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Abstract. We address the verification problem of ordered multi-pushdown automata:
A multi-stack extension of pushdown automata that comes with a constraint on stack
transitions such that a pop can only be performed on the first non-empty stack. First, we
show that the emptiness problem for ordered multi-pushdown automata is in 2ETIME.
Then, we prove that, for an ordered multi-pushdown automata, the set of all predecessors
of a regular set of configurations is an effectively constructible regular set. We exploit
this result to solve the global model-checking which consists in computing the set of all
configurations of an ordered multi-pushdown automaton that satisfy a given w-regular
property (expressible in linear-time temporal logics or the linear-time µ-calculus). As
an immediate consequence, we obtain an 2ETIME upper bound for the model-checking
problem of w-regular properties for ordered multi-pushdown automata (matching its lower-
bound).

Introduction

Automated verification of multi-threaded programs is an important and a highly challenging
problem. In fact, even when such programs manipulate data ranging over finite domains,
their control structure can be complex due to the handling of (recursive) procedure calls in
the presence of concurrency and synchronization between threads.

In the last few years, a lot of effort has been devoted to the verification problem for
models of concurrent programs (see, e.g., [BMOT05, TMP07, Kah09, ABT08, TMP08,
AT09, HLMS10, LR08, GMM10, EQR11, BEP11, LN11]) where each thread corresponds
to a sequential program with (recursive) procedure calls. In fact, it is well admitted that
pushdown automata are adequate models for such kind of threads [EK99, RSJ03], and
therefore, it is natural to model recursive concurrent programs as multi-stack automata.

In general, multi-stack automata are Turing powerful and hence come along with un-
decidability of basic decision problems [Ram00]. A lot of efforts have been nevertheless
devoted recently to the development of precise analysis algorithms of specific formal models
of some classes of programs [LS98, EP00, BT03, SV06, JM07].

Context-bounding has been proposed in [QR05] as a suitable technique for the analysis
of multi-stack automata. The idea is to consider only runs of the automaton that can be
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divided into a given number of contexts, where in each context pop and push transitions
are exclusive to one stack. The state space which may be explored is still unbounded in
presence of recursive procedure calls, but the context-bounded reachability problem is NP-
complete even in this case. In fact, context-bounding provides a very useful tradeoff between
computational complexity and verification coverage.

In [TMP07], La Torre et al. propose a more general definition of the notion of a context.
For that, they define the class of bounded-phase visibly multi-stack pushdown automata
(BVMPA) where only those runs are taken into consideration that can be split into a given
number of phases, where each phase admits pop transitions of one particular stack only. In
the above case, the emptiness problem is decidable in double exponential time by reducing
it to the emptiness problem for tree automata.

Another way to regain decidability is to impose some order on stack transitions. In
[BCCC96], Breveglieri et al. define ordered multi-pushdown automata (OMPA), which im-
pose a linear ordering on stacks. Stack transitions are constrained in such a way that a
pop transition is reserved to the first non-empty stack. In [ABH08], the emptiness problem
for OMPA is shown to be 2ETIME-complete. (Recall that 2ETIME is the class of all de-

cision problems solvable by a deterministic Turing machine in time 22
dn

for some constant
d.) The proof of this result lies in an encoding of OMPA into some class of grammars for
which the emptiness problem is decidable. Moreover, the class of ordered multi-pushdown
automata with 2k stacks is shown to be strictly more expressive than bounded-phase visibly
multi-stack pushdown automata with k phases [ABH08].

In this paper, we consider the problem of verifying ordered multi-pushdown automata
with respect to a given w-regular property (expressible in the linear-time temporal logics
[Pnu77] or the linear-time µ-calculus [Var88]). In particular, we are interested in solving the
global model checking for ordered multi-pushdown automata which consists in computing
the set of all configurations that satisfy a given w-regular property. The basic ingredient
for achieving this goal is to define a procedure for computing the set of backward reachable
configurations from a given set of configurations. Therefore, our first task is to find a finite
symbolic representation of the possibly infinite state-space of an ordered multi-pushdown
automaton. For that, we consider the class of recognizable sets of configurations defined
using finite state automata [QR05, ABT08, Set10].

We show that for an ordered multi-pushdown automaton M the set of all predecessors
Pre∗(C) of a recognizable set of configurations C is an effectively constructible recognizable
set. For this, we introduce the class of effective generalized pushdown automata (EGPA)
where transitions on stacks are (1) pop the top symbol of the stack, and (2) push a word in
some effective language L over the stack alphabet. The language L is said to be effective if
the problem consisting in checking whether L intersects a given regular language is decid-
able. Observe that L can be any finite union of languages defined by a class of automata
closed under intersection with regular languages and for which the emptiness problem is
decidable (e.g., pushdown automata, Petri nets, lossy channel machines, etc). Then, we
show that the automata-based saturation procedure for computing the set of predecessors
in standard pushdown automata [BEM97] can be extended to prove that for EGPA too
the set of all predecessors of a regular set of configurations is a regular set and effectively
constructible. As an immediate consequence of this result, we obtain similar decidability
results of the decision problems for EGPA like the ones obtained for pushdown automata.

Then, we show that, given an OMPA M with n stacks, it is possible to construct an
EGPA P, whose pushed languages are defined by OMPA with (n − 1) stacks, such that
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the following invariant is preserved: The state and the stack content of P are respectively
the same as the state and the content of the nth stack of M when its first (n − 1) stacks
are empty. Let C be a recognizable set of configurations of M, and Pre∗(C) the set of
predecessors of C. Then, we can apply the saturation procedure to P to show that the
set of configurations Cn, consisting of Pre∗(C) restricted to the configurations in which
the first (n − 1) empty stacks are empty, is recognizable and effectively constructible. To
compute the intermediary configurations in Pre∗(C) where the first (n − 1) stacks are not
empty, we construct an ordered multi-pushdown automaton M′ with (n − 1) stacks that:
(1) performs the same transitions on its stacks as the ones performed by M on its first
(n − 1) stacks, and (2) simulates a push transition of M over its nth stack by a transition
of the finite-state automaton accepting the recognizable set of configurations Cn. Now, we
can apply the induction hypothesis to M′ and construct a finite-state automaton accepting
the set of all predecessors Pre∗(C).

As an application of this result, we show that the set of configurations of an ordered
multi-pushdown automaton satisfying a given w-regular property is recognizable and effec-
tively constructible. Our approach also allows us to obtain an 2ETIME upper bound for
the model checking problem of w-regular properties for ordered multi-pushdown automata
(matching its lower-bound [ABH08]).

Related works: As mentioned earlier, context-bounding has been introduced by Qadeer
and Rehof in [QR05] for detecting safety bugs in shared memory concurrent programs. Sev-
eral extensions of context-bounding to other classes of programs and efficient procedures for
context-bounded analysis have been proposed in [BESS05, BFQ07, LR08, ABQ09, TMP09,
LMP09, LMP10]. Other bounding concepts allowing for larger/incomparable coverage of
the explored behaviors have been proposed in [TMP07, GMM10, EQR11, BEP11, LN11].

In [Set10], A. Seth shows that the set of predecessors of a recognizable set of config-
urations of a bounded-phase visibly multi-stack pushdown automaton is recognizable and
effectively constructible. In fact, our results generalize the obtained result in [Set10] since
any bounded-phase visibly multi-stack pushdown automaton with k phases can be simulated
by an ordered multi-pushdown automaton with 2k stacks [ABH08].

In this line of work, the focus has been on checking safety properties. In [MP11],
P. Madhusudan and G. Parlato propose a unified and generalized technique to show the
decidability of the emptiness problem for several restricted classes of concurrent pushdown
automata (including ordered multi-pushdown automata). The proof is done by showing that
the graphs of each such computations (seen as a multi-nested words) have a bounded tree-
width. This result implies that model checking MSO properties (over finite-computations)
for these systems is decidable for OMPA. In the conclusion of [MP11], the authors claim
that their approach can be used to show the decidability of the model checking of ω-regular
properties over infinite computations of OMPA but no proof was provided. Moreover, the
authors does not address the global model-checking problem for OMPA neither establish
its complexity as we do.

To the best of our knowledge, this is the first work that addresses the global model
checking for ordered multi-pushdown automata. In this paper, we extend [Ati10a, Ati10b]
by adding details and missing proofs.
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1. Preliminaries

In this section, we introduce some basic definitions and notations that will be used in the
rest of the paper.

Integers: Let N be the set of natural numbers. For every i, j ∈ N such that i ≤ j, we use
[i, j] (resp. [i, j[) to denote the set {k ∈ N | i ≤ k ≤ j} (resp. {k ∈ N | i ≤ k < j}).

Words and languages: Let Σ be a finite alphabet. We denote by Σ∗ (resp. Σ+) the set
of all words (resp. non empty words) over Σ, and by ǫ the empty word. A language is
a (possibly infinite) set of words. We use Σǫ and Lang(Σ) to denote respectively the set
Σ ∪ {ǫ} and the set of all languages over Σ. Let u be a word over Σ. The length of u is
denoted by |u|. For every j ∈ [1, |u|], we use u(j) to denote the jth letter of u. We denote
by uR the mirror of u.

Transition systems: A transition system (TS for short) is a triplet T = (C,Σ,→) where:
(1) C is a (possibly infinite) set of configurations, (2) Σ is a finite set of labels (or actions)
such that C ∩ Σ = ∅, and (3) →⊆ C × Σǫ × C is a transition relation. We write c a−→T c′

whenever c and c′ are two configurations and a is an action such that (c, a, c′) ∈→.
Given two configurations c, c′ ∈ C, a finite run ρ of T from c to c′ is a finite sequence

c0a1c1 · · · ancn, for some n ≥ 1, such that: (1) c0 = c and cn = c′, and (2) ci
ai+1−−−→T ci+1 for

all i ∈ [0, n[. In this case, we say that ρ has length n and is labelled by the word a1a2 · · · an.

Let c, c′ ∈ C and u ∈ Σ∗. We write c
u

==⇒
n

T c′ if one of the following two cases holds: (1)

n = 0, c = c′, and u = ǫ, and (2) there is a run ρ of length n from c to c′ labelled by u. We

also write c
u

==⇒∗
T c′ (resp. c

u
==⇒+

T c′) to denote that c
u

==⇒
n

T c′ for some n ≥ 0 (resp. n > 0).

For every C1, C2 ⊆ C, let TracesT (C1, C2) = {u ∈ Σ∗ | ∃(c1, c2) ∈ C1 × C2 , c1
u

==⇒∗
T c2}

be the set of sequences of actions generated by the runs of T from a configuration in C1 to
a configuration in C2.

For every C ′ ⊆ C, let PreT (C
′) = {c ∈ C | ∃(c′, a) ∈ C ′ × Σǫ , c

a−→T c′} be the set of
immediate predecessors of C ′. Let Pre∗T be the reflexive-transitive closure of PreT , and let
Pre+T = PreT ◦ Pre∗T where the operator ◦ stands for the function composition.

Finite state automata: A finite state automaton (FSA) is a tuple A = (Q,Σ,∆, I, F )
where: (1) Q is the finite non-empty set of states, (2) Σ is the finite input alphabet, (3)
∆ ⊆ (Q × Σǫ × Q) is the transition relation, (4) I ⊆ Q is the set of initial states, and
(5) F ⊆ Q is the set of final states. We represent a transition (q, a, q′) in ∆ by q a−→A q′.
Moreover, if I ′ and F ′ are two subsets of Q, then we use A(I ′, F ′) to denote the finite state
automaton defined by the tuple (Q,Σ,∆, I ′, F ′).

The size of A is defined by |A| = (|Q|+ |Σ|+ |∆|). We use T (A) = (Q,Σ,∆) to denote
the transition system associated with A. The language accepted (or recognized) by A is
given by L(A) = TracesT (A)(I, F ).

2. Generalized pushdown automata

In this section, we introduce the class of generalized pushdown automata where transitions
on stacks are (1) pop the top symbol of the stack, and (2) push a word in some (effectively)
given set of words L over the stack alphabet. A transition t is of the form δ(p, γ, a, p′) = L
where L is a (possibly infinite) set of words. Being in a configuration (q, w) where q is
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a state and w is a stack content, t can be applied if both p = q and the content of the
stack is of the form γw′ for some w′. Taking the transition and reading the input letter
a (which may be the empty word), the automaton moves to the successor configuration
(p′, uw′) where u ∈ L (i.e., the new state is p′, and γ is replaced with a word u belonging
to the language L). Formally, we have:

Definition 2.1 (Generalized pushdown automata). A generalized pushdown automaton
(GPA for short) is a tuple P = (P,Σ,Γ, δ, p0, γ0, F ) where: (1) P is the finite non-empty set
of states, (2) Σ is the input alphabet, (3) Γ is the stack alphabet, (4) δ : P ×Γ×Σǫ×P →
Lang(Γ) is the transition function, (5) p0 ∈ P is the initial state, (6) γ0 ∈ Γ is the initial
stack symbol, and (7) F ⊆ P is the set of final states.

