
Motivation
Our Approach

Summary

Model Checking of UML 2.0 Interactions

Alexander Knapp1 Jochen Wuttke2

1Department of Computer Science
University of Munich

2Faculty of Informatics
University of Lugano

Critical Systems Development Using Modeling Languages,
CSDUML 2006

A. Knapp, J. Wuttke Model Checking of UML 2.0 Interactions 1

Motivation
Our Approach

Summary

Setting the Context. . .

inv: . . .

pre: . . .
post: . . .

OCL

State machines

Static structure

Interactions

Consistency

Implementation

Refinement

A. Knapp, J. Wuttke Model Checking of UML 2.0 Interactions 2

Motivation
Our Approach

Summary

. . . with an Example

Customer/ Analyst

“An ATM should always
give money to validated

account holders.”

⇓
sd

verifyPIN

PINVerified

: ATM : Bank

loop <infty>

?⇔

System Designer

A. Knapp, J. Wuttke Model Checking of UML 2.0 Interactions 3

Motivation
Our Approach

Summary

. . . with an Example

Customer/ Analyst

“An ATM should always
give money to validated

account holders.”

⇓
sd

verifyPIN

PINVerified

: ATM : Bank

loop <infty>

?⇔

System Designer

A. Knapp, J. Wuttke Model Checking of UML 2.0 Interactions 3

Motivation
Our Approach

Summary

. . . with an Example

Customer/ Analyst

“An ATM should always
give money to validated

account holders.”

⇓
sd

verifyPIN

PINVerified

: ATM : Bank

loop <infty>

?⇔

System Designer

CardValidVerifyingCard

Idle

PINCorrect

entry / numIncorrect = 0

PINIncorrect

VerifyingPIN

[else] / ^atm.abort

[cardValid]

[else] / cardValid = false; ^atm.abort

/ ^atm.PINVerified

[numIncorrect < maxNumIncorrect]
/ numIncorrect++; ^atm.reenterPIN

done

Verifying

verifyPIN()

ReturningCard

AmountEntryVerification

CardEntry

Counting

Dispensing

PINEntry

Giving Money

PINVerified

abort

/ ^bank.done

/ ^bank.verifyPIN()

reenterPIN

A. Knapp, J. Wuttke Model Checking of UML 2.0 Interactions 3

Motivation
Our Approach

Summary

. . . with an Example

Customer/ Analyst

“An ATM should always
give money to validated

account holders.”

⇓
sd

verifyPIN

PINVerified

: ATM : Bank

loop <infty>

?⇔

System Designer

CardValidVerifyingCard

Idle

PINCorrect

entry / numIncorrect = 0

PINIncorrect

VerifyingPIN

[else] / ^atm.abort

[cardValid]

[else] / cardValid = false; ^atm.abort

/ ^atm.PINVerified

[numIncorrect < maxNumIncorrect]
/ numIncorrect++; ^atm.reenterPIN

done

Verifying

verifyPIN()

ReturningCard

AmountEntryVerification

CardEntry

Counting

Dispensing

PINEntry

Giving Money

PINVerified

abort

/ ^bank.done

/ ^bank.verifyPIN()

reenterPIN

A. Knapp, J. Wuttke Model Checking of UML 2.0 Interactions 3

Motivation
Our Approach

Summary

The Hugo/RT Verification Process

Verification

MagicDraw

ArgoUML
Poseidon

Smile
spin

UML−Editor

Hugo/RT
XMI .pr

Run
UML−

A. Knapp, J. Wuttke Model Checking of UML 2.0 Interactions 4

Motivation
Our Approach

Summary

Outline

1 Motivation
Model Consistency, Implementation and Refinement

2 Our Approach
Previous Work
Main Results
Implementation

A. Knapp, J. Wuttke Model Checking of UML 2.0 Interactions 5

Motivation
Our Approach

Summary

Previous Work

Operational and denotational semantics for UML
interactions.
→ Cengarle and Knapp (2004)

Basic unwinding of Life Sequence Charts (LSC).

→ Brill et al. (2004)

Undecidability of the model checking problem for Message
Sequence Charts.

