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Abstract. The predominant technique for computing the transient dis-
tribution of a Continuous Time Markov Chain (CTMC) exploits uni-
formization, which is known to be stable and efficient for non-stiff to
mildly-stiff CTMCs. On stiff CTMCs however, uniformization suffers
from severe performance degradation. In this paper, we report on our
observations and analysis of an alternative technique using Krylov sub-
spaces. We implemented a Krylov-based extension to MRMC (Markov
Reward Model Checker) and conducted extensive experiments on five
case studies from different application domains. The results reveal that
the Krylov-based technique is an order of magnitude faster on stiff CTMCs.

1 Introduction

Stiff CTMCs are found in many domains, among which systems biology, where
the reaction rates of molecules may vary greatly, and mission critical systems
engineering, where failures occur frequently (like sensor glitches) or sporadically
(like complete sensor failure). The transient distribution of CTMCs —what is the
probability to be in a state at time t?— is a prominent measure of interest, and is
fundamental to a range of measures of interest such as time-bounded reachability
properties [2]. Its computation is a well-studied topic and a survey of applicable
techniques is discussed by De Souza e Silva and Gail [7]. One wide-spread method
is Jensen’s uniformization [16] which is known for its good numerical stability
and is implemented as the default method for transient analysis in various —
if not all— Markov analysis tools. Its performance degrades however on stiff
models, which, given its many definitions in literature, we simply refer to as the
degree of difference between the smallest and largest rates in the CTMC. Other
methods like Runge-Kutta solvers require small discretization values on stiff
models, thereby suffering from similar performance problems. On top of these
problems, potential numerical instability, not uncommon with stiff models, needs
to be dealt with as well.

In this paper we reintroduce a Krylov-based method for computing the tran-
sient of a CTMC. It is briefly mentioned in Moler and Van Loan’s discourse
[21] on 19 methods for the matrix exponential as a novel 20th method and in
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De Souza e Silva and Gail’s survey [7] as a possible method for computing the
transient of CTMC. Despite these references and their success for many matrix-
related computations in different fields of science and engineering, Krylov-based
methods received scant attention in the field of probabilistic analysis. We believe
this is due to three reasons, namely (i) to our knowledge, experiments with a
Krylov-based method have been only conducted on small academic examples [25]
or without regard to stiffness versus non-stiffness (ii) due to the lack of the for-
mer, nobody has identified the class of CTMCs for which Krylov-based methods
excel and (iii) the good applicability of Krylov-based methods to the transient
have, to our knowledge, not been explained theoretically. This report addresses,
among things, these issues:

1. We apply a Krylov-based method for computing the transient distribution
of CTMCs to model check time-bounded reachability properties expressed
in Continuous Stochastic Logic (CSL) [2] (see Section 4.1).

2. We extensively compare the implemented Krylov-based method to the ex-
isting uniformization-based method on five case studies from the literature
comprising various application domains (see Section 4.4).

3. We identify that computing the transient distribution is (much) faster with
Krylov-subspace methods for a particular class of models, namely stiff CTMCs
(see Section 4.4).

4. We provide an explanation of the good approximation properties of the
Krylov-based matrix exponential using Schwerdtfeger’s formula [22] (see Sec-
tion 3.2).

The overall aim of this paper is to reintroduce Krylov-based methods to the
probabilistic community as the preferable method for analyzing stiff CTMCs
and to substantiate this by means of an experience report.

Organization of the paper. Section 2 summarizes CTMCs, uniformization, and
its usage for CSL model checking. Section 3 provides the basics of Krylov sub-
space techniques, introduces Schwerdtfeger’s formula, and characterizes an error
estimate. Section 4 describes our experimental set-up, the five case studies, and
provides all our results. Section 5 discusses some related work, whereas Section 6
provides a discussion and pointers to future work. Section 7 concludes the paper.

2 CSL Model Checking

This section introduces the basic concepts of model checking CTMCs using Con-
tinuous Stochastic Logic (CSL). It is only used as a stepping stone towards the
remainder part of the paper. We refer to [2] for an elaborate treatment on this
topic.

