.

(f) If none of the previous cases apply, mark the node false.

Let us now consider the complexity of this algorithm8. For each state (q, s, i) in the product graph

BMG,ψ, if the children are already marked recursively, then marking the state becomes a problem

of evaluating a Boolean expression since the children represent the subformulae of the formula in

the state. As we consider Boolean expressions over the set V er, the length of each expression is

linear in the size |BMG,ψ| of the arABTA product. As the problem of evaluating Boolean expressions

is in LOGSPACE [95], marking a state assuming all the children states are marked can be done

deterministically in space O(log |BMG,ψ|). Before analyzing the different cases, let us consider the

propagation procedure. In fact, the property of arABTA used in this algorithm is that this propagation

can be done deterministically in space O(log2 |BMG,ψ|). The procedure consists in recording the

dependency set, which means determining if the parent nodes of a given node N are reachable from

N and already marked traversed. The reachability from N is a graph accessibility problem, and it is

known by Jones [82] that the problem is in NLOGSPACE, so it can be done nondeterministically in

space O(log |BMG,ψ|), or, by Savitch’s theorem [114], deterministically in space O(log2 |BMG,ψ|). A

necessary condition for a node to be already traversed is to be a recursive node of a given node. Thus,

the size of already traversed nodes is bounded by the size of the recursive children. On the one hand,

as in arABTA a node labeled by ∧ has only one recursive child, and a node labeled by [Θ] has no

recursive children, the size of recursive children of a conjunctive node is logarithmic in the size of the

product graph BMG,ψ. On the other hand, as for a disjunctive node only one recursive child should

be recorded at time, the size of recursive children needed at a given moment is also logarithmic in the

size of the product graph. Thus, marking a node as already traversed can be done deterministically

in space O(log |BMG,ψ|), so the whole procedure can be done in space O(log2 |BMG,ψ|). Let us now

analyze the different cases. If the state is a leave, marking the state is simply evaluating a positive or

negative literal, which can be done deterministically in space O(log |BMG,ψ|). If the state is a negative

node, assuming the non-recursive child is evaluated, marking the node is simply complementing the

evaluation of the child, so it can be done deterministically in space O(log |BMG,ψ|). Let us then

consider the case of a conjunctive state (the case of a disjunctive state is symmetric). If all the

8The complexity analysis of the algorithm is novel in this chapter and has not been addressed in [19].
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children are non-recursive, then evaluating the node assuming that the children are already evaluated

recursively can be done, as explained above, deterministically in space O(log |BMG,ψ|). If the node

has a recursive child, which is already evaluated, then evaluating the node is simply evaluating a

Boolean expression deterministically in space O(log |BMG,ψ|). Otherwise (i.e., the child is already

traversed), the mark is propagated, and this can be done, as explained above, deterministically in

space O(log2 |BMG,ψ|). If the node is accepting, then marking it becomes a problem of reachability

from itself using states not already marked false. Assuming the nodes are already marked, this can

be done nondeterministically in space O(log |BMG,ψ|) [82], or, by Savitch [114], deterministically in

space O(log2 |BMG,ψ|).

In practice, we do not keep the Boolean values of the children, but whenever we need such a

value, we evaluate it recursively. As argued in [86], the depth of the recursion is bounded by the

depth of the automata, which is, from Theorem 6, O(|ψ|). Thus, marking the initial state can be

done deterministically in space O(|ψ|(log2 |BMG,ψ|)). From Proposition 6, we know that: |BMG,ψ| =

O(|MG| · |Bψ|) and |Bψ| = O(2|ψ|). Thus, the model checking problem of GCTL∗ can be solved in

space O(|ψ|(log2(|MG| · 2|ψ|))), which means O(|ψ|(|ψ| + log |MG|)2). �

Let us now discuss the explicit structure complexity of GCTL∗ model checking as the complexity

of this problem in terms of the size of the input explicit model MG, that is assuming the formula

fixed. In what follows, the logspace and polynomial reductions are denoted respectively by ≤log and

≤p.

Proposition 7 Let Mod(L) be a model of the language L, where L ∈ {CTL, CTLC, CTL∗,

GCTL∗}.

1. Mod(CTL∗) ≤log Mod(GCTL∗)

2. Mod(CTL) ≤log Mod(CTLC)

3. Mod(CTLC) ≤log Mod(GCTL∗)

Proof 10

1. CTL∗ is a subset of GCTL∗ and thus any model of CTL∗ is also a model of GCTL∗. So, we

can easily imagine a deterministic Turing machine TM that can compute this reduction in

space O(log n) where n is the size of the input model of CTL∗. In fact, TM simply looks at the

input and writes in its output tape, one by one, the states (including the initial ones), labeling

function, and transitions.

2. CTL is a subset of CTLC, so the result follows using a similar proof as 1.
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3. Here we show that the model reduction presented in Section 5.3.2 in Chapter 5 can be computed

by a deterministic Turing machine TM in space O(log n) where n is the size of the input model

of CTLC. TM reads in the input tape a model of CTLC and generates in the output tape, one

by one, the same states including the initial ones and the same state labeling function as the

input. Furthermore, TM writes αo in the set of actions Ac if there are transitions defined in

Rt, the transition relation in the model of CTLC, and reads the accessibility relations ∼i→j

in the input model one by one and for each one, it writes αij and βij in Ac. Then, for each

element in Ac, TM writes in the output tape, lAc one by one as explained in Section 5.3.2

in Chapter 5. Finally, TM looks at each transition (s, s′) in the input model and writes, one

by one, the transitions (s, αo, s′). In the same way, TM writes, one by one, the transitions

(s, αij , s′) and (s′, βij , s) for each accessibility relation s ∼i→j s
′ in the input model. �

Theorem 8 The explicit structure complexity of GCTL∗ model checking is NLOGSPACE-complete.

Proof 11

Membership: By fixing the formula ψ to be checked, we obtain an arABTA of a fixed depth. Using

the algorithm presented in the proof of Theorem 7, checking the nonemptiness of this automata can

be done deterministically in space O(log2 |MG|), that is, the problem is in NLOGSPACE.

Hardness: The hardness in NLOGSPACE follows directly from Proposition 7 (i.e., Mod(CTL∗) ≤log

Mod(GCTL∗)) as it is proven in [86] that the explicit structure complexity (called program complex-

ity) of CTL∗ model checking is NLOGSPACE-complete. �

Theorem 9 The complexity of GCTL∗ model checking for concurrent programs is PSPACE-complete.

