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Abstract. We consider the model checking problem for interval Markov
chains with open intervals. Interval Markov chains are generalizations of
discrete time Markov chains where the transition probabilities are inter-
vals, instead of constant values. We focus on the case where the intervals
are open. At first sight, open intervals present technical challenges, as
optimal (min, max) value for reachability may not exist. We show that,
as far as model checking (and reachability) is concerned, open intervals
does not cause any problem, and with minor modification existing algo-
rithms can be used for model checking interval Markov chains against
PCTL formulas.

1 Introduction

Discrete time Markov chains (DTMCs) are useful models for analyzing the reli-
ability and performance of computer systems. A DTMC is defined as a weighted
directed graph where the weights on the outgoing transitions define a probabil-
ity distribution. In general, the precise values of these probabilities may not be
always available [9,11,12]. This is precisely the case when transition probabilities
are obtained by statistical methods.

Interval Markov chains [9,13] are useful in modeling and verifying proba-
bilistic systems where the value of the transition probabilities are not known
precisely. IMCs generalize discrete time Markov chains by allowing intervals of
possible probabilities on the state transitions in order to capture the system
uncertainty more faithfully. For example, instead of specifying that the prob-
ability of moving from state s to t is 0.5, one can specify an interval [0.3, 0.7]
which captures the uncertainty in the probability of moving from state s to t.
Uncertainty in the model may occur due to various reasons [12]. In some cases,
the transition probabilities may depend on an unknown environment, and are
approximately known, in other cases the interval may be introduced to make the
model more robust.

There are two prevalent semantics of interval Markov chains. Uncertain
Markov Chains (UMC) [9,11] is an interpretation of interval Markov chains as
set of (possibly uncountably many) discrete time Markov chains where each ele-
ment of the set is a DTMC whose transition probabilities lie within the interval
range defined by the IMC. In the other semantics, called Interval Markov Deci-
sion Processes (IMDP) [11], the uncertainty of the transition probabilities are
resolved non-deterministically. It requires the notion of scheduler, which chooses
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a distribution, each time a state is visited in an execution, from a (possibly
uncountable) set of distributions defined by the intervals on the transitions.

The logic probabilistic computation tree logic (PCTL) [8], extends the tem-
poral logic CTL [7] with probabilities. This allows us to express properties like
“after a request for a service, there is 99% chance of fulfilling the request”. PCTL
formulas are interpreted over DTMCs and model checking on DTMCs can be
done in PTIME. The problem of model checking PCTL properties for IMCs
was studied in [11], it provides a PSPACE algorithms for both UMC and IMDP
semantics for interval Markov chains. Furthermore, NP and co-NP hardness was
shown for model checking in UMC semantics and PTIME hardness for IMDP
semantics which follows from PTIME hardness of model checking PCTL formu-
las on DTMCs. [4] improved the upper bound and showed that model checking
problem for IMDP semantics is in co-NP. This result is shown for a richer class of
logic, called ω-PCTL, which allow Büchi and co-Büchi properties in the formula.

In the literature, the intervals of IMCs are always assumed to be closed. This
assumption is sensible from the model checking perspective in IMDP semantics
as models with open interval may not have an optimal value of satisfying a
temporal property. The focus of this paper is to study IMDP semantics of IMCs
with open intervals. We will later contrast it with the UMC semantics, and will
see that the existing algorithm is applicable for IMCs with open intervals, but its
outcome may vary with the model at hand. The main intuition is that the value
of reachability property in a IMC with open intervals can be made arbitrarily
close to the value of the property obtained by closing the intervals. We use this
observation to show the equivalence between model checking IMCs with open
interval and IMCs with closed intervals.

2 Interval Markov Chains

Definition 1. Let I be the set of intervals (open or closed) in the range [0, 1].
The subsets I0 � {(a, b] | 0 ≤ a < b ≤ 1}, I1 � {(a, b) | 0 ≤ a < b ≤ 1}, I2 �
{[a, b) | 0 ≤ a < b ≤ 1} and I3 � {[a, b] | 0 ≤ a ≤ b ≤ 1}. I =

⋃
i∈{0,1,2,3} Ii.

