
Model Checking:
One Can Do Much More Than You Think!

Joost-Pieter Katoen1,2

1 RWTH Aachen University, Software Modelling and Verification Group, Germany
2 University of Twente, Formal Methods and Tools, The Netherlands

Abstract. Model checking is an automated verification technique that
actively is applied to find bugs in hardware and software designs. Com-
panies like IBM and Cadence developed their in-house model checkers,
and acted as driving forces behind the design of the IEEE-standardized
temporal logic PSL. On the other hand, model checking C-, C#- and .NET-
program code is an intensive research topic at, for instance, Microsoft and
NASA. In this short paper, we briefly discuss three non-standard applica-
tions of model checking. The first example is taken from systems biology
and shows the relevance of probabilistic reachability. Then, we show how
to determine the optimal scheduling policy for multiple-battery systems
so as to optimize the system’s lifetime. Finally, we discuss a stochastic
job scheduling problem that —thanks to recent developments— can be
solved using model checking.

1 Introduction

Despite the scepticism in the early eighties, it is fair to say that model check-
ing is scientifically a big success. Prizes such as the Paris Kanellakis Award
1998 awarded to Bryant, Clarke, Emerson and McMillan for their invention of
“symbolic model checking, the Gödel prize 2000 —the equivalent of the Nobel
prize in Mathematics— was awarded to Vardi and Wolper for their work on
model checking with finite automata, and last but not least, the Nobel prize in
Computer Science, the ACM Turing Award 2007, was granted to the inventors
of model checking, Clarke, Emerson and Sifakis. The impact of model checking
tools is clearly demonstrated by the ACM System Software Award 2001, granted
to Holzmann, for his model checker SPIN, “a popular open-source software tool,
used by thousands of people worldwide, that can be used for the formal verifi-
cation of distributed software systems”. Other winners of this prestigious award
are, e.g., TeX, Postscript, unix, TCP/IP and Java, to mention a few.

Model checking is based on an exhaustive state space search; in fact, check-
ing whether a set of target states is reachable from a given state is at the heart
of various model-checking algorithms. The prime usage of model checking [6, 2,
8] is bug hunting: finding flaws in software programs, hardware designs, com-
munication protocols, and the like. The feature of model checkers to generate a
counterexample in case a property is refuted is extremely useful and turns model

checking into an intelligent and powerful debugging technique. This feature com-
bined with an abstraction-refinement loop is currently main stream in software
verification. Success stories include the demonstration of conceptual bugs in an
international standard proposal for a cache coherence protocol, catching a fa-
tal flaw in the Needham-Schröder authentication protocol, but also the usage
of model checking in designing device drivers in recent Microsoft operating sys-
tems, and highly safety-critical NASA space missions. The fact that the Property
Specification Language (PSL), basically a derivative of linear temporal logic en-
riched with regular expressions, has become an IEEE standard since 2005 for
specifying properties or assertions about hardware designs, is a clear sign that
formal verification techniques such as model checking has significantly gained
popularity and importance.

Model checking can however be applied to various problems of a completely
different nature. It can be used for instance to solve combinatorial puzzles such
as the famous Chapman puzzle [7] and Sudoku problems. In the rest of this short
paper, we will discuss three non-standard applications of model checking. The
first example is taken from systems biology and shows the relevance of prob-
abilistic reachability. Then, we show how to determine the optimal scheduling
policy for multiple-battery systems. Finally, we discuss a stochastic scheduling
problem that—thanks to quite recent developments—can be solved using model
checking. All examples share that the models and properties that we will check
are quantitative. This is an important deviation from traditional model check-
ing that focuses on functional correctness and models. It is our firm belief that
quantitative model checking will gain importance in the (near) future and will
become a technique that is highly competitive in comparison to standard solution
techniques for quantitative problems.