Proof 12

Membership: As shown in Theorem 7, the model checking problem of GCTL∗ can be solved in space

polynomial in the length of the formula |ψ|, but only poly-logarithmic in the size of the explicit

model |MG|. Since the size of a concurrent program is independent from the length of the formula,

the problem can still be solved in space polynomial in the length |ψ|. On the other hand, since the

explicit model is obtained as the product of the components of a concurrent program and this product

is at most exponentially larger than the program, the state space is exponential in the length of the

program. Thus, membership in PSPACE follows from the fact that the model checking algorithm

presented in the proof of Theorem 7 is on-the-fly, that is, we do not have to store all of the product

automaton at once and can store, at each step, only the current configuration (a similar argument

is used in [142] and [86]).
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Hardness: The hardness in PSPACE is direct from the fact that CTL∗ ≤p GCTL∗ and model

checking CTL∗ is PSPACE-complete for concurrent programs [86]. �

It is possible to prove hardness in PSPACE using a reduction from polynomial space Turing machines,

for example as done in [86]. However, for the sake of simplicity, we used a direct reduction from the

model checking of CTL∗. We could also use a direct reduction from the nonemptiness problem of

concurrent programs proven in [85] to be PSPACE-complete.

C) Space complexity of CTLC

As we did for the complexity of GCTL∗, in this section, two results will be presented: (1) the

explicit structure complexity of CTLC model checking (i.e., by fixing the formula) is NLOGSPACE-

complete; and (2) model checking CTLC for concurrent programs with respect to the size of the

components Pi and the length of the formula being checked is PSPACE-complete.

Theorem 10 The explicit structure complexity of CTLC model checking is NLOGSPACE-complete.

Proof 13

Hardness: The hardness in NLOGSPACE follows directly from Proposition 7 (i.e., Mod(CTL)

≤log Mod(CTLC)) and the explicit structure complexity (called program complexity) of CTL model

checking is NLOGSPACE-complete [86].

Membership: From Section 5.3.2 in Chapter 5, Theorem 3, and Proposition 7, we proved, using

explicit structures, that: (1) Mod(CTLC) ≤log Mod(GCTL∗); and (2) the reduction is sound. Thus,

the membership in NLOGSPACE follows from Theorem 8. �

Theorem 11 The complexity of CTLC model checking for concurrent programs is PSPACE-complete.

Proof 14

Hardness: The PSPACE lower bound is direct from the fact that CTL ≤p CTLC and the complexity

of model checking CTL is PSPACE-complete for concurrent programs [86].

Membership: In Section 5.3.2 in Chapter 5, we have presented a polynomial-time transformation of

a model MC for CTLC to a model MG for GCTL∗ and a formula ϕCTLC to a formula ϕGCTL∗

so that MC |= ϕCTLC iff MG |= ϕGCTL∗. Thus, since the model checking problem of GCTL∗ can

be solved in space polynomial in the length of the formula |ϕGCTL∗ |, and poly-logarithmic in the

size of the explicit model |MG| (Theorem 7), we obtain an upper bound space complexity for model

checking CTLC with regard to the length of the formula and the size of the explicit model MC. On
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the other hand, from Theorem 10, the space complexity of model checking CTLC is poly-logarithmic

in the size of the explicit model |MC |. And since the model checking problem of CTL can also be

solved in space polynomial in the length of the formula [86], we obtain the space complexity of model

checking CTLC, that is polynomial in the length of the formula |ϕCTLC |, and poly-logarithmic in the

size of the explicit model |MC |. Thus, using a similar proof as the one presented in Theorem 9 and

observing that the same on-the-fly algorithm presented in this proof can be used for CTLC thanks to

the transformation, the result follows. �

6.4 Implementation

One of the main objectives of this chapter is to implement the symbolic model checking algorithm

of social commitments and their fulfillment. Moreover, we aim to examine various social properties

of MASs when agents commit towards each other and to determine which of these properties are

retained and which are compromised when agents violate their commitments.

With our results in Chapter 5, we found that symbolic approaches are better than automata-

based approaches. As our aim is to introduce a fully automated methodology that builds upon

an existing tool, we selected the MCMAS model checker [92] because it supports the semantics

of interpreted systems using its own dedicated programming language, called ISPL (Interpreted

Systems Programming Language). This language is ground, modular [79] and provides concurrent

programs. In logical term, MCMAS supports CTL, CTLK (epistemic logic) and ATL (alternative

temporal logic). It is also based on OBDDs that are implemented by means of the efficient CUDD

library. Thus, we fully implemented the model checking technique presented in Section 6.2 on top of

MCMAS and we extended the implementation of interpreted systems to include shared and unshared

variables and the social accessibility relation. The resulting tool is called MCMASC (an extended

version of MCMAS with social commitments). Other comparisons between MCMAS and other

developed model checkers for multi-agent systems can be found in [111]. One example for which we

have been able to carry out the above objectives is the Insurance Claim Processing (an industrial

case study), already applied to show how commitments can specify protocols in business settings

[137].

6.4.1 Case Study: Insurance Claim Processing

This industrial case study outlines the manner motor damage claims of policy holders are handled by

AGFIL, a private insurance company in Ireland (see Figure 21). To deal with a motor damage claim,
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the AGFIL company is required to provide claim reception and car repair to its policy holders. It also

needs to assess (or adjust) claims to protect itself against fraud. AGFIL depends on its associates,

Europ Assist, Lee Consulting Service (Lee CS), and various repairers when executing these tasks.

Europ Assist through the call center offers a 24-hour emergency call answering service to policy

holders for reporting claims and providing them with the name of an approved repairer facility. Lee

CS coordinates with AGFIL and deals with repairers and assessors to handle the claims. A network

of approved repairers that provide the repair services. AGFIL holds ultimate control in deciding if

a given claim is valid and if payment will be made to the repairer.
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Figure 21: Insurance claim processing [137]

A typical business scenario is as follows. The policy holder phones the call center to notify the

company of a new claim. The call center will gather the information using an accident form, validate

the information with its database, then assign the nearest garage and give some suggestions about

approved repairers to the policy holder. The accident form is then sent to AGFIL and Lee CS, which

replicates the AGFIL database to receive notification details. The AGFIL claim handler will check

to confirm the cover. In the case of the claim being invalid, Lee CS will be contacted and the process

will be stopped. Lee CS will agree upon repair figures if an assessor is not required or will otherwise

either appoint an assessor or conduct the assessment itself. When the repairs are completed, the

repairer will issue an invoice to the assessor who will check the invoice against the original estimate.

