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Abstract — In product line engineering individual products are 
derived from the domain artifacts of the product line. The 
reuse of the domain artifacts is constraint by the product line 
variability. Since domain artifacts are reused in several 
products, product line engineering benefits from the 
verification of domain artifacts. For verifying development 
artifacts, model checking is a well-established technique in 
single system development. However, existing model checking 
approaches do not incorporate the product line variability and 
are hence of limited use for verifying domain artifacts.  

In this paper we present an extended model checking 
approach which takes the product line variability into account 
when verifying domain artifacts. Our approach is thus able to 
verify that every permissible product (specified with I/O-
automata) which can be derived from the product line fulfills 
the specified properties (specified with CTL). Moreover, we 
use two examples to validate the applicability of our approach 
and report on the preliminary validation results. 

Keywords: Product Line Engineering, Model Checking, 
Variability, Domain Artifact Verification 

I.  INTRODUCTION 
Model checking ([5]) is a technique for quality assurance 

that facilitates the verification of properties (typically 
specified in CTL) of a system (typically specified in a state-
transition model). In software engineering for single systems, 
model checking is an established technique for verifying 
development artifacts in requirements engineering, design, 
realization, and test ([12]) in different domains such as in the 
automotive or avionic industry. 

Product Line Engineering is a development paradigm that 
explicitly addresses reuse by differentiating between two 
kinds of development processes (cf. [25], p. 21): In domain 
engineering, the domain artifacts of the product line are 
defined and developed. In application engineering, 
customer- and/or market-specific products are derived from 
the domain artifacts by binding the variability defined in the 
domain artifacts according to customer and/or market-
specific needs. The overall quality of the product line and its 
derived products mainly depends on the quality of the 
domain artifacts.  

In contrast to the development artifacts created in single 
systems engineering, the domain artifacts created in product 
line engineering are reused in several products derived from 
the product line. Thus, a high quality of the domain artifacts 
is desirable. A defect in a domain artifact typically affects 

several products of the product line and is thus costly to 
remove (cf. [19]; [22]; [26]).  

Model checking as a formal verification technique has 
received little attention in product line engineering so far. 
For verifying domain artifacts model checking approaches 
from single system engineering are only of limited use. 

A. Model Checking of Domain Artifacts 
We define model checking of domain artifacts as 

follows: Model checking of domain artifacts means to verify 
that every possible product that can be derived from a 
domain artifact fulfills the specified properties. Thus, in 
contrast to model checking in single system development 
where a single product is verified if it fulfills the defined 
properties, model checking in product line engineering has to 
verify that a whole set of products fulfills the properties 
specified for each product. Several model checking 
approaches have been proposed for the verification of single 
system specifications (cf. e.g. [1]; [5]; [12]]) However, 
model checking approaches from single system engineering 
cannot directly be used for the verification of domain 
artifacts, since they do not consider the variability defined 
for the product line (cf. [18]). We will illustrate this using a 
simple example. 

Figure 1 depicts a simplified example for defining 
domain artifacts, properties and the variability of a product 
line. The example depicts a simplified orthogonal variability 
model, two I/O-automata and two properties (see Section II 
for a brief introduction into the modeling languages). The 
example specifies a simple product line for rail crossing 
gates which consists of a traffic light and a gate. The traffic 
light exhibits alternative variable behavior: The traffic light 
can either show a flashing yellow light or a steady yellow 
light when the gate is closing. The behavior can be verified 
with respect to the two variable properties. The variability is 
described by the variants of the variability model and by the 
relationships between the variants and the specification 
elements. 

If you ignore the variability model and apply a model 
checking approach from single system engineering to the 
example presented in Figure 1, the model checking approach 
would state that both defined properties are not fulfilled by 
the specified system, since it is possible to reach the states 
(yellow flash, closing) and (yellow, closing) which are 
counterexamples for the validity of each properties. 

However, this verification results is incorrect. The 
variability model does not allow to derive a product from the 
domain artifacts for which the property (closing  yellow) is 
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specified and which is able to reach the state (yellow flash, 
closing), or vice versa for which the property (closing  
yellow flash) is specified and which is able to reach the state 
(yellow, closing). 
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Figure 1. Simplified Example of Domain Artifacts 

A way to apply model checking approaches from single 
system engineering in product line engineering would thus 
be to derive every possible product from the domain artifacts 
and then verify each derived product individually. Since 
thousand or even more products can be derived from a 
product line (cf. [25], p. 418), this is impractical in most 
cases. 

B. Goal and Contibution of this Paper 
This paper aims in extending existing model checking 

approaches to facilitate the verification of domain artifacts in 
product line engineering. The contribution of this paper is 
threefold: 
1) We investigate in model checking problems faced in 

product line engineering mainly caused by the 
variability of the domain artifacts.  

2) We present a model checking approach for verifying 
domain artifacts in product line engineering which 
takes the variability defined for the product line into 
account.  

3) We demonstrate the applicability of our approach by 
applying our tool prototype to an extended example. 

The approach presented in this paper is a significant 
improvement of our previous work on consistency checking 
of domain artifacts in product line engineering (cf. [18]; 
[19]). In [19], we examined the consistency problem of 
domain artifacts and defined a general framework for 
consistency checks of domain artifacts. In [18], we presented 
an approach based on this framework for model-checking 
based consistency checks between automata and invariants in 
product line engineering.  

In contrast, the approach presented in this paper supports 
model-checking of properties specified in CTL and thus, 
compared with our previous work which just focused on 

invariants, supports the model-checking of much richer 
property specifications.  

The remainder of this paper is structured as follows. In 
Section II, we present the modeling languages used to 
specify the domain artifacts in our model-checking approach. 
Our approach is presented in detail in Section III. A 
preliminary runtime evaluation of our approach is presented 
in Section IV and related work is discussed in Section V. A 
summary of our contribution and an outlook on future work 
is provided in Section VI. 

II. SPECIFYING DOMAIN ARTIFACTS 
In this section, we introduce the languages used to 

specify the domain artifacts used in our model-checking 
approach.  