2 Systems biology: enzyme kinetics

Enzyme kinetics investigates of how enzymes (E) bind substrates (S) and turn
them into products (P). About a century ago, Henri considered enzyme reac-
tions to take place in two stages. First, the enzyme binds to the substrate,
forming the enzyme-substrate complex. This substrate binding phase catalyses
a chemical reaction that releases the product. Enzymes can catalyse up to sev-
eral millions reactions per second. Rates of kinetic reactions are obtained from
enzyme assays, and depend on solution conditions and substrate concentration.
The enzyme-substrate catalytic substrate conversion reaction is described by the
stoichiometric equation:

E + S
k1

k2
C k3−−→E + P

where ki is the Michaelis-Menten constant, which is the substrate concentration
required for an enzyme to reach one-half of its maximum reaction rate. Now
let suppose we have N different types of molecules that randomly collide. The
state X(t) of the biological system at time instant t ∈ R>0 is given by X(t) =

(x1, . . . , xN) where xi denotes the number of species of sort i. In the enzyme-
catalytic substrate conversion case, N=4 and i ∈ {C,E, P, S }. Let us number
the types of reaction, e.g., E+S → C and C → E+S could be the first and
second reaction, respectively. The reaction probability of reaction m within the
infinitesimally small time-interval [t, t+∆) with ∆R>0 is given by:

αm(x) ·∆ = Pr{reaction m in [t, t+∆) | X(t) = x}

where αm(x) = km · the number of possible combinations of reactant molecules
in x. For instance, in state (xE , xS , xC , xP) where xi > 0 for all i, the reac-
tion E + S → C happens with rate αm(x) = k1·xE ·xS and yields the state
(xE−1, xS−1, xC+1, xP). This stochastic process possesses the Markov prop-
erty, i.e., its future is completely described by the current state of the system.
Moreover, it is time-homogeneous, i.e., its behaviour is invariant with respect to
time shifts. In fact, it is a continuous-time Markov chain (CTMC, for short).

Fig. 1. CTMC for enzyme-catalytic substrate conversion for initially 2 enzyme and 4
substrate species with k1 = k2 = 1 and k3 = 0.001. The transition labels are rates of
exponential distributions, i.e., the reciprocal of the average duration of a reaction.

Let us now consider the following question: given a certain concentration
of enzymes and substrates, what is the likelihood that after four days all sub-
strates have engaged in a catalytic step and resulted in products? In terms of
the CTMC, this boils down to determining the probability that starting from
the state (xE , xS , 0, 0) we can reach a state of the form (xE , 0, 0, xP) within four
days. This is a so-called time-bounded reachability property that we can tackle
by model checking thanks to the following result:

Theorem 1. [3] The following reachability problem is efficiently computable:

Input: a finite CTMC, a target state, accuracy 0 < ε < 1, and deadline d ∈ R>0

Output: an ε-approximation of the probability to reach the target in d time.

This result suggests to use an off-the-shelf probabilistic model checker for CTMCs
such as prism [14] or mrmc [12]. Due to the large difference between the rates

in the CTMC —the rates between states within one column is about a factor
1,000 times larger than the rates between columns— many iterations are needed
to obtain results for a reasonable ε, say 10−4 or 10−6. Verifying a configuration
with 200 substrates and 20 enzymes yielding a CTMC of about 40,000 states,
e.g., takes many hours. In order to deal with this problem, we apply aggressive
abstraction techniques that are based on partitioning the state space. This man-
ual step is guided by the following rule of thumb: group states that are quickly
connected, i.e., group the states in a column-wise manner. This yields a chain
structure as indicated in Fig. 2. Now the next step of the abstraction is to take

Fig. 2. Abstract CTMC for enzyme-catalytic substrate conversion for 2 enzyme and
4 substrate species after a state partitioning. The transition labels are probability
intervals. Rates are omitted, as the residence times of all states has been normalised
prior to abstraction, cf. [12].

several transitions into account. For instance, the lower bound probability of
moving from the leftmost abstract state to the one-but-leftmost state is 0, as
the state 2400 cannot move to any state of the form (xE , xS , xC , 1) in one step,
i.e., by taking a single transition. This yields rather course lower bounds. To
overcome this deficiency, we consider several steps. That is to say, in addition
to the state partitioning, we consider an abstraction of sequences of transitions.
The resulting structure is sketched in Fig. 3 where the most important change
is the amendment of the lower bounds in the probability intervals, and the ad-
dition of transitions. The length k of the sequences that are abstracted from is a

Fig. 3. Abstract CTMC for enzyme-catalytic substrate conversion for 2 enzyme and
4 substrate species after a state and transition sequence abstraction. The transition
labels are probability intervals. State residence times now are Erlang distributions.

parameter of the abstraction procedure. The state residence times now become
sequences of (equal) exponential distributions, i.e., they become Erlang distri-
butions of length k. As a result of the intervals on the transition probabilities,

the analysis of the abstract CTMC yields lower and upper bounds of the real
probability. On increasing the parameter k, the difference between these bounds
becomes smaller. This effect is illustrated in Fig. 4(a). Our method is accurate

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

t

Pr
ob

ab
ilit

y

k=1, min
k=1, max
k=3, min
k=3, max
k=10, min
k=10, max

(a) The influence of k on the accuracy of
bounds.