Let I � 〈a, b〉 be an interval in I, where 〈∈ {(, [} and 〉 ∈ {), ]}. The lower
bound I↓ = a and upper bound is I↑ = b. Point intervals ([a, a]) are closed inter-
vals where the upper and lower bounds are equal. The closure of an interval I,
denoted by Ī, is the smallest closed interval that includes I.

Definition 2. A discrete time Markov chain (DTMC) is a tuple M = (S,L, δ)
where S is a finite set of states, L : S → 2AP is a labeling function (AP is the
set of atomic propositions), δ : S → S → [0, 1] is a transition probability matrix,
such that for all s ∈ S,

∑
t∈S δ(s)(t) = 1.

For simplicity of notation we will use the un-Curry notation δ(s, t) for δ(s)(t).
A path π of a DTMC M is an infinite sequence of states π = s0s1 . . . such that
for all i ≥ 0, δ(si, si+1) > 0. The ith state of the path π is denoted by πi = si.
Let Ωs be the set of paths starting from state s. The cylinder (open) set Cyl(ρ)
is the set of all paths with ρ as prefix. Let B be the smallest Borel σ-algebra
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defined on the cylinder sets. Let ρ be a finite sequence of states s0s1 . . . sn such
that δ(si, si+1) > 0 for all 0 ≤ i < n. The unique measure μ is thus induced
from δ as, μ(Cyl(ρ)) = δ(s0, s1)·δ(s1, s2) . . . ·δ(sn−1, sn).

Definition 3. An Interval Markov chain (IMC) is a tuple M � (S,L, δ), where
S is a (finite) set of states and L is a labeling function L : S → 2AP , where AP
is the set of atomic propositions. δ is a function δ : S → D, where D is the set
of functions from the set of states to the set of intervals I, i.e., D = S → I.

As before, we will use the un-Curry notation δ(s, t) for δ(s)(t). For a state s, the
probability of a single step from s to t lies in the interval δ(s, t). Thus an IMC
defines a collection of Markov chains, where the single step transition probability
of moving from state s to t lies in the interval δ(s, t). Not every IMC defines a
collection of Markov chains. Thus, we have the notion of realizability.

Definition 4. Let M = (S,L, δ) be an IMC with states S = {s1, . . . , sm}. Let
DM be the set of m × 1 vectors d, such that dT ·1 = 1, which represents the set
of distributions on states of M. Where M is fixed we denote the set as D.

M is said to be realizable if for each set of intervals defined by δ(s), there
exists a distribution d such that for all i ∈ [1,m] di (the ith component of d) is
in δ(s, si). The distribution d is said to be a solution of δ(s). Let sol(s) be the
set of solutions of δ(s).

Next we give two semantics of IMCs: 1) Uncertain Markov chains (UMC), 2)
Interval Markov decision process (IMDP).

Definition 5. (Uncertain Markov chain semantics) An IMC M = (S,L, δ)
represents a set of DTMCs, denoted by [M]u, such that for each DTMC M =
(S,L, δM ) in [M]u, δM (s) is a solution of δ(s) for every state s ∈ S. In UMC
semantics, we assume that nature non-deterministically picks a solution of δ(s)
for each state s ∈ S, and then all transitions behave according to the chosen
transition probability matrix.

To define interval Markov decision process semantics, we need the notion
of schedulers. The schedulers resolve the non-determinism at each state s by
choosing a particular distribution from sol(s).

Definition 6. A scheduler of an IMC M = (S,L, δ) is a function η : S+ →
DM, such that for every finite sequence of states π·s of M, η(π·s) is a solution
of δ(s).

A path w = s0s1s2 . . . of an IMC M is an infinite sequence of states. A path w
starting from a state s (i.e., w0 = s) is said to be according to the scheduler η
if for all i ≥ 0, η(w0, . . . , wi)(wi+1) > 0. A scheduler is memoryless if the choice
of the distribution depends solely on the current state, that is, η : S → DM.

Definition 7. (Interval Markov decision process semantics) In IMDP
semantics, before every transition from a state s of a IMC M = (S,L, δ),
nature chooses a solution of δ(s) and then takes a one-step probabilistic transition
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according to the chosen distribution. In other words, nature chooses a scheduler
η which then defines a DTMC M . The set of all DTMC in this semantics is
denoted by [M]d.