A. Defining Product Line Variability 
For specifying the variability of a product line, we use 

the orthogonal variability modeling language developed in 
our research group ([25]). However, our model checking 
approach does not rely on the orthogonal variability model. 
Every other variability modeling language which can be 
formalized in the way presented in the following can be used 
instead such as, e.g., feature models (cf. [10]). 

The orthogonal variability model provides variation 
points, variants, variability dependencies, and constraint 
dependencies to define the variability of a product line. 
Variation points are differentiated into mandatory variation 
points which have to be considered and optional variation 
points which might be considered if required. Variability 
dependencies define the allowed selection of a variant at a 
variation point. We differentiate between mandatory (must 
be selected), optional (can be selected), and alternative 
(selection out of a defined set of variants). Constraint 
dependencies define constraints for the selection of variants 
and variation points. We distinguish between requires 
dependencies and exclude dependencies. A simplified 
example of a variability model is depicted in the upper part 
of Figure 1. Details about the definition of our variability 
model and on the documentation of product variability can 
be found in [24] and [25]. 

Formally, the variability model is interpreted as a set of 
variants V where each variant vi is represented by a Boolean 
variable. We represent a selection of variants of the 
variability model as a vector v = (v1, …, vn) over the variants: 
 vi is set to true if the variant vi is selected  
 vi is set to false otherwise 

Variation points are also formalized as Boolean 
variables. The value of a variation point variable is 
determined by the kind of variation point. The variable of a 
mandatory variation point is always set to true, whereas the 
variable of an optional variation point can be set to true or 
false. The value of an optional variation point is determined 
by the constraint dependencies of the variability model. 

The variability and constraints dependencies of the 
variability model are translated into Boolean expressions 
over the variables of the variation points and variants. Let 
VD = {vd1, …, vda} be the set variability dependencies, and 
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let CD = {cd1, …, cdb} be the set of constraint dependencies. 
The variability model is captured by the function OVM over 
the variants V: OVM(v) = vd  VD vd   cd  CD cd. 

The function OVM(v) evaluates to true, if the selection of 
variants satisfies all variability dependencies and all 
constraint dependencies, and otherwise to false. For more 
details on the formal specification of the orthogonal 
variability model, we refer to [24]. 

As argued in [19], verifying domain artifacts requires to 
check whether the variability model allows the selection (or 
de-selection) of a set of variants. For example, we might 
want to check if the variants v1 and v2 can be selected 
together when, at the same time, v3 is not selected. We 
therefore define the function SAT-VM as follows. The 
function has two inputs: the function OVM as introduced 
above and a Boolean expression V* over the variants of the 
variability model to represent the desired selection (e.g. v1  
v2  v3 for the given example). SAT-VM(OVM, V*) 
evaluates to true, if V* can be fulfilled in the given function 
OVM, and to false, if not. The calculation of the function 
SAT-VM is NP-complete, since it is a special case of the 
Boolean satisfiability problem (SAT) which is known to be 
NP-complete. The worst case runtime of SAT-VM is 
therefore exponential. However, current SAT solver 
algorithms are able to handle variability models in an 
acceptable time (cf. [[8]; [18]; [24]). We therefore neglect 
the runtime of the function SAT-VM. 

B. Variable I/O-Automata 
For the specification of the system, we use I/O-automata 

which are an established language for modeling concurrent 
and distributed discrete event systems ([23]) and are also 
used for specifying domain artifacts ([17]). Similar to the 
orthogonal variability model, our approach does not rely on 
I/O-automata. One could use any other language which could 
be transformed into a global system automaton. In Section D, 
we illustrate the product construction of variable I/O-
automata in order to create a variable global system 
automaton. 

In I/O-automata specifications, the specified system is 
separated into different components where each component 
is modeled by a state automaton. The different components 
communicate with each other via message exchange. This is 
realized by transitions which either can send a message 
(indicated by an ‘!’) or receive a message (indicated by an 
‘?’). Furthermore, I/O-automata can perform internal actions 
that do not influence other automata. Without loss of 
generality, we assume deterministic behavior, since every 
non-deterministic automaton can be transformed into a 
deterministic one. The lower part of Figure 1 shows a simple 
example of an I/O-automaton.  

With respect to product line engineering and I/O-
automata, Larsen et al introduced the concept of modal I/O-
automata to specify a set of I/O-automata within a single 
model automaton (cf. [17]). Modal I/O-automata separate 
two kinds of transitions: 
 Must transitions are part of every derived automata 

specification 

 May transitions can be selected to become part of a 
derived automata specification 

An I/O-automaton can be derived from a modal I/O-
automaton by selecting a set of may transitions from the 
defined may transitions and by transferring all must 
transition into the derived I/O-automaton. However, Larsen 
et al. did not include the possibility to specify constraints 
between may transitions (e.g., the selection of one transition 
requires the selection of an additional transition). Such 
constraints are typically specified in product line engineering 
using a variability model. In the following, we combine our 
orthogonal variability model presented in Section II.A with 
I/O-automata to enable the specification of such constraints. 
Instead of our orthogonal variability model, it also possible 
to use feature models or decision tables for this purpose. We 
have chosen the orthogonal variability model because of our 
positive experience with our industrial partners. 

The orthogonal variability model provides the concept of 
artifact dependencies between variants and specification 
elements in order to specify that a specification element is 
variable (cf. [25]). For example, in Figure 1 the transition 
<green, close gate?, yellow flash> is related to the variant V1 
by an artifact dependency (dashed line). This relation 
expresses that this transition is only part of a derived 
specification, if the variant V1 is selected. The transition 
<green, close gate?, yellow> is related to the variant V2. The 
variability model defines the variants V1 and V2 as 
alternative, i.e., both variants cannot be selected together. 
Thereby, both transitions can never become part of a derived 
specification. The modal I/O-automata presented by Larsen 
et al. are not capable of specifying such information. 
Therefore, we combine modal I/O-automata and the 
orthogonal variability model to define a variable I/O-
automata specification as follows. 