Lee CS sends a monthly bordereaux to AGFIL listing all the repairs for that month. More details

about the case study can be found in [137].
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6.4.2 Specifications

To verify the correctness of the above scenario at design time, various properties can be formalized

using CTLC with respect to the model MC .

Reachability property. A particular situation can be reached from the initial state via some

computation sequences. The following formula means that there exists a path where the call center

will not commit to the policy holder for gathering claim information until it receives the accident

report from the policy holder.

E(¬reportAccident U (reportAccident ∧CCall Center→Policy Holder gatherInfo))

Safety property. This property means “something bad never happens”. For example, a bad

situation is: the policy holder’s claim is validated by the call center, but the repairer never commits

to repair the car:

A� ¬(validClaim ∧ ¬CRepairer→Policy Holder carRepair )

Liveness property. This property states “something good will eventually happen”. For example,

in all paths globally if the policy holder reports an accident and his claim is valid, then in all future

computations, the call center will commit to assign the garage:

A�(reportAccident ∧ validClaim ⊃ A♦ (CCallCenter→Policy Holder assignGarage))

Moreover, the following formulae are some examples of commitments (1.a, 2.a, 3.a, and 4.a), their

fulfillment (1.b, 2.b, 3.b, and 4.b), and weak and strong violations (1.c, 2.c, 3.c, and 4.c) and (1.d,

2.d, 3.d, and 4.d):

1. Commitment 1

(a) E♦(CPolicy Holder→AGFIL insurancePayment)

(b) E♦(Fu(CPolicy Holder→AGFIL insurancePayment))

(c) ¬A�(CPolicy Holder→AGFIL insurancePayment ⊃

A♦(Fu(CPolicy Holder→AGFIL insurancePayment)))

(d) ¬A�(CPolicy Holder→AGFIL insurancePayment ⊃

E♦(Fu(CPolicy Holder→AGFIL insurancePayment)))

2. Commitment 2

(a) E♦(CAGFIL→Call Center receptionPayment)

(b) E♦(Fu(CAGFIL→Call Center receptionPayment))
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(c) ¬A�(CAGFIL→Call Center receptionPayment ⊃

A♦(Fu(CAGFIL→Call Center receptionPayment)))

(d) ¬A�(CAGFIL→Call Center receptionPayment ⊃

E♦(Fu(CAGFIL→Call Center receptionPayment)))

3. Commitment 3

(a) E♦(CCall Center→Policy Holder assignGarage)

(b) E♦(Fu(CCall Center→Policy Holder assignGarage))

(c) ¬A�(CCall Center→Policy Holder assignGarage ⊃

A♦(Fu(CCall Center→Policy Holder assignGarage)))

(d) ¬A�(CCall Center→Policy Holder assignGarage ⊃

E♦(Fu(CCall Center→Policy Holder assignGarage)))

4. Commitment 4

(a) E♦(CRepairer→PolicyHolder carRepair )

(b) E♦(Fu(CRepairer→Policy Holder carRepair ))

(c) ¬A�(CRepairer→Policy Holder carRepair ⊃ A♦(Fu(CRepairer→Policy Holder carRepair )))

(d) ¬A�(CRepairer→Policy Holder carRepair ⊃ E♦(Fu(CRepairer→Policy Holder carRepair )))

The first formula (1.a) expresses the existence of a computation so that in its future the policy holder

commits towards the insurance company AGFIL to pay the insurance and the second formula (1.b)

states that such a commitment will eventually be fulfilled, while the third (1.c) and fourth (1.d)

formulae are checking the weak and strong violations of this commitment (cf. Section 5.2.2 in

Chapter 5). The formula (1.c) says that there is a computation so that in its future the commitment

explained in (1.a) is established but from the moment where the commitment is active there is a

possible computation where globally the fulfillment never happens, that is the insurance never get

paid. The formula (1.d) expresses that after having the commitment from the policy holder towards

the insurance company, the fulfillment does not occur in all states of every possible computation.

The other formulae in Commitments 2, 3, and 4 can be explained in a similar way. Commitment

2 is from the insurance company AGFIL that commits towards the call center to receive the payment

(as compensation for the call service it offers). Commitment 3 is from the call center that commits

towards the policy holder that a garage will be assigned. In Commitment 4, the repairer commits

to the policy holder to repair his car.
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6.4.3 Experimental Results

According to the above scenario, we have six agents: Insurer (or AGFIL), Policy Holder, Call Center,

Repairer, Assessor and Inspector. As we did in our previous two case studies (the NetBill protocol

and the Contract Net protocol) in Chapter 5, we use the model MC to formalize the present case

study and then compile it using a Büchi automaton. In this formalism, each agent has the set of local

states and actions, the set of shared and unshared variables, local protocol function, local evolution

function, the valuation function and finally the set of initial states. For instance, the Policy Holder

agent has 29 local states, 3 Boolean variables (communication channels), 21 local actions and 4

initial states. The Policy Holder agent can be specified using the ISPL language as follows:

Agent Policy_Holder

Vars:

ph: {ph0,ph1,...,ph29};--local states

x: {x0,x1};--x’values can be either zero or one

z: {z0,z1};

f: {f0,f1};

end Vars

Actions={request_EmergencyService,accept_Offer,...,null}; --local actions

Protocol:--local protocol

ph=ph0:{request_EmergencyService,...};

ph=ph2:{accept_Offer,...};

...

Other : {null};

end Protocol

Evolution:--local evolution function

ph=ph1 and x=x0 and Action=request_EmergencyService;

...

ph=ph3 and x=x1 and Action=accept_Offer;

...

end Evolution

end Agent

Notice that “−−” refers to the comment in the ISPL language. Our experiments were performed

on a laptop equipped with the Intel(R) Core(TM) i5-2430M clocked at 2.4GHz processor and 6GB
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Figure 22: Screen shot of the formulae section in MCMASC.