Obviously, for any IMC M we have:

[M]u ⊆ [M]d.

Given an IMC M and a state s, let σ-algebra (Ωs,F) be the smallest σ-algebra
on the cylinder sets of Ωs, where Ωs is the set of infinite paths starting from s.
For each scheduler η we have a probability measure Prη (also denoted by μη

M)
on the events in F .

3 Probabilitic Computation Tree Logic

Probabilistic computation tree logic (PCTL) [8] replaces the path quantifiers in
CTL by probabilistic operators. It has the following syntax:

f ::= a | ∼f | f ∧ f | P��pg
g ::= Xf | f U f

where a ∈ AP , f is called a state formula, g is called a path formula, 	
∈ {<,
≤, >,≥} and p is a rational number in [0, 1]. The PCTL semantics is define on
DTMCs. A DTMC M satisfies a state formula f at a state s if:

M, s |= a iff a ∈ L(s)
M, s |= ∼f iff M, s �|= f
M, s |= f1 ∧ f2 iff M, s |= f1 and M, s |= f2
M, s |= P��pg iff Pr{s |= g} 	
 p,

where {s |= g} = {w | w0 = s and M,w |= g}. A path formula g is true for a
path w of M if:

M,w |= Xf iff M,w1 |= f
M,w |= f1 U f2 iff ∃i : M,wi |= f2 and ∀j < i : M,wj |= f1

We will denote the satisfaction relation by s |= f (and w |= g) when M is
fixed. Next we define the satisfaction relation of a PCTL formula f for an IMC
M for the two semantics. In UMC semantics, M, s |=u f iff for every DTMC
M ∈ [M]u, M, s |= f . Note that for a PCTL formula f , M, s |=u f does not
imply M, s �|=u ∼f . In IMDP semantics, the satisfaction of a PCTL formula f
by a state s of M (M, s |=d f) is the same as for a DTMC except the formula
with probabilistic operator, which is as follows:

M, s |= P��pg iff ∀η : Prη
M{w | w0 = s and M,w |= g} 	
 p

Particularly,

s |= Pr≤c g iff supη Prη(s |= g) ≤ c
s |= Pr<c g iff supη Prη(s |= g) < c
s |= Pr≥c g iff infη Prη(s |= g) ≥ c
s |= Pr>c g iff infη Prη(s |= g) > c

(1)
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Thus if event E ∈ F defines a set of paths, we are interested in the values

inf
η

Prη
M(E) and sup

η
Prη

M(E)

Open intervals present a problem for model checking in IMDP semantics. There
might not exist a scheduler that gives the optimal values. Consider the reacha-
bility problem for IMCs in the following example:

Example 1. It is possible that an optimal scheduler may not exist for IMCs with
open intervals. Consider the following example Figure 1, E is the set of paths
that eventually reach the state s1 from s0. infη Prη(E) = 0.6, but no scheduler
gives the probability of reaching s1 from s0 as 0.6. The reason for this is the
open lower bound of (0.3, 1].

4 ε-Approximate Scheduler for Reachability

In this section we consider the reachability problem in IMDP semantics for IMCs
with open intervals. As observed in the previous example, an optimal scheduler
may not exists, thus we will construct ε-approximate schedulers.

An IMC is called a closed IMC if the probability interval of every transition
is closed. We can obtain a closed IMC from an arbitrary IMC by taking the
closure of the probability intervals.

Definition 8. Given an IMDP M � (S,L, δ), a closed IMDP M̄ is defined as
(S,L, δ′), where for every s, t, δ′(s, t) = δ̄(s, t).

Example 2. The closed IMC M̄ for M in the example 1 is shown below:

s0s1 s2

[0.5, 1]

(0.3, 1] (0.1, 4]

[1, 1][1, 1]

Fig. 1. A interval Markov chain

s0s1 s2

[0.5, 1]

[0.3, 1] [0.1, 4]

[1, 1][1, 1]

Fig. 2. A closed interval Markov chain

Evidently, if an IMC M is realizable then M̄ is also realizable.