Next, we define the effectiveness property for generalized pushdown automata. Intu-
itively, the generalized pushdown automaton P is said to be effective if for any possible
pushed language L by P (i.e., δ(p, γ, a, p′) = L for some p, p′ ∈ Q, γ ∈ Γ, and a ∈ Σǫ),
the problem of checking the non-emptiness of the intersection of L and any given regular
language (i.e. accepted by a finite-state automaton) is decidable.

Definition 2.2 (Effectiveness Property). A GPA P = (P,Σ,Γ, δ, p0, γ0, F ) is effective if
and only if for every finite state automaton A over the alphabet Γ, it is decidable whether
L(A) ∩ δ(p, γ, a, p′) 6= ∅ for all p, p′ ∈ P , γ ∈ Γ, and a ∈ Σǫ.

A configuration of a GPA P = (P,Σ,Γ, δ, p0, γ0, F ) is a pair (p,w) where p ∈ P and
w ∈ Γ∗. The set of all configurations of P is denoted by Conf (P). Similarly to the
case of pushdown automata [BEM97], we use the class of P-automata as finite symbolic
representation of a set of configurations of GPA. Formally, a P-automaton is a FSA A =
(QA,Γ,∆A, IA, FA) such that IA = P . We say that a configuration (p,w) of P is accepted
(or recognized) by A if w ∈ L(A({p}, FA)). The set of all configurations recognized by A
is denoted by LP(A). A set of configurations of P is said to be recognizable if and only if
it is accepted by some P-automaton.

P = ({p0, p1, p2, pf}, {a, b, c}, {⊥, γ0 , γ1, γ2}, δ, p0,⊥, {pf})

δ(p0,⊥, ǫ, p2) = {γi2γ
i
1γ

i
0⊥ | i ∈ N} δ(p2, γ2, a, p2) = {ǫ}

δ(p2, γ1, b, p1) = {ǫ} δ(p1, γ1, b, p1) = {ǫ}
δ(p1, γ0, c, p0) = {ǫ} δ(p0, γ0, c, p0) = {ǫ}
δ(p0,⊥, ǫ, pf ) = {ǫ} otherwise ∅

Table 1: A GPA P for {ǫ} ∪ {ai1bi1ci1ai2bi2ci2 · · · aikbikcik | k ≥ 1 and i1, . . . , ik > 0}

The transition system T (P) associated with the generalized pushdown automaton P is
defined by the tuple (Conf (P),Σ,→) where → is the smallest transition relation such that:
For every p, p′ ∈ P , γ ∈ Γ, and a ∈ Σǫ, if δ(p, γ, a, p

′) 6= ∅, then (p, γw) a−→T (P)(p
′, uw) for

all u ∈ δ(p, γ, a, p′) and w ∈ Γ∗. Let L(P) = TracesT (P)({(p0, γ0)}, F × {ǫ}) denote the
language accepted by P.

Observe that pushdown automata can be seen as a particular class of effective GPA
where δ(p, γ, a, p′) is a finite set of words for all (p, γ, a, p′).

Table 1 shows an example of an effective generalized pushdown automaton where the
pushed language {γi2γ

i
1γ

i
0⊥ | i ∈ N} can be accepted by a Petri net (with reachability as

acceptance condition).
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2.1. Computing the set of predecessors for an GPA. In this section, we show that the
set of predecessors of a recognizable set of configurations of an effective GPA is recognizable
and effectively constructible. This is done by adapting the construction given in [BEM97,
EHRS00, Sch02]. On the other hand, it is easy to observe that the set of successors of a
recognizable set of configurations of an effective GPA is not recognizable in general (see the
example given in Table 1).

Theorem 2.3. For every effective generalized pushdown automaton P, and every P-
automaton A, it is possible to construct a P-automaton recognizing Pre∗T (P)(LP (A)).

The rest of this section is devoted to the proof of Theorem 2.3. For that, let
P = (P,Σ,Γ, δ, p0, γ0, F ) be an effective generalized pushdown automata and A =
(QA,Γ,∆A, IA, FA) be an P-automaton. Without loss of generality, we assume that A
has no transition leading to an initial state. We compute Pre∗T (P)(LP (A)) as the set of

configurations recognized by an P-automaton Apre∗ = (QA,Γ,∆pre∗ , IA, FA) obtained from
A by means of a saturation procedure. Initially, we have Apre∗ = A. Then, the procedure
adds new transitions to Apre∗, but no new states. New transitions are added according to
the following saturation rule:

For every p, p′ ∈ P , γ ∈ Γ, and a ∈ Σǫ, if δ(p, γ, a, p
′) 6= ∅, then for every q ∈ QA

such that δ(p, γ, a, p′) ∩ L(Apre∗({p
′}, {q})) 6= ∅, add the transition (p, γ, q) to Apre∗

It is easy to see that the saturation procedure eventually reaches a fixed point because
the number of possible new transitions is finite. Moreover, the saturation procedure is well
defined since the emptiness problem of the language

(

δ(p, γ, a, p′) ∩ L(Apre∗({p
′}, {q}))

)

is
decidable (P is an effective GPA). Then, the relation between the set of configurations
recognized by Apre∗ and the set Pre∗T (P)(LP (A)) is established by Lemma 2.4. (Observe

that Theorem 2.3 follows from Lemma 2.4.)

Lemma 2.4. LP(Apre∗) = Pre∗T (P)(LP (A)).

Lemma 2.4 is an immediate consequence of Lemma 2.5 and Lemma 2.6: Lemma
2.5 shows that Pre∗T (P)(LP(A)) ⊆ LP(Apre∗) while Lemma 2.6 establishes LP(Apre∗) ⊆

Pre∗T (P)(LP(A)).

Lemma 2.5. For every configuration (p′, w′) ∈ LP(A), if (p,w)
τ

==⇒∗
T (P) (p

′, w′) for some

τ ∈ Σ∗, then (p,w) ∈ LP(Apre∗).

Proof. Assume (p,w)
τ

==⇒
n

T (P) (p
′, w′). We proceed by induction on n.

Basis. n = 0. Then, p = p′ and w′ = w. Since (p′, w′) ∈ LP(A) and LP(A) ⊆ LP(Apre∗),
we have (p,w) ∈ LP(Apre∗).

Step. n > 0. Then, there is a configuration (p′′, w′′) ∈ Conf (P) such that:

(p,w) a−→T (P) (p
′′, w′′)

τ ′
===⇒
n−1

T (P) (p
′, w′)

for some a ∈ Σǫ and τ ′ ∈ Σ∗ such that τ = aτ ′.
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We apply the induction hypothesis to (p′′, w′′)
τ

===⇒
n−1

T (P) (p
′, w′), and we obtain:

(p′′, w′′) ∈ LP(Apre∗)

Since (p,w) a−→T (P) (p
′′, w′′), there are γ ∈ Γ and u, v ∈ Γ∗ such that:

w = γv, w′′ = uv, and u ∈ δ(p, γ, a, p′′)

Let q be a state of Apre∗ such that:

u ∈ L(Apre∗({p
′′}, {q})) and v ∈ L(Apre∗({q}, FA)).

Such a state q exists since uv ∈ L(Apre∗({p
′′}, FA)). By the saturation rule, we have that

(p, γ, q) is a transition of Apre∗ since u ∈ L(Apre∗({p
′′}, {q})) ∩ δ(p, γ, a, p′′). This implies

that w = γv ∈ L(Apre∗({p}, FA)) since (p, γ, q) ∈ ∆Apre∗
and v ∈ L(Apre∗({q}, FA)). Hence,

we have (p,w) ∈ LP(Apre∗).

In the following, we establish that LP(Apre∗) ⊆ Pre∗T (P)(LP(A)). This is an an imme-

diate corollary of the following lemma:

Lemma 2.6. If w ∈ L(Apre∗({p}, {q})), then (p,w)
τ

==⇒∗
T (P) (p

′, w′) for a configuration

(p′, w′) and τ ∈ Σ∗ such that w′ ∈ L(A0({p
′}, {q})). Moreover, if q is an initial state of

Apre∗, then we have p′ = q and w′ = ǫ.

Proof. Let An = (QA,Γ,∆i, IA, FA) be the P-automaton obtained after adding n transi-
tions to A. In particular, we have A0 = A. Then, it is easy to see that LP(A) = LP(A0) ⊆
LP(A1) ⊆ LP(A2) ⊆ · · · ⊆ LP(Apre∗).

Let n be an index such that w ∈ L(An(p, q)) holds. We shall prove the first part of
Lemma 2.6 by induction on n. The second part follows immediately from the fact that
initial states have no incoming transitions in A0.

Basis. n = 0. Since w ∈ L(An({p}, {q})) holds, take w′ = w and p′ = p.

Step. n > 0. Let t = (p′′, γ, q′) be the n-th transition added to Apre∗. Let m be the number

of times that t is used in p
w

==⇒∗
T (An)

q.

The proof is by induction on m. If m = 0, then we have w ∈ L(An−1({p}, {q})), and
the property (1) follows from the induction hypothesis (induction on n). So, assume that
m > 0. Then there exist u and v such that w = uγv and

u ∈ L(An−1({p}, {p
′′})), p′′

γ
−→T (An) q

′, and v ∈ L(An({q
′}, {q})).

The application of the induction hypothesis to u ∈ L(An−1({p}, {p
′′})) yields to that:

(p, u)
τ ′
==⇒∗

T (P) (p
′′, ǫ) for some τ ′ ∈ Σ∗.

Since the transition (p′′, γ, q′) has been added by applying the saturation procedure, there
exist p′′′, w2, and a ∈ Σǫ such that:

w2 ∈ δ(p′′, γ, a, p′′′), and w2 ∈ L(An−1({p
′′′}, {q′})).
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From w2 ∈ L(An−1({p
′′′}, {q′})) and v ∈ L(An({q

′}, {q})), we get that there is a computa-

tion ρ = p′′′
w2v==⇒∗

T (An)
q such that the number of times transition t is used is strictly less

than m. So, we can apply the induction hypothesis (induction on m) to ρ, and we obtain:

(p′′′, w2v)
τ ′′
==⇒∗

T (P) (p
′, w′) for a configuration (p′, w′) and τ ′′ ∈ Σ∗ s.t. w′ ∈ L(A0({p

′}, {q})).

Putting all previous equations together, we get w′ ∈ L(A0({p
′}, {q})), and:

(p,w) = (p, uγv)
τ ′
==⇒∗

T (P) (p
′′, γv) a−→T (P) (p

′′′, w2v)
τ ′′
==⇒∗

T (P) (p
′, w′)

This terminates the proof of Lemma 2.6.

2.2. Emptiness problem and closure properties for GPA. In this section, we show
that the emptiness problem is decidable for effective generalized pushdown automata. This
is an immediate consequence of the fact that the set of predecessors of a recognizable set
of configurations of an effective generalized pushdown automaton is also recognizable and
effectively constructible.

Theorem 2.7. The emptiness problem is decidable for effective generalized pushdown au-
tomata.

Proof. Let P = (P,Σ,Γ, δ, p0, γ0, F ) be an effective generalized pushdown automaton. It
is easy to see that L(P) 6= ∅ if and only if (p0, γ0) ∈ Pre∗T (P)(F × {ǫ}). By Theorem 2.3,

we can construct a P-automaton Apre∗ that recognizes exactly the set Pre∗T (P)(F × {ǫ})

since F ×{ǫ} is a recognizable set of configurations. Hence, the emptiness problem for P is
decidable since checking whether (p0, γ0) is in LP(Apre∗) is decidable.

Next, we show some closure properties for effective generalized pushdown automata.

Theorem 2.8. The class of effective GPAs is closed under concatenation, union, Kleene
star, projection, homomorphism, and intersection with a regular language. However, effec-
tive GPAs are not closed under intersection.

Proof. Showing the closure of the class of effective generalized pushdown automata under
concatenation, union, Kleene star, projection, homomorphism, and intersection with a reg-
ular language is similar to the case of pushdown automata. The only issue to prove is
the closure under intersection. For that, let us assume by contradiction that the class of
effective GPAs is closed under the intersection operation. Let P1 and P2 two pushdown
automata. Since the class of pushdown automata is a particular class of effective general-
ized pushdown automata and the class of effective generalized pushdown automata is closed
under the intersection operation (from the contradiction’s hypothesis), there is an effective
generalized pushdown automaton P such that L(P) = L(P1) ∩ L(P2). Applying Theorem
2.7 to P, we obtain the decidability of the emptiness problem of the intersection of two
context-free languages, which is a contradiction.
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3. Ordered multi-pushdown automata

In this section, we first recall the definition of multi-pushdown automata. Then ordered
multi-pushdown automata appear as a special case of multi-pushdown automata.