A labeled CTMC is a tuple (S,Q, L) where S is a finite set of states, L :
S → 2AP is a labeling function and Q : S × S → R is a generator matrix.
Each diagonal element qs,s ∈ Q is defined as qs,s = −

∑
s′∈S,s 6=s′ qs,s′ , and all

remaining elements qs,s′ have a rate ≥ 0. Intuitively, a transition from s to s′



(with s 6= s′) is triggered within t time units by probability 1− e−qs,s′ t. In other
words, the occurrence of a transition is exponentially distributed. The rate of
staying in a state s is described by the diagonal elements, namely |qs,s|.

The transient distribution, which is further referred to in this paper as the
transient, of a CTMC, denoted by π(t), is the vector of probabilities being in
states s ∈ S at a time t given an initial distribution π(0). It is characterized
by Kolmogorov’s forward differential equation d

dtπ(t) = Q ·π(t), whose solution,
given an initial distribution π(0), is the following:

π(t) = eQt · π(0) (1)

There are numerous numerical techniques to compute π(t), of which Jensen’s
uniformization algorithm [16] is widely used.

Uniformization considers a uniformization rate Λ ≥ maxi∈S |qi,i| so that the
generator matrix can be rewritten as Q = Λ · (P − I). The matrix P is a
stochastic matrix of the uniformized CTMC, and I is the identity matrix. When
this rewritten Q is substituted in Equation (1), we get π(t) = eΛ(P−I)t · π(0).
This equation can be rewritten and the matrix exponential can be expanded
according to the Taylor-MacLaurin series, after which one gets:

π(t) = (

∞∑
n=0

e−Λt
(Λt)n

n!
Pn) · π(0) (2)

The part
∑∞
n=0 e

−Λt (Λt)n
n! is the Poisson density function and it converges to 1.

A numerically stable technique for computing it is by Fox-Glynn’s method [9].
When an error bound ε > 0 is given, the sum of Equation (2) can be truncated.
The error bound ε can be used to determine the left- and right series truncation

points Lε andRε, such that
∑Rε
Lε e

−Λt (Λt)n
n! ≥ 1−ε. The left and right truncation

points tend to be in the order of O(Λt). Large Λ’s are common for stiff CTMCs
and if this is also combined with a large t, the number of terms needed by
uniformization to compute the transient is large.

The transient is fundamental to analyze labeled CTMCs with properties
expressed in CSL, which describes a measure of interest in terms of satisfiable
states and paths. It is also at the heart of more recent verification techniques
that check a CTMC against a timed automaton specification [6]. For the scope
of this paper, the interesting CSL properties are of the form P./p(♦[t1,t2] Ψ).
Intuitively, it means that the set of paths that eventually reach a state satisfying
Ψ has a probability measure meeting ./ p (where ./ ∈ {<,>,≤,≥,=}) within
the real-valued timebounds t1 to t2. Ψ is a CSL formula (in all our examples a
boolean expression) over the set of atomic propositions AP used in the labeled
CTMC. To evaluate these kind of CSL properties, one computes the transient
on a modified labeled CTMC(s) and compares the transient probabilities with
the bound ./ p.



3 Krylov Subspace Methods

In the remainder of this paper, we use A = Q·t and v = π(0), to keep the notation
similar to the literature of Krylov-subspace methods [23] while maintaining a
connection to the matrix exponential in Equation (1).

The principal idea of Krylov subspace methods is to approximate the original
sparse matrix A by a matrix Hm of much smaller dimension m. This works
because Hm preserves an important property of A: its extreme eigenvalues. We
will show using Schwerdtfeger’s formula [14] that due to the extreme eigenvalue
preservation, eAv can be effectively approximated by operations on Hm.

