
Model Checking of Domain Artifacts in Product Line Engineering
Kim Lauenroth, Klaus Pohl, Simon Töhning

Software Systems Engineering, ICB
University of Duisburg-Essen

45127 Essen, Germany
{kim.lauenroth| klaus.pohl|simon.toehning}@sse.uni-due.de

Abstract — In product line engineering individual products are
derived from the domain artifacts of the product line. The
reuse of the domain artifacts is constraint by the product line
variability. Since domain artifacts are reused in several
products, product line engineering benefits from the
verification of domain artifacts. For verifying development
artifacts, model checking is a well-established technique in
single system development. However, existing model checking
approaches do not incorporate the product line variability and
are hence of limited use for verifying domain artifacts.

In this paper we present an extended model checking
approach which takes the product line variability into account
when verifying domain artifacts. Our approach is thus able to
verify that every permissible product (specified with I/O-
automata) which can be derived from the product line fulfills
the specified properties (specified with CTL). Moreover, we
use two examples to validate the applicability of our approach
and report on the preliminary validation results.

Keywords: Product Line Engineering, Model Checking,
Variability, Domain Artifact Verification

I. INTRODUCTION
Model checking ([5]) is a technique for quality assurance

that facilitates the verification of properties (typically
specified in CTL) of a system (typically specified in a state-
transition model). In software engineering for single systems,
model checking is an established technique for verifying
development artifacts in requirements engineering, design,
realization, and test ([12]) in different domains such as in the
automotive or avionic industry.

Product Line Engineering is a development paradigm that
explicitly addresses reuse by differentiating between two
kinds of development processes (cf. [25], p. 21): In domain
engineering, the domain artifacts of the product line are
defined and developed. In application engineering,
customer- and/or market-specific products are derived from
the domain artifacts by binding the variability defined in the
domain artifacts according to customer and/or market-
specific needs. The overall quality of the product line and its
derived products mainly depends on the quality of the
domain artifacts.

In contrast to the development artifacts created in single
systems engineering, the domain artifacts created in product
line engineering are reused in several products derived from
the product line. Thus, a high quality of the domain artifacts
is desirable. A defect in a domain artifact typically affects

several products of the product line and is thus costly to
remove (cf. [19]; [22]; [26]).

Model checking as a formal verification technique has
received little attention in product line engineering so far.
For verifying domain artifacts model checking approaches
from single system engineering are only of limited use.

A. Model Checking of Domain Artifacts
We define model checking of domain artifacts as

follows: Model checking of domain artifacts means to verify
that every possible product that can be derived from a
domain artifact fulfills the specified properties. Thus, in
contrast to model checking in single system development
where a single product is verified if it fulfills the defined
properties, model checking in product line engineering has to
verify that a whole set of products fulfills the properties
specified for each product. Several model checking
approaches have been proposed for the verification of single
system specifications (cf. e.g. [1]; [5]; [12]]) However,
model checking approaches from single system engineering
cannot directly be used for the verification of domain
artifacts, since they do not consider the variability defined
for the product line (cf. [18]). We will illustrate this using a
simple example.

Figure 1 depicts a simplified example for defining
domain artifacts, properties and the variability of a product
line. The example depicts a simplified orthogonal variability
model, two I/O-automata and two properties (see Section II
for a brief introduction into the modeling languages). The
example specifies a simple product line for rail crossing
gates which consists of a traffic light and a gate. The traffic
light exhibits alternative variable behavior: The traffic light
can either show a flashing yellow light or a steady yellow
light when the gate is closing. The behavior can be verified
with respect to the two variable properties. The variability is
described by the variants of the variability model and by the
relationships between the variants and the specification
elements.

If you ignore the variability model and apply a model
checking approach from single system engineering to the
example presented in Figure 1, the model checking approach
would state that both defined properties are not fulfilled by
the specified system, since it is possible to reach the states
(yellow flash, closing) and (yellow, closing) which are
counterexamples for the validity of each properties.

However, this verification results is incorrect. The
variability model does not allow to derive a product from the
domain artifacts for which the property (closing yellow) is

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.16

257

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.16

271

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.16

271

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.16

269

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.16

269

specified and which is able to reach the state (yellow flash,
closing), or vice versa for which the property (closing
yellow flash) is specified and which is able to reach the state
(yellow, closing).

orthogonal variability model

Close

V1: flashing
yellow on closing

V2: yellow
on closing

variation point

variants

alternative
variability
dependency

open

close

gate open!close gate!

gate closed! open gate!

traffic light gate

yellow
flash

gate closed?

close gate?

yellow

close gate?

gate closed?

green

red

gate open?

open gate?

properties

closing opening
yellow

red

If gate is closing, light is flashing yellow (closing yellow flash).
If gate is closing, light is yellow (closing yellow).

VP

V V

Figure 1. Simplified Example of Domain Artifacts

A way to apply model checking approaches from single
system engineering in product line engineering would thus
be to derive every possible product from the domain artifacts
and then verify each derived product individually. Since
thousand or even more products can be derived from a
product line (cf. [25], p. 418), this is impractical in most
cases.

B. Goal and Contibution of this Paper
This paper aims in extending existing model checking

approaches to facilitate the verification of domain artifacts in
product line engineering. The contribution of this paper is
threefold:
1) We investigate in model checking problems faced in

product line engineering mainly caused by the
variability of the domain artifacts.

2) We present a model checking approach for verifying
domain artifacts in product line engineering which
takes the variability defined for the product line into
account.

3) We demonstrate the applicability of our approach by
applying our tool prototype to an extended example.

The approach presented in this paper is a significant
improvement of our previous work on consistency checking
of domain artifacts in product line engineering (cf. [18];
[19]). In [19], we examined the consistency problem of
domain artifacts and defined a general framework for
consistency checks of domain artifacts. In [18], we presented
an approach based on this framework for model-checking
based consistency checks between automata and invariants in
product line engineering.

In contrast, the approach presented in this paper supports
model-checking of properties specified in CTL and thus,
compared with our previous work which just focused on

invariants, supports the model-checking of much richer
property specifications.

The remainder of this paper is structured as follows. In
Section II, we present the modeling languages used to
specify the domain artifacts in our model-checking approach.
Our approach is presented in detail in Section III. A
preliminary runtime evaluation of our approach is presented
in Section IV and related work is discussed in Section V. A
summary of our contribution and an outlook on future work
is provided in Section VI.

II. SPECIFYING DOMAIN ARTIFACTS
In this section, we introduce the languages used to

specify the domain artifacts used in our model-checking
approach.

