
Model Checking PLC Software Written in Function Block Diagram

Olivera Pavlović 1

Braunschweig, Germany
Email: olivera.r.pavlovic@googlemail.com

Hans-Dieter Ehrich
Technische Universität Braunschweig

Braunschweig, Germany
Email: hd.ehrich@tu-bs.de

Abstract—The development of Programmable Logic Con-
trollers (PLCs) in the last years has made it possible to apply
them in ever more complex tasks. Many systems based on these
controllers are safety-critical, the certification of which entails
a great effort. Therefore, there is a big demand for tools for
analyzing and verifying PLC applications. Among the PLC-
specific languages proposed in the standard IEC 61131-3, FBD
(Function Block Diagram) is a graphical one widely used in
rail automation. In this paper, a process of verifying FBDs by
the NuSMV model checker is described. It consists of three
transformation steps: FBD→TextFBD→tFBD→NuSMV. the
novel step introduced here is the second one: it reduces the state
space dramatically so that realistic application components can
be verified. The process has been developed and tested in the
area of rail automation, in particular interlocking systems. As
a part of the interlocking software, a typical point logic has
been used as a test case.

Keywords-formal verification; model checking; PLC; FBD;
IEC 61131-3;

I. INTRODUCTION

Programmable Logic Controllers (PLCs) are a special
type of computer used in automation systems [1]. Generally
speaking, they are based on sensors and actuators which
have the ability to control, monitor and interact with a par-
ticular process or a collection of processes. These processes
are diverse and can be found, for example, in household
appliances, emergency shutdown systems for nuclear power
stations, chemical process control and rail automation sys-
tems.

IEC is an organization that provides international stan-
dards for electrical, electronic and related technologies. The
standard IEC 61131-3 [2] describes inter alia PLC program-
ming languages. There are five PLC languages proposed in
the standard. Two of them are textual languages: (a) IL -
Instruction List, and (b) ST - Structured Text. The other
three programming languages are graphical languages: (c)
FBD - Function Block Diagram, (d) LD - Ladder Diagram
and (e) SFC - Sequential Function Chart.

In this paper, the application and verification of PLCs
in the rail automation domain is considered1. One area of
applying PLCs in this domain is the area of electronic inter-
locking systems based on PLCs. Generally, electronic inter-

1This work has been developed while the first author was in the “Railway
Automation Graduate School (RA:GS!)” of SIEMENS AG, Industry Sector
of Braunschweig

lockings are used to control signals, points, line crossovers
and level crossings, thereby ensuring safe operation. The
most of the interlocking software has been written in the
graphical language FBD. The goal of our work is to inves-
tigate the verification of FBDs.

In the past years, there has been an increasing interest in
analyzing PLC applications with formal methods. The low-
level language IL has been the most investigated language
in terms of PLC verification. Hence, first attempts to verify
FBDs are made by verifying the IL representation of an FBD
program.

Let us briefly describe some of the approaches for IL
verification. In [3], timed automata are used to model IL
programs. For verification, the model checker UPPAAL is
used. Function and function block calls are not implemented.
[4] proposes Petri nets and SMV for model checking IL
programs. As data structures, anything can be used that
can be coded with 8-bits. Another method that proposes
verification with SMV is sketched in [5]. Time and timers are
not part of the model in this work. Comparing the existing
IL verification techniques and analyzing the properties of
the software to be verified, we took the latter method as
a starting point. The theory behind our improvement of
the IL technique and its tayloring towards the PLC family
SIMATIC S7 of the SIEMENS AG was described in [6]. The
tool that automates this process was published in [7]. This
way, we managed to make model checking of IL format
interlocking software fully automatic.

Unfortunately, the models became so complex that just
small parts of the software could be verified. Therefore, we
took a different approach in the second phase of the project.
Our goal was to verify existing industrial software and not
just parts of it.

So we suggested to verify FBD programs instead of IL
programs. We sketched the idea in [8]. In this paper, we
elaborate on the method, develop the theory behind it, and
develop the techniques towards full automation. There is
some work on FBD verification which has been published
in the last years ([9] and [10]). But these papers do not offer
enough detail to enable comparison with our work.