A variable I/O-automaton specification consists of an 
orthogonal variability model with a set of variants V as 
defined in Section II.A, a set of variable I/O-automata C = 
{C1, …, Cx}, and a variability relation VRelIO. A variable 
I/O-automaton Ci is defined as 6-tuple (Zi, z0,i, Sendi, 
Receivei, Ti) where 
 Zi is the set of states 
 z0,i  Zi is the initial state 
 Sendi is the set of sendable messages (a sendable 

message is followed by a ‘!’) 
 Receivei is the set of receivable messages (a receivable 

message is followed by a ‘?’) 
 Ti  Zi  M  Zi (M = Sendi  Receivei) is the transition 

relation. 
The variability relation VRelIO  V  (Ti) documents 

the artifact dependency (  denotes the power set) between 
the variants of the orthogonal variability model and the 
transitions of the I/O-automata in order to define which 
transitions are common and which are variable: 
 A transition t  Ti is variable (i.e. a may transition as 

defined by Larsen et al.), if t is related to a variant, i.e. 
(v, T’)  VRelIO: t  T’ 

259273273271271



 A transition t  Ti is common (i.e. a must transition as 
defined by Larsen et al.), if t is not related to a variant, 
i.e. (v, T’)  VRelIO: t  T’ 

Without loss of generality, we assume that a transition 
cannot be related to more than one variant, i.e. (v1, T’1), (v2, 
T’2)  VRelIO: (T’1  T’2 = )  (v1 = v2), since every 
orthogonal variability model with multiple artifact 
dependencies between variants and artifacts can be 
transformed into an orthogonal variability model with a 
unique artifact dependency. A proof of this claim can be 
found in [20]. 

The derivation of an I/O-automaton from a variable I/O-
automaton takes places as follows. Let  = (v1, ..., v|V|)  
(true, false)|V| with OVM( ) = true be a selection of variants 
that satisfies the variability model. The set T of transitions of 
the derived I/O-automaton is defined as follows: 
T = {t  Ti | (vi, T’’)  VRelIO: t  T’’  vi = true}  

 {t  Ti | (v, T’’)  VRelIO: t  T’’} 

C. Variable Computational Tree Logic 
For the documentation of the system’s properties, we use 

the Computational Tree Logic (CTL, cf. [5]). CTL is an 
extension of classical logic amongst a time dimension in 
order to specify behavioral properties of a system which are 
used to verify a system specification (cf. [5]).  

The CTL contains quantifiers over paths and path-
specific quantifiers. Clarke et al. have shown that , , EG, 
EU, and EX represent a minimal set of CTL operators, i.e. 
that every CTL expression can be transformed into a CTL 
expression that consists of these operators (cf. [6]). The 
operators have the following meaning: 
 f1  f2, is the logical OR and evaluates to true, if f1 or f2 

is true 
 f1 is the logical NOT and evaluates to true, if f1 is false 
 EG f1 evaluates to true, if there is one path starting at 

the initial state on which f1 is always true 
 E [f1 U f2] evaluates to true, if there is one path starting 

at the initial state on which f1 holds at least for one state 
and in the next state f2 holds. 

 EX f1 evaluates to true, if there is one path starting at 
the initial state on which f1 holds on the next state. 

In order to define CTL properties for I/O-automata, we 
adapt the approach from Behrmann et al. [2] who assume 
that the names of the states are used as Boolean properties. 
For example, if the system described in Figure 1 is in the 
states red and closed, the properties red and closed are 
fulfilled (i.e. true). All other properties (e.g., green, closed, 
etc.) are not fulfilled (i.e. false). 

In order to enable variability for the CTL properties, we 
define a variability relation VRelCTL´  V  (CTL) for a set 
of CTL properties specified in the set CTL: 
 A CTL property p’  CTL is variable, if p is related to a 

variant, i.e. (v, P)  VRelCTL: p’  P. The property p 
has to be fulfilled only if the related variant v is 
selected. 

 A CTL property p’  CTL is common, if t is not related 
to a variant, i.e. (v, P)  VRelCTL: p’  P. 

Again, we assume that a property cannot be related to 
more than one variant (see Section II.B), i.e. (v1, P1), (v2, 
P2)  VRelCTL: (P1  P2 = )  (v1 = v2). 

The derivation of the CTL properties of a particular 
system takes place in the same way as the derivation of a 
variable I/O-automaton (see Section  II.B). 

D. Product Construction of  Variable I/O-Automata 
In order to facilitate the model checking of variable I/O-

automata specifications as introduced in Section II.B, a 
product construction has to be performed to merge the 
different I/O automata into a single automaton. In [18], we 
have shown that variability has to be included into the 
product construction process for variable deterministic 
automata. However, our approach presented in [18] does not 
include sending and receiving transitions specified in I/O-
automata. In the following, we present an extension of our 
approach that includes sending and receiving transitions.  

 

z1-1 z1-2

a! (v1) z2-1 z2-2

a? (v2)

component 1 component 2  
Figure 2. Excerpt of a variable I/O-automata specification 

Figure 2 depicts an excerpt of a variable I/O-automata 
specification with two components. The related variants of 
the transitions are documented within parentheses. Assume 
that the specified system is in the state (z1-1, z2-1). With 
respect to the selection of variants, the following cases are 
possible: 
 v1 and v2 are selected: both transitions are present in the 

system, i.e. component 1 can send message a and 
component 2 can receive message a. The system 
changes to the state (z1-2, z2-2). 

 v1 is selected: only the transition in component 1 is 
present, i.e. component 1 can send message a, but 
component 2 cannot receive message a. The system 
changes to the state (z1-2, z2-1). 

 v2 is selected: only the transition in component 2 is 
present, i.e. component 2 can receive message a, but 
component 1 cannot send message a. The system 
cannot change its state. 

 v1 and v2 are not selected: both transitions are not 
present in the system, i.e. the system cannot change its 
state. 