3.1. Multi-pushdown automata. Multi-pushdown automata have one read-only left to
right input tape and n ≥ 1 read-write memory tapes (stacks) with a last-in-first-out rewrit-
ing policy. A transition is of the form t = 〈q, γ1, . . . , γn〉

a−→〈q′, α1, . . . , αn〉. Being in a
configuration (p,w1, . . . , wn), which is composed of a state p and a stack content wi for each
stack i, t can be applied if both q = p and the i-th stack is of the form γiw

′
i for some w′

i.
Taking the transition and reading the input symbol a (which might be the empty word),
the automaton moves to the successor configuration (q′, α1w

′
1, . . . , αnw

′
n).

Definition 3.1 (Multi-pushdown automata). A multi-pushdown automaton (MPA) is a
tuple M = (n,Q,Σ,Γ,∆, q0, γ0, F ) where:

• n ≥ 1 is the number of stacks.
• Q is the finite non-empty set of states.
• Σ is the finite set of input symbols.
• Γ is the finite set of stack symbols containing the special stack symbol ⊥.
• ∆ ⊆

(

Q × (Γǫ)
n
)

× Σǫ ×
(

Q × (Γ∗)n
)

is the transition relation such that, for all
((q, γ1, . . . , γn), a, (q

′, α1, . . . , αn)) ∈ ∆ and i ∈ [1, n], we have:
− |αi| ≤ 2.
− If γi 6= ⊥, then αi ∈ (Γ \ {⊥})∗.
− If γi = ⊥, then αi = α′

i⊥ for some α′
i ∈ (Γǫ \ {⊥}).

• q0 ∈ Q is the initial state.
• γ0 ∈ (Γ \ {⊥}) is the initial stack symbol.
• F ⊆ Q is the set of final states.

The size of M, denoted by |M|, is defined by (n + |Q| + |Σ| + |Γ| + |∆|). In the
rest of this paper, we use 〈q, γ1, . . . , γn〉

a−→M〈q′, α1, . . . , αn〉 to denote that the transition
((q, γ1, . . . , γn), a, (q

′, α1, . . . , αn)) is in ∆. Moreover, we denote by M(q, γ, q′) the multi-
pushdown automaton defined by the tuple (n,Q,Σ,Γ,∆, q, γ, {q′}).

A stack content of M is an element of Stack(M) = (Γ \ {⊥})∗{⊥}. A configuration
of M is a (n+ 1)-tuple (q, w1, . . . , wn) with q ∈ Q, and w1, . . . , wn ∈ Stack(M). A config-
uration (q, w1, . . . , wn) is final if q ∈ F and w1 = · · · = wn = ⊥. The set of configurations
of M is denoted by Conf (M).

The behavior of M is described by its corresponding transition system T (M)
defined by the tuple (Conf (M),Σ,→) where → is the smallest transition rela-
tion satisfying the following condition: if 〈q, γ1, . . . , γn〉

a−→M〈q′, α1, . . . , αn〉, then
(q, γ1w1, . . . , γnwn)

a−→T (M)(q
′, α1w1, . . . , αnwn) for all w1, . . . , wn ∈ Γ∗ such that

γ1w1, . . . , γnwn ∈ Stack (M). Observe that the symbol ⊥ marks the bottom of a stack.
According to the transition relation, ⊥ can never be popped.

The language accepted (or recognized) by M is defined by the set L(M) = {τ ∈ Σ∗ |

(q0, γ0⊥,⊥, . . . ,⊥)
τ

==⇒∗
T (M) c for some final configuration c}.
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3.2. Symbolic representation of MPA configurations. We show in this section
how we can symbolically represent infinite sets of multi-pushdown automaton configu-
rations using special kind of finite automata which were introduced in [Set10]. Let
M = (n,Q,Σ,Γ,∆, q0, γ0, F ) be a multi-pushdown automaton. An M-automaton for ac-
cepting configurations of M is a finite state automaton A = (QM,Γ,∆M, IM, FM) such
that IM = Q. We say that a configuration (q, w1, . . . , wn) of M is accepted (or recog-
nized) by A if and only if the word w = w1w2 · · ·wn is in L(A({q}, FM)). (Notice that
for every word w ∈ L(A({q}, FM)) there are unique words w1, . . . , wn ∈ Stack(M) such
that w = w1 · · ·wn.) The set of all configurations recognized by A is denoted by LM(A).
A set of configurations of M is said to be recognizable if and only if it is accepted by
some M-automaton. Finally, it is easy to see that the class of M-automata is closed under
all the boolean operations and that emptiness and membership problems are decidable in
polynomial time.

3.3. Ordered multi-pushdown automata. An ordered multi-pushdown automaton is a
multi-pushdown automaton in which one can pop only from the first non-empty stack (i.e.,
all preceding stacks are equal to ⊥).

Definition 3.2 (Ordered multi-pushdown automata). An ordered multi-pushdown au-
tomaton (OMPA for short) is a multi-pushdown automaton (n,Q,Σ,Γ,∆, q0, γ0, F ) where,
for each transition 〈q, γ1, . . . , γn〉

a−→M 〈q′, α1, . . . , αn〉, there is an i ∈ [1, n] such that
γ1 = · · · = γi−1 = ⊥, γi ∈ Γǫ, and γi+1 = · · · = γn = ǫ.

We introduce the following abbreviations: (1) For n ≥ 1, we call an MPA/OMPA an
n-MPA/n-OMPA, respectively, if its number of stacks is n, and (2) An MPA over Σ is an
MPA with input alphabet Σ.

In the following, we consider only ordered multi-pushdown automata in some normal
form. This normal form is used only to simplify the presentation. (Observe that this form
is slightly more general than the one considered in [ABH08].) In such normal form, any
transition, that pops a symbol from the ith stack with i ∈ [2, n], is only allowed to push a
symbol on the first stack. Furthermore, pushing symbols on the stacks from 1 to n is only
allowed while popping a symbol from the first stack.

Definition 3.3. An OMPA (n,Q,Σ,Γ,∆, q0, γ0, F ) is in normal form if ∆ contains only
the following types of transitions:

• 〈q, γ, ǫ, . . . , ǫ〉 a−→M 〈q′, α1, . . . , αn〉 for some q, q′ ∈ Q, γ ∈ Γ, a ∈ Σǫ, α1 ∈ Γ∗ and
αj ∈ (Γǫ \ {⊥}) for all j ∈ [2, n]. This transition pops a symbol from the first stack while
pushing at most two symbols on the first stack and at most one symbol on the stacks
from 2 to n.

• 〈q,⊥, . . . ,⊥, γ, ǫ, . . . , ǫ〉 a−→M〈q′, γ′⊥,⊥, . . . ,⊥, ǫ, ǫ, . . . , ǫ〉 for some q, q′ ∈ Q, γ, γ′ ∈ (Γ \
{⊥}) and a ∈ Σǫ. This transition pops the stack symbol γ from one of the stacks from 2
to n and pushes the stack symbol γ′ on the first stack.

We can show the equivalence (with respect to language acceptance) between the class of
OMPA and OMPA in the normal form.

Lemma 3.4. An n-OMPA M can be transformed into an n-OMPA M′ in normal form
with linear blowup in its size such that L(M) = L(M′).
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Proof. An easy generalization of the proof for the Chomsky normal form for context-free
grammars.

In the rest of the paper, we assume that any OMPA is in the normal form. Next, we
recall some properties of the class of languages recognized by n-OMPA.

Lemma 3.5 ([BCCC96]). If M1 and M2 are two n-OMPAs over an alphabet Σ, then it is
possible to construct an n-OMPA M over Σ such that: (1) L(M) = L(M1) ∪ L(M2) and
|M| = O(|M1|+ |M2|).

Lemma 3.6 ([BCCC96]). Let Σ be an alphabet. Given an n-OMPA M over Σ and a
finite state automaton A over Σ, then it is possible to construct an n-OMPA M′ such that:
L(M′) = L(M) ∩ L(A) and |M′| = O(|M| · |A|).

4. The emptiness problem for a n-OMPA is in 2ETIME

In this section, we show that the emptiness problem for ordered pushdown automata is
in 2ETIME. (We provide here a simpler proof of the 2ETIME upper bound than the one
given in [ABH08].) To this aim, we show that, given an OMPA M with n > 1 stacks,
it is possible to construct an effective generalized pushdown automaton P, whose pushed
languages are defined by OMPA with (n−1) stacks of size O(|M|2), such that the following
invariant is preserved: The state and the stack content of P are respectively the same as
the state and the content of the nth stack of M when its first (n− 1) stacks are empty (and
so, L(P) 6= ∅ if and only if L(M) 6= ∅). Let C be a recognizable set of configurations of M,
and Pre∗T (M)(C) the set of predecessors of C. Then, we can apply the saturation procedure

to P to show that the set of configurations Cn, consisting of Pre∗T (M)(C) restricted to

the configurations in which the first (n − 1) empty stacks are empty, is recognizable and
effectively constructible. To compute the intermediary configurations in Pre∗T (M)(C) where

the first (n− 1) stacks are not empty, we construct an ordered multi-pushdown automaton
M′ with (n − 1) stacks that: (1) performs the same transitions on its stacks as the ones
performed by M on its first (n − 1) stacks, and (2) simulates a push transition of M over
its nth stack by a transition of the finite-state automaton accepting the recognizable set
of configurations Cn. Now, we can apply the induction hypothesis to M′ and construct a
finite-state automaton accepting the set of all predecessors Pre∗T (M)(C).

Then, we prove, by induction on n, that the emptiness problem for the n-OMPA M is
in 2ETIME with respect to the number of stacks. For that, we assume that the emptiness
problem for (n − 1)-OMPA can be solved in 2ETIME. This implies that the generalized
pushdown automaton P (that simulates M) is effective (see Definition 2.2 and Lemma
3.6). Now, we can use Theorem 2.7 to prove the decidability of the emptiness problem of
the effective generalized pushdown automaton P (and so, of the n-OMPA M). To show
that the emptiness problem of P and M is in 2ETIME, we estimate the running time of
our saturation procedure, given in section 2.1, under the assumption that the emptiness
problem for (n− 1)-OMPA can be solved in 2ETIME.

Let us give in more details of the proof described above.



12 M. F. ATIG

4.1. Simulation of an OMPA by an GPA. In the following, we prove that, given an
OMPA M, we can construct a GPA P, with transition languages defined by (n−1)-OMPAs
of size O(|M|2), such that the emptiness problem for M is reducible to the emptiness
problem for P. (Recall that any OMPA is assumed to be in normal form.)

Theorem 4.1. Given an OMPA M = (n,Q,Σ,Γ,∆, q0, γ0, F ) with n > 1, it is possible to
construct an GPA P = (P,Σ′,Γ, δ, p0,⊥, {pf}) such that P = Q ∪ {p0, pf}, Σ

′ = ∅, and we
have:

• L(M) 6= ∅ if and only if L(P) 6= ∅, and

• For every p1, p2 ∈ P and γ ∈ Γ, there is an (n − 1)-OMPA M(p1,γ,p2) over Γ such that

L(M(p1,γ,p2)) =
(

δ(p1, γ, ǫ, p2)
)R

and |M(p1,γ,p2)| = O(|M|2).

The remaining part of this subsection is devoted to the proof of Theorem 4.1. Let us present
the main steps of the construction of the generalized pushdown automaton P. For that, let
us consider an accepting run ρ of M. This run can be seen as a sequence of runs of the
form ς1σ1ς2σ2 · · · ςmσm such that the pop transitions operations are exclusive to the first
(n − 1)-stacks (resp. the nth stack) of M along the sequence of runs ς1, ς2, . . . , ςm (resp.
σ1, σ2, . . . , σm). Observe that, by definition, the first (n − 1)-stacks of M are empty along
the runs σ1, σ2, . . . , σm. Moreover, at the beginning of the runs ς1, ς2, . . . , ςm, the OMPA
M is in some configuration c where the first stack of M contains just one symbol and the
stacks from 2 to n − 1 are empty (i.e., c of the form (q, γ⊥,⊥, . . . ,⊥, w)). Observe that
this is an immediate consequence of the normal form that we have considered (since M is
only allowed to push just one symbol on the first stack while popping a symbol from the
stacks from 2 to n). In the case that M is not in the normal form, notice that the set of
all possible contents of the first (n− 1)-stacks, at the beginning of the runs ς1, ς2, . . . , ςm, is
still finite. Later, we will use this observation to show how we can adapt our construction
to the general case (when M is not in the normal form).