The paper is organized as follows. Section 2 briefly
reviews the PLC structure and PLC programming languages.
The theoretical background of the method for FBD verifica-
tion is described in Section 3. There we introduce the textual

HDEhrich
Schreibmaschinentext
Proc. 2010 Third International Conference on Software Testing, Verification and Validation. IEEE, 2010.

HDEhrich
Schreibmaschinentext

HDEhrich
Schreibmaschinentext

HDEhrich
Schreibmaschinentext

Input
module

Output
module

CPU

Figure 1. PLC organization

representation of FBD. Section 4 contains a case study which
illustrates the application area for the work presented here.
The automation of the verification method is described in
Section 5. Finally, the last section draws conclusions and
indicates plans for future work.

II. PROGRAMMABLE LOGIC CONTROLLERS

As already mentioned, PLCs are a special type of com-
puter based on sensors and actuators able to control, monitor
and influence a particular process. In this section, the PLC
structure and programming languages are described.

A. PLC Structure

A typical PLC organization is represented in Fig. 1. Input
and output modules are used to transmit data between
PLC and connected peripherals. The CPU is a part of
a programmable controller responsible for reading inputs,
executing the control program, and updating outputs. The
focus of a PLC is to repeat periodically the execution of a
control program. There are three main phases of this cyclic
behavior of a PLC: read data from inputs (sensors), execute
the control program, and write data to outputs (actuators).

B. PLC Programming languages

The program organization units proposed in IEC 61131-3
can be delivered by the manufacturer or programmed by the
user according to the rules defined in this standard. In this
work, the software Step7 is used. This is the current software
version for programming the PLC family SIMATIC S7 of
the manufacturer Siemens AG [11].

The FBD programming language [12] is a restricted
graphical representation of the machine-orientated language
IL. This means that not all IL programs can be represented
in FBD, but on the other hand each FBD program can be
mapped to IL. FBD programs are similar to circuit diagrams
in electrical engineering and consist of simple elements. For
example, in Fig. 2 the following elements can be found.
CMP==I (comparison of two integers), & (conjunction of
two Booleans), >=1 (disjunction of two Booleans), and =
(assignment of a value to a variable).

III. THEORETICAL BACKGROUND

With processors getting more and more powerful, and
memories growing bigger and bigger, verification becomes
feasible for more and more complex programs. The verifi-
cation methods at hand, in particular model checking, turn
out to work quite well for our application area. As a tool,

we use NuSMV (a New Symbolic Model Verifier). NuSMV
was developed by IRST (Instituto per la Ricerca Scientifica e
Tecnologica) and CMU (Carnegie Mellon University) [13].
It is a reimplementation and extension of SMV, the first
model checker based on BDD.

There is no standardized process yet to verify PLC. In this
section, we present a verification process for PLC software
written in FBD. There are essentially three steps:
A. in order to make FBD programs processable by

NuSMV, graphical FBD programs are translated into
textual textFBD programs;

B. connections between two graphical FBD elements are
represented in the textFBD file by a special type of
variables - circuit variables. In order to avoid circuit
variables in the NuSMV state space, textFBD programs
are translated into tFBD programs;

C. a tFBD program can then be easily represented by a
NuSMV program.

In Fig. 2, the process is shown by means of an example
which we will also use later on.

A. From FBD to textFBD

We present the FBD components and their corresponding
textFBD statements along with their informal semantics.
Then we indicate their formal operational semantics and
mention how isomorphism of FBD and textFBD semantics
can be proved, referring to [14] for the details.

1) FBD and textFBD syntax: In the textFBD format of
an FBD program, each graphical FBD operator is given a
textual representation. We give an overview of the FBD
elements and their representations in textFBD.
• Bit operations Logical AND, OR and Exclusive-OR

operations

are represented in textFBD by
Out = (In1 ◦ In2) where ◦ = & or | or XOR

The AND and OR operations may have more than two
inputs, giving rise to corresponding textFBD constructs like

Out = ((In1 & In2) & . . . & In n)

The instruction negate binary input negates the input of
an FBD operator

In

This is represented in textFBD by !In.
The FBD assignment

=
In

Operand

is simply represented by Operand = In.
Among the bit operations, there are also reset output(R)

and set output(S).