→ Alur and Yannakakis (1999)

A. Knapp, J. Wuttke Model Checking of UML 2.0 Interactions 6

Motivation
Our Approach

Summary

Previous Work

Operational and denotational semantics for UML
interactions.
→ Cengarle and Knapp (2004)

Basic unwinding of Life Sequence Charts (LSC).
→ Brill et al. (2004)

Undecidability of the model checking problem for Message
Sequence Charts.

→ Alur and Yannakakis (1999)

A. Knapp, J. Wuttke Model Checking of UML 2.0 Interactions 6

Motivation
Our Approach

Summary

Previous Work

Operational and denotational semantics for UML
interactions.
→ Cengarle and Knapp (2004)

Basic unwinding of Life Sequence Charts (LSC).
→ Brill et al. (2004)

Undecidability of the model checking problem for Message
Sequence Charts.
→ Alur and Yannakakis (1999)

A. Knapp, J. Wuttke Model Checking of UML 2.0 Interactions 6

Motivation
Our Approach

Summary

The Basic Translation Idea

sd
obj2obj1

a

b

Basic Interactions consist of events.

Send- and Receive events are
atomic.
An event history tracks partial order
prerequisites.
The resulting automaton is always
deterministic.

A. Knapp, J. Wuttke Model Checking of UML 2.0 Interactions 7

Motivation
Our Approach

Summary

The Basic Translation Idea

sd
obj2obj1

a

b

Basic Interactions consist of events.
Send- and Receive events are
atomic.

An event history tracks partial order
prerequisites.
The resulting automaton is always
deterministic.

A. Knapp, J. Wuttke Model Checking of UML 2.0 Interactions 7

Motivation
Our Approach

Summary

The Basic Translation Idea

sd
obj2obj1

a

b

Basic Interactions consist of events.
Send- and Receive events are
atomic.
An event history tracks partial order
prerequisites.

The resulting automaton is always
deterministic.

A. Knapp, J. Wuttke Model Checking of UML 2.0 Interactions 7

Motivation
Our Approach

Summary

The Basic Translation Idea

sd
obj2obj1

a

b

Basic Interactions consist of events.
Send- and Receive events are
atomic.
An event history tracks partial order
prerequisites.
The resulting automaton is always
deterministic.

s_6

s_4

rcv(a)

s_3

snd(b)

s_5

rcv(b)

s_2

snd(b) rcv(a)

s_1

snd(a)

A. Knapp, J. Wuttke Model Checking of UML 2.0 Interactions 7

Motivation
Our Approach

Summary

Introducing UML 2.0 Operators

Parallel composition
Standard parallel composition of Büchi automata.

Weak and strict sequencing

Strict sequencing attaches the two automata unchanged.
Weak sequencing adds partial order constraint to parallel
composition.

Alternative fragments (conditional branches)

Operand automata reachable through guarded transitions
from a common new initial state.

Ignoring unimportant events

Adds transitions that “swallow” specified events.

A. Knapp, J. Wuttke Model Checking of UML 2.0 Interactions 8

Motivation
Our Approach

Summary

Introducing UML 2.0 Operators

Parallel composition
Standard parallel composition of Büchi automata.

Weak and strict sequencing
Strict sequencing attaches the two automata unchanged.
Weak sequencing adds partial order constraint to parallel
composition.

Alternative fragments (conditional branches)

Operand automata reachable through guarded transitions
from a common new initial state.

Ignoring unimportant events

Adds transitions that “swallow” specified events.

A. Knapp, J. Wuttke Model Checking of UML 2.0 Interactions 8

Motivation
Our Approach

Summary

Introducing UML 2.0 Operators

Parallel composition
Standard parallel composition of Büchi automata.

Weak and strict sequencing
Strict sequencing attaches the two automata unchanged.
Weak sequencing adds partial order constraint to parallel
composition.

Alternative fragments (conditional branches)
Operand automata reachable through guarded transitions
from a common new initial state.

Ignoring unimportant events

Adds transitions that “swallow” specified events.