Definition 9. Basic feasible solution (BFS). Given a set of closed intervals R �
{I1, . . . , Im} a basic feasible solution d is an m × 1 vector, such that there exists
a set H ⊆ R with |H| ≥ |R| − 1 and for all Ii ∈ H, di = Ii↓ or di = Ii↑, and
dT ·1 = 1.

BFSs of a set of intervals J that contains open intervals are the BFSs of the set
of closed intervals J̄ . We have the following observation.
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Proposition 1. Every solution of a set of (open or closed) intervals, can be
represented as the convex combination of the BFSs.

Proposition 2 ([4]). Let M be a closed IMC, and E be an event defining the
reachability of some set of states T ⊆ S. There exists a memoryless scheduler η
such that the probability of the event E is optimal.

The proposition says that, if M is closed then we have a scheduler η : S → DM

such that Prη(E) = infη′ Prη′
(E) (or supη′ Prη′

(E)), and η chooses at each
state s one of the BFSs of δ(s) (pure scheduler). The proposition follows directly
from the existence of an optimal scheduler for reachability in Markov Decision
Processes [2].

The main theorem of this paper is as follows:

Theorem 1. Let E be the event describing the set of paths of an IMC M start-
ing from a state s and eventually reaching some goal states T . Then:

∀ε > 0 ∃η̂ : |min
η

Prη
M̄(E) − Prη̂

M(E)| ≤ ε

and
∀ε > 0 ∃η̂ : |max

η
Prη

M̄(E) − Prη̂
M(E)| ≤ ε

Proof. Let M � (S,L, δ) and M̄ � (S,L, δ′). M̄ is closed, thus by Prop. 2 an
optimal scheduler exists. Let

∗
η be an optimal scheduler that minimizes Prη

M̄(E).

Furthermore,
∗
η is memoryless, deterministic and chooses one of the BFS of δ′(s)

at each state s. Hence,
∗
η induces a DTMC on M̄, and

∗
η(s, t) defines the single

step transition probability from a state s to a state t.

Let the stochastic matrix
∗
P be such that each row is identified with a state

of M̄. We have :
∗
P (s, t) =

∗
η(s, t) if s �∈ T and

∗
P (s, s) = 1 if s ∈ T (2)

Let A = (1 +
∗
P + (

∗
P )2 + (

∗
P )3 . . .), A is well-defined stochastic matrix as the

series converges. Let γ = ‖A‖∞.
Now we are in a position to define a scheduler η̂ for the IMC M. The scheduler

η̂ is a function, η̂ : S × N → DM. We assume that there are no positive point
intervals. (We can set the value of η̂ if point intervals are present.) Define the
following:

Qs = {t | ∗
η(s, t) > 0,

∗
η(s, t) �∈ δ(s)}

Ls = {t | ∗
η(s, t) ∈ δ(s, t),

∗
η(s, t) = δ(s, t)↓}

Rs = {t | ∗
η(s, t) ∈ δ(s, t),

∗
η(s, t) = δ(s, t)↑}

Is = {t | ∗
η(s, t) ∈ δ(s, t),

∗
η(s, t) �= δ(s, t)↑,

∗
η(s, t) �= δ(s, t)↓}

ρ = min{{x | ∃s,∃t ∈ Ls ∪ Is : x =
∗
η(s, t) − δ(s, t)↓},

{x | ∃s,∃t ∈ Rs ∪ Is : x = δ(s, t)↑ − ∗
η(s, t)},

{x | ∃s,∃t ∈ Qs : x = δ(s, t)↑ = δ(s, t)↓}}
Observe that ρ is a constant of the model M. Let η̂ be defined as follows:
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– Let t ∈ Qs. This implies
∗
η(s, t) = δ(s, t)↑ or

∗
η(s, t) = δ(s, t)↓. If

∗
η(s, t) =

δ(s, t)↑ then δ(s, t) is open from above and η̂(s, n, t) =
∗
η(s, t) − 2−n κρ

|Qs| ,

where κ = ε
1+γ . Similarly, if

∗
η(s, t) = δ(s, t)↓ then δ(s, t) is open from below

and η̂(s, n, t) =
∗
η(s, t)+2−n κρ

|Qs| .