Figure 23: Screen shot of MCMASC output indicating verification results of the first experiment.
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memory running under x86 64 Windows 7. We found that 8 tested formulae (commitments and their

fulfillment) hold, 8 tested formulae return false (weak and strong violation) and 3 tested formulae

hold (reachability, safety and liveness). Figure 22 depicts the representation of our testing formulae in

the MCMASC’s formulae section. To check the effectiveness of the proposed symbolic algorithm, we

reported 8 experiments in Table 17 where the number of agents (#Agent), the number of reachable

states (#States), the execution time (Time) in seconds (sec), and the memory in use (Memory) in

MB are given. These experiments are also suitable for testing the scalability of MCMASC as the

ISPL code corresponding to any number of interacting agents is generated automatically by making

use of a C++ code taking the required number of agents as the only input parameters. The screen

shot displayed in Figure 23 reports our verification results with the new tool (MCMASC) regarding

to the first experiment. From Table 17, we found that the number of reachable states (which

Table 17: Verification results of the Insurance Claim Processing using MCMASC
#Agents #States Time (sec) Memory(MB)

6 41 1 7.56

12 1669 11 22

18 67529 26 45

24 2.71806e+06 49 47

30 1.08909e+08 278 47

36 4.34657e+09 458 44

42 1.72867e+11 5219 139

48 6.85373e+12 14477 132

reflects state space) increases exponentially when the number of agents increases as we expected.

However, the memory usage increases only polynomially, which confirms the theoretical results

(i.e., the PSPACE-completeness). Regarding the execution time, the increase is not exponential,

but faster than the polynomial, which also confirms the time complexity in concurrent programs,

which is APTIME as APTIME = PSPACE (Johnson1990), where APTIME is the class of languages

accepted by polynomial-time alternating Turing machines.

Because our model is verified successfully, we consider an imaginary condition under which the

commitment violation can occur to further demonstrate our approach. For example, when the policy

holder fails to send the agreed amount of insurance payment to the insurer agent, its commitment

is violated (see Figure 24). In the Figure 24, the results generated by MCMASC mean that there

is no way to reach the insurance payment state from the policy holder’s commitment state; so the

commitment is strongly violated. In this case, MCMASC generates a counterexample showing an
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execution indicating the reason for this problem.

Figure 24: MCMASC output showing violation: failure to send insurance payment.

6.5 Discussion

The present chapter is an improvement and continuation of our previous work published in [52] in

which we developed a new symbolic algorithm for model checking an extended logic of CTL with

modalities for commitments and their fulfillment and violation. The algorithm has been fully imple-

mented on top of the MCMAS model checker to directly verify commitments and their fulfillment

and violation. We studied the time and space complexity of model checking CTLC, which has not

been addressed yet and proved that it is respectively P-complete and PSPACE-complete. These re-

sults match the time and space complexity of model checking CTL in explicit models and concurrent

programs. In our implementation, we used a widely studied industrial case study and conducted 8

experiments with large state space approximately (6.85373e + 12 states), which demonstrated the

effectiveness and applicability of our approach in terms of execution time and memory in use. Recall

that it is the first proposal that develops a model checking algorithm for commitments.

The proof presented in this chapter differs from the proof of PSPACE-complete for model check-

ing CTLK (a combination of CTL logic with the logic of knowledge [105]) in concurrent programs
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introduced in [111] in that it does not use the results from Turning machine theory. In our per-

spective, the relationship between automata-theoretic technique and Turning machine technique is

not sufficiently well understood despite being widely acknowledged. With these results, our proof

provides an alternative proof of the upper bound for the space complexity of model checking CTL

in concurrent programs, which can be easily extended to CTLC.

In fact, a dedicated logic and its model checking for commitments play the same role as CTLK

and MCMAS do for knowledge. It is worth noticing that CTLC is semantically different from

CTLK because a commitment modality cannot be expressed with any CTLK connector under the

assumption that the two interacting agents are completely different.
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Chapter 7

Conclusion

The main contribution of this thesis lies in proposing an integrated approach for addressing two

open problems: (1) defining a computationally grounded semantics for agent communication in

terms of social commitments; and (2) model checking commitments and their actions together with

commitment-based protocols.

To summarize, based on the technical background introduced in Chapter 2, we started by exploring

the state of the art on how computational logics can be advocated to define a formal semantics for

agent communication by making use of social commitments and their actions. In particular, we

evaluated some prominent and predominate proposals against six crucial criteria to highlight their

strengths and limitations. We also evaluated current specification languages and different verification

techniques that have been introduced within those proposals to specify and verify commitment-

based protocols. Afterward, we proceeded to address the identified challenges and limitations in

Chapter 4 by developing a new branching-time temporal logic, called ACTL∗c, which extends full

computation tree logic (CTL∗) with the addition of modal operators for representing and reasoning

about social commitments and associated actions. The proposed logical language is expressive and

succinct as it is an extension of CTL∗. We proposed the notion of accessible and non-accessible paths

to interpret the semantics of commitment and action modal operators. Then we used an agency

function to check for the existence of two interacting agents at all states along the accessible path.

Although the defined semantics satisfies all our proposed criteria and exclude spurious aspects that

plague existing proposals regarding the over-specification problem and the intuition and computation

problem, it is semi-computationally grounded in the sense of the computational grounding theory of

agency introduced in [151]. Also, we used our logical language ACTL∗c to derive a new specification
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language of commitment-based protocols, which waives the current logical languages of actions. To

verify commitments and their actions and commitment-based protocols, we developed a new symbolic

model checking algorithm (cf. Appendix A) and defined a formal and automatic reduction method

to transform the problem of model checking ACTL∗c to the problem of model checking GCTL∗

in order to make use of the CWB-NC model checker. The proposed reduction method is sound

and preserves the real and concrete meaning of commitments as the commitment modal formula

is transformed into GCTL∗ formula. To experimentally evaluate the effectiveness of this reduction

method, we adopted two business protocols (the NetBill protocol and Contract Net protocol) widely

used in the literature. We concluded with our approach is feasible, usable and applicable to check a

large real-life business models, which allows us to achieve the first, second, and third objectives of

our thesis (cf. Chapter 1).