3.1 Mathematical Formulation

A naive approach for computing eAv is by using the Taylor-MacLaurin series
expansion:

eAv =

∞∑
i=0

Ai

i!
v = Iv +Av +

1

2
A2v + . . .

The matrix powers make it evident that this approach is highly numerically
unstable. Fortunately, numerous stable techniques have been developed by the
numerical linear algebra community. A powerful technique central in this pa-
per, Krylov-based methods, exploits the sparseness of the matrix. This property
typically holds for infinitesimal generators. Several researchers [23, 13] have de-
veloped and studied Krylov-based methods to the matrix exponential, where
the principal idea is to approximate eAv by an element in the m-order Krylov
subspace, defined as

Km(A, v) = span{v,Av,A2v, . . . , Am−1v}

where span denotes the usual linear span of a set of vectors. The precision of
the approximation is controlled by the natural m. A lower m leads to a coarser
approximation while a higher m increases precision at the expense of increased
memory and computation time.

v1 = v/||v||2
for j = 1, 2, . . . ,m do
w = Avj
for i = 1, 2, . . . , j do
hi,j = (w, vi)
w = w − hi,jvi

end for
hj+1,j = ||w||2
vj+1 = w/hj+1,j

end for

Fig. 1. Arnoldi iteration

The approximation to eAv starts with the
Arnoldi iteration, shown in Figure 1. In this fig-
ure, the dot product of two vectors w and vi is
denoted as (w, vi) and the Euclidean norm of a
vector w is denoted as ||w||2. The iteration pro-
duces a sequence of orthonormal Arnoldi vectors
v1 through vm, which as a matrix Vm forms the
orthonormal basis of the Krylov subspace Km.
It also produces the matrix Hm from the coeffi-
cients hi,j . That matrix is the linear projection of
A onto subspace Km and is of upper Hessenberg



form, i.e. Hm is nearly triangular due to the non-zero entries in first subdiago-
nal. Thus what the Arnoldi iteration does is a Hessenberg decomposition of A,
resulting in the following relation:

A ≈ VmHmV
T
m

From this decomposition, the computation of eAv can be derived by operations
on the smaller Hm. In this derivation, we use en, which is the nth vector of I:

eA ≈ eVmHmV
T
m (by application of exponential)

eA ≈ I + VmHmV
T
m +

1

2
(VmHmV

T
m )2 + . . . (by series expansion)

eA ≈ Vm(I +Hm +
1

2
H2
m + . . .)V Tm (by I = V TmVm = VmV

T
m )

eA ≈ VmeHmV Tm (by series de-expansion)

eAVm ≈ VmeHm (by multiplication with Vm)

eAv1 ≈ VmeHme1 (by v1 = Vme1)

eAv ≈ VmeHme1||v||2 (by v1 = v/||v||2)

The last equation means that one can approximate the exponential over matrix
A by computing the exponential over the much smaller Hm using stable dense
methods (like Padé approximation) and project the result back to the original
space using matrix Vm.

There are several advantages to this approach. First, the method can be
performed iteratively. If the precision does not suffice for a particular subspace
dimension m, this can be increased and the Arnoldi iteration can resume with
the existing matrices Vm and Hm and iteratively extend them until a satisfactory
precision has been reached. The second advantage is the numerical robustness.
During the Arnoldi iteration, only multiplication, addition, division and subtrac-
tion is performed on normalized vectors. The exponential over Hm is stable when
Padé approximation is combined with scaling and squaring, as was established
for example by Ward [28].

3.2 Schwerdtfeger’s Formula

The approximation of eAv by Vme
Hme1||v||2 works particularly well, despite Hm

being of much lower dimension than A. Attempts to explain this behavior have
led to advances in determining stricter error bounds [23, 13]. Instead of taking
that direction, we shall explain it by an analysis in terms of eigenvalues of A
and Hm.

A great deal of study has been conducted in relation of the eigenvalues of
Hm to those of A. It is now well-accepted that Hm’s eigenvalues, referred to as
Ritz values, strongly correspond to the extreme eigenvalues of A [26]. Those are



the eigenvalues near the edge of A’s spectrum. We will show that those are the
eigenvalues of interest for the matrix exponential.