This example shows that the presence and absence of 
variable transitions has to be included into the product 
construction. In order to realize this, we define an extended 
transition relation which includes the variability information 
(i.e. selection or deselection of variants). Let Ki = (Zi, z0,i, 
Sendi, Receivei, Ti) be a variable I/O-automaton and VRelIO 
be the variability relation introduced in Section II.B, and let 
V* be the set of positive and negative variants. The extended 
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transition relation Ti*  Zi  (Sendi  Receivei)  Zi  (V*) 
is defined as follows: Ti* =  
(1) {z1mz2V’ | z1mz2  Ti  V’  (V*):  
  V’ = { v | (v, T’)  VRelIO: z1mz2  T’}  
    { v | z1mz’  Ti   
    (v, T’)  VRelIO: z1mz’  T’}}  
(2)  {z1mz2  | z1mz2  Ti  (v, T’)  VRelIO:  
   z1mz2  T’ } 
(3)  {z1mz2V’ | z1mz2  Ti  m  Receivei   
   (v, T’) VRelIO: z1mz2  T’  V’  (V*):  
    V’ = { v | z1mz2  Ti   
     (v, T’)  VRelIO: z1mz2  T’} 

The extend transition relation captures three kinds of 
transitions: 
1) Variable transitions: For variable transitions, T* 

captures the related variant and the variants that must 
not be selected in order to ensure deterministic 
behavior. 

2) Common transitions: Common transitions (i.e. 
transitions that are not related to a variant) become part 
of T*. The set V’ remains empty, since a common 
transition is not related to a variant. 

3) Implicit transitions: For states with receiving variable 
transitions, additional transitions are added to T* which 
capture the behavior in the case that the related variant 
is not selected.  

Based on the extended transition relation, we define the 
product of two variable I/O-automata as follows: 
 The set of states is the product of both state sets:   

Z12 =  Z1  Z2 
 The start state is the combined start state of both 

automata: 
z012 = z0,1z0,2 

 The set of sendable messages is the union of both 
automata: Send12 = Send1  Send2 

 The set of receivable messages is calculated as follows 
Receive12 = (Receive1 \ Send2)  (Receive2 \ Send1) 

The combined transition relation T12* has to distinguish 
three cases in order to include the variability: 
 Case 1: The transitions of both components’ automata 

fits each other (i.e. one component sends a message that 
can be received by the other or both components 
receive the same message), and the variants of both 
transitions fit each other (i.e. the variants do not 
contradict each other).  
{z1z2mz1’z2’(V1’  V2’) | z1mz1’V1’  T1*  z2mz2’V2’ 

 T2*  (V1’  V2’  false)} 
 Case 2: The first components automaton sends or 

receives a message that cannot be processed by the 
second components automaton. In this case, the first 
components automaton executes the transition and the 
second component remains in its current state.  
{z1z2mz1’z2V1’ | z1mz1’V1’  T1*   z2mz2’V2’  T2*  
(m  Send1  m  Receive12)} 

 Case 3: The second components automaton sends or 
receives a message that cannot be processed by the first 
components automaton. This case is analog to the 
second case.  
{z1z2mz1z2’V2’ |  z1mz1’V1’  T1*   z2mz2’V2’  T2* 

 (m  Send2  m  Receive12)}} 
The product construction is defined for two automata. 

The product construction of more than two automata is 
performed in pairs. 

III. MODEL CHECKING VARIABLE I/O-AUTOMATA 
In this section, we present our approach for the model 

checking of variable I/O automata. Our approach is based on 
the model checking approach from Clarke et al. (cf. [5]) 
which is considered as one of the fundamental approaches 
for model checking.  

The central idea of our approach is to include the 
variability information specified in the variability model (as 
Boolean variables) into the model checking algorithms. 
During the exploration of the state space, the algorithms 
consider the variability model to ensure that the current path 
explored in the state space is valid with respect to the 
variability model. 

Our adaptation is threefold: 
1) Adaptation of state labeling: The approach from Clarke 

et al. (cf. [5]) labels each state with the properties that 
are fulfilled in this state. In variable I/O-automata, the 
fulfillment of a property may rely on variable 
transitions. Therefore, the state labeling may include 
the variant selection which is necessary to fulfill the 
property. We elaborate on this extension in Section 
III.A. 

2) Adaptation of algorithms: We adapt the algorithms for 
model checking of EX, EU, and EG. This is sufficient 
since all other expression can be reduced to a 
combination of the EX, EU and EG operators [6]. The 
adaptations are presented in the Sections III.B to III.D. 
It is not necessary to adapt the procedures for handling 
expressions of the form f1 and f1  f2 because the 
results of the computations only depend on single 
states.  

3) Checking the completeness of witnesses: The existing 
single system algorithms rely on witnesses to show that 
a property is fulfilled for a given system (cf. [6]). This 
approach is not sufficient for variable I/O-automata, 
since a variable I/O-automaton represents a set of 
systems and thus a witness must exist for every possible 
system. In Section III.E, we address this problem by 
checking the completeness of witnesses for all possible 
systems.  

All presented algorithms assume that the variable I/O-
automaton with the start state z0 and the extended transition 
relation T* are available as global variables (see Section 
II.D) and the variability model is accessible by the function 
SAT-VM (see Section II.A).  
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Each presented adaptation consists of three parts. First, 
we discuss the need for the adaptation. Secondly, we 
describe the adaptation itself. Finally, we present a brief 
argumentation for the correctness of the adaptation and 
briefly discuss the runtime of the presented adaptation.  

A. Adaption of  State Labeling 

1) Need for Adaption:  
Figure 3 shows an example of a simple variable I/O-

automaton with two states. The state z1 is labeled with the 
property f1. Since state z0

 has a transition to the state z1, the 
state z0 can be labeled with EX f1. However, the transition 
between both states is related to the variant v1, i.e. the 
transition is only present, if v1 is selected. Therefore, the 
fulfillment of the property EX f1 relies on the selection of v1, 
since the property is not fulfilled, if the transition is not 
present. Consequently, the fulfillment of a property may rely 
on the selection of variants. 

f1(EX f1, v1) x (v1)

z0
z1

 
Figure 3. Example of the influence of variability on a property 

2) Adaption of Algorithm 
To incorporate the variability, we extend the labeling 

procedures introduced by Clarke et al. (cf. [5]) as follows.  
Let f1 be an expression, let z  Z be a state of an I/O-

automaton, and let V’ be a (possibly empty) selection of 
variants. The state z is labeled with (f1, V’) (i.e. (f1, V’)  
label(z)), if f1 is fulfilled in state z for the selection V’ of 
variants. 