A. Knapp, J. Wuttke Model Checking of UML 2.0 Interactions 8

Motivation
Our Approach

Summary

Introducing UML 2.0 Operators

Parallel composition
Standard parallel composition of Büchi automata.

Weak and strict sequencing
Strict sequencing attaches the two automata unchanged.
Weak sequencing adds partial order constraint to parallel
composition.

Alternative fragments (conditional branches)
Operand automata reachable through guarded transitions
from a common new initial state.

Ignoring unimportant events
Adds transitions that “swallow” specified events.

A. Knapp, J. Wuttke Model Checking of UML 2.0 Interactions 8

Motivation
Our Approach

Summary

Loop Translation

obj1 obj2

a
b

loop <4,∞>

sd Loop

Weak sequencing can “wrap
around” before the basic in-
teraction is complete.

A simple history is not
enough to track progress.

Counter variables track
the number of iterations
on each lifeline.
Guards and actions
augment transition
annotations.

Weak sequencing loops
create possibly infinite
state spaces.

A. Knapp, J. Wuttke Model Checking of UML 2.0 Interactions 9

Motivation
Our Approach

Summary

Loop Translation

obj1 obj2

a
b

loop <4,∞>

sd Loop

Weak sequencing can “wrap
around” before the basic in-
teraction is complete.

A simple history is not
enough to track progress.

Counter variables track
the number of iterations
on each lifeline.
Guards and actions
augment transition
annotations.

Weak sequencing loops
create possibly infinite
state spaces.

A. Knapp, J. Wuttke Model Checking of UML 2.0 Interactions 9

Motivation
Our Approach

Summary

Loop Translation

obj1 obj2

a
b

loop <4,∞>

sd Loop

Weak sequencing can “wrap
around” before the basic in-
teraction is complete.

A simple history is not
enough to track progress.

Counter variables track
the number of iterations
on each lifeline.
Guards and actions
augment transition
annotations.

Weak sequencing loops
create possibly infinite
state spaces.

A. Knapp, J. Wuttke Model Checking of UML 2.0 Interactions 9

Motivation
Our Approach

Summary

s_6

s_4

rcv(b) [((v_1 < v_2) && (v_1 < v_2))
&&(((v_1+1) == v_2) && ((v_1+1) >= 4))]

/v_1++;

s_1

rcv(b)
[((v_1 < v_2) && (v_1 < v_2))

&& (((v_1+1) != v_2) ||
 ((v_1+1) < 4))]/v_1++;

s_5

snd(a)

s_3

snd(b) [((v_2+1) == v_1) &&
((v_2+1) >= 4)]/v_2++;

snd(b) [((v_2+1) != v_1) ||
((v_2+1) < 4)]/v_2++;

rcv(a) [(v_1 < v_2) || (v_1 == v_2)]

/v_1 = 4; v_2 = 4;

s_2

rcv(a)
 [v_1 < v_2]

snd(a)[(v_1 >= 4) && (v_2 >= 4)]
/v_1 = 0; v_2 = 0;

snd(b)
/v_2++;

rcv(b)[((v_1 < v_2) ||(v_1 == v_2))
&&(v_1 < v_2)]/v_1++;

A. Knapp, J. Wuttke Model Checking of UML 2.0 Interactions 10

Motivation
Our Approach

Summary

Translating Negation

obj1 obj2

b

a

sd

not

Replace UML’s neg with
binary logic negation, i.e,
the operator not accepts all
those traces that are invalid
for its operand.

The accepting state of the
operand becomes a
normal state.
All other states become
accepting.
Introduce a recurrent state
that accepts all traces not
contained in the original
automaton.

A. Knapp, J. Wuttke Model Checking of UML 2.0 Interactions 11

Motivation
Our Approach

Summary

Translating Negation

obj1 obj2

b

a

sd

not

Replace UML’s neg with
binary logic negation, i.e,
the operator not accepts all
those traces that are invalid
for its operand.

The accepting state of the
operand becomes a
normal state.

All other states become
accepting.
Introduce a recurrent state
that accepts all traces not
contained in the original
automaton.