Any analytical function over a matrix A, like the exponential, can also be
described in terms of the eigenvalues of A. Several theorems for this exist and
Rinehart has shown that they are derivable to each other [22]. Here we choose
Schwerdtfeger’s formula because its notation fits well in this context. When it is
applied to the exponential, the following formula holds

eA =

t∑
j=1

Aj

sj−1∑
k=0

eµj

k!
(A− µjI)k (3)

where µ1, . . . , µt are the distinct eigenvalues of A and s1, . . . , st are the corre-
sponding multiplicities. The term Aj is the Frobenius covariant [14] associated
with eigenvalue µj . It is computed using the corresponding left eigenvectors
x1, . . . , xsi and right eigenvectors y1, . . . , ysi via summation: Aj =

∑si
k=1 xkyk.

The term eµj in Equation (3) exponentially converges to zero for small µj .
This novel insight explains the good approximation of the Krylov-based matrix
exponential: only the largest eigenvalues, preserved by Hm, are dominant for the
matrix exponential. This observation coincides with a result by Garren and Smith
[10], who concluded that the second largest eigenvalue (the largest eigenvalue is
always one) is a good estimator for the convergence to the steady state. Equation
(3) backs this result, indicating that the second largest eigenvalue is the most
dominant for the transient behavior, thus also for the steady state.

3.3 Error Estimates

Krylov-based methods are approximations and those come with a certain loss
of information. The study of the error induced by Krylov-based methods is an
extensively fast-moving field. Yet the current a-priori error bounds are known to
be overly conservative [13, 23] for linear applications of Krylov-based methods,
let alone for Krylov-based matrix exponentials. For this reason, Saad studied
a-posteriori error estimates [23]. They are based on truncation of the real error
eAv − VmeHme1||v||2, which is the following:

hm+1,m

∞∑
k=1

eTmφk(Hm)e1A
k−1vm+1 (4)

The function φi is defined by the recurrence relation

φ0(z) = ez

φi+1(0) = 1

φi+1(z) =
φi(z)− φi(0)

z

Note that φi+1(0) = 1 is defined by continuity, making the function φ well defined
and analytic for all z. Based on the series of Equation (4), Saad proposes several



error estimates because sharp error bounds are too conservative. All estimates
are under-approximations of the real error because they are based on norms of
the series’s first terms.

An exception to this is Saad’s second estimate, which is described as a rough
estimate. It is defined as the first term of the series in Equation (4) with φ1(Hm)
replaced by eHm , because the latter is cheaper to compute (and already com-
puted). The resulting error estimate is the following:

hm+1,m

∣∣eTmeHm ||v||2e1vm+1

∣∣ (5)

Saad provides little argumentation why it is safe to approximate φ1(Hm) by
eHm . The latter is actually always bigger than the former, which we shall prove
as follows. The first recursion of φi(z) can be rewritten as the following series
(by step-wise derivation from left to right):

φ1(z) =
ez−1

z
=

1

z

∞∑
k=1

zk

k!
=

∞∑
k=1

zk−1

k!
=

∞∑
k=0

zk

(k+1)!

It is not difficult to see that the right-most equation is always smaller than
the Taylor-MacLaurin series of ez. The experimental data from Saad’s study
suggest that Equation (5) is a bounded over-approximation of the real error,
but this result is left unproven. Nevertheless, the study shows it is empirically
a good estimate and for this reason it was used as the error estimate in our
experimental evaluation.

4 Experiments

To compare the Krylov-based computation of the CTMC transient distribution
against the uniformization-based method, we implemented the former in the
Markov Reward Model Checker (MRMC) [18]. Uniformization is set as the de-
fault numerical engine of MRMC. We made a selection of case studies from the
literature describing models from system biology, queuing networks and commu-
nication protocols and ran MRMC for different configurations of each case study
for comparison.

4.1 Implementation

The Krylov-based method was implemented as an extension to MRMC by in-
tercepting the invocations to uniformization. It reuses the already implemented
Harwell-Boeing sparse matrix data structure [8] to store the infinitesimal gener-
ator matrix. The Krylov project matrix Vm and the Hessenberg matrix Hm are
dense and were stored using the existing matrix data structures from the GNU
Scientific Library (GNU GSL).

As there is no effective method (yet) to decide the perfect subspace size m
given a particular error ε, the Krylov-based method was implemented as an
iterative algorithm by repeatedly incrementing m until the desired error level is
reached (see Section 3).