3) Rutime of Adaption 
The presented adaptation does not change the runtime of 

the labeling procedure, since our adaptation only adds 
information to the state labeling. 
B. Adaptation of Model Checking EX f1 

1) Need for Adaption 
For the property EX f1, basically every state should be 

labeled with EX f1 which has some successor state that is 
labeled with f1. Since the transitions in a variable I/O-
automaton and the property f1 can be variable, it is necessary 
to check whether the variants related to f1, to the considered 
transition, and to EX f1 can be selected together.  

2) Adaption of Algorithm 
Algorithm 1 shows the calculation of the expression 

EX f1 for a variable I/O-automaton. The algorithm has two 
parameters: First the property f1 which should be checked 
and secondly the variant vEX which is related to EX f1. The 
variant vEX is empty, if f1 is a common property. 

 
Algorithm 1: Checking EX f1 
(1) checkEX(f1, vEX){ 
(2) for each t = z1nz2 V’  T* { 
(3)  for each (f1, VP)  label(z2) 
(4)   if(SAT-VM(OVM, vEX  V’  VP)) 

(5)    label(z1) = label(z1)  (EX f1 ; (vEX  V’  VP))  
(6)  } } } 

 
The algorithm works as follows. For each outgoing 

transition of each state of a variable I/O-automaton, the 
algorithm checks the following. If the reached state z2 is 
labeled with f1 and the combined selection of variants of the 
property (i.e. vEX), the current transition (i.e. V’), and the 
selection of variants associated with f1 in the next state (i.e. 
VP) can be fulfilled, then the state z1 is labeled with (EX f1, 
(vEX  V’  VP)) (line (5) and (6)). This label documents that 
EX f1 is fulfilled, if the variants documented by (vEX  V’  
VP) are selected.  

If the start state z0 is labeled, a witness for EX f1 has been 
identified. In Section III.E, we will check the completeness 
of witnesses with respect to all possible products of the 
considered product line. 

3) Correctness and Runtime 
The correctness of the presented adaption follows from 

the following observation. The algorithm checks each 
outgoing transition of each state and all possible labels. 
Therefore, every possible witness for EX f1 will be identified. 

The worst case runtime of the presented algorithm is 
linear in the number of transitions and labels, since every 
transition is considered only once by the algorithm. For each 
transition, the algorithm considers each labels of the 
destination state of the considered transition. 

 
C. Adaptation of Model Checking E[f1 U f2] 

1) Need for Adaption 
To handle expressions in the form E[f1 U f2], it is first 

necessary to find every state which is labeled with f2. Then, a 
backward search is performed from these states to find a path 
to the start state whose states are labeled with f1.  Similar to 
EX f1, it is necessary to include the variability of the 
transitions and the properties in order to determine whether a 
witness exists or not. 

2) Adaptation of Algorithm 
Algorithm 2 shows the adaption of this procedure to 

handle model checking of E[f1 U f2] in a variable I/O-
automaton. 

The algorithm has three parameters: The properties f1 and 
f2, and the variant vEU which is related to E[f1 U f2]. The 
variant vEU is empty, if E[f1 U f2] is a common property. 

 
Algorithm 2: Checking E[f1 U f2] 
(1) CheckEU(f1, f2, vEU){ 
(2) Z’ := { (z, vz) | (f2 ,vz)  label(z)  SAT-VM(OVM, vZ  vEU)} 
(3) for each (z, vz)  Z’ { 
(4) for each z’nz V’  T*, with z’  z { 
(5)  if(SAT-VM(OVM, (vZ  vEU  V’ )))  
(6)   PathSearch_EU(f1, z', t, (vZ  vEU  V’ )); 
(7) } } }  
 
(8) PathSearch_EU(f1, z, path p, Variants V* ){ 
(9) if ((f1, vP)  label(z)  SAT-VM(OVM, (vP  V*)) { 
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(10)  label(z) = label(z)  (E [f1 U f2], (vP  V*));  
(11)  if(z != z0) { 
(12)   for each z’nz V’  T*, with z’  p { 
(13)    if(SAT-VM(OVM, (V’  vP  V*))  
(14)     PathSearch_EU(f1, z', t  p , (V’  vP  V*)); 
(15) } } } } 

 
The algorithm works as follows. First, it determines the 

states z that are labeled with f2 for which the orthogonal 
variability model can fulfill the variant selection (vZ  vEU), 
i.e. it is possible to derive a product which contains a state 
that is labeled with f2 (line (2)).  

For each incoming transition of such a state z, the 
algorithm checks whether the orthogonal variability model 
fulfills the variant selection (vZ  vEU  V’), i.e. whether the 
considered transition is also part of the derived product 
which contains the state labeled with f2 (line (3) – (5). If the 
orthogonal variability model can fulfill this selection, the 
backward search is started in a recursive manner (see line 
(6)) to determine further states that fulfill f1. 

The algorithm for the backward search has parameters 
for the property f1, the current state z of the backward search, 
the path p to the current state and the selection of variants V* 
that must be selected in order to visit the transitions of the 
path p. For the initial call of the function, V* contains the 
variant vEU which is related to E[f1 U f2], the variant vz related 
to f2, and the variant selection V’ which is related to the 
variable transition. 

The first step is to check if state z is labeled with f1 and if 
the variant selection related to f1 can be fulfilled by the 
orthogonal variability model together with V* (line (9)). If 
yes, the state is labeled with (E [f1 U f2], (vP  V*)) (see line 
(10)).  

If the current state is the start state z0, a witness for E [f1 
U f2] has been identified. In Section III.E, we will check the 
completeness of witnesses with respect to all possible 
products of the considered product line. 

If the current state is not the start state, the next step of 
recursion is performed for each incoming transition if the 
variant selection V’ of the transition, the variant vp, and the 
variant selection V* can be fulfilled by the variability model 
(line (13) and (14)). The algorithm avoids entering a state 
twice in order to avoid circles in the considered path (see line 
(4) and line (12)).  

3) Correctness and Runtime 
The correctness of the presented adaption follows from 

the following observation. The algorithm checks every 
possible state that is labeled with f2. Therefore, no possible 
initial state for E[f1 U f2] is missed. For every possible initial 
state, a comprehensive path search is performed, therefore no 
possible witness for E[f1 U f2] is missed. The path search is 
comprehensive, since the path search performs a complete 
depth first search of the automaton. 