A. Knapp, J. Wuttke Model Checking of UML 2.0 Interactions 11

Motivation
Our Approach

Summary

Translating Negation

obj1 obj2

b

a

sd

not

Replace UML’s neg with
binary logic negation, i.e,
the operator not accepts all
those traces that are invalid
for its operand.

The accepting state of the
operand becomes a
normal state.
All other states become
accepting.

Introduce a recurrent state
that accepts all traces not
contained in the original
automaton.

A. Knapp, J. Wuttke Model Checking of UML 2.0 Interactions 11

Motivation
Our Approach

Summary

Translating Negation

obj1 obj2

b

a

sd

not

Replace UML’s neg with
binary logic negation, i.e,
the operator not accepts all
those traces that are invalid
for its operand.

The accepting state of the
operand becomes a
normal state.
All other states become
accepting.
Introduce a recurrent state
that accepts all traces not
contained in the original
automaton.

A. Knapp, J. Wuttke Model Checking of UML 2.0 Interactions 11

Motivation
Our Approach

Summary

s_6

s_4

rcv(a)

s_3

snd(b)

s_5

rcv(b)

s_2

snd(b) rcv(a)

s_1

snd(a)

s_6

s_4

rcv(a)

s_7

!rcv(a)

s_3

snd(b)
!snd(b)

!rcv(b)

s_5

rcv(b)
*

s_2

snd(b)

rcv(a)

!(snd(b) || rcv(a))

s_1

!snd(a)

snd(a)

*

A. Knapp, J. Wuttke Model Checking of UML 2.0 Interactions 12

Motivation
Our Approach

Summary

Translation Overview

Basic automata are always deterministic.
Most UML 2.0 operators introduce non-determinism.
Negation attempts to be intuitive, binary logic negation.
The automata are finite, but the represented state-space is
not.
Model checking automata derived from loop operators is in
general undecidable.

A. Knapp, J. Wuttke Model Checking of UML 2.0 Interactions 13

Motivation
Our Approach

Summary

Implementation

Hugo/RT is 100% pure Java.
Supports translation to PROMELA and (partially) UPPAAL.
Input from XMI 2.0 or the proprietary UTE format.
Available at www.pst.ifi.lmu.de/projekte/hugo

A. Knapp, J. Wuttke Model Checking of UML 2.0 Interactions 14

www.pst.ifi.lmu.de/projekte/hugo

Motivation
Our Approach

Summary

Summary

We presented a detailed semantics and concrete
translation from UML interactions to automata.

Enable consistency and safety checks on specifications.

Outlook

Include the remaining operators from UML 2.0.
Add support for timing constraints.

A. Knapp, J. Wuttke Model Checking of UML 2.0 Interactions 15

Motivation
Our Approach

Summary

Summary

We presented a detailed semantics and concrete
translation from UML interactions to automata.
Enable consistency and safety checks on specifications.

Outlook

Include the remaining operators from UML 2.0.
Add support for timing constraints.

A. Knapp, J. Wuttke Model Checking of UML 2.0 Interactions 15

Motivation
Our Approach

Summary

Summary

We presented a detailed semantics and concrete
translation from UML interactions to automata.
Enable consistency and safety checks on specifications.

Outlook

Include the remaining operators from UML 2.0.
Add support for timing constraints.

A. Knapp, J. Wuttke Model Checking of UML 2.0 Interactions 15

Motivation
Our Approach

Summary

Summary

We presented a detailed semantics and concrete
translation from UML interactions to automata.
Enable consistency and safety checks on specifications.

Outlook
Include the remaining operators from UML 2.0.

Add support for timing constraints.

A. Knapp, J. Wuttke Model Checking of UML 2.0 Interactions 15

Motivation
Our Approach

Summary

Summary

We presented a detailed semantics and concrete
translation from UML interactions to automata.
Enable consistency and safety checks on specifications.

Outlook
Include the remaining operators from UML 2.0.
Add support for timing constraints.

A. Knapp, J. Wuttke Model Checking of UML 2.0 Interactions 15

	Motivation
	Model Consistency, Implementation and Refinement

	Our Approach
	Previous Work
	Main Results
	Implementation

	Summary