10.000 12.000 14.000 16.000 18.000 20.000

0,2

0,4

0,6

0,8

1

time bound

Pr
ob

ab
ilit

y
(b

ou
nd

s)

k=1024, min
k=1024, max
k=1024, diff
k=2048, min
k=2048, max
k=2048, diff
k=4096, min
k=4096, max
k=4096, diff
concrete model

(b) Time-bounded reachability bounds for
enzyme-catalysed substrate conversion.

as the obtained intervals are small, e.g., for xS = 200, k = 212, and time-bound
t = 14, 000, the relative interval width between the lower and upper bounds is
about 10%. The column-wise abstraction results in a state space reduction by a
factor 20 and reduces the run-times with several orders of magnitude. For further
details on this case study we refer to [11]. The results have been obtained using
the mrmc model checker [12].

To conclude, model checking combined with novel aggressive abstraction
techniques yield a powerful technique to check interesting properties of biological
systems. The technique is highly competitive with existing techniques such as
solving chemical master equations and Monte carlo simulation. Recent experi-
ments indicate that these techniques are also very helpful for a completely differ-
ent application area—queueing theory. By means of abstraction we were able to
analyse timed reachability properties for so-called tree-based quasi-birth-death
processes with state spaces of up to 10278 states by abstractions of about 1,2
million states with an accuracy of ε = 10−6, see [13]. To our knowledge, this
was the first time ever that tree-shaped Markov models of this size have been
analysed numerically.

3 Optimal battery scheduling

As argued in the introduction, an important feature of model checking is the
possibility to generate counterexamples in case a property is refuted. For in-
stance, for the property 2(x > 2), expressing that along a path any state should
satisfy x > 2 for integer variable x, a counterexample is a finite path reaching
a state for which x 6 2. Counterexamples can be used for scheduling problems
in the following way. Suppose that we are interested in finding a schedule that
steers a system from a starting to a target state, G, say. Then we model the

possible non-deterministic moves of the system by means of a finite transition
system, and check whether the property ¬3G, or equivalently, 2¬G, holds. If
there exists a schedule leading to G, the model checker will refute the property
2¬G and yields a finite schedule as counterexample. A similar strategy can be
applied to real-time systems extended with costs where schedules are sought that
minimize the total costs. This will be briefly illustrated in the following example
where we will use costs to model energy consumption.

It is well-known that the battery lifetime determines system uptime and
heavily depends on the battery capacity, the level of discharge current, and the
usage profile. We consider the following problem: given a number of batteries
and a usage profile, what is the optimal policy to empty the batteries such that
the multi-battery system’s lifetime is maximized. It is certainly far from optimal
to solve this off-line scheduling problem by emptying the batteries in a sequential
fashion due to the recovery effect: during idle periods, the battery regains some
of its capacity, cf. Fig. 4(d). There is an electro-chemical explanation for this
recovery effect. Ions have to diffuse from the anode to the cathode of the battery.
At high currents, the internal diffusion is too slow and the reaction sites at
the cathode surface get blocked. During idle periods, ions get time to diffuse
again and accordingly the battery’s capacity increases. Alternative scheduling
strategies that can exploit this recovery during idel periods are round-robin
(empty the batteries according to fixed total order), or best-of-N strategies (use
the mostly charged battery among the available N ones). We will show that
optimal scheduling policies can be obtained using model checking of priced timed
automata.

(c) The rate-capacity effect: the bat-
tery capacity (y-axis) drops for high
discharge currents (x-axis). A dis-
charge rate of 0.5 C means that the
total discharge takes 2 hours.

(d) The recovery effect: battery
regains capacity during idle pe-
riods. This yields the raw-tooth
curve.