To balance between expressiveness and verification efficiency aspects, we adopted a refined frag-

ment of ACTL∗c, called CTLC, in Chapter 5. In order to define a full-computationally grounded

semantics of commitment modal formula, we extended the formalism of interpreted systems with

shared and unshared variables and considered the local states of the interacting agents in the def-

inition of the social accessibility relation. We introduced the link between commitments and their

fulfillment, which is missing in the literature. We also presented axioms of commitments and their

fulfillment, which have not been introduced yet. Our commitment logic is of version at least as

strong as KD45n. In our verification technique, the problem of model checking CTLC is reduced

into the problems of model checking ARCTL and GCTL∗ to respectively use the extended NuSMV

symbolic model checker and the CWB-NC automata-based model checker as (a benchmark). We

also prove that our reduction methods are sound. With those theoretical foundations, we proceeded

to illustrate the effectiveness and efficiency of the proposed reduction methods using two case studies

(the NetBill protocol and Contract Net protocol) taken from business domain. We implemented our

reduction tools on top of the extended NuSMV and CWB-NC model checkers. The overall conclu-

sion coincides with the usual considerations in that automatic verification using symbolic techniques

is better than automata-based techniques with respect to the execution time and the number of

interacting agents. The results in this chapter coincide with the third objective of the thesis.

We also developed a new symbolic model checking algorithm to directly and automatically verify

commitments and their fulfillment and commitment-based protocols. We analyzed the time and

space complexity of the proposed model checking algorithm, which has not been addressed yet. We

proved that the time complexity of model checking CTLC matches the time complexity of model

checking CTL in explicit models, which is P-complete with regard to the size of the model and length
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of the formula. Also, the space complexity of model checking CTLC copes with the space complexity

of model checking CTL in concurrent programs, which is PSPACE-complete with respect to the size

of the components of these programs. We fully implemented our algorithm on top of the MCMAS

model checker. Finally, we checked the efficiency and scalability of the proposed algorithm using an

industrial case study. This chapter allows us to achieve the fourth objective of the thesis.

7.1 Future Work

This thesis has painted the following picture: model checking commitments and their actions and

commitment-based protocols is feasible either by using indirect method (reduction method) or direct

method (via developing symbolic algorithm). Nevertheless, some issues still need to be addressed.

In particular, open issues not considered in thesis include:

− Some authors introduced a different definition for commitments where there are a debtor, a

creditor, an antecedent condition, and a consequent condition (for example [28, 29, 127, 159,

160]). In this definition, a commitment is said to be active when the antecedent condition is

true. In Chapter 5, we presented a weak solution to formally define conditional commitments

by making use of material implication. Yolum and Singh [158] used the strict implication

operator to logically link between the condition and consequent of commitment. Singh [127]

pointed out that the conditionality of commitments matches a strong conditional rather than

strict and material conditionals in logical terms. However, Singh’s semantics of conditional

commitment does not use the accessibility relation and possible-worlds semantics, a classic

way of defining semantics of modal operators. Using a similar idea is very hard to be model

checked. In Chapter 5, we suggested another solution by defining a new accessibility relation

for conditional commitments (CC), which can be used to give a computationally grounded

semantics to CC. However, this solution needs further investigation to develop a new BDD-

based algorithm along with analyzing its time and space complexity.

− Some commitment actions such assign and delegate are not considered. This needs to ex-

tend the proposed logic, CTLC, to consider such actions and then develop their BDD-based

algorithms to extend our model checker.

We also intend to

− Prove theoretically the soundness and completeness of an axiomatic system for CTLC in order

to complement our practical work on model checking. The soundness problem means that if
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a CTLC formula ϕ is provable (i.e., ⊢ ϕ), then it is satisfiable (i.e., |= ϕ). The completeness

problem is the reverse direction of the soundness problem: |= ϕ implies ⊢ ϕ.

− Extend our logic with dialogue action formulae to reconcile conflicts and reason about the

validity of commitments as in real-life business scenarios and then verify protocols for agent

negotiation specified using this logic. We contributed in this direction by introducing a new

specification language of agent negotiation protocols using commitments and dialogue actions

without considering formal semantics and BDD-algorithms of those actions [47].

− Apply our model checker to automatically verify business interactions among agent-based

Web services that are organized within societies called communities under the assumption

that they have the same functionalities. In fact, we recently developed a new engineering

methodology based on concepts of Tropos engineering methodology [20] for establishing and

managing communities of Web services with the alliance structure wherein business interactions

among Web services are modeled using commitments augmented with dialogue actions [45].

− Use our commitment-based protocols to regulate the behavior of composing agent-based Web

services. This will help overcome the limitation of the standard specification languages intro-

duced into practice, such as BPML (Business Process Modeling Language), which concentrate

only on low-level details of the interactions using message exchanges among services in an

unnecessarily restrictive temporal order, while failing to capture the business intent of the

interactions. In this setting, commitments in the form of business contracts are used to repre-

sent and reason about business interactions between Web services from high-level abstractions.

Then we can directly use our model checker to verify the correctness of protocols, given desir-

able properties expressed in CTLC to specify requirements needed for composite Web services.

Another direction of future work is to use Bounded Model Checking (BMC) [106] for CTLC because

although symbolic model checking with OBDDs was the first big breakthrough on the state explosion

problem and is still widely used, OBDDs have a number of problems: (1) finding the ordering of

variables that results in a small OBDD is difficult; and (2) for some Boolean formulae no space-

efficient ordering is possible [21]. The main idea in BMC is to search for a counterexample in

executions whose length is bounded by some integer k. If it is not found, then one increases k until

either a counterexample is found or some pre-known upper bound is reached. The BMC problem is

reduced to a propositional satisfiability problem to be solved by SAT methods rather than BDDs.
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Appendix A

Symbolic Model Checking

Technique for ACTL∗c

The aim of this appendix is to complete the third part of our approach by developing a new symbolic

model checking technique dedicated to ACTL∗c. This technique alleviates the state explosion prob-

lem of automata-based techniques. In a nutshell, given the model M representing a commitment-

based protocol and a formula ϕ describing a property, the problem of model checking can be defined

as establishing whether or not M satisfies ϕ. Clarke et al. in their seminal book shown that the

problem of model checking CTL∗ can be reduced to the problems of model checking CTL and LTL

(page 48, [33]). The present appendix follows a similar approach by effectively reducing the problem

of model checking ACTL∗c into the problems of model checking ALTLc and ACTLc. ALTLc and

ACTLc are LTL and CTL augmented with modalities for commitments and associated actions. The

motivation of this reduction is to use the standard CTL and LTL procedures introduced in [78, 33].