The worst case runtime of the presented algorithm is 
exponential in the number of states, since, in the worst case, 
the path search has to check every possible path through the 
automaton. And, the number of possible paths in an 
automaton is exponential in the number of states. 

D. Adaptation of Model Checking EG f1 

1) Need for Adaption 
As mentioned above, EG f1 evaluates to true if there is a 

path from the start state on which f1 is always true. The 
computation in the non-variable case is based on the 
restriction of the automaton to states which fulfill f1 and a 
decomposition of this restricted state graph into nontrivial 
strongly connected components (SCC) [6]. This step is 
performed by using the algorithm of Tarjan [27] for 
detecting SCC. Then, a backward search is performed to find 
any state in the restricted automaton that can reach an SCC. 
If the start state is reached, a witness for EG f1 is found. 

However for model checking of EG f1 in a variable I/O-
automaton it is not sufficient to search for states that reach an 
SCC. The following problems occur if we proceeded in this 
manner: 
 An SCC could be not valid regarding the variability 

model, see Problem (a) in Figure 4: variant v2 excludes 
variant v3 and therefore both variants cannot be selected 
together, i.e. that the identified SSC will never become 
part of a derived product. 

 Searching for an identified SCC could fail although a 
valid witness for EG f1 exists; see Problem (b) in Figure 
4. The identified SCC covers the variants v1 and v3. The 
backward search checks the transition related to v2 and 
fails since v2 and v3 cannot be selected together. 
However, there is a witness without v3, since a path and 
an SCC exists on which f1 is always true in the product 
which contains v1 and v2. 

 Searching for states that reach an SCC could result in 
an incomplete set of witnesses, see Problem (c). The 
backward search labels state z0 with EG f1 which 
reaches an SCC (V* = v1  v3). Therefore, the witness 
is valid for a product which contains the variants v1 and 
v3. State z0 reaches yet another path for a product which 
only contains variant v1 on which f1 is always true, but 
this is not considered. 

 
Figure 4. Problems of model checking EG f1  

in variable I/O-automata1 

                                                           
1 The transitions in this figure are only labeled with variants. 
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In summary, an SCC which was found by Tarjans 
algorithm does not have to be a valid SCC in a variable I/O-
automaton (see Problem (a)). Searching for an SCC in a 
variable I/O-automaton depends on the state at which the 
search is started (see Problem (b)). Additionally, it is not 
sufficient to consider only the maximal SCC, because an 
SCC could contain several paths, which are witnesses for 
different products (see Problem (c)). 

2) Adaptation of Algorithm 
Algorithm 3 considers the problems mentioned above. 

The central idea is to consider only single cycles within the 
automaton whereas an SCC identified by the algorithm of 
Tarjan may contain several cycles which leads to the 
problems mentioned above. 

The algorithm has two parameters: First the property f1 
which should be checked and secondly the variant vEG which 
is related to EG f1. The variant vEG is empty, if EG f1 is a 
common property. 

The algorithm works as follows. For each outgoing 
transition, for each state which is labeled with f1, a depth first 
search for a cycle which fulfills the variability model is 
started recursively by calling the method FindPathToCycle, 
see line (8). Before this, the current state is marked as 
visited, see line (4). FindPathToCycle is only called if the 
variant selection V’, which is related to the transition to the 
successor can be fulfilled together with the variant vp and if 
the successor is labeled with f1. 

The method FindPathToCycle has parameters for state 
zinitial from which the search is started, state z for the successor 
state, and the selection of variants V* that must be selected in 
order to visit the transitions of an already visited path. In line 
(13), the algorithm checks whether the current state has been 
visited. If yes, a cycle is found that fulfills the variability 
model and on which every state is labeled with f1. The state 
zinitial is labeled with EG f1 and the selection of variants V*.  

 
Algorithm 3: Checking EG f1 
(1) CheckEG(f1, vEG){ 
(2) Z’ := { (z, vz) | (f1, vz)  label(z)  SAT-VM(OVM, vZ  vEG)} 
(3) for each z  Z’ { 
(4) z.visited :=true; 
(5) for each znz’ V’  T* { 
(6)  if(SAT-VM(OVM, V’  vEG  vz)) { 
(7)   if(f1  label(z’)) { 
(8)    FindPathToCycle(z, z‘, t, V’  vEG  vz); 
(9) } } }      
(10) z.visited:=false;  
(11)} } 
 
(12)FindPathToCycle(zinitial, z, V*) { 
(13) if (z.visited) { 
(14)  label (zinitial) := label(zinitial)  (EG f1, V*); 
(17) } else { 
(18)  z.visited:=true; 

(19)  for each znz’ V’  T* { 
(20)   if ((f1, vP)  label(z’)  SAT-VM(OVM, (vP  V’  V*)) { 
(21)    FindPathToCycle(z0, z‘, (vP  V’  V*)); 

(22)  } } 
(23)  z.visited:= false; 
(24)} } 

 
If no cycle is detected, the next step of the recursion is 

further performed for each outgoing transition if the variant 
vP, the variant selection V’, and the selection of Variants V* 
fulfill the variability model and the successor is labeled with 
f1, see line (20). Before this step the current state is labeled as 
visited, see line (18). 

 
Figure 5. Exemplary result for EG f1 

1 

Because we start a new depth first search from each state 
which is labeled with f1, the algorithm resets the visited flag 
for each state after a complete execution of recursion, see 
line (10) and (23). 

The result after a complete execution of Algorithm 3 is as 
follows. Every state which is labeled with f1 and which 
reaches a cycle in the variable I/O-Automaton or is part of 
such a cycle is labeled with EG f1 and with a selection of 
variants for which the labeling is valid, see Figure 5 for an 
example. 

The start state z0 is labeled with EG f1 for products that 
consist of variants v1 and v2 or variant v1 or variant v1 and v3. 
Therefore, we have a witness for EG f1 for each possible 
product of the product line, see the orthogonal variability 
model in Figure 5. 

3) Correctness and Runtime 
The correctness of the presented adaption follows from 

the following observation. The checking algorithm identifies 
every possible state that is labeled with f1 and starts a 
comprehensive path search for cycles from each state. 
Therefore, no possible witness for EG f1 can be missed. The 
path search is comprehensive, since it uses the depth first 
search approach. 