A second non-linear effect of batteries that has to be taken into account is
the so-called rate-capacity effect, see Fig. 4(c). One would think that the ideal
capacity would be constant for all discharge currents, and all energy stored in the
battery would be used. However, in reality for a real battery the voltage slowly

drops during discharge and the effective capacity is lower for high discharge
currents. The discharge rate in Fig. 4(c) is given in terms of C rating, a C rating
of 2C means that the battery is discharged in 1/2 hour. The measured capacities
are given relatively to the capacity at the 2 hour discharge rate, 0.5 C.

The battery model we use is based on the kinetic battery model for lead-acid
batteries as developed by Manwell & McGowan [15]. In this model, the charge
of the battery is distributed over two wells, the available charge with height h1

and the bound charge with height h2, see Fig. 4. The available charge represents
the charge that is currently available for usage. Discharging leads to a decrease
of h1. The battery is empty if and only if h1 = 0. When the battery is idle,
i.e., not being discharged, charge flows from the bound charge to the available
charge. The speed depends on the height difference h2−h1 and the resistance k
between the two wells. This models the recovery effect. The rate capacity effect is
captured by the fact that at higher discharge levels, there is less time to recover.
Let y1 be the volume of the available charge well and y2 the volume of the
boundary charge well. The behaviour of the kinetic battery model is captured

Fig. 4. The kinetic battery model with a boundary and available charge well of height
h1(t) and h2(t) at time t, respectively. The discharge i(t) at time point t is depicted
on the right and will lead to a decrease of the available charge. Recovery is modelled
by a charge flow between the boundary and available well when i(t) = 0.

by the following set of linear differential equations:

h1(t) = y1(t)
c ẏ1(t) = −i(t) + k·(h2(t)− h1(t))

h2(t) = y2(t)
1−c ẏ2(t) = −k·(h2(t)− h1(t))

with initial conditions y1(0) = c·C and y2(0) = (1 − c)·C where C is the total
capacity and 0 < c < 1 for constant c. Here, i(t) represents the discharge process.

The kinetic battery model can naturally be described by a network of priced
timed automata. Intuitively speaking, clocks in timed automata are used to model
the advancement of time t, whereas cost variables are used to model the battery
charge (in fact, the reverse). A timed automaton is in fact a finite-state automa-
ton equipped with real-valued clocks that can be used as timers to measure the

elapse of time. Constraints on these clocks can be used to guard state-transitions,
and clocks can be set to zero while taking a transition. In priced timed automata,
states are equipped with a cost rate r such that the accumulated cost in that
state over a time period d grows with r·d.

Fig. 5. Example priced timed automaton of a lamp. The cost rate is 0 in state off, 10
in state low and 20 in state bright. Cost represents energy consumption.

We now model the battery scheduling problem as:

(DC1 ||RC1)︸ ︷︷ ︸
battery 1

|| || (DCn ||RCn)︸ ︷︷ ︸
battery n

||Load ||Scheduler

where DCi describes the discharging process of the battery i, RCi the recovery
effect during idle periods of battery i, Load the usage profile and Scheduler an
automaton that non-deterministically selects one of the batteries for discharging
once the usage profile demands a discharge. Then we exploit the following result:

Theorem 2. [4, 1] The following reachability problem is effectively computable:

Input: a priced timed automaton, an initial state, and a target state
Output: the minimum cost of runs from the initial state to the target.

As a by-product of the computation of the minimal cost run, an optimal schedule
is obtained that achieves this minimal-cost run.

Our objective is to minimize the bound charge levels (of all batteries) once all
batteries are empty, i.e., once all available charges are empty. Table 1 presents
the results for two batteries for several usage profiles (the rows) and several
battery scheduling disciplines (columns). The last column presents the battery
lifetimes obtained by model checking our priced timed automaton. These results
have been obtained using the uppaal cora model checker 1. The recovery effect
becomes clearly apparent when comparing, e.g., the rows for the usage profiles
ILs 250 and IL` 250. Both profiles have a peak charge of 250 Amin and peak
with equal duration, but the idle time between successive discharging periods is
small and long, respectively. This almost doubles the battery lifetime. A simi-
lar phenomenon appears for profiles ILs 500 and IL` 500. The optimal battery
1 www.uppaal.com

test sequential round robin best-of-two optimal
load lifetime lifetime lifetime lifetime