4.2 Experimental Setup

All experiments were run on a cluster of twelve identical nodes. Each node is
equipped with a 2.33 GHz processor and 16GB RAM. The loaded operating
system is 64-bits OpenSuSE 10.3. The cluster is only used for distributing the
isolated runs over the nodes to speed up the overall experiment. For all case
studies, three different configurations were run and an error level of 10−6 was
used.

UNI These are runs with MRMC’s default numerical engine, uniformization,
enabled and steady-state detection [18] disabled.

UNI-S These runs are similar to the previous, but with steady-state detection
enabled.

KRY These are runs with the iterative Krylov-based transient implementation
as described in the previous section.

4.3 Case Studies

A careful selection of case studies from literature was made to comprise different
modeling domains, different model sizes and different degrees of stiffness.

CSPS A cylic server polling system that consists of N = 5 stations. The
model was originally described by Ibe and Trivedi [15]. The measure of interest is
the probability that given an upper timebound, the second station will eventually
start serving. This expressed in CSL as P=?(♦[0,t] full).

TQN A tandem queueing network with capacity c = 20 described by Her-
mans et al. [12]. The measure of interest is the probability that the first queue sc
will become full within t time units. This is expressed in CSL as P=?(♦[0,t] sc =
20).

PTP A simple peer-to-peer file sharing protocol described by Kwiatkowska
et al. [19]. The swarm consists of one client that already has all K = 5 blocks
of the file and N = 2 other clients that have obtained no blocks so far. The
measure of interest is whether all N clients have obtained all K blocks by time
t. This is expressed in CSL as P=?(♦[0,t] done).

ER An enzymatic reaction model by Busch et al. [4]. It describes the enzyme-
catalyzed conversion of a molecular substrate species. The measure of interest is
the probability that four units of the product molecule species Pr are eventually
produced within t time units. This expressed in CSL as P=?(♦[0,t] Pr = 4).

WGC A wireless group communication protocol analyzed by Massink et
al. [20]. It is a variant of a subset of the IEEE 802.11 standard describing a
subnet consisting of N = 4 wireless stations and an access point. The number of
consecutive losses of a message transmitted through the network is described by
the omission degree. The higher the omission degree, the bigger the state space.
In our runs, we took OD = 32, becoming the largest model in the selection. The
measure of interest is the probability that a message sent out by the access point
is not received by any station within a given timeframe t. This is expressed in
CSL as P=?(♦[0,t] fail).



Model States Transitions Stiffness

CSPS 3072 14848 1600
TQN 861 2859 400
PTP 1024 5121 0.5
ER 4011 11431 4000000
WGC 1329669 9624713 6164

Table 1. Model properties of the case studies.

From the above case studies, the first three models are part of PRISM’s
repository of case studies. The WGC and ER models are not part of the official
PRISM repository, but are expressed in PRISM and afterwards automatically
converted to MRMC’s file format using PRISM’s built-in converter. An overview
of the models metrics can be found in Table 1. The stiffness is defined as the
ratio of the largest rate to the smallest rate in the CTMC.

4.4 Results

The results of the runs for all three configurations are described in Table 2 and
Table 3. The timebound column describes the different upper timebounds used
in the CSL property. The #terms column describes the number of terms in the
series needed for uniformization to meet the error level 10−6. The column m de-
scribes the Krylov subspace dimension needed to meet the error level 10−6. The
memory column in Table 2 is the peak memory consumption measured using
Linux’s processes interface. The time column is the running time for a partic-
ular configuration. The probability column shows the computed probabilities
by both algorithms (with an error margin of 10−6). The probabilities of the two
uniformization runs (with and without steady-state detection) are equal to these
probabilities within the error level of 10−6. This applies to all our case studies.