Then, we construct P such that the following invariant is preserved during the simula-
tion of M: The state and the content of the stack of P are the same as the state and the
content of the nth stack of M when its first (n−1)-stacks are empty (and so, L(P) 6= ∅ if and
only if L(M) 6= ∅). To this aim, a pushdown transtion of M that pops a symbol γ from its
nth stack is simply simulated by a pushdown transition of P that pops the same symbol γ.
This implies that a run of the form σi, with 1 ≤ i ≤ m, that pops the word ui from the nth

stack of M is simulated by a run of P that pops the same word ui. Now, for every j ∈ [1,m],
we need to compute the pushed word vj into the n-th stack ofM during the run ςj in order to
be pushed also by P. For that, let L(q,γ,q′) be the set of all possible pushed words u into the

nth stack of M by a run of the form (q, γ⊥,⊥, . . . ,⊥, w)
τ

==⇒∗
T (M) (q

′,⊥,⊥, . . . ,⊥, uw) where

pop transitions are exclusive to the first (n − 1)-stacks of M. We show that this language
L(q,γ,q′) can be characterized by an (n−1)-OMPA M′(q, γ, q′) over the stack alphabet of M
that: (1) performs the same transitions on its state and (n−1)-stacks as the one performed
by M on its state and its first (n−1) stacks while discarding the pop transitions of M over
the nth stack, and (2) makes visible as transition labels the pushed symbols over the nth stack

of M. Now, to simulate the run ςj = (q, γ⊥,⊥, . . . ,⊥, w)
τj
==⇒∗

T (M) (q
′,⊥,⊥, . . . ,⊥, uw) of

M ( which is equivalent to say that ςj = (q, γ⊥,⊥, . . . ,⊥,⊥)
τj
==⇒∗

T (M) (q
′,⊥,⊥, . . . ,⊥, u)),
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P can push into its stack the word u such that uR ∈ L(M′(q, γ, q′)). If M is not in the nor-

mal form, the run ςj will be of the form (q, α1, . . . , αn−1, w)
τj
==⇒∗

T (M) (q
′,⊥,⊥, . . . ,⊥, uw)

(i.e., (q, α1, . . . , αn−1,⊥)
τj
==⇒∗

T (M) (q
′,⊥,⊥, . . . ,⊥, u)). In this case, we can construct an

(n−1)-OMPA M(q′,α1,...,αn−1,q′), which is precisely M′(q, γ, q′) with (q, α1, . . . , αn−1) as ini-

tial configuration, characterizing the set of all possible pushed words u on the nth-stack.
Thus, the (n − 1)-OMPA, occurring in Theorem 4.1, will be indexed by tuples of the form
(p1, α1, . . . , αn−1, p2) where p1, p2 ∈ P and α1, . . . , αn−1 ∈ (Γǫ ∪ Γ2).

The proof of Theorem 4.1 will be structured as follows. First, we define an (n − 1)-
OMPA M′ over the alphabet Γ that: (1) performs the same transitions on its state and
(n − 1)-stacks as the one performed by M on its state and its first (n − 1) stacks while
discarding the pop transitions of M on the nth stack, and (2) makes visible as transition
labels the pushed symbols over the nth stack of M. Intuitively, depending on the initial
and final configurations of M′, the “language” of M′ summarizes the effect of a sequence
of pop transitions of M over the first (n − 1)-stacks on the nth stack of M. So, if we are
interested only by the configurations of M where the first (n − 1) stacks are empty, a run
of M can be seen as a sequence of alternations of a pop transition of M over the nth stack
and a push operation over the nth stack of a word in the “language” of M′.

Then, we construct a generalized pushdown automaton P such that the state and the
stack content of P are the same as the state and the nth-stack content of M when the first
(n − 1) stacks of M are empty. In the definition of P, we use the (n − 1)-OMPA M′ to
characterize the pushed word on the nth stack of M due to a sequence of pop transitions
of M on the (n − 1) first stacks of M. This implies that the emptiness problem for M is
reducible to its corresponding problem for P.

Constructing the (n− 1)-OMPA M′: Let us introduce the following n-OMPA M[1,n[ =

(n,Q,Σ,Γ,∆[1,n[, q0, γ0, F ) such that ∆[1,n[ = ∆∩
(

Q× (Γǫ)
n−1 ×{ǫ})×Σǫ × (Q× (Γ∗)n)

)

.

Intuitively, M[1,n[ is built up from M by discarding pop transitions of M over the nth stack.
Then, let M′ = (n − 1, Q,Γ,Γ,∆′, q0, γ0, F ) be the (n − 1)-OMPA, built out from M[1,n[,
which (1) performs the same transitions on the first (n− 1) stacks of M[1,n[, and (2) makes

visible as transition label the pushed stack symbol over the nth stack of M[1,n[. Formally,
∆′ is defined as the smallest transition relation satisfying the following condition:

• If 〈q, γ1, . . . , γn−1, ǫ〉
a−→M[1,n[

〈q′, α1, . . . , αn−1, αn〉 for some q, q′ ∈ Q, γ1, . . . , γn−1 ∈ Γǫ,

a ∈ Σǫ, and α1, . . . , αn ∈ Γ∗, then 〈q, γ1, . . . , γn−1〉
αn−−→M′〈q′, α1, . . . , αn−1〉.

Observe that the pushed word αn over the nth-stack consists in at most one symbol (i.e.,
αn ∈ Γǫ). If M is not in the normal formal, αn can be of size two (say αn = γγ′), and
in this case we need to associate two transitions to M′ which first read the symbol γ′ and
then the symbol γ.

Let us now give the relation between the effect of a sequence of operations of M[1,n[ on

the nth-stack and the language of M′.

Lemma 4.2. For every q, q′ ∈ Q, and w1, w
′
1, . . . , wn, w

′
n ∈ Stack (M[1,n[), (q, w1, . . . , wn)

τ
==⇒∗

T (M[1,n[)
(q′, w′

1, . . . , w
′
n) for some τ ∈ Σ∗ if and only if there is u ∈ Γ∗ such that

(q, w1, . . . , wn−1)
u

==⇒∗
T (M′) (q

′, w′
1, . . . , w

′
n−1) and w′

n = uRwn.
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Proof. To prove Lemma 4.2, it suffices to observe that the following holds: For
every q, q′ ∈ Q, w1, . . . , wn ∈ Stack (M[1,n[), and w′

1, . . . , w
′
n ∈ Stack(M[1,n[),

(q, w1, . . . , wn)
a−→T (M[1,n[)(q

′, w′
1, . . . , w

′
n) for some a ∈ Σǫ if and only if there is b ∈ Γǫ

such that (q, w1, . . . , wn−1)
b−→T (M′) (q

′, w′
1, . . . , w

′
n−1) and w′

n = bwn. This observation can
be established easily using the definition of M′ and M[1,n[.

Constructing the GPA P: We are ready now to define the generalized pushdown au-
tomaton P = (P,Σ′,Γ, δ, p0,⊥, {pf}), with P = Q ∪ {p0, pf} and Σ′ = ∅, that keeps track

of the state and content of the nth stack of M when the first (n − 1) stacks are empty.
Formally, P is built from M as follows: For every p, p′ ∈ P and γ ∈ Γ, we have:

• If p = p0, γ = ⊥, and p′ ∈ Q, then δ(p, γ, ǫ, p′) = {uR⊥ | u ∈ L(M′(q0, γ0, p
′))}.

• If p ∈ F , γ = ⊥, and p′ = pf , then δ(p, γ, ǫ, p′) = {ǫ}.

• If p, p′ ∈ Q and γ 6= ⊥ then δ(p, γ, ǫ, p′) =
⋃

(q,γ′)∈Ξ

(

L(M′(q, γ′, p′))
)R

where Ξ =

{(q, γ′) ∈ (Q× Γ) | ∃a ∈ Σǫ, 〈p,⊥, . . . ,⊥, γ〉 a−→M 〈q, γ′⊥,⊥, . . . ,⊥, ǫ〉}.

• Otherwise, δ(p, γ, ǫ, p′) = ∅.

Observe that for every p1, p2 ∈ P , and γ ∈ Γ, we can construct an (n − 1)-OMPA

M(p1,γ,p2) over Γ such that L(M(p1,γ,p2)) =
(

δ(p1, γ, ǫ, p2)
)R

and |M(p1,γ,p2)| = O(|M|2).
This can be easily proved using Lemma 3.5.

To complete the proof of Theorem 4.1, it remains to show that the emptiness problem
for M is reducible to its corresponding problem for P. This is stated by Lemma 4.3.

Lemma 4.3. L(M) 6= ∅ if and only if L(P) 6= ∅.

Proof. To prove that L(M) 6= ∅ iff L(P) 6= ∅, we will show that the following invariant
is preserved: The state and content of P are the same as the state and content of the
last stack of M when its first (n − 1)-stacks are empty. Thus, we will split the run of
M at the transitions that pop some symbol from the last stack. This implies that a run
of M can be decomposed as follows: (1) First a run from the initial configuration to the
first reachable configuration where the first (n− 1)-stacks are empty, and (2) a sequence of
runs that are starting from a configuration where the first (n− 1)-stacks are empty to the
first reachable configuration with empty first (n − 1)-stacks. Lemma 4.4 and Lemma 4.5
establish the relation between these two kind of runs of M and the runs of P. Lemma 4.4
shows that M can move from a configuration of the form (q,⊥, . . . ,⊥, w) to a configuration
of the form (q′,⊥, . . . ,⊥, w′) if and only if P can move from the configuration (q, w) to
the configuration (q′, w′). Lemma 4.5 proves that P can move, in one step, from the
initial configuration (p0,⊥) to the configuration (q, w) if and only if M[1,n[ can move from
the initial configuration (q0, γ0⊥,⊥, . . . ,⊥) to the configuration (q,⊥,⊥, . . . ,⊥, w). As an
immediate consequence of Lemma 4.4 and Lemma 4.5, we obtain that L(M) 6= ∅ if and
only if L(P) 6= ∅.

Lemma 4.4. For every q, q′ ∈ Q and w,w′ ∈ Stack(M), (q, w)
ǫ

==⇒∗
T (P)(q

′, w′) if and only

if (q,⊥, . . . ,⊥, w)
τ

==⇒∗
T (M) (q

′,⊥, . . . ,⊥, w′) for some τ ∈ Σ∗.
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Proof. (The Only if direction) In the following, we show that if (q, w)
ǫ

==⇒∗
T (P)(q

′, w′)

then (q,⊥, . . . ,⊥, w)
τ

==⇒∗
T (M) (q′,⊥, . . . ,⊥, w′) for some τ ∈ Σ∗. Assume that

(q, w)
ǫ

==⇒
i

T (P) (q
′, w′). We proceed by induction on i.

Basis. i = 0. Then q = q′ and w = w′. This implies that (q,⊥, . . . ,⊥, w)
τ

==⇒∗
T (M)

(q′,⊥, . . . ,⊥, w′) holds with τ = ǫ.

Step. i > 0. Then there is a configuration (p, v) ∈ Conf (P) such that:

(q, w)
ǫ

==⇒
i−1

T (P) (p, v)
ǫ−→ T (P) (q

′, w′) (4.1)

From the definition of P, we can show that p ∈ Q and v ∈ Stack(M) since q, q′ ∈ Q and

w,w′ ∈ Stack(M). Thus, we can apply the induction hypothesis to (q, w)
ǫ

==⇒
i−1

T (P) (p, v),

and we obtain:

(q,⊥, . . . ,⊥, w)
τ ′
==⇒∗

T (M) (p,⊥, . . . ,⊥, v) for some τ ′ ∈ Σ∗ (4.2)

Since (p, v) ǫ−→ T (P) (q
′, w′), there are γ ∈ Γ and u, v′ ∈ Γ∗ such that:

v = γv′, w′ = uv′, and u ∈ δ(p, γ, ǫ, q′) (4.3)

Using the definition of P, we can show that there are q′′ ∈ Q, b ∈ Σǫ, and γ′ ∈ Γ such that:

〈p,⊥, . . . ,⊥, γ〉 b−→M〈q′′, γ′⊥, . . . ,⊥, ǫ〉 and uR ∈ L(M′(q′′, γ′, q′)) (4.4)

Since uR ∈ L(M′(q′′, γ′, q′)), we obtain:

(q′′, γ′⊥,⊥, . . . ,⊥)
uR

==⇒∗
T (M′) (q

′,⊥,⊥, . . . ,⊥) (4.5)

Now, we can apply Lemma 4.2, to the computation of M′ given in Equation 4.5 and the
stack content v′, and we obtain:

(q′′, γ′⊥,⊥, . . . ,⊥, v′)
τ ′′
==⇒∗

T (M[1,n[)
(q′,⊥,⊥, . . . ,⊥, uv′) (4.6)

Since 〈p,⊥, . . . ,⊥, γ〉 b−→M〈q′′, γ′⊥, . . . ,⊥, ǫ〉 and v = γv′, we obtain the following compu-
tation of M:

(p,⊥,⊥, . . . ,⊥, v) b−→ T (M)(q
′′, γ′⊥,⊥, . . . ,⊥, v′) (4.7)

Putting together Equation 4.2, Equation 4.6, and Equation 4.7, we obtain:

(q,⊥, . . . ,⊥, w)
τ

==⇒∗
T (M) (q

′,⊥, . . . ,⊥, w′) with τ = τ ′bτ ′′ (4.8)

This terminates the Only if direction of Lemma 4.4.