A.1 Symbolic Model Checking Algorithm for ACTL∗c

The proposed symbolic model checking algorithm SMC(ϕ,M) takes the model M and an ACTL∗c

formula ϕ and returns the set of states satisfying the formula ϕ (i.e., �ϕ�). We divided our algo-

rithm into main algorithm and sub-algorithms that can be called in the main algorithm. In the main

algorithm, we compute the set �ϕ� using the following operations on sets: difference, union, intersec-

tion, existential universal quantification. When sets of states are encoded using Boolean functions,

all these operations on sets are translated into operations on Boolean functions that can be easily
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represented in OBDDs [21]. For example, the intersection of two sets means the conjunction of the

Boolean functions encoding the two sets. The computation of �ϕ� is also based on the use of paths,

≈ and Rc, which are encoded as Boolean functions.

The basic idea of our main algorithm is inspired by the algorithm introduced in [33] to verify

CTL∗ formulae using the combination of LTL and CTL model checking algorithms. We extend this

algorithm by adding the procedures that deal with the new operators of our logic (see Algorithm

6). As in Clarke et al.’s algorithm [33], we assume that each ACTL∗c formula ϕ can be divided

into “maximal state sub-formulae” such that each maximal state sub-formula ψ: (1) includes the

existential path quantifier “E”; (2) differs from ϕ; and (3) is not contained in any other state sub-

formula of ϕ [33]. Each maximal state sub-formula is an ACTL∗c formula, which can be divided into

Algorithm 6 SMC(ϕ,M): the set �ϕ� satisfying the ACTL∗c formula ϕ

1: ϕ is an atomic formula: return V(ϕ)
2: ϕ is ¬ϕ1: return S\SMC(ϕ1,M)
3: ϕ is ϕ1 ∨ ϕ2: return SMC(ϕ1,M) ∪ SMC(ϕ2,M)
4: ϕ is C(Ag1, Ag2, ϕ1): return SMCc(Ag1, Ag2, ϕ1,M)
5: ϕ is Eϕ1: return SMCEϕ(ϕ,M)

other maximal state sub-formulae. At level 0, each maximal state sub-formula of ϕ is identified and

at level 1, each of these sub-formulae is divided into other maximal state sub-formulae, and so on until

no new maximal state sub-formula can be identified. The algorithm also works in stages such that in

stage i all maximal state sub-formulae of ϕ of level smaller than i are processed (i.e., all states of the

model M satisfying these sub-formulae are labeled with them). More precisely, the algorithm starts

by checking atomic formula (line 1) and logical operators: negation and disjunction (lines 2 and 3).

It then checks the commitment modality (line 4) by calling the procedure SMCc(Ag1, Ag2, ϕ1,M)

(see Algorithm 7). Line 5 deals with an ACTL∗c formula that contains the path quantifier E (i.e.,

ϕ = Eϕ1) (see Algorithm 16).

The procedure SMCc(Ag1, Ag2, ϕ,M) is performed in three steps. In step 1, it computes the

set X of states satisfying the formula Eϕ using the standard procedure SMCexi(Eϕ,M) introduced

in [78] where ϕ is the commitment content. The motivation behind computing this set is to ensure

Algorithm 7 SMCc(Ag1, Ag2, ϕ,M): the set �C(Ag1, Ag2, ϕ)�

1: X ← SMCexi(Eϕ,M)
2: Y ← {π| π ∈ Rc(s, Ag1, Ag2) and s ∈ X and P SAT (π, ϕ,M)}
3: Z ← {s| s = π(0) s.t. π ∈ Y and ∀π′ ∈ Rc(s, Ag1, Ag2) : π

′ ∈ Y }
4: return Z

that there is a path along which the content holds. In step 2, the procedure builds the set Y of
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accessible paths from every state in the set X such that the formula ϕ holds along these paths. The

computation of Y is completed by calling the procedure P SAT (π, ϕ,M) that returns true if the

accessible path π satisfies ϕ and false otherwise (see Algorithm 8). In step 3, the procedure computes

the set Z of states satisfying the commitment. Z contains all states s at which the accessible paths

computed in Y start, such that all accessible paths from s are in Y . This last condition allows

excluding from Z the states from which an accessible path emerges, which does not satisfy ϕ.

P SAT (π, ϕ,M) depends on the structure of ϕ so that when ϕ is an atomic formula, it returns

true if the first state of the path π is in the set of states satisfying ϕ (i.e., π(0) ∈ SMC(ϕ,M)).

Otherwise, P SAT (π, ϕ,M) operates recursively on the structure of ϕ and calls one of the procedures

described in Algorithms 9 to 15. Each procedure takes a path π and the corresponding parameters

and returns either true (i.e., the formula holds along the path) or false. For instance, the procedure

Algorithm 8 P SAT (π, ϕ,M): Boolean

1: ϕ is an atomic formula: return (π(0) ∈ SMC(ϕ,M))
2: ϕ is ¬ϕ1: return not(P SAT (π, ϕ1,M))
3: ϕ is ϕ1 ∨ ϕ2: return P SAT (π, ϕ1,M) or P SAT (π, ϕ2,M)
4: ϕ is ©ϕ1: return P SAT (π ↑ π(1), ϕ1,M)
5: ϕ is ϕ1 U ϕ2: return P SATU (π, ϕ1, ϕ2,M)
6: ϕ is Wi(Ag1, Ag2, C): return P SATwi(π, C,M)
7: ϕ is Fu(Ag1, Ag2, C): return P SATfu(π, C,M)
8: ϕ is V i(Ag1, Ag2, C): return P SATvi(π, C,M)
9: ϕ is Re(Ag2, Ag1, C): return P SATre(π,Ag2, Ag1, C,M)

10: ϕ is De(Ag1, Ag3, C): return P SATde(π,Ag1, Ag3, C,M)
11: ϕ is As(Ag2, Ag3, C): return P SATas(π,Ag2, Ag3, C,M)

P SATU (π, ϕ, ψ,M) (see Algorithm 9) starts by checking whether or not the intersection of the set

of states in this path π and the set �ψ� is empty. If this is the case, the procedure returns false as

Algorithm 9 P SATU (π, ϕ, ψ,M): Boolean

1: if (SMC(ψ,M) ∩ {t| t ∈ π} = ∅) return false
2: else i ← 0
3: While (P SAT (π ↑ π(i), ϕ,M) and P SAT (π ↑ π(i),¬ψ,M)) do
4: i ← i+ 1
5: end while
6: return P SAT (π ↑ π(i), ψ,M)
7: end if

ψ will never hold. Otherwise, the procedure iterates over π’s transition steps until either ϕ is not

satisfied or ψ becomes true. The procedure returns true if ψ becomes true, and false otherwise.