Non-Stiff Models Considering the stiffness ratios in Table 1, we classified the
models PTP, TQN and CSPS as non-stiff. These models have been well-studied
using uniformization-based Markov analysis tools. The results of these case stud-
ies are outlined in Table 2. It shows that the Krylov algorithm is generally slower
than the uniformization-based algorithm for non-stiff models. This observation
highlights a class of models for which uniformization is known to work well:
non-stiff to mildly-stiff sparse models. The uniformization rates needed for these
models are small and thus the number of terms needed by uniformization is
small. Note that the increase of the upper timebound directly correlates with
the increase in number of terms. Also, the number of terms of UNI-S is big-
ger than that of UNI. This is due to the steady state detection, which requires
tighter left and right truncation points for determining the steady state correctly
[17].



Model
Time- Terms m Memory [KB] Time [ms]

Probability
bound UNI UNI-S KRY UNI UNI-S KRY UNI UNI-S KRY

CSPS

10 545 653 109 2944 2992 7256 190 360 2677 0.6524983
20 769 922 132 2944 2992 9072 340 680 5633 0.8982785
30 941 1129 147 2940 2992 10104 490 980 9158 0.9708183
40 1086 1303 155 2944 2992 10656 640 1280 11249 0.9916387
50 1214 1456 157 2940 2988 10928 780 1580 11933 0.9976044
60 1330 1595 162 2944 2992 11352 940 1860 14133 0.9993137
70 1436 1722 162 2940 2992 11348 1070 2170 13992 0.9998034
80 1535 1841 162 2944 2988 11352 1230 2470 13811 0.9999437
90 1627 1952 162 2944 2992 11352 1380 2760 13651 0.9999839

100 1715 2058 162 2940 2992 11352 1530 3060 14038 0.9999954

TQN

0.02 144 173 12 92 96 92 0 0 5 0
0.07 149 178 21 96 92 96 0 0 16 1.7e-06
0.12 153 182 26 92 96 96 0 0 25 0.0019782
0.17 157 186 29 96 92 96 0 0 32 0.0550075
0.22 161 190 31 96 92 92 0 0 39 0.2875958
0.27 166 195 32 92 96 92 0 0 41 0.6267612
0.32 170 199 34 96 92 96 0 0 51 0.8643245
0.37 173 203 35 96 92 92 0 0 52 0.9638449
0.42 175 208 35 96 96 92 10 0 52 0.992505
0.47 177 212 39 96 96 96 0 0 67 0.9987298

PTP

1 163 192 20 96 96 92 10 10 18 0.3892596
2 177 212 23 96 96 92 10 20 23 0.9055015
3 184 220 25 96 96 96 10 20 28 0.987485
4 190 228 25 92 96 92 10 20 28 0.9983193
5 195 234 26 92 96 96 20 20 31 0.9997729
6 200 240 26 92 96 96 10 20 30 0.9999693
7 204 245 26 96 96 96 20 20 31 0.9999958
8 208 250 26 96 92 92 20 20 32 0.9999994
9 212 254 27 96 96 96 20 20 33 0.9999999

10 216 259 28 96 96 92 20 20 36 1
Table 2. Verification times and memory consumption on the non-stiff models.

Besides uniformization’s well explainable performance characteristics for non-
stiff to mildly stiff models, the Krylov-based method has a higher constant cost
due to the Arnoldi iteration which computes a dense projection and Hessenberg
matrix. Furthermore, despite the small size of the non-stiff models, a relatively
large —though absolutely measured small— subspace dimension is needed to
meet the desired error level.

Stiff Models The models ER and WGC are considered to be stiff. The results
for these case studies are outlined in Table 3. Note that the probabilities for
the WGC case study are all zero. This is expected behaviour since we chose a
high omission degree (32) in order to increase the state space size. High omission



Model
Time- Terms m Time [ms]

Probability
bound UNI UNI-S KRY UNI UNI-S KRY

ER

100 7638 9166 51 490 930 372 0.1408622
200 10801 12960 54 950 1840 442 0.5621672
300 13227 15872 55 1400 2740 470 0.8457958
400 15273 18326 55 1880 3640 454 0.9563306
500 17075 20489 56 2340 4550 455 0.9892358
600 18704 22444 56 2770 5420 484 0.9975874
700 20203 24243 56 3260 6340 488 0.9994953
800 21597 25916 56 3720 7220 492 0.9998998
900 22907 27488 59 4170 8150 556 0.9999809