(The If direction) In the following, we show that if (q,⊥, . . . ,⊥, w)
τ

==⇒∗
T (M)

(q′,⊥, . . . ,⊥, w′) for some τ ∈ Σ∗, then (q, w)
ǫ

==⇒∗
T (P) (q′, w′). Let us assume that
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ρ = (q,⊥, . . . ,⊥, w)
τ

==⇒∗
T (M) (q′,⊥, . . . ,⊥, w′) for some τ ∈ Σ∗. The proof is by induc-

tion on the number of times that a pop transition over the nth stack of M is used in the
run ρ. Let m be the number of times that a transition in ∆n = (∆ \∆[1,n[) is used in ρ.

Basis. m = 0. Then, q = q′, w = w′, and τ = ǫ since no transitions from ∆n are used
in ρ, and no transitions from ∆[1,n[ can be applied along the run ρ. This implies that

(q, w)
ǫ

==⇒∗
T (P) (q

′, w′) holds.

Step. m > 0. Then, there are γ, γ′ ∈ (Γ \ {⊥}), v ∈ Γ∗, and q1, q2 ∈ Q such that:

ρ1 = (q,⊥, . . . ,⊥, w)
τ ′
==⇒∗

T (M) (q1,⊥, . . . ,⊥, γv) (4.9)

ρ2 = (q1,⊥, . . . ,⊥, γv) a−→ T (Mn) (q2, γ
′⊥, . . . ,⊥, v) (4.10)

ρ3 = (q2, γ
′⊥, . . . ,⊥, v)

τ ′′
==⇒∗

T (M[1,n[)
(q′,⊥, . . . ,⊥, w′) (4.11)

for some τ ′, τ ′′ ∈ Σ∗ and a ∈ Σǫ such that τ = τ ′aτ ′′.

Observe that such decomposition of ρ is possible since in order to apply a transition in
∆n, the first (n − 1) stacks of M must be empty.

Now, we can apply the induction hypothesis to ρ1, and we obtain the following run of P:

(q, w)
ǫ

==⇒∗
T (P) (q1, γv) (4.12)

We can also apply Lemma 4.2 to the run ρ3, and we obtain that there is u ∈ Γ∗ such that:

u ∈ L(M′(q2, γ
′, q′)), and w′ = uRv (4.13)

From the run ρ2, we get 〈q1,⊥,⊥, . . . ,⊥, γ〉 a−→M 〈q2, γ
′⊥,⊥, . . . ,⊥, ǫ〉. Moreover, we have

u ∈ L(M′(q2, γ
′, q′)). This implies that uR ∈ δ(q1, γ, ǫ, q

′). This means that:

(q, γv) ǫ−→ T (P)(q
′, uRv) = (q′, w′) (4.14)

Putting together Equations 4.12 and 4.14, we obtain:

(q, w)
ǫ

==⇒
∗

T (P) (q, γv)
ǫ−→ T (P)(q

′, w′) (4.15)

This terminates the If direction of Lemma 4.4.
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Next, we prove that P can perform a transition from the initial configuration (p0,⊥) to
a configuration of the form (q, w) if and only ifM[1,n[ can move from the initial configuration
(q0, γ0⊥,⊥, . . . ,⊥) to the configuration (q,⊥,⊥, . . . ,⊥, w).

Lemma 4.5. For every q ∈ Q and w ∈ Stack(M), (p0,⊥) ǫ−→T (P)(q, w) if and only if

(q0, γ0⊥,⊥, . . . ,⊥)
τ

==⇒∗
T (M[1,n[)

(q,⊥,⊥, . . . ,⊥, w) for some τ ∈ Σ∗.

Proof. (The If direction) Assume that ρ = (q0, γ0⊥,⊥, . . . ,⊥)
τ

==⇒∗
T (M[1,n[)

(q,⊥,⊥, . . . ,⊥, w) for some τ ∈ Σ∗. Then, we can apply Lemma 4.2 to the run ρ. This
implies that there is u ∈ Γ∗ such that:

(q0, γ0,⊥, . . . ,⊥)
u

==⇒∗
T (M′)(q,⊥, . . . ,⊥) and w = uR⊥

This means that u ∈ L(M′(q0, γ0, q)), and therefore uR⊥ ∈ δ(p0,⊥, ǫ, q). This implies that
the system T (P) can move from the configuration (p0,⊥) to the configuration (q, uR⊥):

(p0,⊥) ǫ−→ T (P)(q, u
R⊥) = (q, w)

This terminates the proof of the If direction.

(The Only if direction) Assume that (p0,⊥) ǫ−→T (P)(q, w). Then, from the definition of
P, there is an u ∈ Γ∗ such that:

w = uR⊥ and u ∈ L(M′(q0, γ0, q))

From the definition of L(M′(q0, γ0, q)), we have ρ = (q0, γ0⊥,⊥, . . . ,⊥)
u

==⇒∗
T (M′)

(q,⊥,⊥, . . . ,⊥). We can apply Lemma 4.2 to the run ρ, and we obtain that there is τ ∈ Σ∗

such that:

(q0, γ0⊥,⊥, . . . ,⊥)
τ

==⇒∗
T (M[1,n[)

(q,⊥, . . . ,⊥, uR⊥) = (q,⊥, . . . ,⊥, w)

This terminates the Only if direction and the proof of Lemma 4.5.

Now, we are ready to prove that the emptiness problem for M is reducible to the
emptiness problem for P.

(The If direction) Assume that L(P) 6= ∅. This implies that:

(p0,⊥)
ǫ

==⇒∗
T (P) (pf , ǫ) (4.16)

This means that there is a state q ∈ F such that:

(p0,⊥)
ǫ

==⇒∗
T (P) (q,⊥) ǫ−→ T (P)(pf , ǫ) (4.17)

From the definition of the transition function of P, there are q′ ∈ Q and w ∈ Stack(M)
such that:

ρ1 = (p0,⊥) ǫ−→ T (P)(q
′, w) (4.18)

ρ2 = (q′, w)
ǫ

==⇒∗
T (P) (q,⊥) (4.19)
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We can apply Lemma 4.5 to the run ρ1, and we obtain that there is τ ′ ∈ Σ∗ such that:

(q0, γ0⊥, . . . ,⊥)
τ ′
==⇒∗

T (M) (q
′,⊥, . . . ,⊥, w) (4.20)

We can also apply Lemma 4.4 to the run ρ2, and we obtain that there is τ ′′ ∈ Σ∗ such that:

(q′,⊥, . . . ,⊥, w)
τ ′′
==⇒∗

T (M) (q,⊥, . . . ,⊥) (4.21)

Putting together Equations 4.20 and 4.21, we get:

(q0, γ0⊥, . . . ,⊥)
τ ′
==⇒∗

T (M) (q
′,⊥, . . . ,⊥, w)

τ ′′
==⇒∗

T (M) (q,⊥, . . . ,⊥) (4.22)

This shows that L(M) 6= ∅ since q ∈ F , and this terminates the proof of the If direction.

(The Only if direction:) Assume that L(M) 6= ∅. Then, there is a state q ∈ F such that

(q0, γ0⊥,⊥, . . . ,⊥)
τ

==⇒∗
T (M) (q,⊥, . . . ,⊥) for some τ ∈ Σ∗.

This implies that there is a state q′ ∈ Q, τ ′, τ ′′ ∈ Σ∗, and w ∈ Stack(M) such that:

ρ1 = (q0, γ0⊥, . . . ,⊥)
τ ′
==⇒∗

T (M[1,n[)
(q′,⊥, . . . ,⊥, w) (4.23)

ρ2 = (q′,⊥, . . . ,⊥, w)
τ ′′
==⇒∗

T (M) (q,⊥, . . . ,⊥) (4.24)

We can apply Lemma 4.5 to the run ρ1, and we obtain:

(p0,⊥) ǫ−→ T (P) (q
′, w) (4.25)

We can also apply Lemma 4.4 to the run ρ2, and we obtain that:

(q′, w)
ǫ

==⇒∗
T (P) (q,⊥) (4.26)

Putting together Equations 4.25 and 4.26, we get that:

(p0,⊥) ǫ−→ T (P) (q
′, w)

ǫ
==⇒∗

T (P) (q,⊥) (4.27)

Moreover, we can apply the transition function δ(q,⊥, ǫ, pf ) = ǫ to the configuration (q,⊥),
and we obtain the following computation of T (P):

(p0,⊥) ǫ−→ T (P) (q
′, w)

ǫ
==⇒∗

T (P) (q,⊥) ǫ−→ T (P) (pf , ǫ) (4.28)

This shows that L(P) 6= ∅, and this terminates the proof of the Only if direction.

4.2. Emptiness of a n-OMPA is in 2ETIME. In the following, we show that the
emptiness problem for a n-OMPA is in 2ETIME with respect to the number of stacks. The
proof is done by induction on the number of stacks. First, we use the induction hypothesis,
that the emptiness problem for OMPA with (n − 1)-stacks is decidable, to show that the
generalized pushdown automaton P is effective (and so the emptiness problem for P is
decidable). Once the effectiveness property of P has been established, we estimate the
running time of our saturation procedure for P, given in section 2.1, under the assumption
that the emptiness problem. for (n − 1)-OMPA can be solved in 2ETIME. We show that
the emptiness problem of P (and so M) is in 2ETIME
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Theorem 4.6. The emptiness problem for an n-OMPA M can be solved in time O(|M|2
dn

)
for some constant d.

Proof. Let M = (n,Q,Σ,Γ,∆, q0, γ0, F ) be an n-OMPA. To prove Theorem 4.6, we proceed
by induction on the number of stacks n.

Basis. n = 1. Then, M is a pushdown automaton. From [BEM97], we know that the
emptiness problem for M can be solved in polynomial time in |M|.

Step. n > 1. Then, we can apply Theorem 4.1 to construct a generalized pushdown
automaton P = (P, ∅,Γ, δ, p0,⊥, {pf}), with P = Q ∪ {p0, pf}, such that:

• L(M) 6= ∅ if and only if L(P) 6= ∅, and

• For every p1, p2 ∈ P and γ ∈ Γ, there is an (n − 1)-OMPA M(p1,γ,p2) over Γ such that

L(M(p1,γ,p2)) =
(

δ(p1, γ, ǫ, p2)
)R

and |M(p1,γ,p2)| = O(|M|2).

It is easy to observe that P is an effective generalized pushdown automaton. This is estab-
lished by the following lemma.

Lemma 4.7. P is an effective generalized pushdown automaton.

Proof. To prove the effectiveness property of P, we need to show that for every finite state
automaton A over the alphabet Γ, the problem of checking whether L(A)∩δ(p1, γ, ǫ, p2) 6= ∅
is decidable for all p1, p2 ∈ P and γ ∈ Γ. It can be easy shown that L(A)∩ δ(p1, γ, ǫ, p2) 6= ∅
if and only if L(A)R ∩ (δ(p1, γ, ǫ, p2))

R 6= ∅.
Let A be a given finite state automaton, p1, p2 ∈ P two states of P, and γ ∈ Γ a

stack symbol of P. Using Lemma 3.6, we can construct an (n − 1)-OMPA M′ such that
L(M′) = (L(A))R ∩ L(M(p1,γ,p2)) = (L(A))R ∩ (δ(p1, γ, ǫ, p2)) since we have M(p1,γ,p2) =

(δ(p1, γ, ǫ, p2))
R. Now, we can apply the induction hypothesis to M′ to show that the

checking whether L(M′) 6= ∅ is decidable. Thus, P is an effective generalized pushdown
automaton.

From Theorem 2.7, Theorem 4.1, and Lemma 4.7, we deduce that the emptiness problem
for the n-OMPA M is decidable.

Next, we will estimate the running time of the decision procedure. From Theorem 2.7,
we know that the emptiness problem of P is reducible to compute the set of predecessors
of the configuration (pf , ǫ) since L(P) 6= ∅ if and only if (p0,⊥) ∈ Pre∗T (P)({pf} × {ǫ}).