_L1 = (int1 == 20);

_L2 = ((bool1 & bool2) & _L1);

_L3 = (bool3 & bool4);

_L4 = (_L2 | L3);

result1 = _L4;

result2 = _L4;

textFBD

result1 = ;

result2 =

(((bool1 & bool2) & (int1 == 20)) | (bool3 & bool4))

(((bool1 & bool2) & (int1 == 20)) | (bool3 & bool4));

tFBD

MODULE main

VAR

pc : 1..2;
zyklus : 1..3;
result1 : boolean;
result2 : boolean;

DEFINE

MAX_pc := 2;
MAX_zyklus := 3;
bool1 := true;
bool2 := true;
bool3 := false;
bool4 := true;
int1 := 20;

ASSIGN

init(pc) := 1;
init(zyklus) := 1;
init(result1) := false;
init(result2) := false;

NuSMV

next(result1) :=
case
pc = 1 : (((bool1 & bool2) & (int1 == 20)) | (bool3 & bool4));
1 : result1;

esac;

next(result2) :=
case
pc = 2 : (((bool1 & bool2) & (int1 == 20)) | (bool3 & bool4));
1 : result2;

esac;

next(zyklus) :=
case
pc=2: case

(zyklus+1) <= MAX_zyklus : zyklus+1;
1 :zyklus;

esac;
1 : zyklus;

esac;

next(pc) :=
case
pc+1 <= MAX_pc : pc+1;
pc=2 : 1;
1 : pc;

esac;

&int1

CMP
==I

20

bool1

bool2

&

bool3

bool4

>=1

=

result1

=

result2

FBD

≅

≅

~

~

Figure 2. From FBD to NuSMV

S
In

Operand

R
In

Operand

If the input value of the R operator is true, then the operand
is set to false. If the input value is false, then the operand
is unchanged. As for the operator S, the operand is set only
if its input value is true. A more precise semantics of the
operators is given in [14]. Here we focus on their syntax.
The operators are represented in textFBD by

R(Operand, In), S(Operand, In)
By means of the N operator negative edge detection 1→0,

the signal state at the input is compared with that in the
operand (the edge memory bit). If the input is false and
the operand has stored true in the previous cycle, then a
negative edge is recognized. In this case, the output is set

to true, and to false otherwise. The other way around, the P
operator positive edge detection 0→1 recognizes a raising
edge. These operators

P
In

Operand

N
In

Operand

Out Out

are represented in textFBD by

Out = N(Operand, In), Out = P(Operand, In)

•
Comparators For comparing two input values, the

following comparison operators may be used: equal (==),
unequal(<>), greater (>), greater or equal (>=), less (<),
less or equal (<=). For instance, the operator

CMP==I
In1

In2 Out

which tests whether two inputs are equal, is represented in
textFBD by Out = (In1 == In2).
• Jumps Jump operations can be separated into con-

ditional jumps and absolute jumps. Depending on the input
value true or false, a conditional jump can be expressed by
JMP or JMPN, respectively. The effect is to set the program
counter to the position marked by Label if the In condition is
true (JMP) or the In condition is false (JMPN), respectively.

JMPN

In

Label

JMP

In

Label

In textFBD, this is represented by
JMP(In,Label), JMPN(In,Label)

An absolute jump corresponds with a goto statement and is
simply represented by JMP(true,Label).
• Integer math instructions

Addition, subtraction or multiplication of two integers is
represented in textFBD by
ω(Out, In1, In2) where ω = ADD I or SUB I or MUL I .
• Move The MOVE operator copies the value at the

input to the output: Out = In .
For generating the textFBD file, the concept of a circuit

variable is very important. These variables are generated
when connections between two operands are to be repre-
sented. The circuit variables are marked as Li variables
(cf. fig. 2).