– Let t ∈ Rs and α �
∑

t∈Qs

η̂(s, n, t) − ∗
η(s, t). If α < 0 then for all t ∈ Rs ∪ Is,

η̂(s, n, t) =
∗
η(s, t)+ α

|Rs∪Is| and for t ∈ Ls, η̂(s, n, t) =
∗
η(s, t). If α > 0 then for

all t ∈ Ls ∪ Is, η̂(s, n, t) =
∗
η(s, t) + α

|Ls∪Is| and for t ∈ Rs, η̂(s, n, t) =
∗
η(s, t).

If α = 0 then for all t ∈ Ls ∪ Is ∪ Rs, η̂(s, n, t) =
∗
η(s, t).

It remains to prove that d =
∗
η(s, n), defined above, is a solution to δ(s). From

the construction it follows that
∑

t∈S d t = 1 and hence it is a valid distribution
on the states of the IMC M. Consider the following cases: t ∈ Qs and

∗
η(s, t) =

δ(s, t)↑, the upper bound of δ(s, t) is open. The lower bound of δ(s, t) is strictly
smaller than 2−nκρ for any n ∈ N i.e., δ(s, t)↓ < κρ since ρ is at the most
as large as the smallest interval in M. Thus d t ∈ δ(s, t). Similarly, for every
t ∈ Qs, d t ∈ δ(s, t). Suppose α < 0, then Rs ∪ Is is not empty, else δ(s) will
not be realizable. The changes to the probability for a transition s to t, where
t ∈ Rs ∪ Is is small enough so that d t ∈ δ(s, t). Thus, for every t, d t ∈ δ(s, t),
or equivalently d is a solution to δ(s, t). Identical argument holds when α > 0.

Let P̂n be a sub-stochastic matrix defined as follows: P̂n(s, t) = η̂(s, t) if
∗
P (s, t) > 0 else P̂n(s, t) = 0. In other words, P̂n(s, t) > 0 if the state t is in
support(

∗
η(s)).

P̂n =
∗
P + Pn (3)

where |Pn(s, t)| ≤ 2−nκρ for every (s, t).
Let

∗
η and η̂ induce DTMCs M ′ and M on the IMCs M̄ and M, respectively.

Let the corresponding σ-algebra be S � (Ωs,F ,
∗
μ) and S ′ � (Ωs,F , μ̂), where

s is some state of M and Ωs is the set of paths starting from state s. Define
∗
R � {w ∈ Ωs | w is according to

∗
η} and R̂ � {w ∈ Ωs | w is according to η̂},

i.e.,
∗
R and R are set of paths in M ′ and M , respectively. Let B ∈ F be the

event of reaching the goal states T , and E =
∗
R ∩ B and E′ = R̂ ∩ B. It follows

from the construction that E ⊆ E′. Define Ai � {w | ∃u ∈ E : w0 . . . wi =
u0 . . . ui and

∗
η(wi, wi+1) = 0, η̂(wi, i, wi+1) > 0}. Let A =

⋃
i Ai. It is easy to

see that, E′ ∩ Ā = E. We will first show that the event A has a very small
probability measure in S ′:

μ̂(A) = Prη̂
M (A) =

∑

i=0

Prη̂
M (Ai)

If w ∈ Ai then δ(wi, wi+1)↑ > 0 and
∗
η(s, t) = 0. Thus,

Prη̂
M (Ai) ≤ 2−iκρ or Prη̂

M (A) ≤ κρ
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Thus,
μ̂(A) ≤ κρ (4)

We will now show that the probability of E′ can be made infinitesimally close to
the probability of E. Formally, we will show, |μ̂(E′) − μ̄(E)| ≤ ε. The left hand
side can be written as:

|μ̂(E′) − μ̄(E)| = |μ̂(E′ ∩ A) + μ̂(E′ ∪ Ā) − μ̄(E)|
≤ |μ̂(E) − μ̄(E)| + κρ

(5)

That is, we restrict to the paths that belong to E. Let xn
s denote the probability

of reaching the goal states T at the nth step in M ′ from the state s. Let En be
the event of reaching the goal states T at the nth step in the Markov chain M
such that En ⊆ E and thus

⋃
n En = E. Let yn

s = μ̂(En). Thus, we can write
the following:

xn+1
s =

∑

t∈support(
∗
η(s))

∗
P (s, t)xn

t ,

yn+1
s =

∑

t∈support(
∗
η(s))

P̂n(s, t)yn
t .