A. Defining Product Line Variability
For specifying the variability of a product line, we use

the orthogonal variability modeling language developed in
our research group ([25]). However, our model checking
approach does not rely on the orthogonal variability model.
Every other variability modeling language which can be
formalized in the way presented in the following can be used
instead such as, e.g., feature models (cf. [10]).

The orthogonal variability model provides variation
points, variants, variability dependencies, and constraint
dependencies to define the variability of a product line.
Variation points are differentiated into mandatory variation
points which have to be considered and optional variation
points which might be considered if required. Variability
dependencies define the allowed selection of a variant at a
variation point. We differentiate between mandatory (must
be selected), optional (can be selected), and alternative
(selection out of a defined set of variants). Constraint
dependencies define constraints for the selection of variants
and variation points. We distinguish between requires
dependencies and exclude dependencies. A simplified
example of a variability model is depicted in the upper part
of Figure 1. Details about the definition of our variability
model and on the documentation of product variability can
be found in [24] and [25].

Formally, the variability model is interpreted as a set of
variants V where each variant vi is represented by a Boolean
variable. We represent a selection of variants of the
variability model as a vector v = (v1, …, vn) over the variants:
 vi is set to true if the variant vi is selected
 vi is set to false otherwise

Variation points are also formalized as Boolean
variables. The value of a variation point variable is
determined by the kind of variation point. The variable of a
mandatory variation point is always set to true, whereas the
variable of an optional variation point can be set to true or
false. The value of an optional variation point is determined
by the constraint dependencies of the variability model.

The variability and constraints dependencies of the
variability model are translated into Boolean expressions
over the variables of the variation points and variants. Let
VD = {vd1, …, vda} be the set variability dependencies, and

258272272270270

let CD = {cd1, …, cdb} be the set of constraint dependencies.
The variability model is captured by the function OVM over
the variants V: OVM(v) = vd VD vd cd CD cd.

The function OVM(v) evaluates to true, if the selection of
variants satisfies all variability dependencies and all
constraint dependencies, and otherwise to false. For more
details on the formal specification of the orthogonal
variability model, we refer to [24].

As argued in [19], verifying domain artifacts requires to
check whether the variability model allows the selection (or
de-selection) of a set of variants. For example, we might
want to check if the variants v1 and v2 can be selected
together when, at the same time, v3 is not selected. We
therefore define the function SAT-VM as follows. The
function has two inputs: the function OVM as introduced
above and a Boolean expression V* over the variants of the
variability model to represent the desired selection (e.g. v1
v2 v3 for the given example). SAT-VM(OVM, V*)
evaluates to true, if V* can be fulfilled in the given function
OVM, and to false, if not. The calculation of the function
SAT-VM is NP-complete, since it is a special case of the
Boolean satisfiability problem (SAT) which is known to be
NP-complete. The worst case runtime of SAT-VM is
therefore exponential. However, current SAT solver
algorithms are able to handle variability models in an
acceptable time (cf. [[8]; [18]; [24]). We therefore neglect
the runtime of the function SAT-VM.

B. Variable I/O-Automata
For the specification of the system, we use I/O-automata

which are an established language for modeling concurrent
and distributed discrete event systems ([23]) and are also
used for specifying domain artifacts ([17]). Similar to the
orthogonal variability model, our approach does not rely on
I/O-automata. One could use any other language which could
be transformed into a global system automaton. In Section D,
we illustrate the product construction of variable I/O-
automata in order to create a variable global system
automaton.

In I/O-automata specifications, the specified system is
separated into different components where each component
is modeled by a state automaton. The different components
communicate with each other via message exchange. This is
realized by transitions which either can send a message
(indicated by an ‘!’) or receive a message (indicated by an
‘?’). Furthermore, I/O-automata can perform internal actions
that do not influence other automata. Without loss of
generality, we assume deterministic behavior, since every
non-deterministic automaton can be transformed into a
deterministic one. The lower part of Figure 1 shows a simple
example of an I/O-automaton.

With respect to product line engineering and I/O-
automata, Larsen et al introduced the concept of modal I/O-
automata to specify a set of I/O-automata within a single
model automaton (cf. [17]). Modal I/O-automata separate
two kinds of transitions:
 Must transitions are part of every derived automata

specification

 May transitions can be selected to become part of a
derived automata specification

An I/O-automaton can be derived from a modal I/O-
automaton by selecting a set of may transitions from the
defined may transitions and by transferring all must
transition into the derived I/O-automaton. However, Larsen
et al. did not include the possibility to specify constraints
between may transitions (e.g., the selection of one transition
requires the selection of an additional transition). Such
constraints are typically specified in product line engineering
using a variability model. In the following, we combine our
orthogonal variability model presented in Section II.A with
I/O-automata to enable the specification of such constraints.
Instead of our orthogonal variability model, it also possible
to use feature models or decision tables for this purpose. We
have chosen the orthogonal variability model because of our
positive experience with our industrial partners.

The orthogonal variability model provides the concept of
artifact dependencies between variants and specification
elements in order to specify that a specification element is
variable (cf. [25]). For example, in Figure 1 the transition
<green, close gate?, yellow flash> is related to the variant V1
by an artifact dependency (dashed line). This relation
expresses that this transition is only part of a derived
specification, if the variant V1 is selected. The transition
<green, close gate?, yellow> is related to the variant V2. The
variability model defines the variants V1 and V2 as
alternative, i.e., both variants cannot be selected together.
Thereby, both transitions can never become part of a derived
specification. The modal I/O-automata presented by Larsen
et al. are not capable of specifying such information.
Therefore, we combine modal I/O-automata and the
orthogonal variability model to define a variable I/O-
automata specification as follows.

A variable I/O-automaton specification consists of an
orthogonal variability model with a set of variants V as
defined in Section II.A, a set of variable I/O-automata C =
{C1, …, Cx}, and a variability relation VRelIO. A variable
I/O-automaton Ci is defined as 6-tuple (Zi, z0,i, Sendi,
Receivei, Ti) where
 Zi is the set of states
 z0,i Zi is the initial state
 Sendi is the set of sendable messages (a sendable

message is followed by a ‘!’)
 Receivei is the set of receivable messages (a receivable

message is followed by a ‘?’)
 Ti Zi M Zi (M = Sendi Receivei) is the transition

relation.
The variability relation VRelIO V (Ti) documents

the artifact dependency (denotes the power set) between
the variants of the orthogonal variability model and the
transitions of the I/O-automata in order to define which
transitions are common and which are variable:
 A transition t Ti is variable (i.e. a may transition as

defined by Larsen et al.), if t is related to a variant, i.e.
(v, T’) VRelIO: t T’

259273273271271

 A transition t Ti is common (i.e. a must transition as
defined by Larsen et al.), if t is not related to a variant,
i.e. (v, T’) VRelIO: t T’

Without loss of generality, we assume that a transition
cannot be related to more than one variant, i.e. (v1, T’1), (v2,
T’2) VRelIO: (T’1 T’2 =) (v1 = v2), since every
orthogonal variability model with multiple artifact
dependencies between variants and artifacts can be
transformed into an orthogonal variability model with a
unique artifact dependency. A proof of this claim can be
found in [20].