Fig. 2 gives an impression of the translation from FBD to
textFBD.

2) FBD and textFBD semantics: Let h̄ : FBD→ textFBD
be a map mapping each FBD element e to its corresponding
textFBD representation a = h̄(e). The order of executing
FBD operators in a network is determined by a mapping
next: 2FBD → FBD determining which element is executed
next, depending on the set of elements already executed. In
textFBD, this role is taken by the program counter which
can be defined as a mapping p: textFBD → IN, mapping
each statement a to its line number pc in the program.

An FBD network N may be given a transition system
T = (C, c0,→) as operational semantics, where C is the set
of FBD configurations of N , c0 is the start configuration,
and → is the next-configuration relationship. An FBD con-
figuration is a triple c = (σ, e, E) where σ is a state of the
program variables, e is the element in the network N to be
executed next, and E is the set of component elements in
N not yet executed.

Correspondingly, a textFBD program P may be given a
transition system S = (D, d0, ↪→) as operational semantics,
where S is the set of textFBD configurations, d0 is the start
configuration, and ↪→ is the next-configuration relationship.

A textFBD configuration is a triple d = (σ, a, pc) where σ
is as above, a is the textFBD statement to be executed next,
and pc is the program line in which a is.

For the details of how these transition systems are defined,
we refer to [14]. There it is also shown that there is
a bijective mapping h : C → D with the property that
h(c0) = d0 and c→ c′ ⇔ h(c) ↪→ h(c′).

Thus, an FBD network and its corresponding textFBD
program have isomorphic operational semantics, so they are
equivalent in a strong sense.

B. From textFBD to tFBD
The new tFBD format has the advantage that many circuit

variables are avoided, thus reducing the state space for
model checking dramatically. A textFBD line in which a
new circuit variable is created may be omitted in tFBD
under certain circumstances. Then, in each other line of the
textFBD program where this circuit variable is used, it may
be substituted by the corresponding expression. The process
is illustrated in Fig. 2.

To be more precise, textFBD programs are transformed
to tFBD programs in the following way: each textFBD
assignment Li = fi(x) of an expression fi(x), where x is
a sequence of arguments, to a circuit variable Li is omitted.
Instead, each occurrence of Li in righthand sides of other
textFBD statements is substituted by fi(x).

Similar to a textFBD program, a tFBD program can be
given an operational semantics in the form of a transition
system S ′ = (D′, d′0, ↪→′) where D′ is the set of configura-
tions, d′0 is the start state, and ↪→′ is the next-state transition
function. We refer to [14] for details.

The behaviour of textFBD and tFBD transition systems
with respect to circuit variables is illustrated in Fig. 3.

Clearly, since variables are eliminated, there can be no
bijection between the state spaces and thus no isomorphism.
Reducing the state space was precisely the motivation for
introducing the transformation of textFBD to tFBD.

But still, the operational semantics of textFBD and tFBD
can be equivalent, albeit in the weaker sense of obser-
vational equivalence: they can be strongly bisimilar. Let
S = (D, d0, ↪→) be a textFBD transition system and S ′ =
(D′, d′0, ↪→′) the corresponding tFBD transition system. S
and S ′ are strongly bisimilar, (S ∼ S ′), iff there is a
relationship B ⊆ D ×D′ which is a strong bismulation for
(d0, d

′
0). That means: (d0, d

′
0) ∈ B and for all (d, d′) ∈ B

we have
d ↪→ g ∈ D ⇒ ∃g′ ∈ D′ with d′↪→′g′ and (g, g′) ∈ B
d′↪→′g′ ∈ D′ ⇒ ∃g ∈ D with d ↪→ g and (g, g′) ∈ B

Fig. 3 shows system states before and after using circuit
variables, (σ1 or σ′1), respectively, and (σj , or σ′2, or σk or.
σ′3), respectively.

The following example shows that there is a problem.

Example 1. (Comparing FBD, textFBD and tFBD)
Let x and y be two Boolean variables which are combined

.

.