Or, using vector notation, xn+1 =
∗
Pxn and yn+1 = P̂nyn. Therefore:

yn+1 − xn+1 =
∗
P (yn − xn) + Pnyn from equation (3)

≤
∗
P (yn − xn) + 2−nκρ1

≤ 2−nκρ(1 +
∗
P +

∗
P

2

+ . . .)1
Thus, ‖yn+1 − xn+1‖∞ ≤ 2−nκργ.

We have,

|μ̂(E) − μ̄(E)| ≤ |
∑

n

(yn
s − xn

s )| ≤
∑

n

2−nκργ ≤ κργ

Combining this with equation (5) we can conclude:

|μ̂(E′) − μ̄(E)| ≤ (1 + γ)κρ ≤ ε

By similar argument we conclude ∀ε > 0 ∃η̂ : |maxη Prη
M ′(E) − Prη̂

M (E)| ≤ κ.

Corollary 1. Let E be the set of paths that reach some goal states T of IMC
M. Then:

min
η

Prη

M̄(E) = inf
η

Prη
M(E) and max

η
Prη

M̄(E) = sup
η

Prη
M(E).

Proof. We need to show ∀κ > 0 ∃η̂ : |minη Prη
M ′(E) − Prη̂

M (E)| ≤ κ. Observe
that, η̂ is also a scheduler of M ′, thus, Prη̂

M (E) − minη Prη
M ′(E) ≤ κ. Simi-

larly, for all κ > 0 there exists a scheduler η̂ of M such that maxη Prη
M ′(E) −

Prη̂
M (E) ≤ κ.
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Example 3. In UMC semantics, the nature picks the probability transition ma-
trix and the model behaves according to it. The infimum (or supremum) proba-
bility of reaching some state is different than the infimum probability in IMDP
semantics. This becomes apparent in the following IMC with an open interval:

s0s1 s2s3
[0.5, 0.5] [0.3, 1](0, 0.1]

[0, 1]

[1, 1][1, 1]

The minimum and maximum probability of reaching state s3 from s0 in the
UMC semantics is 0.5. But for any ε > 0 there exists a scheduler for which
the probability of reaching s3 is smaller than ε. That is, the infimum of the
probability of reaching state s3 is 0.

5 PCTL Model Checking

In this section we briefly recall PCTL model checking on DTMC and IMCs with
closed intervals (for the two semantics), and then show how to use the result of
previous section to do model checking for IMCs with open intervals.

Model checking of PCTL [1,6] formula f on DTMC M proceeds much like
the CTL model checking on Kripke structures [5]. The satisfiability of a (state)
sub-formula f ′ of f for a state s of M is iteratively calculated and the label-
ing functions are updated accordingly. For example, for the until formula f =
P��p(f1 U f2) and a state s, the formula f is added to the label of s iff the proba-
bility of reaching states with label f2, via states with label f1 satisfies 	
 p. This
can be done in polynomial time by solving linear constraints. Finally, a state
s |= f if f ∈ L(s) and the model checking problem can be solved in polynomial
time.

Model checking in UMC semantics uses the existential theory of reals [10].
An IMC M, s |=u f in UMC semantics iff for all DTMC M ∈ [M]u, M, s |= f ,
or equivalently, M, s �|=u f iff there exists a M ∈ [M]u such that M, s |= ∼f .
Basically, we use parameters to encode the transition probabilities which are con-
strained by the intervals and construct a formula Γ in existential theory of reals
such that Γ is satisfiable iff there exists a M ∈ [M]u such that M, s |= ∼f [4].
Observe, that the presence (or absence) of open intervals does not affect the
algorithm and the algorithm operates in PSPACE.