The derivation of an I/O-automaton from a variable I/O-
automaton takes places as follows. Let = (v1, ..., v|V|)
(true, false)|V| with OVM() = true be a selection of variants
that satisfies the variability model. The set T of transitions of
the derived I/O-automaton is defined as follows:
T = {t Ti | (vi, T’’) VRelIO: t T’’ vi = true}

 {t Ti | (v, T’’) VRelIO: t T’’}

C. Variable Computational Tree Logic
For the documentation of the system’s properties, we use

the Computational Tree Logic (CTL, cf. [5]). CTL is an
extension of classical logic amongst a time dimension in
order to specify behavioral properties of a system which are
used to verify a system specification (cf. [5]).

The CTL contains quantifiers over paths and path-
specific quantifiers. Clarke et al. have shown that , , EG,
EU, and EX represent a minimal set of CTL operators, i.e.
that every CTL expression can be transformed into a CTL
expression that consists of these operators (cf. [6]). The
operators have the following meaning:
 f1 f2, is the logical OR and evaluates to true, if f1 or f2

is true
 f1 is the logical NOT and evaluates to true, if f1 is false
 EG f1 evaluates to true, if there is one path starting at

the initial state on which f1 is always true
 E [f1 U f2] evaluates to true, if there is one path starting

at the initial state on which f1 holds at least for one state
and in the next state f2 holds.

 EX f1 evaluates to true, if there is one path starting at
the initial state on which f1 holds on the next state.

In order to define CTL properties for I/O-automata, we
adapt the approach from Behrmann et al. [2] who assume
that the names of the states are used as Boolean properties.
For example, if the system described in Figure 1 is in the
states red and closed, the properties red and closed are
fulfilled (i.e. true). All other properties (e.g., green, closed,
etc.) are not fulfilled (i.e. false).

In order to enable variability for the CTL properties, we
define a variability relation VRelCTL´ V (CTL) for a set
of CTL properties specified in the set CTL:
 A CTL property p’ CTL is variable, if p is related to a

variant, i.e. (v, P) VRelCTL: p’ P. The property p
has to be fulfilled only if the related variant v is
selected.

 A CTL property p’ CTL is common, if t is not related
to a variant, i.e. (v, P) VRelCTL: p’ P.

Again, we assume that a property cannot be related to
more than one variant (see Section II.B), i.e. (v1, P1), (v2,
P2) VRelCTL: (P1 P2 =) (v1 = v2).

The derivation of the CTL properties of a particular
system takes place in the same way as the derivation of a
variable I/O-automaton (see Section II.B).

D. Product Construction of Variable I/O-Automata
In order to facilitate the model checking of variable I/O-

automata specifications as introduced in Section II.B, a
product construction has to be performed to merge the
different I/O automata into a single automaton. In [18], we
have shown that variability has to be included into the
product construction process for variable deterministic
automata. However, our approach presented in [18] does not
include sending and receiving transitions specified in I/O-
automata. In the following, we present an extension of our
approach that includes sending and receiving transitions.

z1-1 z1-2

a! (v1) z2-1 z2-2

a? (v2)

component 1 component 2
Figure 2. Excerpt of a variable I/O-automata specification

Figure 2 depicts an excerpt of a variable I/O-automata
specification with two components. The related variants of
the transitions are documented within parentheses. Assume
that the specified system is in the state (z1-1, z2-1). With
respect to the selection of variants, the following cases are
possible:
 v1 and v2 are selected: both transitions are present in the

system, i.e. component 1 can send message a and
component 2 can receive message a. The system
changes to the state (z1-2, z2-2).

 v1 is selected: only the transition in component 1 is
present, i.e. component 1 can send message a, but
component 2 cannot receive message a. The system
changes to the state (z1-2, z2-1).

 v2 is selected: only the transition in component 2 is
present, i.e. component 2 can receive message a, but
component 1 cannot send message a. The system
cannot change its state.

 v1 and v2 are not selected: both transitions are not
present in the system, i.e. the system cannot change its
state.

This example shows that the presence and absence of
variable transitions has to be included into the product
construction. In order to realize this, we define an extended
transition relation which includes the variability information
(i.e. selection or deselection of variants). Let Ki = (Zi, z0,i,
Sendi, Receivei, Ti) be a variable I/O-automaton and VRelIO
be the variability relation introduced in Section II.B, and let
V* be the set of positive and negative variants. The extended

260274274272272

transition relation Ti* Zi (Sendi Receivei) Zi (V*)
is defined as follows: Ti* =
(1) {z1mz2V’ | z1mz2 Ti V’ (V*):
 V’ = { v | (v, T’) VRelIO: z1mz2 T’}
 { v | z1mz’ Ti
 (v, T’) VRelIO: z1mz’ T’}}
(2) {z1mz2 | z1mz2 Ti (v, T’) VRelIO:
 z1mz2 T’ }
(3) {z1mz2V’ | z1mz2 Ti m Receivei
 (v, T’) VRelIO: z1mz2 T’ V’ (V*):
 V’ = { v | z1mz2 Ti
 (v, T’) VRelIO: z1mz2 T’}

The extend transition relation captures three kinds of
transitions:
1) Variable transitions: For variable transitions, T*

captures the related variant and the variants that must
not be selected in order to ensure deterministic
behavior.

2) Common transitions: Common transitions (i.e.
transitions that are not related to a variant) become part
of T*. The set V’ remains empty, since a common
transition is not related to a variant.

3) Implicit transitions: For states with receiving variable
transitions, additional transitions are added to T* which
capture the behavior in the case that the related variant
is not selected.