Let A be the P-automaton that recognizes the configuration (pf , ǫ) of P. It is easy
to see that such P-automaton A, with |A| = O(|M|), is effectively constructible. Now,
we need to analysis the running time of the saturation procedure (given in section 2.1)
applied to A. For that, let A0, . . . ,Ai be the sequence of P-automaton obtained from the
saturation procedure such that A0 = A and LP(Ai) = Pre∗T (P)(LP (A)). Then, we have

i = O(|M|3) since the number of possible new transitions of A is finite. Moreover, at each
step j, with 0 ≤ j ≤ i, we need to check, for every state q of A, p, p′ ∈ P , and γ ∈ Γ,
whether L(Aj)({p

′}, {q}) ∩ δ(p, γ, ǫ, p′) 6= ∅.
Using Lemma 3.6, we can construct, in polynomial time in |M|, an (n − 1)-OMPA

M′
(q,p,γ,p′) such that L(M′

(q,p,γ,p′)) = (L(Aj)({p
′}, {q}))R ∩ L(M(p,γ,p′)) and |M′

(q,p,γ,p′)| ≤

c(|M|3) for some constant c. Now, we can apply the induction hypothesis to M′
(q,p,γ,a,p′),

and we obtain that the problem of checking whether L(M′
(q,p,γ,a,p′)) 6= ∅ can be solved
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in time O
(

(c |M|3)2
d(n−1))

. Putting together all these equations, we obtain that the
problem of checking whether (p0,⊥) ∈ Pre∗T (P)({pf} × {ǫ}) can be solved in time

O
(

|M|3|M|5(c |M|3)2
d(n−1))

. By taking a constant d as big as needed, we can show that

the problem of checking whether L(M) 6= ∅ can be solved in time O(|M|2
dn
).

5. Computing the set of predecessors for OMPA

In this section, we show that the set of predecessors of a recognizable set C of configurations
of an OMPA is recognizable and effectively constructible (see Theorem 5.6). To simplify
the presentation, we can assume without loss of generality that the set C contains only
one configuration of the form (qf ,⊥, . . . ,⊥) where all the stacks are empty. This result is
established by Lemma 5.1.

Lemma 5.1. Let M = (n,Q,Σ,Γ,∆, q0, γ0, F ) be an OMPA and A be an M-automaton.
Then, it is possible to construct, in time and space polynomial in (|M| + |A|), an
OMPA M′ = (n,Q′ ∪ {qf},Σ,Γ

′,∆′, q0, γ0, F ) where Q ⊆ Q′, qf /∈ Q′, and |M′| =
O(|M| · |A|) such that for every c ∈ Conf (M), c ∈ Pre∗T (M)(LM(A)) if and only if

c ∈ Pre∗T (M′)({(qf ,⊥, . . . ,⊥)}).

Proof. The proof is similar to the case of standard pushdown automata. Technically, this can
be done by adding to the OMPA M some pop transitions that check, in nondeterministic
way, if the current configuration belongs to LM(A) by simulating the M-automaton A.
Let A = (QM,Γ,∆M, IM, FM) be the M-automaton. We assume w.l.o.g that A has no
transition leading to its initial states and that there is no transition of A labeled by the
empty word.

We construct the OMPA M′ = (n,Q′ ∪ {qf},Σ,Γ
′,∆′, q0, γ0, F ) as follows:

• Q′ = Q∪ (QM × [1, n+1]). The set of states Q′ is precisely the union of the set of states
of M and the set of states of A indexed by the stack identities. (The index n+1 is used
to mark the end of the simulation of A by M′). Moreover, we assume that M′ has a
fresh state qf /∈ Q′.

• Γ′ = Γ∪{♯} such that ♯ /∈ Γ. The fresh stack symbol ♯ is used to ensure that M′ respects
the constraints imposed by the normal formal. Intuitively, this symbol will be pushed
on the first stack whenever a symbol is popped from a stack with an index from 2 to n,
during the simulation of the M-automaton A, and then this symbol will be popped from
the first stack.

• ∆′ is the smallest transition relation such that the following conditions are satisfied:

− First Phase: In this phase the OMPA M′ behaves exactly as the OMPA M′. This
corresponds to ∆ ⊆ ∆′.

− Second phase: In the second phase, M′ checks if the current configuration is accepted
byA. This is done by allowingM′ to start, in non-deterministically way, the simulation
of A while popping the read symbols from their corresponding stacks. Formally, we
have:
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∗ For every transition q
γ
−→A p with q ∈ Q and γ ∈ (Γ \ {⊥}), we have

〈q, γ, ǫ, . . . , ǫ〉 ǫ−→M′〈(p, 1), ǫ, ǫ, . . . , ǫ〉. This means that, in non-deterministically way,
the checking of whether the current configuration is accepted by A can be started
by the simulation of a transition of A from the current state q. This transition of
M′ corresponds to the case where the first stack is not empty

∗ For every q
⊥i

==⇒∗
T (A) p with i ∈ [1, n] and q ∈ Q, we have 〈q,⊥, ǫ, . . . , ǫ〉 ǫ−→M′〈(p, i+

1),⊥, ǫ, . . . , ǫ〉. This means that the simulation of A by M can be started and the
first i stacks are empty. Observe that the state (p, i + 1) of M′ corresponds to the
fact that the current state of A is p and that we are currently checking the stack
i+ 1.

∗ For every i ∈ [1, n] and p
⊥j

==⇒∗
T (A) p

′ for some j ∈ [1, n − i + 1], we have

〈(p, i),⊥, ǫ, . . . , ǫ〉 ǫ−→M′〈(p′, i + j),⊥, ǫ, . . . , ǫ〉. This corresponds to the simulation
of a sequence of transitions of A that checks if the stacks from i to (i + j − 1) are
empty. In this case, we move the current state from p to p′ and we start checking
the stack of index (i+ j).

∗ For every i ∈ [1, n] and p
γ
−→A p′ for some γ ∈ (Γ \ {⊥}), we have

〈(p, i), γ1, . . . , γn〉
ǫ−→M′〈(p′, i), α1, . . . , αn〉 with γ1 = · · · = γi−1 = ⊥, γi = γ,

γi+1 = · · · = γn = ǫ, α1 = ♯ · ⊥, α2 = · · · = αi−1 = ⊥, and αi = · · · = αn = ǫ.
The simulation of a transition of A, that reads the symbol γ from the ith-stack, is
performed by M′ by a transition that pops γ form the ith-stack and pushes the fresh
symbol ♯ into the first stack.

∗ For every index i ∈ [1, n + 1] and state p ∈ QA, we have
〈(p, i), ♯, ǫ, . . . , ǫ〉 ǫ−→M′〈(p, i), ǫ, . . . , ǫ〉. This transition pops the fresh symbol ♯
from the first stack. Recall that this fresh symbol is introduced in the only aim of
ensuring the normal form of M′.

∗ For every p ∈ F , we have 〈(p, n+1),⊥, ǫ, . . . , ǫ〉 ǫ−→M′〈qf ,⊥, ǫ, . . . , ǫ〉. This transition
ends the simulation of A by M′ after verifying that the current configuration of M
is accepted by A.

Then it is easy to see that for every c ∈ Conf (M), c ∈ Pre∗T (M)(LM(A)) if and only if

c ∈ Pre∗T (M′)({(qf ,⊥, . . . ,⊥)}).

In the following, we show that the set of configurations C ′ of the form (q′,⊥, . . . ,⊥, w′)
from which the OMPA M can reach a configuration of the form (q,⊥, . . . ,⊥), where all the
stacks are empty, is recognizable and effectively constructible.

Lemma 5.2. Let M = (n,Q,Σ,Γ,∆, q0, γ0, F ) be an OMPA and q ∈ Q be a state. Then,

it is possible to construct, in time O(|M|2
dn
) where d is a constant, an M-automaton A

such that |A| = O(|M|) and c ∈ LM(A) if and only if c ∈ Pre∗T (M)({(q,⊥, . . . ,⊥)}) and

c = (q′,⊥, . . . ,⊥, w) for some q′ ∈ Q and w ∈ Stack(M).

Proof. Lemma 4.4 shows that, given an OMPA M with n stacks, it is possible to construct
an effective generalized pushdown automaton P, whose pushed languages are defined by
OMPA with (n − 1) stacks, such that the following invariant is preserved: The state and
the stack’s content of P are the same as the state and the content of the nth stack of M
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when its first (n − 1) stacks are empty. Then, we can make use of Theorem 2.3, which
shows the set of all predecessors of a recognizable set of configurations is an effectively
constructible recognizable set for effective generalized pushdown automata, to show that
Lemma 5.2 holds.

Next, we state our main theorem which is a generalization of the result obtained in for
bounded-phase visibly multi-stack pushdown automata [Set10].

Theorem 5.3. Let M = (n,Q,Σ,Γ,∆, q0, γ0, F ) be an OMPA and q ∈ Q be a state. Then,

it is possible to construct, in time O(|M|2
dn

) where d is a constant, a M-automaton A such

that |A| = O(|M|2
dn

) and LM(A) = Pre∗T (M)({(q,⊥, . . . ,⊥)}).

Proof. From Lemma 5.2, we know that the set of configurations Cn, consisting of
Pre∗T (M)({(q,⊥, . . . ,⊥)}) restricted to the configurations in which the first (n − 1) empty

stacks are empty, is recognizable and effectively constructible. To compute the intermediary
configurations in Pre∗T (M)({(q,⊥, . . . ,⊥)}) where the first (n− 1) stacks are not empty, we

construct an ordered multi-pushdown automaton M′ with (n−1) stacks that: (1) performs
the same transitions on its stacks as the ones performed by M on its first (n − 1) stacks,
and (2) simulates a push transition of M over its nth stack by a transition of the finite-state
automaton accepting the recognizable set of configurations Cn. Now, we can apply the
induction hypothesis to M′ and construct a finite-state automaton accepting the set of all
predecessors Pre∗T (M)({(q,⊥, . . . ,⊥)}).

We proceed by induction on the number of stacks of the OMPA M.

Basis. n = 1. Then, M is a pushdown automaton. From [BEM97], we know that such an
M-automaton A for M can be constructed in polynomial time in |M|.

Step. n > 1. Then, we can use Lemma 5.2 to construct, in time O(|M|2
dn

) where d
is a constant, an M-automaton A′ = (QA′ ,Γ,∆A′ , Q, FA′) such that |A′| = O(|M|) and

(q′′,⊥, . . . ,⊥, w) ∈ LM(A′) if and only if (q′′,⊥, . . . ,⊥, w)
τ ′
==⇒

∗

T (M) (q,⊥, . . . ,⊥) for some

τ ′ ∈ Σ∗. Afterwards, we assume without loss of generality that the M-automaton has no
ǫ-transitions.

Let M[1,n[ = (n,Q,Σ,Γ,∆[1,n[, q0, γ0, F ) be the OMPA built from M by discarding

the set of pop transitions of M over the nth stack (as defined in Section 4.1). (Recall
that ∆[1,n[ = ∆ ∩

(

(Q × (Γǫ)
n−1 × {ǫ}) × Σǫ × (Q × (Γ∗)n)

)

). Then, it is easy to see
that for every configuration (q′, w1, . . . , wn) in Pre∗T (M)({(q,⊥, . . . ,⊥)}), there are q′′ ∈ Q,

w ∈ Stack(M), and τ ′, τ ∈ Σ∗ such that:

(q′, w1, . . . , wn)
τ

==⇒∗
T (M[1,n[)

(q′′,⊥, . . . ,⊥, w)
τ ′
==⇒∗

T (M) (q,⊥, . . . ,⊥)

Since the OMPA M[1,n[ can only have push transitions over its nth stack, we have

(q′, w1, . . . , wn)
τ

==⇒∗
T (M[1,n[)

(q′′,⊥, . . . ,⊥, w) if and only if there is v ∈ (Γ \ {⊥})∗ such that

w = vwn and (q′, w1, . . . , wn−1,⊥)
τ

==⇒∗
T (M[1,n[)

(q′′,⊥, . . . ,⊥, v) (see Lemma 4.2).

Let M′ = (n − 1, Q × QA′ ,Σ,Γ,∆′, q′0, γ0, F
′) be an (n − 1)-OMPA built from the

OMPA M[1,n[ and the FSA A′ such that 〈(q1, p1), γ1, . . . , γn−1〉
a−→M′〈(q2, p2), α1, . . . , αn−1〉
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if and only if 〈q1, γ1, . . . , γn−1, ǫ〉
a−→M[1,n[

〈q2, α1, . . . , αn−1, αn〉 and p2
αn==⇒∗

T (A′) p1 for some

αn ∈
(

(Γ\{⊥})∪{ǫ}
)

. In fact, the OMPAM′ defines a kind of synchronous product between
the pushed word over the n-th stack of OMPA M[1,n[ and the reverse of the input word of

the FSA A′. Observe that the size of the constructed (n− 1)- OMPA M′ is O(|M|2)).

Then, the relation between M′, M[1,n[, and A′ is given by Lemma 5.4 which follows
immediately from the definition of M′.

Lemma 5.4. ((q1, p1), w1, . . . , wn−1)
ς

==⇒∗
T (M′) ((q2, p2),⊥, . . . ,⊥) iff there is a v ∈ (Γ \

{⊥})∗ such that (q1, w1, . . . , wn−1,⊥)
τ

==⇒∗
T (M[1,n[)

(q2,⊥, . . . ,⊥, v⊥) and p2
v

==⇒∗
T (A′) p1.

Now, we can apply the induction hypothesis to M′ to show that for every (q′′, p′′) ∈

Q×QA′ , it possible to construct, in time O(|M|2
d(n−1)+2

), an M′-automaton A(q′′,p′′) such

that |A(q′′,p′′)| = O(|M|2
d(n−1)+2

) and LM′(A(q′′,p′′)) = Pre∗T (M′)({((q
′′, p′′),⊥, . . . ,⊥)}).