Model checking in IMDP semantics is done by first transforming the IMC
into an Markov decision process (MPD) and then doing model checking on the
MDP [2]. Let M = (S,L, δ) be a closed IMC and for each state s ∈ S, let
Bs be the set of basic feasible solution of δ(s). Let DM = (S,L, μ) be the
MDP with μ : S → S → [0, 1], where μ(s) = Bs. From Proposition 1, we can
deduce that, a DTMC M ∈ [M]d iff M is induced by some scheduler η of DM.
Model checking of MDP proceeds the same way as model checking of DTMC. We
iteratively update the labels of the state with (state) sub-formulas. Conjunctions
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and disjunctions are handled as in the DTMC model checking. Interesting cases
are formulas with probabilistic operator and negations. Let g be a path formula
and P�pg (or P≺pg) is added to the label of a state s ∈ S, iff

min
η

Prη
DM(s |= g) � p (or max

η
Prη

DM(s |= g) ≺ p)

where �∈ {≥, >} (≺∈ {≤, <}). This is done by solving a linear optimization
problem. We use the following proposition to handle formulas with negations.

Proposition 3. For any E ∈ F of (Ωs,F) on MDP M ,

inf
η

Prη(E) = 1 − sup
η

Prη(Ē)

Thus, model checking MDPs boils down to solving successive reachability opti-
mization problems. Note that direct application of this method to IMCs with
open interval is not possible since no scheduler exists which may yields the value
infη Prη

DM(s |= g).
In the rest of the section we use the above mentioned model checking mecha-

nism to show that model checking IMCs with open interval in IMDP semantics,
reduces to model checking its closure.

Theorem 2. Given a PCTL formula f and an IMC M,

M, s |= f iff M̄, s |= f

Proof. We assume that M has open intervals. We proceed by induction on the
structure of the formula f . We have the following cases:

1. Let f := a. The labeling function of s in M and M̄ are identical. Thus,
M, s |= f iff M̄, s |= f .

2. Let f := ∼f ′. From the induction hypothesis, M, s �|= f ′ iff M̄, s �|= f ′. Thus,
M, s |= f iff M̄, s |= f .

3. Let f := f1 ∧ f2. From the induction hypothesis, M, s |= f1 iff M̄, s |= f1
and M, s |= f2 iff M̄, s |= f2. Thus, M, s |= f iff M̄, s |= f .

4. Let f := [Xf ′]��c. Consider the case 	
∈ {≥, >}. Suppose
∗
η be the optimal

scheduler of M̄ such that Pr
∗
η

M̄(Xf ′) = minη Prη

M̄(Xf ′).
We show that for every ε we can construct a scheduler η̂ of M such that

Prη̂
M(Xf ′) − Pr

∗
η

M̄(Xf ′) ≤ ε.

Observe that, any scheduler of M is also a scheduler of M̄, since for any
states s, t ∈ S δ(s, t) ⊆ δ̄(s, t). Thus, Corollary 1. is applicable. Let Qs �
{t | ∗

η(s, t) > 0,
∗
η(s, t) �∈ δ(s)} and Rs � {t | ∗

η(s, t) > 0,
∗
η(s, t) ∈ δ(s, t)}.

We assume that Qs, Rs are not empty and there are no point intervals. Let
η̂(s) = d , where d is defined as follows:
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– Let t ∈ Qs. This implies
∗
η(s, t) = δ(s, t)↑ or

∗
η(s, t) = δ(s, t)↓. If

∗
η(s, t) =

δ(s, t)↑ then δ(s, t) is open from above and d t =
∗
η(s, t) − ερ

|S| , where ρ is

the minimum of the length of the non-zero interval in M and the
∗
η(s, t)

for t ∈ Rs. Similarly, if
∗
η(s, t) = δ(s, t)↓ then δ(s, t) is open from below

and d t =
∗
η(s, t)+ ερ

|S| .

– Let t ∈ Rs and α � 1−
∑

t∈Qs

d t −
∑

t∈Rs

∗
η(s, t). We have d t =

∗
η(s, t)+ α

|Rs| .

It follows that d is a distribution on the states of M and is a solution to δ(s).
Let E � {w | ∗

η(w0, w1) > 0 and M̄, w1 |= f ′} and E′ � {w | η̂(w0, w1) >
0 and M, w1 |= f ′}.

|
∗
η

Pr̄
M

(E) −
η̂

Pr
M

(E′)| ≤
∑

t∈support(η̂(s))

ερ

|S| ≤ ε

Thus we can conclude that infη Prη
M(Xf ′) = minη Prη

M̄(Xf ′). By similar
argument:

sup
η

Prη
M(Xf ′) = max

η
Prη

M̄(Xf ′).