(min) (min) (min) (min)

CL 250 9.12 11.60 11.60 12.04
CL 500 4.10 4.53 4.53 4.58
CL alt 5.48 6.10 6.12 6.48
ILs 250 22.80 38.96 38.96 40.80
IL` 250 45.84 76.00 76.00 78.96
ILs 500 8.60 10.48 10.48 10.48
IL` 500 12.94 15.96 15.96 18.68
ILs alt 12.38 12.82 16.30 16.91
ILs r1 12.80 16.26 16.26 20.52

Table 1. Lifetimes of a multi-battery system under various usage profiles (first column)
and various scheduling disciplines (second to fourth column). The optimal lifetimes
obtained by model checking are listed in the last column.

lifetimes obtained by model checking (last column) clearly outperform round-
robin and best-of-two scheduling. Note that best-of-two is not much better than
round-robin, and requires the ability to measure the remaining capacity of the
batteries. Sequential scheduling is far from attractive. An example schedule that
is obtained by model checking (in red), and compared to a best-of-two schedule
(in blue) for a given usage profile (uppermost block curve, in black) is provided
in Fig. 6.

Fig. 6. Example of obtained optimal schedule for two batteries (lowermost curve) for
a given usage profile (uppermost curve), compared to a best-of-two scheduling policy
(middle curve).

To conclude, model checking allows for computing the optimal battery schedul-
ing policy. Alternative techniques to obtain such policies are by solving non-linear
optimisation problems. It is fair to say, that the obtained optimal schedules using
this technique are not easily implementable in realistic battery-powered systems
such as PDAs or sensor nodes. By means of model checking, one can however
determine the quality of a given scheduling policy by comparing it to the op-
timal one. The above experiments show that round-robin scheduling is mostly
behaving quite good. For further details on this case study we refer to [9, 10].

4 Stochastic scheduling

The third application example is slightly more theoretical, and aims to illustrate
how state-of-the-art stochastic model checking techniques can be used to solve
stochastic scheduling problems. Stochastic scheduling is important in the field of
optimization [19], and is motivated by problems of priority assignment in various
systems where jobs with random features, such as random durations, or arrival
processes, are considered, or in which machines are present that are subject to
random failures.

More concretely, we consider the scheduling of N jobs on K identical ma-
chines, where K << N . Every job has a random duration such that job i has a
mean duration of di > 0 time units. The most appropriate stochastic approxi-
mation is to model the duration of job i by a negative exponential distribution
with rate λi = 1

di
. (Technically speaking, given that only the mean of a random

event is known, the probability distribution that maximizes the entropy is an
exponential one with exactly this mean; intuitively, maximizing entropy mini-
mizes the amount of prior information built into the probability distribution.)
Jobs are scheduled on the machines such that job scheduling is pre-emptive. The
pre-emptive scheduling allows us to assign each machine one of the n remaining
jobs giving rise to

„
n
K

«
possible choices. This means that on finishing of a job

on machine j, every job on any other machine can be pre-empted. This scheme
is illustrated by a decision tree for 4 jobs and 2 machines in Fig. 7. Every node
in the tree is labelled with the set of remaining, i.e., unfinished jobs. The under-
lined job numbers are those that are selected for execution; if one of the jobs,
i say, expires first in a situation where n jobs have not been processed yet, an
event that happens with probability λi

λi+λj
(where j is the number of the other

selected, but unfinished, job), finishes, n−1 jobs remain, and a new selection
is made. The time that has elapsed is determined by the rate λi. Due to the
memoryless property of the exponential distribution, the remaining execution
time of the pre-empted job j remains exponentially distributed with rate λj .

It is well-known that the LEPT policy —the longest expected processing
time-first policy— yields the minimal expected finishing time of the last job
(also called the expected makespan), cf. [5]. As [5] however argues, “it is hard to
calculate these expected values”. We will show how probabilistic model checking
can be applied to address a harder question, namely: which policy maximizes
the probability to finish all jobs on time? (The alerted reader might argue that

Fig. 7. Two possible schedules of 4 jobs on 2 machines with pre-emptive scheduling
policy. In the left one, jobs 2 and 3 are selected first; in the right one, jobs 1 and 4 are
initially picked.

this question is somehow related to the biology case study, and indeed it is. The
difference is that the biology example is fully deterministic, that is, in fact an
instance of the above case in which there is only a single possible choice in every
node of the decision tree.)