.

tFBDtextFBD

x = (x , ..., x), x - Variable; _L = (_L , ..., _L);

f(x) = (f , ..., f)(x);

1 n i 1 j-1

1 j-1 j+1 k-1g(x) = (f , ..., f)(x)

_L’ = (_L , ..., _L);j+1 k-1

d = (,σ11 _L = f (x), p+1)1 1

.

.

.

d = (i i _L = f (x), p+i)i iσ ,

d = (j-1 _L = f (x), p+j-1)j-1 j-1σj-1,

.

.

.

d = (,k op (x, _L’) p+k)2σk,

d’ = (1 1(x, f(x)), p’+1)σ’ , op1

d’ = (2 op (x, g(x)), p’+2)2σ’ ,2

d = (j op (x, _L), p+j)1σj,

d = (k-1 _L = f (x), p+k-1)k-1 k-1σk-1,

d = (j-1 _L = f (x), p+j-1)j-1 j-1σj-1,

d = (j+1 _L = f (x), p+j+1)j+1 j+1σj+1,

Figure 3. Substitution of circuit variables

by conjunction. If the result is true, then x is set to false
by the R operator. The same happens with y. If x and y
are true in the beginning, tFBD does not yield the expected
result (cf. Fig. 4).

textFBDFBD tFBD

x

true true

y

σ0 :

&

y

x R

R

x

y

_L1 = x y;

R(x, _L1);

&

R(y, _L1);

R(x, ());x y

R(y, (x y));

&

&

x

false false

y

σ3 :

x

false false

y

σ3 :

x

false true

y

σ2 :

Figure 4. Example: FBD, textFBD and tFBD synopsis

The problem is solved by restricting the use of variables
appropriately, forbidding situations where a circuit variable
may not be substituted: 1) if an operator with local variables
is to be assigned to the circuit variable; 2) if the circuit
variable is used as an operand in an operator with local
variables. With this restriction, strong bisimilarity between

the textFBD and tFBD operational semantics can be shown
[14].

Example 2. (Strong bisimulation)
Strong bisimulation for the example in Fig. 3 works as
follows.

B ={(d1, d
′
1), . . . , (di, d

′
1), . . . , (dj−1, d

′
1), (dj , d

′
1),

(dj+1, d
′
2), . . . , (dk−1, d

′
2), (dk, d

′
2)}

C. From tFBD to NuSMV

The main program is shown in MODULE main
(cf. Fig. 2). The module may have several sections. For
our FBD modeling, the VAR, DEFINE, ASSIGN and SPEC
sections are used: the VAR section for variable declarations;
the DEFINE section for defining symbols for frequently used
expressions; the ASSIGN section for describing assignments,
and the SPEC section for specifying CTL specifications to
be checked in the model. For an example, cf. Fig. 2. For
more detail, cf. [14].

A possible program property to be checked may look like
this: “at the end of the first cycle, the variables x1, . . . , xn

should have values a1, . . . , an”.
Specifications for a NuSMV model can be written in

CTL (Computation Tree Logic), LTL (Linear Time Logic)
or PSL (Property Specification Language). For example, for
specifying the above property in CTL, we have to write
CTLSPEC in front of the formula. The property given above
then looks as follows.

CTLSPEC AG((cycle = 1 & pc = MAX PC) ⇒
((x1 = a1) & . . . & (xn = an)))

Where the program cycle is determined by the integer
variable cycle. A more extended case study is given in the
next section.

The user of our software has the choice between a
modular or a compressed flat representation of NuSMV
functions. In modular representation, each function is given
a separate module. The advantage is that modeling of FBD
programs is rather straightforward. The disadvantage is
that with each instantiation of a module, the state space
grows very rapidly. In our compressed flat representation,
all functions are specified in one module so that the state
space remains constant when running the model checker.
Indeed, this can be quite efficient. The disadvantage is that
the functions have to be (re)modeled by hand, an effort that
may only by feasible for small systems. Please note that
our compressed flat representation is different from classical
flattening operations like that one in NuSMV.