The worst case runtime of the presented algorithm is also 
exponential in the number of states, since, in the worst case, 
the path search has to check every possible path through the 
automaton. And, the number of possible paths in an 
automaton is exponential in the number of states. 

 
E. Checking Completeness of Witnesses 

1) Need for Adaptation 
As argued above, finding one witness for EX, E[f1 U f2] 

and EG f1 is not sufficient for ensuring that every I/O-
automaton that can be derived from the variable I/O-
automaton fulfills its CTL properties. One witness is a 
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witness for one or more products; and we have to check if it 
is possible to derive a product which contains no witness for 
its CTL property. We illustrate this using a simple example 
in Figure 6. 

f1 f1 f1

(EX f1, v1)
z0

(EX f1, v2)

v1 v2 v3

vp1

v1 v2

VP

V V

v3
V

 
Figure 6. Example of checking the completeness of witnesses 

Figure 6 shows an example for the result of model 
checking EX f1 where we assume that EX f1 is a common 
property, i.e. it has to be fulfilled by every possible product. 
The initial state z0 is labeled with two labels for EX f1, one 
for the variant v1 and one for the variant v2, i.e. there are 
witnesses for EX f1. However, this set of witnesses is not 
complete. The orthogonal variability model on the left hand 
side in Figure 6 defines the three variants v1 to v3 as 
alternative, i.e. exactly one of the three variants has to be 
selected. Therefore, it is possible to derive a product which 
only contains the variant v3 and for this product, there is no 
witness for EX f1 since it is impossible to reach a state from 
z0 that is labeled with f1. A similar example can be defined 
for the other two properties. 

2) Additional Algorithm 
Since approaches from model checking for single 

systems do not need to check the completeness of witnesses, 
we have to define an additional algorithm. 

Algorithm 4 presents the completeness check for 
witnesses. The algorithm has three parameters: the property f 
and the state z for which the completeness check has to be 
performed, and the variant v which is related to the property 
f. The variant v is empty, if f is a common property. 

Algorithm 4: Checking Completeness of Witnesses 
(1) checkCompletness(f, z, vp){ 
(2) if(SAT-VM(OVM, vp  ( (f, V’)  Label(z) V’) = false) 
(3)  output “There is a witness for each product”; 
(4) else 
(5) output “There is at least one product without a witness”; 
(6) } } 

 
The algorithm works as follows. It checks in line (2) if 

the orthogonal variability model can fulfill a variant selection 
in which vp is selected and all possible variant selections 
related to the witnesses for f are not selected (i.e. ( (f, V’)  

Label(z) V’)). If this is not possible, it is not possible to derive 
a product which has no witness for the property f in state z. If 
such a variant selection exists, this variant selection is an 
example for a derived product that has no witness for the 
property f. For the example given in Figure 6, the check 
would be performed as follows. Line (2) would check the 
following formula (vp is empty, since EX f1 is common what 
we represent by the Boolean value true): 

SAT-VM(OVM, (true  ( v1  v2)) 

The selection ( v1  v2) can be fulfilled by the 
orthogonal variability model presented in Figure 6, since it is 
possible to select only the variant v3 what we have already 
identified above. 

3) Correctness and Runtime  
The correctness of the presented algorithm follows 

directly from line (2), since line (2) realizes the query 
described in Section III.E.2). 

The runtime of algorithm 4 is linear in the number labels 
related to the property f that are defined for the state z, since 
the construction of the Boolean equation in line (2) has to 
consider every label defined for state z, whether it is related 
to f or nor. 

IV. EXAMPLE AND RUNTIME EVALUATION 
The runtime estimation of our presented approach 

indicates an exponential worst case runtime for the 
verification of EU and EG properties. In order to determine 
the runtime behavior of our approach, we have realized the 
approach in a prototypical tool environment in order to apply 
it to examples.  

We applied our approach to two examples and verified 
for each example one property of each type (i.e. EX, EU, and 
EG). The first example is a small sample specification. It 
consists of five variable I/O-automata and an orthogonal 
variability model  which specifies six variation points and 14 
variants. Overall 189 products can be derived from this 
specification. The product automaton of the specification 
consists of 12.000 states and 29.000 transitions. 

The second example is a (realistic) specification consists 
of six variable I/O-automata and the orthogonal variability 
model of the specification consists of ten variation points and 
46 variants and allows the derivation of 237 different 
products. The product automaton of the specification consists 
of more than 68.000 states and 174.000 transitions.  

For the execution of our approach, we used a standard 
desktop PC with an Intel Core 2 Duo 6400 CPU with 2.13 
GHz and 2 Gb RAM. The following table depicts for each 
property (EX, EU, EG) the runtime consumed for the 
product construction (see Section II.D) and the runtime 
consumed for verifying the individual properties (see Section 
III). 

 
Runtime  

(sample specification) 
12.000 states / 29.000 transitions 

Runtime 
(realistic specification) 

68.000 states / 174.000 transitionsProperty
Product-

construction Verification Product-
construction Verification 

EX 99,72sec 0,27sec  203,7sec 1,7sec 
EU 100,08sec 0,25sec  202,8sec 0,75sec 
EG 99,92sec 4,25sec  202,7sec 32,93sec 

 
From this initial runtime evaluation we conclude that: 

1) In both examples, the product construction requires a 
large amount computation time. This is not surprising, 
since the product construction suffers from the so called 
state explosion problem (cf. [6]), i.e. the runtime of the 
product construction grows exponentially with the 
number of component automata. 
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2) For both examples, the verification of an EX property is 
fast compared with the overall runtime (0,27% for the 
first and 0,83% for the second example). This supports 
the results of the runtime evaluation (cf. Section 
III.B.3) which showed that the verification of EX 
requires linear runtime. 

3) In both examples, the verification of an EU property is 
fast compared with the overall runtime for both 
examples (0,25% in the first and 0,37% in the second 
example). This result is surprising since the runtime 
evaluation in Section III.C.3) indicates an exponential 
runtime in the worst case 

4) For both examples, the verification of an EG property 
requires significantly more time (4% in the first and 
14% in the second example) compared with the runtime 
required for verifying the other two properties (EX and 
EU). This supports the results of the runtime evaluation 
in Section III.D.3) which indicates that the verification 
of EG required exponential time. 

