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. . . with an Example

Customer/ Analyst

“An ATM should always
give money to validated

account holders.”

⇓
sd

verifyPIN

PINVerified

: ATM : Bank

loop <infty>

?⇔

System Designer

A. Knapp, J. Wuttke Model Checking of UML 2.0 Interactions 3



Motivation
Our Approach

Summary

. . . with an Example

Customer/ Analyst

“An ATM should always
give money to validated

account holders.”

⇓
sd

verifyPIN

PINVerified

: ATM : Bank

loop <infty>

?⇔

System Designer

A. Knapp, J. Wuttke Model Checking of UML 2.0 Interactions 3



Motivation
Our Approach

Summary

. . . with an Example

Customer/ Analyst

“An ATM should always
give money to validated

account holders.”

⇓
sd

verifyPIN

PINVerified

: ATM : Bank

loop <infty>

?⇔

System Designer

CardValidVerifyingCard

Idle

PINCorrect

entry / numIncorrect = 0

PINIncorrect

VerifyingPIN

[else] / ^atm.abort

[cardValid]

[else] / cardValid = false; ^atm.abort

/ ^atm.PINVerified

[numIncorrect < maxNumIncorrect]
/ numIncorrect++; ^atm.reenterPIN

done

Verifying

verifyPIN()

ReturningCard

AmountEntryVerification

CardEntry

Counting

Dispensing

PINEntry

Giving Money

PINVerified

abort

/ ^bank.done

/ ^bank.verifyPIN()

reenterPIN
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The Hugo/RT Verification Process

Verification
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ArgoUML
Poseidon

Smile
spin

UML−Editor

Hugo/RT
XMI .pr

Run
UML−
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Previous Work

Operational and denotational semantics for UML
interactions.
→ Cengarle and Knapp (2004)

Basic unwinding of Life Sequence Charts (LSC).

→ Brill et al. (2004)

Undecidability of the model checking problem for Message
Sequence Charts.

→ Alur and Yannakakis (1999)
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The Basic Translation Idea

sd
obj2obj1

a

b

Basic Interactions consist of events.

Send- and Receive events are
atomic.
An event history tracks partial order
prerequisites.
The resulting automaton is always
deterministic.
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The Basic Translation Idea

sd
obj2obj1

a

b

Basic Interactions consist of events.
Send- and Receive events are
atomic.
An event history tracks partial order
prerequisites.
The resulting automaton is always
deterministic.

s_6

s_4

rcv(a) 

s_3

snd(b) 

s_5

rcv(b) 

s_2

snd(b) rcv(a) 

s_1

snd(a) 
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Introducing UML 2.0 Operators

Parallel composition
Standard parallel composition of Büchi automata.

Weak and strict sequencing

Strict sequencing attaches the two automata unchanged.
Weak sequencing adds partial order constraint to parallel
composition.

Alternative fragments (conditional branches)

Operand automata reachable through guarded transitions
from a common new initial state.

Ignoring unimportant events

Adds transitions that “swallow” specified events.
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Loop Translation

obj1 obj2

a
b

loop <4,∞>

sd Loop

Weak sequencing can “wrap
around” before the basic in-
teraction is complete.

A simple history is not
enough to track progress.

Counter variables track
the number of iterations
on each lifeline.
Guards and actions
augment transition
annotations.

Weak sequencing loops
create possibly infinite
state spaces.
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s_6

s_4

rcv(b) [((v_1 < v_2) && (v_1 < v_2))
&&(((v_1+1) == v_2) && ((v_1+1) >= 4))]

/v_1++;

s_1

rcv(b)
[((v_1 < v_2) && (v_1 < v_2))

&& (((v_1+1) != v_2) ||
 ((v_1+1) < 4))]/v_1++;

s_5

snd(a)

s_3

snd(b) [((v_2+1) == v_1) &&
((v_2+1) >= 4)]/v_2++;

snd(b) [((v_2+1) != v_1) ||
((v_2+1) < 4)]/v_2++;

rcv(a) [(v_1 < v_2) || (v_1 == v_2)]

/v_1 = 4; v_2 = 4;

s_2

rcv(a)
 [v_1 < v_2]

snd(a)[(v_1 >= 4) && (v_2 >= 4)] 
/v_1 = 0; v_2 = 0;

snd(b)
/v_2++;

rcv(b)[((v_1 < v_2) ||(v_1 == v_2))
&&(v_1 < v_2)]/v_1++;
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Translating Negation

obj1 obj2

b

a

sd

not

Replace UML’s neg with
binary logic negation, i.e,
the operator not accepts all
those traces that are invalid
for its operand.

The accepting state of the
operand becomes a
normal state.
All other states become
accepting.
Introduce a recurrent state
that accepts all traces not
contained in the original
automaton.
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s_6

s_4

rcv(a) 

s_3

snd(b) 

s_5

rcv(b) 

s_2

snd(b) rcv(a) 

s_1

snd(a) 

s_6

s_4

rcv(a)       

s_7

!rcv(a)      

s_3

snd(b)
!snd(b)

!rcv(b)

s_5

rcv(b)       
*

s_2

snd(b)

rcv(a)

!(snd(b) || rcv(a))   

s_1

!snd(a)

snd(a)        

*
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Translation Overview

Basic automata are always deterministic.
Most UML 2.0 operators introduce non-determinism.
Negation attempts to be intuitive, binary logic negation.
The automata are finite, but the represented state-space is
not.
Model checking automata derived from loop operators is in
general undecidable.
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Implementation

Hugo/RT is 100% pure Java.
Supports translation to PROMELA and (partially) UPPAAL.
Input from XMI 2.0 or the proprietary UTE format.
Available at www.pst.ifi.lmu.de/projekte/hugo
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Summary

We presented a detailed semantics and concrete
translation from UML interactions to automata.

Enable consistency and safety checks on specifications.

Outlook

Include the remaining operators from UML 2.0.
Add support for timing constraints.
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