Summing up, the process given above gives isomorphic
transformations in the first two steps, and a strongly bisimilar
transformation in the third step. This way, model checking
PLC software written in FBD becomes feasible in practice.
This is demonstrated in the next section.

Description Precondition Expected
reaction

From a right position,
the left direction relays
is activated by means of
a reposition command,
and the reposition pro-
cess is activated

ModuleIF = Right,
ComIF = ReposCom

ModuleIF
= Left+S1

After at least 20 ms, the
position relays is acti-
vated

=>, iTime = 20 ModuleIF = S2

After at least 30 ms,
protection is activated

=>, iTime = 30 ModuleIF = S3

After at least 40 ms, the
frog is started to move

=>, iTime = 40 ModuleIF = S4

Table I
EXAMPLE OF A TEST CASE: MOVING THE FROG OF A POINT LEFT

IV. CASE STUDY

Here we describe how the method is applied in the area
of railway automation. We concentrate on FBD software as
it is used by one family of PLC-based interlocking systems.
Interlocking systems are railway facilities which are used
for the central control of points and signals (cf. [15]). They
have outdoor and indoor parts. The indoor parts consist of
hardware and software.

The interlocking software is composed of several com-
ponents which are responsible for controlling the various
interlocking functions. One such component is a point. Like
the other components, it consists of several code modules.
These code modules depend on the equipment, but each one
is designed for only one point. One function block diagram
in such a code module of a point component is responsible
for controlling the point. This function block diagram is used
here as a use case for demonstrating the verification method
proposed in this paper.

From this module, the corresponding NuSMV model is
created using our method. The model is presented below.
We start with describing the test cases, taken from practice,
which are used for checking correctness of the software. The
test cases form the basis for constructing the verification
scenarios.

A. Test case description

In table I we give a simplified description of a test case of
the code module for point control. The activation of the point
actuator component is checked in four steps before moving
the point blade. Each step is represented by a description,
a definition of preconditions (start configuration of the test
case), and a definition of the expected reaction.

For better understanding table I, we explain the concept
of a variable domain in more detail. In the description of
preconditions and expected reactions of a test case, we use
the integer program variable iTime which changes with the
PLC cycle and may be controlled by the software.

ModuleIF - Module Interface
Left Right S1 S2 S3 S4

bPointPosition 0 1
bDirectionRight 0 1
bDirectionLeft 1 0
bRepetition 1 0
bRepositionActive 1
bPointPositionRelays 1 0
bProtection 1 0
iTime 0

ComIF - Command Interface
ReposCom

bComActive 1
bFunction 1
iElement 100

Table II
DEFINITION OF INTERFACES - VARIABLE DOMAINS

We also use variable domains like ModuleIF or ComIF.
A variable domain contains a description of several program
variables.

This can be better explained using the variable
domain ModuleIF as an example. It is defined in table
II. The following variables belong to this domain:
bPointPosition, bDirectionRight, bDirectionLeft,
bRepetition, bRepositionActive, bPointPositionRelays,
bProtection and iTime. If ModuleIF has the value
Right, then bPointPosition=1, bDirectionRight=1 and
bDirectionLeft=0.

Variable domains are used in the description of inter-
faces. As shown in table II, the module interface is de-
scribed by the variable domain ModuleIF and the variables
bPointPosition, bDirectionRight, bDirectionLeft, etc. A vari-
able domain contains different variable assignments in dif-
ferent test cases. In order to enable a clear test case descrip-
tion, all variable assignments are listed for each variable do-
main. For example, the variable assignments for ModuleIF is
defined by ModuleIF ∈ {Left, Right, S1, S2, S3, S4, . . .}.

Thus, the precondition in the first step of the test
case is represented by ModuleIF=Right expressing that
the direction relays should be in the right position. This
means that, before executing the test case, we must have
bPointPosition=1, bDirectionRight=1 and bDirectionLeft=0
(cf. table II). Similarly, at the beginning of the test case,
ComIF is defined as ReposCom. If an interface is not
specified in the precondition of a test case, it assumes its
initial value which should be defined at the beginning of the
test table.