The procedure P SATwi(π,C(Ag1, Ag2, ϕ),M) only returns true when there exists an accessible

state s from the first state of the path π which is in the set �C(Ag1, Ag2, ϕ)� and at the same time

π(0) does not belong to this set and π is accessible for Ag1 and Ag2 (see Algorithm 10). In a similar
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way, the procedure P SATrel(π,C(Ag1, Ag2, ϕ),M) is reported in Algorithm 11.

Algorithm 10 P SATwi(π,C(Ag1, Ag2, ϕ),M): Boolean

1: if (∃s s.t. π(0) ≈1,2 s, s ∈ SMCc(Ag1, Ag2, ϕ,M)) then
2: if π(0) ∈ S− SMCc(Ag1, Ag2, ϕ,M) and π ∈ Rc(π(0), Ag1, Ag2) then
3: return true
4: else return false
5: end if end if

Algorithm 11 P SATre(π,Ag2, Ag1, C(Ag1, Ag2, ϕ),M): Boolean

1: if (∃s s.t. π(0) ≈2,1 s, s ∈ SMCc(Ag1, Ag2, ϕ,M)) then
2: if π(0) ∈ S− SMCc(Ag1, Ag2, ϕ,M) and π ∈ Rc(π(0), Ag1, Ag2) then
3: return true
4: else return false
5: end if end if

The procedure P SATfu(π,C(Ag1, Ag2, ϕ),M) checks if every accessible state from the first state

of the path π and the first state itself are in the set �C(Ag1, Ag2, ϕ)� and if π is accessible using Rc.

In this case, it returns true otherwise, it returns false (see Algorithm 12).

Algorithm 12 P SATfu(π,C(Ag1, Ag2, ϕ),M): Boolean

1: if (∀s s.t. π(0) ≈1,2 s, s ∈ SMCc(Ag1, Ag2, ϕ,M)) then
2: if π(0) ∈ SMCc(Ag1, Ag2, ϕ,M) and π ∈ Rc(π(0), Ag1, Ag2) then
3: return true
4: else return false
5: end if end if

The procedure P SATvi(π,C(Ag1, Ag2, ϕ),M) is similar to the procedure P SATfu(π,C(Ag1, Ag2, ϕ),M)

except that it does not check the accessibility of π but if π satisfies ¬ϕ, in which case it returns true,

otherwise false (see Algorithm and 13).

According to the proposed semantics, the procedure P SATde(π,Ag1, Ag3, C(Ag1, Ag2, ϕ),M)

(reps. P SATas(π,Ag2, Ag3, C(Ag1, Ag2, ϕ),M)) starts by checking if the agentAg1 (resp. Ag2) can-

cels (resp. releases) his commitment along the path π and its first state is in the set �C(Ag3, Ag2, ϕ)�

(reps. �C(Ag1, Ag3, ϕ)�). In this case, the procedure returns true or false otherwise.

The procedure SMCEϕ(ϕ,M) is the core of our main algorithm as it is responsible for checking

the two main cases of Eϕ (see Algorithm 16). In fact, as for CTL∗ [33], any ACTL∗c formula is

either ACTLc formula, ALTLc formula, a combination of both using ∧ or ∨, or a complex nested

formula. The case of combined formulae using ∧ or ∨ is handled by Algorithm 6 (lines 2 and 3).

If the formula is a complex nested formula, then an ALTLc formula is obtained by replacing each

maximal state sub-formula by a new (or fresh) atomic proposition. Algorithm 16 first checks if ϕ is

an ACTLc formula in that case it calls the procedure SMCactlc(ϕ,M). This procedure is obtained by
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Algorithm 13 P SATvi(π,C(Ag1, Ag2, ϕ),M): Boolean

1: if (∀s s.t. π(0) ≈1,2 s, s ∈ SMCc(Ag1, Ag2, ϕ,M)) then
2: if π(0) ∈ SMCc(Ag1, Ag2, ϕ,M) then
3: return P SAT (π,¬ϕ,M)
4: else return false
5: end if end if

Algorithm 14 P SATde(π,Ag1, Ag3, C(Ag1, Ag2, ϕ),M): Boolean

1: if (P SATwi(π,C(Ag1, Ag2, ϕ),M)) and (π(0)∈SMCc(Ag3, Ag2, ϕ,M)) then
2: return true
3: else return false
4: end if

extending the standard procedure introduced in [78] for CTL formula with the following algorithms:

SMCEwi for Wi(Ag1, Ag2, C) (see Algorithm 18), SMCEfu for Fu(Ag1, Ag2, C) (see Algorithm 20),

SMCEvi for V i(Ag1, Ag2, C) (see Algorithm 21), SMCEre for Re(Ag2, Ag1, C) (see Algorithm 19),

SMCEde for De(Ag1, Ag3, C) (see Algorithm 22), and SMCEas for As(Ag2, Ag3, C) (see Algorithm

23).

If the formula is not an ACTLc formula, then each maximal state sub-formula (having the

form Eψi) is replaced by a new atomic proposition (ai) (line 2), which is added to the set PV

(line 4). Recursively, the set of states satisfying each sub-formula Eψi is computed by calling

SMCEφ(Eψi,M) (line 5). The procedure is called recursively for the sub-formulae of each level

until all the sub-formulae are processed. Finally, the ALTLc obtained formula ϕ′ is processed

and the set of states satisfying it is returned by calling SMCaltlc(ϕ
′,M) (see Algorithm 17). The

obtained ALTLc formula is either an LTL formula, which is handled using the standard LTL model

checking [33] (line 1 of Algorithm 17), or a formula containing commitments. In this case, each state

commitment formula is replaced by a new atomic proposition (line 3) and the set of states satisfying

this formula is computed using SMCc(Ci,M) (line 6). The final formula after performing all the

replacements in a recursive way is an LTL formula.