Based on the extended transition relation, we define the
product of two variable I/O-automata as follows:
 The set of states is the product of both state sets:

Z12 = Z1 Z2
 The start state is the combined start state of both

automata:
z012 = z0,1z0,2

 The set of sendable messages is the union of both
automata: Send12 = Send1 Send2

 The set of receivable messages is calculated as follows
Receive12 = (Receive1 \ Send2) (Receive2 \ Send1)

The combined transition relation T12* has to distinguish
three cases in order to include the variability:
 Case 1: The transitions of both components’ automata

fits each other (i.e. one component sends a message that
can be received by the other or both components
receive the same message), and the variants of both
transitions fit each other (i.e. the variants do not
contradict each other).
{z1z2mz1’z2’(V1’ V2’) | z1mz1’V1’ T1* z2mz2’V2’

 T2* (V1’ V2’ false)}
 Case 2: The first components automaton sends or

receives a message that cannot be processed by the
second components automaton. In this case, the first
components automaton executes the transition and the
second component remains in its current state.
{z1z2mz1’z2V1’ | z1mz1’V1’ T1* z2mz2’V2’ T2*
(m Send1 m Receive12)}

 Case 3: The second components automaton sends or
receives a message that cannot be processed by the first
components automaton. This case is analog to the
second case.
{z1z2mz1z2’V2’ | z1mz1’V1’ T1* z2mz2’V2’ T2*

 (m Send2 m Receive12)}}
The product construction is defined for two automata.

The product construction of more than two automata is
performed in pairs.

III. MODEL CHECKING VARIABLE I/O-AUTOMATA
In this section, we present our approach for the model

checking of variable I/O automata. Our approach is based on
the model checking approach from Clarke et al. (cf. [5])
which is considered as one of the fundamental approaches
for model checking.

The central idea of our approach is to include the
variability information specified in the variability model (as
Boolean variables) into the model checking algorithms.
During the exploration of the state space, the algorithms
consider the variability model to ensure that the current path
explored in the state space is valid with respect to the
variability model.

Our adaptation is threefold:
1) Adaptation of state labeling: The approach from Clarke

et al. (cf. [5]) labels each state with the properties that
are fulfilled in this state. In variable I/O-automata, the
fulfillment of a property may rely on variable
transitions. Therefore, the state labeling may include
the variant selection which is necessary to fulfill the
property. We elaborate on this extension in Section
III.A.

2) Adaptation of algorithms: We adapt the algorithms for
model checking of EX, EU, and EG. This is sufficient
since all other expression can be reduced to a
combination of the EX, EU and EG operators [6]. The
adaptations are presented in the Sections III.B to III.D.
It is not necessary to adapt the procedures for handling
expressions of the form f1 and f1 f2 because the
results of the computations only depend on single
states.

3) Checking the completeness of witnesses: The existing
single system algorithms rely on witnesses to show that
a property is fulfilled for a given system (cf. [6]). This
approach is not sufficient for variable I/O-automata,
since a variable I/O-automaton represents a set of
systems and thus a witness must exist for every possible
system. In Section III.E, we address this problem by
checking the completeness of witnesses for all possible
systems.

All presented algorithms assume that the variable I/O-
automaton with the start state z0 and the extended transition
relation T* are available as global variables (see Section
II.D) and the variability model is accessible by the function
SAT-VM (see Section II.A).

261275275273273

Each presented adaptation consists of three parts. First,
we discuss the need for the adaptation. Secondly, we
describe the adaptation itself. Finally, we present a brief
argumentation for the correctness of the adaptation and
briefly discuss the runtime of the presented adaptation.

A. Adaption of State Labeling

1) Need for Adaption:
Figure 3 shows an example of a simple variable I/O-

automaton with two states. The state z1 is labeled with the
property f1. Since state z0

 has a transition to the state z1, the
state z0 can be labeled with EX f1. However, the transition
between both states is related to the variant v1, i.e. the
transition is only present, if v1 is selected. Therefore, the
fulfillment of the property EX f1 relies on the selection of v1,
since the property is not fulfilled, if the transition is not
present. Consequently, the fulfillment of a property may rely
on the selection of variants.

f1(EX f1, v1) x (v1)

z0
z1

Figure 3. Example of the influence of variability on a property

2) Adaption of Algorithm
To incorporate the variability, we extend the labeling

procedures introduced by Clarke et al. (cf. [5]) as follows.
Let f1 be an expression, let z Z be a state of an I/O-

automaton, and let V’ be a (possibly empty) selection of
variants. The state z is labeled with (f1, V’) (i.e. (f1, V’)
label(z)), if f1 is fulfilled in state z for the selection V’ of
variants.

3) Rutime of Adaption
The presented adaptation does not change the runtime of

the labeling procedure, since our adaptation only adds
information to the state labeling.
B. Adaptation of Model Checking EX f1

1) Need for Adaption
For the property EX f1, basically every state should be

labeled with EX f1 which has some successor state that is
labeled with f1. Since the transitions in a variable I/O-
automaton and the property f1 can be variable, it is necessary
to check whether the variants related to f1, to the considered
transition, and to EX f1 can be selected together.

2) Adaption of Algorithm
Algorithm 1 shows the calculation of the expression

EX f1 for a variable I/O-automaton. The algorithm has two
parameters: First the property f1 which should be checked
and secondly the variant vEX which is related to EX f1. The
variant vEX is empty, if f1 is a common property.

Algorithm 1: Checking EX f1
(1) checkEX(f1, vEX){
(2) for each t = z1nz2 V’ T* {
(3) for each (f1, VP) label(z2)
(4) if(SAT-VM(OVM, vEX V’ VP))

(5) label(z1) = label(z1) (EX f1 ; (vEX V’ VP))
(6) } } }

The algorithm works as follows. For each outgoing

transition of each state of a variable I/O-automaton, the
algorithm checks the following. If the reached state z2 is
labeled with f1 and the combined selection of variants of the
property (i.e. vEX), the current transition (i.e. V’), and the
selection of variants associated with f1 in the next state (i.e.
VP) can be fulfilled, then the state z1 is labeled with (EX f1,
(vEX V’ VP)) (line (5) and (6)). This label documents that
EX f1 is fulfilled, if the variants documented by (vEX V’
VP) are selected.

If the start state z0 is labeled, a witness for EX f1 has been
identified. In Section III.E, we will check the completeness
of witnesses with respect to all possible products of the
considered product line.

3) Correctness and Runtime
The correctness of the presented adaption follows from

the following observation. The algorithm checks each
outgoing transition of each state and all possible labels.
Therefore, every possible witness for EX f1 will be identified.

The worst case runtime of the presented algorithm is
linear in the number of transitions and labels, since every
transition is considered only once by the algorithm. For each
transition, the algorithm considers each labels of the
destination state of the considered transition.

C. Adaptation of Model Checking E[f1 U f2]

1) Need for Adaption
To handle expressions in the form E[f1 U f2], it is first

necessary to find every state which is labeled with f2. Then, a
backward search is performed from these states to find a path
to the start state whose states are labeled with f1. Similar to
EX f1, it is necessary to include the variability of the
transitions and the properties in order to determine whether a
witness exists or not.