This stochastic job scheduling problem naturally gives rise to a continuous-
time Markov decision process (CTMDP, for short) 2. This model is a generali-
sation of CTMCs, the model used in the first case study, with non-determinism.
In every state, an action (ranged over by α) is selected non-deterministically, see
Fig. 8. In our setting, an action corresponds to a scheduling decision of which
jobs to process next. The residence time in a state is exponentially distributed.
Fig. 8. The problem of determining the policy that maximizes the probability to
finish all jobs within d time units now reduces to the following question: what
is the maximal probability to reach the sink state within d time units? This can
be solved by means of model checking using the following result.

Fig. 8. Possible schedules for 4 jobs on 2 machines, modelled as a continuous-time
Markov decision process.

Theorem 3. [18] The following reachability problem is effectively computable:
2 In fact, a locally uniform continuous-time Markov decision process [17].

Input: a finite CTMDP, a target state, accuracy 0 < ε < 1, and deadline d ∈ R>0

Output: an ε-approximation of the maximal (or dually, minimal) probability to
reach the target in d time.

Importantly though is that as a by-product of determining this ε-approximation,
one obtains an ε-optimal policy that yields this maximal probability (up to an
accuracy of ε). The main complication of this timed reachability problem is that
the optimal policies are time-dependent. This is an important difference with
reachability questions for discrete-time Markov decision processes (MDPs) for
which time-independent policies suffice, e.g., policies that in any state always
take the same decision. The decisions of time-dependent policies may vary over
time and may for instance depend on the remaining time until the deadline d.
Their computation is done via a discretisation yielding an MDP on which a
corresponding step-bounded reachability problem is solved using value iteration.
The smallest number of steps needed in the discretised MDP to guarantee an
accuracy of ε is λ2·d2

2ε where λ is the largest rate of a state residence time in the
CTMDP at hand. In a similar way, minimal timed reachability probabilities can
be obtained and their corresponding policies.

Fig. 9. Minimal and maximal reachability probabilities for finishing 4 jobs on 2 ma-
chines under a pre-emptive scheduling strategy.

The results of applying this discretisation on the example with 4 jobs and
two machines is shown in Fig. 9 where the deadline d is given on the x-axis and
the reachability probability on the y-axis. For equally distributed job durations,
i.e., λi = λj for all i, j, the maximal and minimal probabilities coincide. Oth-
erwise, the probabilities depend on the scheduling policy. It turns out that the
ε-optimal scheduler that maximizes the reachability probabilities adheres to the
SEPT (shortest expected processing time first) strategy; moreover, the optimal
ε-scheduler for the minimum probabilities obeys the LEPT strategy. These re-
sults have been obtained by a vanilla version of the model checker mrmc [12].
The case study is described in more detail in [16].

5 Concluding remarks

By means of three examples from different application fields, we have attempted
to argue that model checking is applicable to problems of a quite different nature
than what is typically considered as verification problems. All problems have a
quantitative flavour, i.e., non-functional aspects such as timing, randomness, and
costs (energy) are essential to adequately model the applications at hand. We
belief that there is an increased need for quantitative model checking as the
importance of non-functional aspects is growing at staggering rate. We stress
that in the last two examples we used model checking to synthesize an optimal
schedule.

The battery example can certainly also be handled with existing techniques
such as mixed integer linear programming. Dynamic programming techniques
using Bellman equations can be used to tackle the stochastic planning example.
The systems biology example can be handled using the chemical master equa-
tion or by Gillespie’s simulation algorithm. Truly so. Our take-home message is
not that model checking is the best and most efficient technique to tackle the
described problems here; it is a valuable and interesting alternative that in some
cases might be well competitive with existing traditional solution techniques.
Model checking is on its way to become ubiquitous!

Acknowledgement. I thank all co-workers on the discussed case studies: Henrik Bohnen-

kamp, Boudewijn Haverkort, Marijn Jongerden, Daniel Klink, Alexandru Mereacre,

Martin Neuhäusser, Martin Leucker, Verena Wolf, and Lijun Zhang. Part of this work

has been established in the context of the EU FP7 QUASIMODO project, the NWO-

DFG bilateral ROCKS project and the DFG Research Training Group ALGOSYN.