The procedure SMCEwi(Ag1, Ag2, C(Ag1, Ag2, ϕ),M) first computes the set X (resp. Y ) of

states that does not satisfy (resp. satisfy) the commitment. It then constructs the set Z of those

states (i.e., X) that have accessible states in Y and from which an accessible path emerges. In a

similar way, the procedure SMCEre(Ag2, Ag1, C(Ag1, Ag2, ϕ),M) is reported in Algorithm 19.

The procedure SMCEfu(Ag1, Ag2, C(Ag1, Ag2, ϕ),M) computes the set X1 of states satisfying

the commitment. It then constructs and returns the set X2 of those states in X1 that can only see

states in the same set using ≈1,2 (see Algorithm 20). Notice that we do not need to filter X2 to only

keep states from which an accessible path can emerge because any state satisfies the commitment
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Algorithm 15 P SATas(π,Ag2, Ag3, C(Ag1, Ag2, ϕ),M): Boolean

1: if (P SATre(π,Ag2, Ag1, C(Ag1, Ag2, ϕ),M)) and
2: (π(0) ∈ SMCc(Ag1, Ag3, ϕ,M)) then
3: return true
4: else return false
5: end if

Algorithm 16 SMCEϕ(ϕ,M): the set �Eϕ�

1: ϕ is an ACTLc formula: return SMCactlc(ϕ,M),
2: ϕ′ ← ϕ[a1/Eψ1, . . . , aK/EψK],
3: for i = 1, . . . ,K do
4: PV ← PV ∪ {ai} //introducing a new proposition ai

5: Vs(ai) ← SMCEϕ(Eψi,M) //adding ai to each state s that satisfies Eψi

6: end for
7: return SMCaltlc(ϕ

′,M)

has such path.

In procedure SMCEvi(Ag1, Ag2, C(Ag1, Ag2, ϕ),M) (see Algorithm 21), the computation of the

sets X1 and X2 is defined as in Algorithm 20. The set X3 contains all states s at which a path π

starts such that along this path the negation of the commitment content holds using the procedure

P SAT .

The procedure SMCEde(Ag1, Ag3, C(Ag1, Ag2, ϕ),M) (resp. SMCEas(Ag2, Ag3, C(Ag1, Ag2,

ϕ),M)) computes the set X of states satisfying the delegated (resp. assigned) commitment; then

proceeds to build the set Y of states satisfying the withdraw (resp. release) action, see Algorithms

22 and 23 respectively.

Theorem 12 (Complexity) The complexity of ACTL∗c model checking problem is PSPACE-complete

with respect to symbolic representations.

Proof 15 (sketch) The complexity of ACTL∗c depends on the complexity of ACTLc and ALTLc.

The complexity of ACTLc depends on the complexity of CTL (P-complete [115, 32]) and P SAT

algorithm. This algorithm is similar to “PATH” algorithm presented in [111] and its complexity

is PSPACE-complete. Here we should notice that the accessibility relations Rc and ≈x,y only need

a polynomial space as only three states should be recorded in memory. From Algorithm 17, the

complexity of ALTLc depends on the complexity of LTL (PSPACE-complete [132, 33, 115]) and

Algorithm 7 whose complexity depends also on the complexity of P SAT algorithm. Consequently,

its complexity is PSPACE-complete.
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Algorithm 17 SMCaltlc(ϕ,M): the set �ϕ�

1: if ϕ is an LTL formula then return SMCltl(ϕ,M)
2: else
3: ϕ′ ← ϕ[a1/C1, . . . , aJ/CJ ]
4: for i = 1, . . . , J do
5: PV ← PV ∪ {ai} //introducing a new proposition ai

6: Vs(ai) ← SMCc(Ci,M) //adding ai to each state s that satisfies Ci

7: end for
8: return SMCaltlc(ϕ

′,M) end if

Algorithm 18 SMCEwi(Ag1, Ag2, C(Ag1, Ag2, ϕ),M): the set �EWi(Ag1, Ag2, C(Ag1, Ag2, ϕ))�

1: X ← S− SMCc(Ag1, Ag2, ϕ,M)
2: Y ← SMCc(Ag1, Ag2, ϕ,M)
3: Z ← {s ∈ X | ∃s′ ∈ Y s.t. s ≈1,2 s′ and ∃π /∈ Rc(s, Ag1, Ag2)}
4: return Z

Algorithm 19 SMCEre(Ag2, Ag1, C(Ag1, Ag2, ϕ),M): the set �ERe(Ag2, Ag1, C(Ag1, Ag2, ϕ))�

1: X ← S− SMCc(Ag1, Ag2, ϕ,M)
2: Y ← SMCc(Ag1, Ag2, ϕ,M)
3: Z ← {s ∈ X | ∃s′ ∈ Y s.t. s ≈2,1 s′ and ∃π /∈ Rc(s, Ag1, Ag2)}
4: return Z

Algorithm 20 SMCEfu(Ag1, Ag2, C(Ag1, Ag2, ϕ),M): the set �EFu(Ag1, Ag2, C(Ag1, Ag2, ϕ))�

1: X1 ← SMCc(Ag1, Ag2, ϕ,M)
2: X2 ← {s ∈ X1| ∀s′ s.t. s ≈1,2 s′ we have s′ ∈ X1}
3: return X2

Algorithm 21 SMCEvi(Ag1, Ag2, C(Ag1, Ag2, ϕ),M): the set �EV i(Ag1, Ag2, C(Ag1, Ag2, ϕ))�

1: X1 ← SMCc(Ag1, Ag2, ϕ,M)
2: X2 ← {s ∈ X1| ∀s′ s.t. s ≈1,2 s′ we have s′ ∈ X1}
3: X3 ← {s ∈ X2| ∃π s.t. s=π(0) and P SAT (π,¬ϕ,M)}
4: return X3

Algorithm 22 SMCEde(Ag1, Ag3, C(Ag1, Ag2, ϕ),M): the set �EDe(Ag1, Ag3, C(Ag1, Ag2, ϕ))�

1: X ← SMCc(Ag3, Ag2, ϕ,M)
2: Y ← SMCEwi(C(Ag1, Ag2, ϕ),M)
3: return X ∩ Y

Algorithm 23 SMCEas(Ag2, Ag3, C(Ag1, Ag2, ϕ),M): the set �EAs(Ag2, Ag3, C(Ag1, Ag2, ϕ))�

1: X ← SMCc(Ag1, Ag3, ϕ,M)
2: Y ← SMCEre(C(Ag1, Ag2, ϕ),M)
3: return X ∩ Y
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