2) Adaptation of Algorithm
Algorithm 2 shows the adaption of this procedure to

handle model checking of E[f1 U f2] in a variable I/O-
automaton.

The algorithm has three parameters: The properties f1 and
f2, and the variant vEU which is related to E[f1 U f2]. The
variant vEU is empty, if E[f1 U f2] is a common property.

Algorithm 2: Checking E[f1 U f2]
(1) CheckEU(f1, f2, vEU){
(2) Z’ := { (z, vz) | (f2 ,vz) label(z) SAT-VM(OVM, vZ vEU)}
(3) for each (z, vz) Z’ {
(4) for each z’nz V’ T*, with z’ z {
(5) if(SAT-VM(OVM, (vZ vEU V’)))
(6) PathSearch_EU(f1, z', t, (vZ vEU V’));
(7) } } }

(8) PathSearch_EU(f1, z, path p, Variants V*){
(9) if ((f1, vP) label(z) SAT-VM(OVM, (vP V*)) {

262276276274274

(10) label(z) = label(z) (E [f1 U f2], (vP V*));
(11) if(z != z0) {
(12) for each z’nz V’ T*, with z’ p {
(13) if(SAT-VM(OVM, (V’ vP V*))
(14) PathSearch_EU(f1, z', t p , (V’ vP V*));
(15) } } } }

The algorithm works as follows. First, it determines the

states z that are labeled with f2 for which the orthogonal
variability model can fulfill the variant selection (vZ vEU),
i.e. it is possible to derive a product which contains a state
that is labeled with f2 (line (2)).

For each incoming transition of such a state z, the
algorithm checks whether the orthogonal variability model
fulfills the variant selection (vZ vEU V’), i.e. whether the
considered transition is also part of the derived product
which contains the state labeled with f2 (line (3) – (5). If the
orthogonal variability model can fulfill this selection, the
backward search is started in a recursive manner (see line
(6)) to determine further states that fulfill f1.

The algorithm for the backward search has parameters
for the property f1, the current state z of the backward search,
the path p to the current state and the selection of variants V*
that must be selected in order to visit the transitions of the
path p. For the initial call of the function, V* contains the
variant vEU which is related to E[f1 U f2], the variant vz related
to f2, and the variant selection V’ which is related to the
variable transition.

The first step is to check if state z is labeled with f1 and if
the variant selection related to f1 can be fulfilled by the
orthogonal variability model together with V* (line (9)). If
yes, the state is labeled with (E [f1 U f2], (vP V*)) (see line
(10)).

If the current state is the start state z0, a witness for E [f1
U f2] has been identified. In Section III.E, we will check the
completeness of witnesses with respect to all possible
products of the considered product line.

If the current state is not the start state, the next step of
recursion is performed for each incoming transition if the
variant selection V’ of the transition, the variant vp, and the
variant selection V* can be fulfilled by the variability model
(line (13) and (14)). The algorithm avoids entering a state
twice in order to avoid circles in the considered path (see line
(4) and line (12)).

3) Correctness and Runtime
The correctness of the presented adaption follows from

the following observation. The algorithm checks every
possible state that is labeled with f2. Therefore, no possible
initial state for E[f1 U f2] is missed. For every possible initial
state, a comprehensive path search is performed, therefore no
possible witness for E[f1 U f2] is missed. The path search is
comprehensive, since the path search performs a complete
depth first search of the automaton.

The worst case runtime of the presented algorithm is
exponential in the number of states, since, in the worst case,
the path search has to check every possible path through the
automaton. And, the number of possible paths in an
automaton is exponential in the number of states.

D. Adaptation of Model Checking EG f1

1) Need for Adaption
As mentioned above, EG f1 evaluates to true if there is a

path from the start state on which f1 is always true. The
computation in the non-variable case is based on the
restriction of the automaton to states which fulfill f1 and a
decomposition of this restricted state graph into nontrivial
strongly connected components (SCC) [6]. This step is
performed by using the algorithm of Tarjan [27] for
detecting SCC. Then, a backward search is performed to find
any state in the restricted automaton that can reach an SCC.
If the start state is reached, a witness for EG f1 is found.

However for model checking of EG f1 in a variable I/O-
automaton it is not sufficient to search for states that reach an
SCC. The following problems occur if we proceeded in this
manner:
 An SCC could be not valid regarding the variability

model, see Problem (a) in Figure 4: variant v2 excludes
variant v3 and therefore both variants cannot be selected
together, i.e. that the identified SSC will never become
part of a derived product.

 Searching for an identified SCC could fail although a
valid witness for EG f1 exists; see Problem (b) in Figure
4. The identified SCC covers the variants v1 and v3. The
backward search checks the transition related to v2 and
fails since v2 and v3 cannot be selected together.
However, there is a witness without v3, since a path and
an SCC exists on which f1 is always true in the product
which contains v1 and v2.

 Searching for states that reach an SCC could result in
an incomplete set of witnesses, see Problem (c). The
backward search labels state z0 with EG f1 which
reaches an SCC (V* = v1 v3). Therefore, the witness
is valid for a product which contains the variants v1 and
v3. State z0 reaches yet another path for a product which
only contains variant v1 on which f1 is always true, but
this is not considered.

Figure 4. Problems of model checking EG f1

in variable I/O-automata1

1 The transitions in this figure are only labeled with variants.

263277277275275

In summary, an SCC which was found by Tarjans
algorithm does not have to be a valid SCC in a variable I/O-
automaton (see Problem (a)). Searching for an SCC in a
variable I/O-automaton depends on the state at which the
search is started (see Problem (b)). Additionally, it is not
sufficient to consider only the maximal SCC, because an
SCC could contain several paths, which are witnesses for
different products (see Problem (c)).

2) Adaptation of Algorithm
Algorithm 3 considers the problems mentioned above.

The central idea is to consider only single cycles within the
automaton whereas an SCC identified by the algorithm of
Tarjan may contain several cycles which leads to the
problems mentioned above.

The algorithm has two parameters: First the property f1
which should be checked and secondly the variant vEG which
is related to EG f1. The variant vEG is empty, if EG f1 is a
common property.

The algorithm works as follows. For each outgoing
transition, for each state which is labeled with f1, a depth first
search for a cycle which fulfills the variability model is
started recursively by calling the method FindPathToCycle,
see line (8). Before this, the current state is marked as
visited, see line (4). FindPathToCycle is only called if the
variant selection V’, which is related to the transition to the
successor can be fulfilled together with the variant vp and if
the successor is labeled with f1.