From the M′-automata A(q′′,p′′) and the M-automaton A′, we can construct an M-
automaton A such that (q′, w1, . . . , wn) ∈ LM(A) if and only if there are q′′ ∈ Q and

p′, p′′ ∈ QA such that: (1) q′′
⊥n−1

===⇒∗
T (A′)p

′′, (2) ((q′, p′), w1, . . . , wn−1) ∈ LM′(A(q′′,p′′)), and

(3) p′
wn==⇒∗

T (A′)p for some p ∈ FA′ . Observe that such an automaton A of the size O(|M|2
dn

)

(by taking d as big as needed) is effectively constructible from A(q′′,p′′) and A′ using standard
automata operations. Moreover, we have:

Lemma 5.5. LM(A) = Pre∗T (M)({(q,⊥, . . . ,⊥)}).

Proof. (⊆) Let (q′, w1, . . . , wn) ∈ LM(A). Then, there are q′′ ∈ Q and p′, p′′ ∈ QA such

that: (1) q′′
⊥n−1

===⇒∗
T (A′)p

′′, (2) ((q′, p′), w1, . . . , wn−1) ∈ LM′(A(q′′,p′′)), and (3) p′
wn==⇒∗

T (A′)p

for some p ∈ FA′ .

So, we can apply Lemma 5.4 to the run ((q′, p′), w1, . . . , wn−1)
ς

==⇒∗
T (M′) ((q

′′, p′′),⊥, . . . ,⊥)

to show that there is v ∈ Γ∗ such that (q′, w1, . . . , wn−1,⊥)
τ

==⇒∗
T (M[1,n[)

(q′′,⊥, . . . ,⊥, v)

and p′′
v

==⇒∗
T (A′) p

′. Thus, we have (q′, w1, . . . , wn−1, wn)
τ

==⇒∗
T (M) (q

′′,⊥, . . . ,⊥, vwn).

Now, we can use the runs q′′
⊥n−1

===⇒∗
T (A′)p

′′, p′′
v

==⇒∗
T (A′) p

′, and p′
wn==⇒∗

T (A′)p to show that

(q′′,⊥, . . . ,⊥, vwn) ∈ LM(A′). This implies that (q′′,⊥, . . . ,⊥, vwn)
τ ′
==⇒∗

T (M) (q,⊥, . . . ,⊥).

Hence, we have (q′, w1, . . . , wn) ∈ Pre∗T (M)({(q,⊥, . . . ,⊥)}) and therefore LM(A) ⊆

Pre∗T (M)({(q,⊥, . . . ,⊥)}).

(⊇) Let (q′, w1, . . . , wn) ∈ Pre∗T (M)({(q,⊥, . . . ,⊥)}). Then, there are q′′ ∈ Q, v ∈ Γ∗, and

τ, τ ′ ∈ Σ∗ such that:

(q′, w1, . . . , wn)
τ

==⇒∗
T (M[1,n[)

(q′′,⊥, . . . ,⊥, vwn)
τ ′
==⇒∗

T (M) (q,⊥, . . . ,⊥)

Since (q′′,⊥, . . . ,⊥, vwn)
τ ′
==⇒∗

T (M)(q,⊥, . . . ,⊥), we have (q′′,⊥, . . . ,⊥, vwn) ∈ LM(A′).

This implies that there are p′, p′′ ∈ QA′ and p ∈ FA′ such that q′′
⊥n−1

===⇒∗
T (A′)p

′′,

p′′
v

==⇒∗
T (A′) p

′, and p′
wn==⇒∗

T (A′)p.
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On the other hand, we can show (q′, w1, . . . , wn−1,⊥)
τ

==⇒∗
T (M[1,n[)

(q′′,⊥, . . . ,⊥, v) since

we have (q′, w1, . . . , wn)
τ

==⇒∗
T (M[1,n[)

(q′′,⊥, . . . ,⊥, vwn).

Then, we can apply Lemma 5.4 to (q′, w1, . . . , wn−1,⊥)
τ

==⇒∗
T (M[1,n[)

(q′′,⊥, . . . ,⊥, v)

and p′′
v

==⇒∗
T (A′) p

′ to show that ((q′, p′), w1, . . . , wn−1)
ς

==⇒∗
T (M′) ((q

′′, p′′),⊥, . . . ,⊥). This

implies that ((q′, p′), w1, . . . , wn−1) ∈ LM′(A(q′′,p′′)). Now, we can use the definition of the

M-automaton A to show that (q′, w1, . . . , wn) ∈ LM(A) since we have q′′
⊥n−1

===⇒∗
T (A′)p

′′,

((q′, p′), w1, . . . , wn−1) ∈ LM′(A(q′′,p′′)), and p′
wn==⇒∗

T (A′)p with p ∈ FA′ . Hence, we have

LM(A) ⊇ Pre∗T (M)({(q,⊥, . . . ,⊥)}).

This terminates the proof of Theorem 5.3.

As an immediate consequence of Theorem 5.3 and Lemma 5.1, we obtain:

Theorem 5.6. Let M = (n,Q,Σ,Γ,∆, q0, γ0, F ) be an OMPA and A′ be an M-automaton.

Then, it is possible to construct, in time O((|M| · |A′|)2
dn
) where d is a constant, an M-

automaton A such that |A| = O((|M| · |A′|)2
dn
) and LM(A) = Pre∗T (M)(LM(A′)).

We can extend the previous result to show that the operator Pre+ preserves also rec-
ognizability.

Theorem 5.7. Let M = (n,Q,Σ,Γ,∆, q0, γ0, F ) be an OMPA and A′ be an M-automaton.

Then, it is possible to construct, in time O((|M| · |A′|)2
dn
) where d is a constant, an M-

automaton A such that |A| = O((|M| · |A′|)2
dn
) and LM(A) = Pre+T (M)(LM(A′)).

Proof. In the following, we show that computing the set Pre+T (M)(LM(A′)) can be

reduced to computing the set Pre∗T (M′)(LM′(A′′)) for an OMPA M′ and an M-

automaton A′′ such that |M′| = O(|M|) and |A′′| = O(|A|). Intuitively, the
OMPA has the same stack and input alphabets as the ones of M. Corresponding
to each state q of M, M′ has q and qcopy as two states where qcopy is a fresh sym-
bol which was not used neither in the definition of M nor in the definition of A.
For any transition of the form 〈q, γ1, . . . , γn〉

a−→M〈q′, α1, . . . , αn〉, M′ has two transi-
tions 〈q, γ1, . . . , γn〉

a−→M′〈q′, α1, . . . , αn〉 and 〈q, γ1, . . . , γn〉
a−→M′〈q′copy , α1, . . . , αn〉. Any

computation of M′ can be divided in two phases. In the first phase M′ mim-
ics the behavior of the OMPA M′ by performing the same sequence of transitions.
In the second phase, the OMPA M′ performs a transition from a state q ∈ Q of
M to a state q′copy with q′ ∈ Q and halts. Formally, M′ is defined by the tu-
ple (n,Q ∪ Qcopy ,Σ,Γ,∆ ∪ ∆′, q0, γ0, F ) where Qcopy = {qcopy | q ∈ Q} and ∆′ =

{〈q, γ1, . . . , γn〉
a−→M′〈q′copy , α1, . . . , αn〉 | 〈q, γ1, . . . , γn〉

a−→M〈q′, α1, . . . , αn〉}.
Let A′ = (QM,Γ,∆M, IM, FM) be the M-automaton. We assume here that A has

no transition leading to an initial state. Now, we can construct the M′-automaton A′′ =
(QM′ ,Γ,∆M′ , IM′ , FM′) from the M-automaton A′ as follows: The set of states of A′′ is
the union of the set of states of A′ and the set of states of M′ (i.e., QM′ = QM ∪Qcopy).
The set of transitions of A′′ contains any transition of A that does not involve a state of
Q (i.e., (∆M \ (Q× Γǫ ×QM)) ⊆ ∆M′). Moreover, corresponding to any transition of the
form q a−→A′ p where q ∈ Q, the automaton A′′ has a transition of the form qcopy

a−→A′′ p.
That is, the automaton A′′ is precisely A′ where any initial state q ∈ Q is relabeled by its
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copy qcopy . (Observe that there is no transition from/to a state q ∈ Q in A′′.) Since A′′ is
an M′-automaton, we have IM′ = Q ∪Qcopy . We have also FM′ = FM.

Then it is easy to see that the set Pre+T (M)(LM(A′)) is precisely the set

Pre∗T (M′)(LM′(A′′))∩Conf (M). Thus, we can apply Theorem 5.6 to show that it is possi-

ble to construct, in time O((|M| · |A′|)2
dn
) where d is a constant, an M-automaton A such

that |A| = O((|M| · |A′|)2
dn
) and LM(A) = Pre+T (M)(LM(A′)).

6. Linear-Time Global Model Checking

In this section, we show that the model-checking problem of ω-regular properties for OMPA
is decidable and in 2ETIME. Observe that this result subsumes the 2ETIME upper bound
obtained for the emptiness problem of OMPA (see Theorem 4.6). In fact, we can see the
emptiness problem (i.e., the reachability problem) of OMPA as a particular instance of
the LTL-model checking problem of OMPA for which the decision procedure (provided in
Section 4) is simpler.

To prove the 2ETIME upper bound for the model-checking problem of ω-regular prop-
erties for OMPA, we introduce the repeated state reachability problem for OMPA.

We fix an OMPA M = (n,Q,Σ,Γ,∆, q0, γ0, F ) for the rest of the paper such that
Σ = ∆ and t = ((q, γ1, . . . , γn), a, (q

′, α1, . . . , αn)) is in ∆ if and only if a = t.

6.1. The repeated state reachability problem. In the following, we are interested in
solving the repeated state reachability problem which consists in computing, for a given state
qf ∈ Q, the set of all configurations c of M such that there is an infinite run of T (M)
starting from c that visits infinitely often the state qf .

To this aim, let us introduce the following notation: For every i ∈ [1, n], we denote by
M[1,i] = (n,Q,Σ,Γ,∆[1,i], q0, γ0, F ) the OMPA built from M by discarding pop transitions

of M over the last (n− i) stacks. Formally, we have ∆[1,i] = ∆∩
((

Q× (Γǫ)
i × ({ǫ})n−i

)

×

Σ×
(

Q× (Γ∗)n
))

.

For every i ∈ [1, n], and every (q, γ) ∈ Q × (Γ \ {⊥}), let C
(q,γ)
i denote the set of all

configurations (q, w1, . . . , wn) ∈ Conf (M) such that w1 = · · · = wi−1 = ⊥ and wi = γu for

some u ∈ Stack(M). Moreover, let c
(q,γ)
i be the configuration (q, w1, . . . , wn) of M such

that wi = γ⊥ and wj = ⊥ for all j 6= i.
In the following, we show that detecting an infinite computation of M that visits

infinitely often a state qf can be reduced to detecting an infinite computation the form ρ1 ·ρ
ω
2

that eventually repeats the same sequence of transitions indefinitely and visits qf infinitely
often (and where ρ1 and ρ2 are finite computations). Hence, a periodic computation is a
run which, after a finite computation prefix ρ1 (called stem), ultimately repeats the same
sequence of transitions ρ2 (called lasso) over and over. Let us give some intuitions behind
this reduction.

Let us assume that there is an infinite computation ρ of T (M) starting from a configu-
ration c of M. Let i be the maximal index of the stack that is popped infinitely often. This
means that, at some point of the computation, the stacks from (n − i+ 1) to n will never
be popped. Let us concentrate on the suffix of the computation ρ which contains only push
transitions on the stacks from (n− i+1) to n. Let c1c2 · · · be the sequence of configurations
in this suffix of ρ where the first (i − 1) stacks are empty. Applying a similar argument
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to the content of the ith-stack, along the sequence of configurations c1c2 · · · , as the one for
standard pushdown automata [BEM97], we can deduce that the ith-stack is increasing. This
means that there are indices j1 < j2, a stack symbol γ ∈ Γ, and a state q ∈ Q such that the

configurations cj1 and cj2 are in C
(q,γ)
i and the symbol γ at the top of the ith-stack in cj1 and

cj2 will never be popped. Furthermore, along the sub-computation ρ2 from cj1 and cj2 the
state qf is visited. Observe that if we remove from the configuration cj1 all the stack sym-

bols that will never be popped we obtain the configuration c
(q,γ)
i . Then, the computation

ρ2 can be simplified, by dropping all the (useless) stack symbols that will never be popped

from the configuration cj1 , as follows : c
(q,γ)
i

τ1==⇒+
T (M[1,i])

(qf , w1, . . . , w2)
τ2==⇒∗

T (M[1,i])
c′2 with

c′2 ∈ C
(q,γ)
i . This computation ρ2 represents our lasso computation since from the configu-

ration c′2 we can repeat the sequence of transitions τ1τ2 while visiting the same states (and
in particular the state qf ).