1000 24146 28975 60 4640 9030 581 0.9999965

WGC

10000 578 693 33 171490 342550 109549 0
20000 816 979 34 325930 650460 116335 0
30000 999 1197 35 477890 953350 123042 0
40000 1153 1382 35 628630 1253070 123357 0
50000 1288 1545 36 778280 1551270 130295 0
60000 1411 1692 36 927990 1848150 130355 0
70000 1523 1827 36 1076650 2144230 130271 0
80000 1629 1953 36 1225090 2439050 134827 0
90000 1727 2071 36 1372840 2734100 130291 0

100000 1820 2184 37 1519720 3026840 145825 0
Table 3. Verification times on the stiff models.

degrees significantly reduce the probability that the message is not received (cf.
[30]).

The results show that for these models, the Krylov-based method is an order
of magnitude faster than uniformization. This can be seen in Figures 2 and 3
which plot verification times (in ms) against the time bound of the CSL prop-
erty. When uniformization is performed with steady-state detection, Krylov’s
performance gain over uniformization even increases. The figures show that the
running times of uniformization (with and without steady-state detection) are
obviously linear. The running times for the Krylov runs appear to be constant.
A linear regression however showed that the slope of Krylov’s running times are
also linear, though with a very slow slope, whereas the slopes of uniformization
are significantly higher.

These performance characteristics are explainable akin to the non-stiff mod-
els. Uniformization is sensitive to the uniformization rate and the upper time-
bound. The high stiffness is the direct cause for the former and causes uniformiza-
tion to compute a significant amount of terms in order to satisfy the desired error
level. Larger upper timebounds additionally increase that amount of terms. The
Krylov-based method does not suffer much from the stiffness, as the infinites-
imal generator matrix can be approximated accurately by a small Hessenberg
matrix, and thus the Krylov technique terminates quickly. This compensates for
the relatively high costs of the Arnoldi iteration.
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Fig. 2. Verification times of P=?(♦[0,t] Pr = 4) with increasing timebounds t on the
ER model.

Peak Memory Consumption Table 2 has a column of the memory consump-
tion on non-stiff models. Due to space issues, the memory column is not present
in Table 3. However summarized, for the stiff ER model, the memory consump-
tion of uniformization was constant on 3 MB, of uniformization with steady state
detection enabled was constant on 3.1 MB and of Krylov was between 5.5 to 7.0
MB. For the WGC model, the memory consumption of uniformization was con-
stant on 384 MB, of uniformization with steady state detection was around 402
MB and of Krylov was between 1059 to 1141 MB.

These numbers indicate that uniformization has a clear advantage over the
Krylov-based method when it comes to peak memory consumption. This can
be explained to the storage of the dense projection matrix which is of size
m × dim(A). Krylov’s memory consumption increases for larger timebounds,
although the increase is slow.

5 Related Work

Adaptive Uniformization [27] is an alternative method to handle stiff CTMCs.
It essentially reduces the state space of a CTMC by slicing away “in-active”
states and keeping the active states. The latter is defined as the states that are
reachable within a predefined number, n say, of steps in the uniformized matrix.
The usefulness of the method depends on the chosen n and the model itself.
This is in contrast to the Krylov-based approach, which does not need additional
input parameters. The advantage of adaptive uniformization, however, is that
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an a priori error estimate can be given, as for standard uniformization. Adaptive
uniformization has recently been combined with abstraction techniques [11].

ODE Solvers can be used to compute the transient by considering the gener-
ator matrix as a system of ordinary differential equations. Numerous techniques
and optimizations have been developed to handle stiff ODEs, which is a well-
known phenomenon in various scientific disciplines. The available ODE solver
libraries are generally extensively tested and understood. The drawback is that
ODE solvers are typically developed for a general class of problems and thus not
optimized for the Markovian case. Nevertheless, we briefly experimented with
Intel’s ODE solver package by interfacing it with MRMC. Unfortunately the
package did not expose sufficient information about the induced error, rendering
its application for the transient unsatisfied.