The method FindPathToCycle has parameters for state
zinitial from which the search is started, state z for the successor
state, and the selection of variants V* that must be selected in
order to visit the transitions of an already visited path. In line
(13), the algorithm checks whether the current state has been
visited. If yes, a cycle is found that fulfills the variability
model and on which every state is labeled with f1. The state
zinitial is labeled with EG f1 and the selection of variants V*.

Algorithm 3: Checking EG f1
(1) CheckEG(f1, vEG){
(2) Z’ := { (z, vz) | (f1, vz) label(z) SAT-VM(OVM, vZ vEG)}
(3) for each z Z’ {
(4) z.visited :=true;
(5) for each znz’ V’ T* {
(6) if(SAT-VM(OVM, V’ vEG vz)) {
(7) if(f1 label(z’)) {
(8) FindPathToCycle(z, z‘, t, V’ vEG vz);
(9) } } }
(10) z.visited:=false;
(11)} }

(12)FindPathToCycle(zinitial, z, V*) {
(13) if (z.visited) {
(14) label (zinitial) := label(zinitial) (EG f1, V*);
(17) } else {
(18) z.visited:=true;

(19) for each znz’ V’ T* {
(20) if ((f1, vP) label(z’) SAT-VM(OVM, (vP V’ V*)) {
(21) FindPathToCycle(z0, z‘, (vP V’ V*));

(22) } }
(23) z.visited:= false;
(24)} }

If no cycle is detected, the next step of the recursion is

further performed for each outgoing transition if the variant
vP, the variant selection V’, and the selection of Variants V*
fulfill the variability model and the successor is labeled with
f1, see line (20). Before this step the current state is labeled as
visited, see line (18).

Figure 5. Exemplary result for EG f1

1

Because we start a new depth first search from each state
which is labeled with f1, the algorithm resets the visited flag
for each state after a complete execution of recursion, see
line (10) and (23).

The result after a complete execution of Algorithm 3 is as
follows. Every state which is labeled with f1 and which
reaches a cycle in the variable I/O-Automaton or is part of
such a cycle is labeled with EG f1 and with a selection of
variants for which the labeling is valid, see Figure 5 for an
example.

The start state z0 is labeled with EG f1 for products that
consist of variants v1 and v2 or variant v1 or variant v1 and v3.
Therefore, we have a witness for EG f1 for each possible
product of the product line, see the orthogonal variability
model in Figure 5.

3) Correctness and Runtime
The correctness of the presented adaption follows from

the following observation. The checking algorithm identifies
every possible state that is labeled with f1 and starts a
comprehensive path search for cycles from each state.
Therefore, no possible witness for EG f1 can be missed. The
path search is comprehensive, since it uses the depth first
search approach.

The worst case runtime of the presented algorithm is also
exponential in the number of states, since, in the worst case,
the path search has to check every possible path through the
automaton. And, the number of possible paths in an
automaton is exponential in the number of states.

E. Checking Completeness of Witnesses

1) Need for Adaptation
As argued above, finding one witness for EX, E[f1 U f2]

and EG f1 is not sufficient for ensuring that every I/O-
automaton that can be derived from the variable I/O-
automaton fulfills its CTL properties. One witness is a

264278278276276

witness for one or more products; and we have to check if it
is possible to derive a product which contains no witness for
its CTL property. We illustrate this using a simple example
in Figure 6.

f1 f1 f1

(EX f1, v1)
z0

(EX f1, v2)

v1 v2 v3

vp1

v1 v2

VP

V V

v3
V

Figure 6. Example of checking the completeness of witnesses

Figure 6 shows an example for the result of model
checking EX f1 where we assume that EX f1 is a common
property, i.e. it has to be fulfilled by every possible product.
The initial state z0 is labeled with two labels for EX f1, one
for the variant v1 and one for the variant v2, i.e. there are
witnesses for EX f1. However, this set of witnesses is not
complete. The orthogonal variability model on the left hand
side in Figure 6 defines the three variants v1 to v3 as
alternative, i.e. exactly one of the three variants has to be
selected. Therefore, it is possible to derive a product which
only contains the variant v3 and for this product, there is no
witness for EX f1 since it is impossible to reach a state from
z0 that is labeled with f1. A similar example can be defined
for the other two properties.

2) Additional Algorithm
Since approaches from model checking for single

systems do not need to check the completeness of witnesses,
we have to define an additional algorithm.

Algorithm 4 presents the completeness check for
witnesses. The algorithm has three parameters: the property f
and the state z for which the completeness check has to be
performed, and the variant v which is related to the property
f. The variant v is empty, if f is a common property.

Algorithm 4: Checking Completeness of Witnesses
(1) checkCompletness(f, z, vp){
(2) if(SAT-VM(OVM, vp ((f, V’) Label(z) V’) = false)
(3) output “There is a witness for each product”;
(4) else
(5) output “There is at least one product without a witness”;
(6) } }

The algorithm works as follows. It checks in line (2) if

the orthogonal variability model can fulfill a variant selection
in which vp is selected and all possible variant selections
related to the witnesses for f are not selected (i.e. ((f, V’)

Label(z) V’)). If this is not possible, it is not possible to derive
a product which has no witness for the property f in state z. If
such a variant selection exists, this variant selection is an
example for a derived product that has no witness for the
property f. For the example given in Figure 6, the check
would be performed as follows. Line (2) would check the
following formula (vp is empty, since EX f1 is common what
we represent by the Boolean value true):

SAT-VM(OVM, (true (v1 v2))

The selection (v1 v2) can be fulfilled by the
orthogonal variability model presented in Figure 6, since it is
possible to select only the variant v3 what we have already
identified above.

3) Correctness and Runtime
The correctness of the presented algorithm follows

directly from line (2), since line (2) realizes the query
described in Section III.E.2).

The runtime of algorithm 4 is linear in the number labels
related to the property f that are defined for the state z, since
the construction of the Boolean equation in line (2) has to
consider every label defined for state z, whether it is related
to f or nor.

IV. EXAMPLE AND RUNTIME EVALUATION
The runtime estimation of our presented approach

indicates an exponential worst case runtime for the
verification of EU and EG properties. In order to determine
the runtime behavior of our approach, we have realized the
approach in a prototypical tool environment in order to apply
it to examples.

We applied our approach to two examples and verified
for each example one property of each type (i.e. EX, EU, and
EG). The first example is a small sample specification. It
consists of five variable I/O-automata and an orthogonal
variability model which specifies six variation points and 14
variants. Overall 189 products can be derived from this
specification. The product automaton of the specification
consists of 12.000 states and 29.000 transitions.

The second example is a (realistic) specification consists
of six variable I/O-automata and the orthogonal variability
model of the specification consists of ten variation points and
46 variants and allows the derivation of 237 different
products. The product automaton of the specification consists
of more than 68.000 states and 174.000 transitions.