The existence of a such lasso is expressed by the second item of Theorem 6.1 while
the existence of a stem computation from the starting configuration c to the configuration

cj1 ∈ C
(q,γ)
i is stated by the first item of Theorem 6.1.

Then, the solution of the repeated state reachability problem is formally based on the
following fact:

Theorem 6.1. Let c be a configuration of M and qf be a state of M. There is an infinite
run starting from c that visits infinitely often the state qf if and only if there are i ∈ [1, n],
q ∈ Q, and γ ∈ Γ such that:

(1) c ∈ Pre∗T (M)(C
(q,γ)
i ), and

(2) c
(q,γ)
i ∈ Pre+T (M[1,i])

(

Pre∗T (M[1,i])
(C

(q,γ)
i ) ∩ ({qf} × (Stack(M))n)

)

.

Proof. (⇒) : Let ρ = c0t0c1t1c2t2 · · · be an infinite computation of T (M) starting from the
configuration c0 = c of M. For every j ∈ N, cj is a configuration of M and tj is a transition

of M such that cj
tj−−→ T (M) cj+1 (recall that Σ = ∆). Let i ∈ [1, n] be the maximal index

such that for every j ∈ N, there is kj ≥ j such that tkj is a pop transition over the ith stack

of M. This implies that ckj is in Q× ({⊥})i−1 × ((Γ \ {⊥})∗ · Stack(M))× (Stack (M))n−i

(i.e., the first (i− 1)-stacks are empty) since tkj is a pop transition from the ith stack of M.
From the definition of i, there is r ∈ N such that for every h ≥ r, there is dh ∈ [1, i]

such that the transition th is a pop transition over the stack dh of M (i.e., the transition
th is not a pop transition from the stack from (n− i+1) to n). This implies that for every

h ≥ r, we have ch
th−−→ T (M[1,i]) ch+1.

Then, we construct a sequence π = cj0cj1cj2 · · · of configurations of M as follows: cj0
is the first configuration of ρ such that j0 ≥ r and tj0 is a pop transition over the ith-stack
of M, for every ℓ > 0, cjℓ is the first configuration of ρ such that jℓ > jℓ−1 and tjℓ is a pop
transition over the i-stack of M. Recall that, by definition, we have for every l ∈ N, cjl is
in Q× ({⊥})i−1 × ((Γ \ {⊥})∗ ·Stack (M))× (Stack(M))n−i (i.e., the first (i− 1) stacks are
empty).

Now, for every l ≥ 0, let π(l) be the suffix of π starting at cjl , and let m(l) be the

minimal length of the configurations of π(l), where the length of a configuration is defined
as the length of its ith stack.
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Construct a subsequence π′ = cz0cz1cz2 · · · of π as follows: cz0 is the first configuration

of π of length m(0); for every l > 0, czl is the first configuration of π(zl−1+1) of length

m(zl−1+1).
Since the number of states and stack symbols is finite, there exists a subsequence

π′′ = cx0cx1cx2 · · · of π′ whose elements have all the same state q, and the same symbol γ

on the top of the ith stack. Observe that cx0 , cx1 , cx2 , . . . are in C
(q,γ)
i .

Since ρ is an accepting run, there is an index b ≥ 1 and a configuration cqf with state
qf such that:

c0
τ

==⇒∗
T (M) cx0

τ ′
==⇒+

T (M) cqf
τ ′′
==⇒∗

T (M) cxb

Since c0 = c and cx0 ∈ C
(q,γ)
i , we have c ∈ Pre∗T (M)(C

(q,γ)
i ), and so (1) holds.

Due to the definition of π (and so, π′ and π′′), we have

cx0

τ ′
==⇒+

T (M[1.i])
cqf

τ ′′
==⇒∗

T (M[1,i])
cxb

Since cx0 ∈ Q × ({⊥})i−1 × ((Γ \ {⊥})∗ · Stack (M)) × (Stack (M))n−i, then there are
wi, wi+1, . . . , wn ∈ Stack(M) such that cx0 = (q,⊥, . . . ,⊥, γwi, wi+1, . . . , wn). Due to the
definition of the subsequence π′ and π′′ all the configurations of ρ between cx0 and cxb

have
a content of the l-th stack (with i ≤ l ≤ k) of the form w′

lwl. In particular, the configuration
cqf is of the form (qf , u1, . . . , ui−1, uiwi, ui+1wi+1, . . . , unwn) and the configuration cxb

is of
the form (q,⊥, . . . ,⊥, γviwi, vi+1wi+1, . . . , vnwn). This implies:

c
(q,γ)
i = (q,⊥, . . . ,⊥, γ,⊥, . . . ,⊥)

τ ′
==⇒+

T (M[1,i])
(qf , u1, . . . , ui−1, ui, ui+1, . . . , un)

and

(qf , u1, . . . , ui−1, ui, ui+1, . . . , un)
τ ′′
==⇒∗

T (M[1,i])
(q,⊥, . . . ,⊥, γvi, vi+1, . . . , vn)

Consequently, (2) holds, which concludes the proof.

(⇐) : We can use (1) and (2) of Theorem 6.1 to construct a run starting from c that visits
infinitely often the state qf .

Since the sets of configurations C
(q,γ)
i and ({qf}×(Stack(M))n) are recognizable, we can

use Theorem 5.6 and Theorem 5.7 to construct M-automata recognizing Pre∗T (M)(C
(q,γ)
i )

and Pre+T (M[1,i])

(

Pre∗T (M[1,i])
(C

(q,γ)
i ) ∩ ({q} × (Stack (M))n)

)

. Hence, we can construct a

M-automaton that recognizes the set of all configurations c of M such that there is an
infinite run of T (M) starting from c that visits infinitely often the state qf .

Theorem 6.2. Let M = (n,Q,Σ,Γ,∆, q0, γ0, F ) be an OMPA and qf ∈ Q be a state. Then,

it is possible to construct, in time O((|M|)2
dn
) where d is a constant, an M-automaton A

such that |A| = O((|M|)2
dn

) and for every configuration c ∈ Conf (M), c ∈ LM(A) if and
only if there is an infinite run of T (M) starting from c that visits qf infinitely often.

Proof. We know from Theorem 6.1 that there is an infinite run of T (M) starting

from c that visits qf infinitely often if and only if c ∈ Pre∗T (M)(C
(q,γ)
i ), and c

(q,γ)
i ∈

Pre+T (M[1,i])

(

Pre∗T (M[1,i])
(C

(q,γ)
i ) ∩ ({qf} × (Stack(M))n)

)

. (Observe that it is possible to
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construct an M-automaton representing the set C
(q,γ)
i and which size is linear in the size

of M.)
Then, for every index i ∈ [1, n], state q ∈ Q and stack symbol γ ∈ Γ, we construct

an M-automaton A
(q,i,γ)
1 recognizing the set Pre∗T (M[1,i])

(C
(q,γ)
i ) and such that |A

(q,i,γ)
1 | =

O((|M|)2
d′n

) where d′ is a constant. From Theorem 5.6, we know that such an automaton

A
(q,i,γ)
1 can be constructed in time O((|M|)2

d′n
).

Now, we can construct an M-automaton A
(q,i,γ)
2 recognizing precisely the set

(

Pre∗T (M[1,i])
(C

(q,γ)
i ) ∩ ({qf} × (Stack(M))n)

)

and such that |A
(q,i,γ)
2 | = O((|M|)2

d′n
). Ob-

serve that A
(q,i,γ)
2 can be constructed in time O((|M|)2

d′n
) from the M-automaton A

(q,i,γ)
1 .

We can apply Theorem 5.7 to M and A
(q,i,γ)
2 to show that we can construct an M-

automaton A
(q,i,γ)
3 recognizing Pre+T (M[1,i])

(

Pre∗T (M[1,i])
(C

(q,γ)
i )∩({qf}×(Stack(M))n)

)

and

such that |A
(q,i,γ)
3 | = O((|M|)2

d′′n
) for some constant d′′ > d′. Moreover, such an M-

automaton A
(q,i,γ)
3 can be constructed in time O((|M|)2

d′′n
). Then, checking whether c

(q,γ)
i

is in LM(A
(q,i,γ)
3 ) can be performed in time polynomial in |A

(q,i,γ)
3 | [HU79].

If c
(q,γ)
i is not in LM(A

(q,i,γ)
3 ) then let A(q,i,γ) be the M-automaton recognizing the

empty set (i.e., LM(A(q,i,γ)) = ∅). Otherwise let A(q,i,γ) be the M-automaton recognizing

the set Pre∗T (M)(C
(q,γ)
i ) and such that |A(q,i,γ)| = O((|M|)2

d′n
). From Theorem 5.6, we

know that such an automaton A(q,i,γ) can be constructed in time O((|M|)2
d′n

).

By taking d as big as needed, we can construct, in time O((|M|)2
dn
) where d is a

constant, the M-automaton A such that |A| = O((|M|)2
dn
) and for every configuration

c ∈ Conf (M), c ∈ LM(A) if and only if there is an infinite run of T (M) starting from c
that visits qf infinitely often. TheM-automaton M is just the union of all theM-automata

A(q,i,γ).

6.2. w-regular properties. In the following, we assume that the reader is familiar with
w-regular properties expressed in the linear-time temporal logics [Pnu77] or the linear time
µ-calculus [Var88]. For more details, the reader is referred to [Pnu77, VW86, Var88, Var95].

Let ϕ be an w-regular formula built from a set of atomic propositions Prop, and let M =
(n,Q,Σ,Γ,∆, q0, γ0, F ) be an OMPA with a labeling function Λ : Q → 2Prop associating
to each state q ∈ Q the set of atomic propositions that are true in it. Afterwards, we are
interested in solving the global model checking problem which consists in computing the set
of all configurations c of M such that every infinite run starting from c satisfies ϕ.

To solve this problem, we adopt an approach similar to [BM96, BEM97] and we
construct a Buchi automaton B¬ϕ over the alphabet 2Prop accepting the negation of ϕ
[VW86, Var95]. Then, we compute the product of the OMPA M and of the Büchi au-
tomaton B¬ϕ to obtain an n-OMPA M¬ϕ with a set of repeating states G. Now, it is easy
to see that the original problem can be reduced to the repeated state reachability problem
which compute the set of all configurations c such that there is an infinite run of T (M)
starting from c that visits infinitely often a state in G. Hence, as an immediate consequence
of Theorem 6.2, we obtain:
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Theorem 6.3. Let M = (n,Q,Σ,Γ,∆, q0, γ0, F ) be an OMPA with a labeling function Λ,
and let ϕ be a linear time µ-calculus formula or linear time temporal formula. Then, it is

possible to construct, in time O((2|ϕ| · |M|)2
dn
) where d is a constant, an M-automaton A

such that |A| = O((2|ϕ| · |M|)2
dn

) and for every configuration c ∈ Conf (M), c ∈ LM(A) if
and only if there is an infinite run of T (M) starting from c does not satisfy ϕ.

Proof. It is well known that it is possible to construct, in time exponential in |ϕ|, a Büchi au-
tomaton B¬ϕ for the negation of ϕ having exponential size in |ϕ| [VW86, Var88]. Therefore,
the product of M and B¬ϕ has polynomial size in |M| and exponential size in |ϕ|. Applying

Theorem 6.2 to the n-OMPA M¬ϕ (the product of M and B¬ϕ) of size O(2|ϕ| · |M|) we
obtain our complexity result.

Observe that we can also construct an M-automaton A′ such that for every configu-
ration c ∈ Conf (M), c ∈ LM(A) if and only if every infinite run of T (M) starting from c
that satisfies ϕ since the class of M-automata is closed under boolean operations.

We are now ready to establish our result about the model checking problem for w-
regular properties which consists in checking whether, for a given configuration c of the
OMPS, every infinite run starting from c satisfies the formula ϕ.

Theorem 6.4. The model checking problem for the linear-time temporal logics or the linear-
time µ-calculus and OMPA is 2ETIME-complete.

Proof. The 2ETIME upper bound is established by Theorem 6.3. To prove hardness, we
use the fact that the emptiness problem for ordered multi-pushdown automata is 2ETIME-
complete [ABH08].

7. Conclusion

We have shown that the set of all predecessors of a recognizable set of configurations of an
ordered multi-pushdown automaton is an effectively constructible recognizable set. We have
also proved that the set of all configurations of an ordered multi-pushdown automaton that
satisfy a given w-regular property is effectively recognizable. From these results we have
derived an 2ETIME upper bound for the model checking problem of w-regular properties.

It may be interesting to see if our approach can be extended to solve the global model-
checking problem for branching time properties expressed in CTL or CTL∗ by adapting the
constructions given in [BEM97, FWW97] for standard pushdown automata.
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