Uniformization Power [1] is an optimization over Jensen’s uniformization to
increase the numerical stability and performance. It essentially performs scaling
and squaring by subdividing the time interval to t′ = t

2n and modifying equa-

tion 2 to calculate π(t) as π(t) = Πn, with Π = (
∑∞
k=0 e

−Λt′ (Λt′)k
k! Pk) · π(0).

The advantage is that it requires much smaller steps for large Λ than standard
uniformization. The drawback is that matrix Π is dense, and thus the amount
of memory required is excessive.

A Priori Error Bounds, especially when they are sharp, are more desirable
over the a posteriori error estimate used in our experiments, because they give
an a priori indication of the expected running time. Initially we experimented
with several a priori error bounds developed by Hochbruck et al. [13], but found



these error bounds too conservative when compared to Saad’s a posteriori error
estimates. Hochbruck et al.’s bounds are also expensive to compute because they
are based on the numerical range of the input matrix. The study of improved
a priori error bounds for Krylov-based matrix exponentials is however an active
field and advancements from there are directly applicable to the computation of
the transient.

Expokit is a toolkit developed by Sidje [24] to compute matrix exponentials.
It also comes with an optimized version for computing the transient of Markov
chains. The error bounds used are based on the assumption that the elements
of the transient vector sums up to 1. This however does not hold for CSL model
checking because the initial vectors are interpreted differently, causing the ele-
ments not necessarily sum up to one. The toolkit also comes with a time-stepping
scheme of the matrix exponential which subdivides the time bound and computes
the transient in steps. Our implementation in MRMC is inspired by Expokit’s
MatLab code.

Regenerative Randomization with Laplace Transform Inversion is a tech-
nique for transient analysis of Markov reward model by Carrasco [5]. Here, the
truncated transformed model obtained in this regenerative method is solved us-
ing a Laplace transform inversion algorithm instead of standard uniformization.
The main difficulty in this technique is to find appropriate regeneration points.
This is doable for certain classes of models, such as failure-repair models, but
in general is a non-trivial issue. For stiff models with absorbing states (as for
time-bounded reachability properties), this technique outperforms standard uni-
formization when the model is not very large.

6 Future Work

The field of Krylov-based subspaces is relatively young, and though its applica-
tions are spreading fast, there are several gaps open for study.

An open question is the relation of stiffness and the eigenvalues spectrum of
a CTMC. Our debugging observations hint to a correlation between the stiffness
and the way eigenvalues are spread in their spectrum. For the non-stiff models
in the selected case studies, the eigenvalues are homogeneously spread across the
spectrum. There is however no theoretical evidence to claim that this generally
holds. There is a report however that a high clustering of eigenvalues is beneficial
for the Krylov-based method [29] and this would back our experimental data.
Further study is required to fully understand this.

An interesting direction of future work is improving the error bounds. The
current a priori error bounds for Krylov-based matrix exponentials are conserva-
tive and expensive to compute. It would be desirable to have a cheap, yet reliable
bound, enabling us to automatically determine the required subspace dimension
in advance. In the mean time, a posteriori error estimates are the best choice
for practical applications. In this context, it is an open question whether the
currently used error estimate (see Equation 5) is a bounded over-approximation
of the real error (see Equation 4).



The last point regards the trend towards parallelized architectures. The
Krylov-based method is highly amenable to such architectures because it is
mostly based on matrix-vector multiplications. Data-parallelism in graphics cards
can be exploited to achieve a significant performance gain. This gain would be
especially visible for large models. For DTMCs, such architectures have already
been exploited with positive results [3].

7 Conclusions

This paper is an experimental report on the use of Krylov-based techniques for
probabilistic model checking. We showed using Schwerdtfeger’s formula how the
Krylov-based method is well suited for computing the transient distribution. We
thus implemented a Krylov-based method for model checking CTMCs as an al-
ternative to uniformization in MRMC. The experimental results on a selection of
five case studies from literature revealed that the Krylov-based implementation
is an order of magnitude faster than uniformization on stiff models. This comes
at the cost of increased memory consumption. If running time is the bottleneck,
and if the model is stiff, our observations indicate that for time-bounded reach-
ability properties a Krylov-based method is preferable over the commonly used
uniformization.
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