For the execution of our approach, we used a standard
desktop PC with an Intel Core 2 Duo 6400 CPU with 2.13
GHz and 2 Gb RAM. The following table depicts for each
property (EX, EU, EG) the runtime consumed for the
product construction (see Section II.D) and the runtime
consumed for verifying the individual properties (see Section
III).

Runtime

(sample specification)
12.000 states / 29.000 transitions

Runtime
(realistic specification)

68.000 states / 174.000 transitionsProperty
Product-

construction Verification Product-
construction Verification

EX 99,72sec 0,27sec 203,7sec 1,7sec
EU 100,08sec 0,25sec 202,8sec 0,75sec
EG 99,92sec 4,25sec 202,7sec 32,93sec

From this initial runtime evaluation we conclude that:

1) In both examples, the product construction requires a
large amount computation time. This is not surprising,
since the product construction suffers from the so called
state explosion problem (cf. [6]), i.e. the runtime of the
product construction grows exponentially with the
number of component automata.

265279279277277

2) For both examples, the verification of an EX property is
fast compared with the overall runtime (0,27% for the
first and 0,83% for the second example). This supports
the results of the runtime evaluation (cf. Section
III.B.3) which showed that the verification of EX
requires linear runtime.

3) In both examples, the verification of an EU property is
fast compared with the overall runtime for both
examples (0,25% in the first and 0,37% in the second
example). This result is surprising since the runtime
evaluation in Section III.C.3) indicates an exponential
runtime in the worst case

4) For both examples, the verification of an EG property
requires significantly more time (4% in the first and
14% in the second example) compared with the runtime
required for verifying the other two properties (EX and
EU). This supports the results of the runtime evaluation
in Section III.D.3) which indicates that the verification
of EG required exponential time.

V. RELATED WORK

A. Symbolic Model Checking
The concept of Boolean expressions related to transitions

in symbolic model checkers such as NuSMV [3] is similar to
the concept of variants which are related to transitions to
indicate variability. This makes it possible to use guards to
encode the model checking problem presented in this paper
and thereby apply existing symbolic model checking
approaches.

However, this solution is limited, since symbolic model
checkers provide the first counterexample found for the
violation a property. A counterexample comprises a trace
through the automaton and an assignment of all variables. In
terms of product line engineering, the model checker
presents a single system that violates the property. Our
approach presents a counterexample which comprises a trace
and a Boolean equation. The Boolean equation represents all
products that violate the property. The result produced by our
approach is thus more comprehensive.

B. Parameterized Model Checking
Parameterized model checking deals with the verification

of an arbitrary number of instances of a system [10]. A
domain artifact can be considered as a parameterized model
(Clarke et al. [6] call parameterized models infinite families).
A common problem for parameterized models is to decide
whether the model satisfies a given constraint for all possible
parameter values. A common solution for model checking of
parameterized models is the adaptation of existing model
checking algorithms (cf., e.g., [11]) which is also the
approach that we have followed in this paper. However, the
difference to existing parameterized model checking
problems is that the variability model provides a more
detailed variability specification within a system and allows
specifying additional constraints in the variability model
which have to be considered.

C. Model Checking of Partial State Spaces
Brunns and Godefroid (cf. [4]) present a model checking

algorithm for partial state spaces with uncertain states. Their
algorithm performs pessimistic and optimistic searches. A
pessimistic search assumes that all uncertain states are absent
whereas an optimistic search assumes that all uncertain states
are present. This approach is not applicable to the variability
of domain artifacts, since the fulfillment of properties must
be verified for each permissible combination of variants, not
only for special cases such as “all variants absent” or “all
variants selected”. The variability model might even exclude
these cases (e.g. by defining the variants of a variation point
as mutually exclusive).

D. Model Checking and Verification of Domain Artifacts
Classen et al. [7] describe the general problem of

determining whether a set of features can be composed as a
problem called “safe composition”. Several researchers
address this problem. Batory and Thaker [28] support the
automatic creation of a product line software implementation
based on feature models. They focus on the safe composition
of products by ensuring that there is no undefined element
(e.g. classes, method) referred to in a composed program
implementation. Batory and Thaker deal with static
properties of the product line and do not support a
consistency check of behavioural properties. In [9] Delaware
et al. extend this approach by introducing Lightweight
Feature Java (LFJ), a language to formalize feature-based
product lines. Additionally they define a constraint based
type system for LFJ. If any composition of features satisfies
the typing constraints all programs allowed by the feature
model are type safe. However, like in [28], they only proof
type safety at source code level.

Czarnecki and Pietroszek [8] propose an approach to
verify feature-based model templates against OCL-based
well-formedness rules. They check whether an instance of
the model template exists that violates the predefined well-
formedness rules. Their approach can be applied to a domain
artifact. However, Czarnecki and Pietroszek only deal with
static properties of the UML and do not consider dynamic
properties.

Gruler et al. [13] extend the process algebra CCS and the
-calculus in order to support the formal specification and

verification of product lines. However, variability constraints
are not supported by the approach. Furthermore, the
automated verification using a verification tool is not
considered, which is prerequisite for a practical evaluation.

Kästner and Apel [14] extend the Featherweight Java
calculus with annotations to be used for Software Product
Lines. With this extended calculus they can prove, if the
Software Product Line is well typed, that all possible variants
are well typed. In contrast to our approach they only perform
a static analysis of source code fragments.

Kishi et al. [16] propose an approach which supports the
formal verification of a product specification derived from
the domain requirements specification in application
engineering. In [15], Kishi and Noda briefly sketch a
technique that is applicable in domain engineering. This
technique derives a set of potential products and verifies

266280280278278

their design. The verification provided by the approach is,
however, incomplete since only a limited set of products is
considered in contrast to the consideration of all permissible
combinations of variants in our approach.

Liu et al. [21] propose an incremental and compositional
model-checking technique for performing sequential
compositions of different features of a product line. The
behavior of the features is specified by finite state machines
which have to fulfill a desired CTL-property. States can be
defined as variation points, at which the composition of
different features is performed. The technique generates a set
of CTL-formulas at variation points (called variation point
obligations) such that a composition only satisfies a desired
property if the new composition satisfies the corresponding
obligations. However, model checking of the feature
specification of the product line only takes place when
deriving a new product and not during domain engineering.

VI. SUMMARY AND OUTLOOK
In this paper, we presented an approach for model

checking of domain artifacts in product line engineering. For
specifying the domain artifacts we use variable I/O-automata
and CTL.