When describing the preconditions of the 2nd, 3rd and
4th step of the test case, we have the symbol combination
“=>”. This means that the test case is based on the previous
step. For instance, in the 2nd step, all variables except for
iTime have their values from the expected outcome of the
1st step.

The latter is described by ModuleIF=Left+S1. That means
that bPointPosition=0, bDirectionRight=0, bDirectionLeft=1,
bRepetition=1 and bPositionActive=1.

When adding two or more variables of a variable domain
symbolically, it is possible that a variable occurs in the
description of both (or all) elements of the sum. In this
case, the variable is to be assigned the value of the last
occurrence. For instance, bPointPosition is given the value
1 in Left+Right.

When describing the preconditions of a test case, we may
also assign values to single variables instead of value do-
mains. For instance, the variable iTime is assigned different
values in the 2nd, 3rd and 4th steps of the test case. The
same holds when describing the expected reaction.

B. NuSMV Component Model

An extract of the NuSMV model of the point component
is shown in table III. We show only lines from the tFBD
model in which the following program variables change:
bPointPosition, bDirectionRight, bDirectionLeft, bReposi-
tionActive, bRepetition, bComActive, bFunction, iElement.
These are the variables which are used in the specification.
The variables having no role in our context are denoted by
var1, var2, etc. in table III.

In the model description as well as in the specification,
the data are represented in a changed format in order to
hide the reference to the original software. The rules for
transforming FBD programs into the NuSMV input language
are described above in section III. In this section, we show
how to represent specifications as logical formulae.

C. Description of verification scenarios

In the case study, verification scenarios are described in
CTL. Two parameters are important: 1) the program counter
pc which assumes the value MAX pc at the end of a program
cycle, and is then set to 1 again; 2) the cycle counter cycle.
As said before, the test case descriptions of the component
serve as basis for formulating the verification scenarios.
Since a test case is defined by a precondition and an expected
reaction, we may represent this by the following scenario.

ModuleIF = Right & ComIF = ReposCom ⇒ (1)
AG((cycle = 1 & pc = MAX pc) ⇒

ModuleIF = Left + S1)
Bearing in mind the interface description in table II, the

first step of the scenario may be represented by the following
formula.
((bPointPosition = 1 & bDirectionRight = 1 & (2)

bDirectionLeft = 0) & (bComActive = 1 &
bFunction = 1 & iElement = 100)) ⇒

AG((cycle = 1 & pc = MAX pc) ⇒
(bPointPosition = 0 & bDirectionRight = 0 &
bDirectionLeft = 1 & bRepetition = 1 &
bRepositionActive = 1))

tFBD
. . .
48 R(bRepositionActive, (var10 | var11 | var12));
. . .
50 R(bRepositionActive, ((((var13 & !var14) & (var15 &

!var16)) | var17) | var18));
. . .
52 R(bRepositionActive, (var13 & !var14) & (var19 > var20));
. . .
88 bPointPosition = var1;
. . .
96 bRepositionActive = ((var21 & !var22) | ((!var21 & !var23)

| var24));
. . .
104 bDirectionRight = bPointPosition;
105 bDirectionLeft = !var2;
. . .
120 S(bPointPosition, var2);
. . .
122 S(bRepetition, var3);
123 R(bRepetition, ((var4 & !var5) | ((var6 & !var7) & var8) |

((var7 & !var6) & var9)));
. . .
131 R(bPointPosition, var2);
. . .

DEFINE

bComActive := 1;
bFunction := 1;
iElement := 100;

ASSIGN

init(bPointPosition) := 1;
next(bPointPosition) := case

pc = 88 : var1;
pc = 120 & var2 : 1;
pc = 131 & var2 : 0;
1 : bPointPosition;

esac;

init(bDirectionRight) := 1;
next(bDirectionRight) := case

pc = 104 : bPointPosition;
1 : bDirectionRight;

esac;

init(bDirectionLeft) := 0;
next(bDirectionLeft) := case

pc = 105 : !var2;
1 : bDirectionLeft;

esac;

init(bRepetition) := 0;
next(bRepetition) := case

pc = 122 & var3 : 1;
pc = 123 & ((var4 | !var5) | (((var6 & !var7) & var8) | ((var7 &