V. RELATED WORK 

A. Symbolic Model Checking 
The concept of Boolean expressions related to transitions 

in symbolic model checkers such as NuSMV [3] is similar to 
the concept of variants which are related to transitions to 
indicate variability. This makes it possible to use guards to 
encode the model checking problem presented in this paper 
and thereby apply existing symbolic model checking 
approaches. 

However, this solution is limited, since symbolic model 
checkers provide the first counterexample found for the 
violation a property. A counterexample comprises a trace 
through the automaton and an assignment of all variables. In 
terms of product line engineering, the model checker 
presents a single system that violates the property. Our 
approach presents a counterexample which comprises a trace 
and a Boolean equation. The Boolean equation represents all 
products that violate the property. The result produced by our 
approach is thus  more comprehensive. 

B. Parameterized Model Checking 
Parameterized model checking deals with the verification 

of an arbitrary number of instances of a system [10]. A 
domain artifact can be considered as a parameterized model 
(Clarke et al. [6] call parameterized models infinite families). 
A common problem for parameterized models is to decide 
whether the model satisfies a given constraint for all possible 
parameter values. A common solution for model checking of 
parameterized models is the adaptation of existing model 
checking algorithms (cf., e.g., [11]) which is also the 
approach that we have followed in this paper. However, the 
difference to existing parameterized model checking 
problems is that the variability model provides a more 
detailed variability specification within a system and allows 
specifying additional constraints in the variability model 
which have to be considered. 

C. Model Checking of Partial State Spaces 
Brunns and Godefroid (cf. [4]) present a model checking 

algorithm for partial state spaces with uncertain states. Their 
algorithm performs pessimistic and optimistic searches. A 
pessimistic search assumes that all uncertain states are absent 
whereas an optimistic search assumes that all uncertain states 
are present. This approach is not applicable to the variability 
of domain artifacts, since the fulfillment of properties must 
be verified for each permissible combination of variants, not 
only for special cases such as “all variants absent” or “all 
variants selected”. The variability model might even exclude 
these cases (e.g. by defining the variants of a variation point 
as mutually exclusive). 

D. Model Checking and Verification of Domain Artifacts 
Classen et al. [7] describe the general problem of 

determining whether a set of features can be composed as a 
problem called “safe composition”. Several researchers 
address this problem. Batory and Thaker [28] support the 
automatic creation of a product line software implementation 
based on feature models. They focus on the safe composition 
of products by ensuring that there is no undefined element 
(e.g. classes, method) referred to in a composed program 
implementation. Batory and Thaker deal with static 
properties of the product line and do not support a 
consistency check of behavioural properties. In [9] Delaware 
et al. extend this approach by introducing Lightweight 
Feature Java (LFJ), a language to formalize feature-based 
product lines. Additionally they define a constraint based 
type system for LFJ. If any composition of features satisfies 
the typing constraints all programs allowed by the feature 
model are type safe. However, like in [28], they only proof 
type safety at source code level. 

Czarnecki and Pietroszek [8] propose an approach to 
verify feature-based model templates against OCL-based 
well-formedness rules. They check whether an instance of 
the model template exists that violates the predefined well-
formedness rules. Their approach can be applied to a domain 
artifact. However, Czarnecki and Pietroszek only deal with 
static properties of the UML and do not consider dynamic 
properties. 

Gruler et al. [13] extend the process algebra CCS and the 
-calculus in order to support the formal specification and 

verification of product lines. However, variability constraints 
are not supported by the approach. Furthermore, the 
automated verification using a verification tool is not 
considered, which is prerequisite for a practical evaluation. 

Kästner and Apel [14] extend the Featherweight Java 
calculus with annotations to be used for Software Product 
Lines. With this extended calculus they can prove, if the 
Software Product Line is well typed, that all possible variants 
are well typed. In contrast to our approach they only perform 
a static analysis of source code fragments. 

Kishi et al. [16] propose an approach which supports the 
formal verification of a product specification derived from 
the domain requirements specification in application 
engineering. In [15], Kishi and Noda briefly sketch a 
technique that is applicable in domain engineering. This 
technique derives a set of potential products and verifies 
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their design. The verification provided by the approach is, 
however, incomplete since only a limited set of products is 
considered in contrast to the consideration of all permissible 
combinations of variants in our approach. 

Liu et al. [21] propose an incremental and compositional 
model-checking technique for performing sequential 
compositions of different features of a product line. The 
behavior of the features is specified by finite state machines 
which have to fulfill a desired CTL-property. States can be 
defined as variation points, at which the composition of 
different features is performed. The technique generates a set 
of CTL-formulas at variation points (called variation point 
obligations) such that a composition only satisfies a desired 
property if the new composition satisfies the corresponding 
obligations. However, model checking of the feature 
specification of the product line only takes place when 
deriving a new product and not during domain engineering. 

VI. SUMMARY AND OUTLOOK 
In this paper, we presented an approach for model 

checking of domain artifacts in product line engineering. For 
specifying the domain artifacts we use variable I/O-automata 
and CTL.  

For every possible I/O-automaton which – under 
consideration of the product line variability - can be derived 
from a variable I/O-automaton our approach can verify that 
each derived I/O-automaton fulfils its CTL properties. 

Our preliminary runtime evaluation showed that our 
approach can be used to verify a product line specification 
with 237 possible products. However, this does not 
demonstrate the overall scalability of our approach since the 
algorithms for EU and EX have, as worst case, an 
exponential runtime. We therefore plan to perform further 
studies in order to get a more precise and reliable runtime 
estimations. In addition, we investigate on other possibilities 
for providing model checking for domain artifacts such as 
symbolic model checking. 

Our approach supports the early verification of domain 
artifacts in domain engineering and presents an important 
step towards applying model checking in product line 
engineering. 

An early verification of domain artifacts in domain 
engineering facilitates the identification of defects before 
other domain artifacts such as the domain components are 
developed. Even more important, it facilitates the 
verification before products are derived in application 
engineering and thus avoids that products are derived from 
potentially defective domain artifacts. This is beneficial in 
general, but especially if many products are derived from the 
product line in parallel.  
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