For every possible I/O-automaton which – under
consideration of the product line variability - can be derived
from a variable I/O-automaton our approach can verify that
each derived I/O-automaton fulfils its CTL properties.

Our preliminary runtime evaluation showed that our
approach can be used to verify a product line specification
with 237 possible products. However, this does not
demonstrate the overall scalability of our approach since the
algorithms for EU and EX have, as worst case, an
exponential runtime. We therefore plan to perform further
studies in order to get a more precise and reliable runtime
estimations. In addition, we investigate on other possibilities
for providing model checking for domain artifacts such as
symbolic model checking.

Our approach supports the early verification of domain
artifacts in domain engineering and presents an important
step towards applying model checking in product line
engineering.

An early verification of domain artifacts in domain
engineering facilitates the identification of defects before
other domain artifacts such as the domain components are
developed. Even more important, it facilitates the
verification before products are derived in application
engineering and thus avoids that products are derived from
potentially defective domain artifacts. This is beneficial in
general, but especially if many products are derived from the
product line in parallel.

ACKNOWLEDGEMENT
The underlying work for this paper was partially funded

by the BMBF project SPES 2020 (Software Plattform
Embedded Systems 2020, No. 01IS08045V).

We would like to thank the anonymous reviewers for
very constructive and detailed comments that helped to
improve this paper. We further would like to thank Andreas

Gehlert, Andreas Metzger, and Ernst Sikora for fruitful
discussions on earlier drafts of this paper.

REFERENCES
[1] Atlee, J.; Gannon, J.: State-Based Model Checking of

Event-Driven System Requirements. In: IEEE TSE,
Vol. 19, No. 1, 1993, pp. 24-40.

[2] Behrmann, G.; David, A.; Larsen, K.: A Tutorial on
Uppaal- In Proc. of the SFM-RT'04, LNCS 3185, 2004.

[3] Cimatti, A.; Clarke, E.M.; Giunchiglia, E.; Giunchiglia,
F.; Pistore, M.; Roveri, M.; Sebastiani, R.; Tacchella,
A.: NuSMV 2: An OpenSource Tool for Symbolic
Model Checking. In Proc. of CAV02, 2002.

[4] Brunns, G.; Godefroid, P.: Model Checking Partial
State Spaces with 3-Valued Temporal Logics. In Proc.
of CAV’99, 1999, pp. 274-287.

[5] Clarke, E.; Emerson, A.; Sistla, P.: Automatic
Verification of Finite-State Concurrent Systems Using
Temporal Logic Specifications. ACM TOPLAS, Vol. 8,
No. 2, 1986, pp. 244-263.

[6] Clarke, E.; Grumberg, O.; Peled, D.: Model Checking.
The MIT Press, 1999.

[7] Classen A.; Heymans P.; Tun T.T.; Nuseibeh, B.:
Towards Safer Composition. In Proc. of ICSE09, 2009.

[8] Czarnecki, K.; Pietroszek, K.: Verifying feature-based
model templates against well-formedness OCL
constraints. In Proceedings of GPCE’06, 2006, pp. 211-
220.

[9] Delaware B.; Cook, W.R.; Batory D.: Fitting the pieces
together: A Machine-Checked Model of Safe
Composition. In Proc. of ESEC-FSE ´09, 2009.

[10] Emerson, E.; Kahlon, V.: Parameterized Model
Checking of Ring-Based Message Passing Systems. In:
Computer Science Logic, 2004, pp. 325-339.

[11] Emerson, E.; Trefler, R.; Wahl, T: Reducing Model
Checking of the Few to the One. In Proc. of ICFEM’06,
2006.

[12] Grumberg, O.; Veith, H.: 25 Years of Model Checking.
LNCS Vol. 5000, Springer, 2008.

[13] Gruler, A.; Leucker, M.; Scheidemann, K.: Modeling
and Model Checking Software Product Lines. Proc. of
FMOODS '08, 2008, pp.113-131.

[14] Kästner, C.; Apel, S.: Type-checking Software Product
Lines – a Formal Approach. In Proc. of ASE08 , 2008,
pp. 258-267.

[15] Kishi, T. and Noda, N. 2006. Formal verification and
software product lines. Communications of the ACM,
Vol. 49, No. 12, 2006, pp. 73-77.

[16] Kishi, T., Noda, N., and Katayama, T. Design
verification for product line development. In Proc. of
SPLC’05, 2005.

[17] Larsen, K.; Nyman, U.; W sowski, A.: Modal I/O
Automata for Interface and Product Line Theories. In
Proc. of ESOP, 2007, pp. 64-79.

[18] Lauenroth, K.; Pohl, K.: Dynamic Consistency
Checking of Domain Requirements in Product Line
Engineering. In Proc. of RE08, 2008, pp. 193-202.

[19] Lauenroth, K.; Pohl, K.: Towards Automated
Consistency Checks of Product Line Requirements
Specifications. In Proc. of ASE07, 2007, pp. 373-376.

[20] Lauenroth, K.: Konsistenzprüfung von Domänen-
anforderungsspezifikationen. Phd Thesis (in german).
Logos-Verlag, Berlin, 2009.

[21] Liu, J.; Basu, S.; Lutz, R.: Generating Variation-point
Obligations for Compositional Model Checking of

267281281279279

Software Product Lines. Technical Report 08-04, Iowa
State University, 2008.

[22] Liu, J.; Dehlinger, R.; Lutz, R.: Safety analysis of
software product lines using state-based modelling. The
Journal of Systems and Software, 80:1879–1892, 2007.

[23] Lynch, M.; Tuttle, M.: An Introduction to Input/Output
Automata. CWI Quaterly, Vol. 2, No. 3, 1989, pp. 219-
246.

[24] Metzger, A.; Heymans, P.; Pohl, K.; Schobbens, P.-Y.;
Saval, G.: Disambiguating the Documentation of
Variability in Software Product Lines. In Proc. of
RE’07, 2007, pp. 243-253.

[25] Pohl, K.; Böckle, G.; van der Linden, F.: Software
Product Line Engineering – Foundations, Principles,
and Techniques. Springer, Heidelberg, 2005.

[26] Savolainen, J.; Kuusela, J.: Consistency Management of
Product Line Requirements. In Proceedings of RE01,
2001.

[27] Tarjan, R.: Depth First Search Linear Graph
Algorithms. SIAM Journal of Computing. Vol. 1, No.
2, 1972, pp. 146-160.

[28] Thaker S.; Batory D.; Kitchin, D.; Cook W.: Safe
compositions of product lines. Proccedings of the 6th
international conference on Generative Programming
and Componenten Engineering, 2007, pp. 95-104.

268282282280280