M, s |= [Xf ′]��c iff M̄, s |= [Xf ′]��c, where 	
 ∈ {≤, <}.
5. Let f := [f1 U f2]��c. Suppose 	
 ∈ {≥, >}. By induction hypothesis, for

every s, M, s |= f1 iff M̄, s |= f1 and M, s |= f2 iff M̄, s |= f2. Let S1 �
{s | s,M |= f1} and T � {s | s,M |= f2}. The IMC M′ is obtained from
M by omitting states not present in the set S1 ∪ T . It is easy to see that, if
E is the event of reaching T in M′, then infη Prη

M′(E) = infη Prη
M(f).

From Corollary 1 it follows that for any 0 < ε ≤ 1 we can find η̂ such that
Prη̂

M′(E)− minη Prη
M̄′(E) ≤ ε, where E is the event of reaching T in M′.

Thus infη Prη
M(f) = minη Prη

M̄(f). Similar argument holds for 	
 ∈ {<,≤}.

This concludes the proof.

s0 s1

{a}

[0.5, 1]

(0, 1]
[1, 1]

Fig. 3. A interval Markov chain

s0 s1

{a}

[0.5, 1]

[0, 1]
[1, 1]

Fig. 4. A closed interval Markov chain

Example 4. Consider PCTL model checking of IMCs in UMC semantics. This
involves existentially quantifying the transition probabilities and creating a for-
mula in closed real field [4]. This captures a strict set of DTMC as compared to
IMDP semantics, i.e, [M]u � [M]d. For example, DTMC where the transition
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probability between two states s, t change over time cannot be represented in
UMC semantics. This is exemplified by the IMC M in Figure 3. The probabil-
ity of satisfying the path formula g = G (∼a ∧ [Xa]>0) in the UMC semantics
is 0. But we can find schedulers which can make the probability of satisfying
g arbitrarily close to 1. The scheduler has the freedom to define an infinite
Markov chain by assigning monotonically increasing probabilities for the transi-
tion s0 → s0).

The model checking of the open IMC M is done by closing it (Figure 4). This
gives us the closed IMC M̄, shown below: The maximum probability of satisfying
g in M̄ is 1. Which implies, for every 0 < ε ≤ 1, there exists a scheduler η̂, for
which the probability of staying in a state that satisfies ∼a∧[Xa]>0 (s0) is greater
than 1 − ε, by Theorem 2.

6 Conclusion

We presented the problem of model checking Interval Markov chains with open
intervals. We proved that as far as model checking (and reachability) is con-
cerned open intervals do not cause any problem in interval Markov decision
process semantics and thus can be safely ignored. Interval Markov chains are
but special cases of more complex Markovian models, called constraint Markov
chains (CMC) [3]. Transition probabilities in these models are defined as a solu-
tion to linear equations. Let FV be the set of linear in-equations on variables V .
A constraint Markov chain is a tuple M � (S,L, δ), where the transition func-
tion δ : S → 2FV , maps each state to a set of linear in-equations. Thus IMCs
are a strict sub-class of convex Markov decision process. The behaviour of a
CMC can be defined in the UMC and IMDP semantics. We say, a system of
in-equation are closed if they have non-strict inequalities, otherwise they are
open. A CMC is called open if the transition function maps to an open system
of linear equations. Model checking open CMCs have the same kinds of problems
as described for IMCs. Theorem 2. can be extended to CMCs as well. We can
define basic feasible solutions for a system of linear in-equations as well. Let s
be a state of a CMC M and δ(s) be a system of linear in-equations on vari-
ables {x1, . . . , xk} such that xi denotes the probability of moving from state s
to si. The BFSs of δ(s) are the vertices of the convex hull defined by the set of
in-equations δ(s) ∪ {x1 + . . . + xk = 1}. The same argument as in the proof of
Theorem 2 shows that, model checking of PCTL formulas on CMCs can be done
by first closing the system of in-equations, this is done by replacing the strict
inequalities (<,>) with non-strict inequalities (≤,≥), and then model checking
on the closed model.
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