References

1. R. Alur, S. L. Torre, and G. J. Pappas. Optimal paths in weighted timed automata.
Theor. Comput. Sci., 318(3):297–322, 2004.

2. C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.
3. C. Baier, J.-P. Katoen, and H. Hermanns. Approximate symbolic model checking

of continuous-time Markov chains. In 10th Int. Conf. on Concurrency Theory
(CONCUR), volume 1664 of Lecture Notes in Computer Science, pages 146–161.
Springer, 1999.

4. G. Behrmann, A. Fehnker, T. Hune, K. G. Larsen, P. Pettersson, J. Romijn, and
F. W. Vaandrager. Minimum-cost reachability for priced timed automata. In
Hybrid Systems: Computation and Control (HSCC), volume 2034 of Lecture Notes
in Computer Science, pages 147–161. Springer, 2001.

5. J. L. Bruno, P. J. Downey, and G. N. Frederickson. Sequencing tasks with expo-
nential service times to minimize the expected flow time or makespan. J. ACM,
28(1):100–113, 1981.

6. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
7. E. M. Clarke and H. Schlingloff. Model checking. In A. Robinson and A. Voronkov,

editors, Handbook of Automated Reasoning (Volume II), chapter 24, pages 1635–
1790. 2000.

8. O. Grumberg and H. Veith, editors. 25 Years of Model Checking - History, Achieve-
ments, Perspectives, volume 5000 of Lecture Notes in Computer Science. Springer,
2008.

9. M. R. Jongerden, B. R. Haverkort, H. C. Bohnenkamp, and J.-P. Katoen. Maximiz-
ing system lifetime by battery scheduling. In 39th IEEE/IFIP Conf. on Dependable
Systems and Networks (DSN), pages 63–72. IEEE Computer Society, 2009.

10. M. R. Jongerden, A. Mereacre, H. C. Bohnenkamp, B. R. Haverkort, and J.-P.
Katoen. Computing optimal schedules for battery usage in embedded systems.
IEEE Trans. Industrial Informatics, 5(3):276–286, 2010.

11. J.-P. Katoen, D. Klink, M. Leucker, and V. Wolf. Abstraction for stochastic sys-
tems by Erlang’s method of stages. In 19th Int. Conf. on Concurrency Theory
(CONCUR), volume 5201 of Lecture Notes in Computer Science, pages 279–294.
Springer, 2008.

12. J.-P. Katoen, I. S. Zapreev, E. M. Hahn, H. Hermanns, and D. N. Jansen. The ins
and outs of the probabilistic model checker MRMC. Perform. Eval., 68(2):90–104,
2011.

13. D. Klink, A. Remke, B. R. Haverkort, and J.-P. Katoen. Time-bounded reachability
in tree-structured QBDs by abstraction. Perform. Eval., 68(2):105–125, 2011.

14. M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM: probabilistic model check-
ing for performance and reliability analysis. SIGMETRICS Performance Evalua-
tion Review, 36(4):40–45, 2009.

15. J. Manwell and J. McGowan. Lead acid battery storage model for hybrid energy
systems. Solar Energy, 50(5):399–405, 1993.

16. M. R. Neuhäußer. Model Checking Nondeterministic and Randomly Timed Sys-
tems. PhD thesis, RWTH Aachen University and University of Twente, 2010.

17. M. R. Neuhäußer, M. Stoelinga, and J.-P. Katoen. Delayed nondeterminism in
continuous-time Markov decision processes. In 12th Int. Conf. on Foundations
of Software Science and Computational Structures (FOSSACS), volume 5504 of
Lecture Notes in Computer Science, pages 364–379. Springer, 2009.

18. M. R. Neuhäußer and L. Zhang. Time-bounded reachability probabilities in
continuous-time Markov decision processes. In 7th Int. Conf. on the Quantitative
Evaluation of Systems (QEST), pages 209–218. IEEE Computer Society, 2010.

19. J. Nino-Mora. Stochastic scheduling. In Encyclopedia of Optimization, volume V,
pages 367–372. Springer, 2001.