!var6) & var9))) : 0;
1 : bRepetition;

esac;

next(bRepositionActive) := case
pc = 48 & (var10 | var11 | var12) : 0;
pc = 50 & ((((var13 & !var14) & (var15 & !var16)) | var17) |

var18) : 0;
pc = 52 & ((var13 & !var14) & (var19 > var20)) : 0;
pc = 96 : ((var21 & !var22) | ((!var21 & !var23) | var24));
1 : bRepositionActive;

esac;

Table III
NUSMV MODEL OF THE POINT COMPONENT

The remaining three formulae are created in a similar way.
As mentioned before, the symbol combination “=>” says
that the precondition of the current step has to be extended
with the expected reaction of the previous step. For the 2nd
step, we thus have

(ModuleIF = Left + S1 & iTime = 20) ⇒ (3)
AG((cycle = 1 & pc = MAX pc) ⇒

ModuleIF = S2)

Alternative representation of the specification: If only
one formula is to be checked, we may take the variable
assignments from the precondition and define their values as
initial values of the model variables. Then a scenario may
be described by the following formula

AG((cycle = 1 & pc = MAX pc) ⇒ (4)
“expected reaction”)

With this approach, we build a slightly different NuSMV
model where the set of initial states in the model is reduced.
As an example, table III shows part of the model which
refers to some of the variables of our accompanying test
case. There the initial values of the variables bPointPosition,
bDirectionRight and bDirectionLeft are defined using the init
clause. In contrast, the variables bComActive, bFunction and
iElement are defined in the DEFINE section because their
values are unchanged in the model.

D. Verification results

The textFBD format of the software component under
consideration has 165 lines of code. It uses about 100 vari-
ables (90 Boolean and 10 integer). The model verification
was performed on an Intel(R) Xeon(R) CPU 5150 computer
with 2,66 GHz and 3,25 GB RAM.

A detailed description of the NuSMV model checker may
be found in [16] and [17]. Its most important properties are
summarized in [13]. The basic steps of NuSMV verification
work as follows.

1) in the first step, the model is read; an internal hierar-
chic representation is set up and stored

2) in the second step, the hierarchic representation is
transformed into a flattened representation; it contains
only one module in which all modules and processes
are instantiated

3) then the BDD variables are generated
4) the flattened model is represented using BDDs
5) after generating the BDD representation, the CTL

specifications can be checked
The execution of the first three steps took about 1 second.

The execution times for the other two steps was different
depending on which of the variants explained above was
used.

One model for all scenarios: Formulae (1), (2) and
(3) describe how the specification for the first variant of
the NuSMV model is constructed. The initial values of the
variables in question are not defined in the model. From

<N-Statement> ::= . . .
| <Bitlogic> <BitlogicEnd> (1)

<Bitlogic> ::= . . .
| A <Operand> <End> (2)
| A(<End> <Compare>) <End> (3)
| <Bitlogic> A <Operand> <End> (4)
| <Bitlogic> O <End> <Bitlogic> (5)

<Compare> ::= L <Operand> <End> L <Operand> (6)
<End> COMPARETOK <End>

<BitlogicEnd> ::= . . .
| <AssignEndN> (7)

<AssignEndN> ::= = <Var> <End> <AssignEnd> (8)
<AssignEnd> ::= | <AssignEnd> = <Var> <End> (9)

Table IV
EXCERPT OF THE GRAMMAR

about 1065 states, about 1014 states were reachable. Setting
up the BDD-based model took slightly more than half an
hour. Checking the specifications took 30 to 80 seconds per
formula.

One model for one scenario: In the second case, a
model is generated for each scenario. The preconditions for
the scenario are initialized in the model. The specification
is given in the form of formula (4). In the NuSMV model,
about 6000 of the 1060 states were reachable. Setting up
the BDD-based model took about 40 minutes. Checking the
specification then took less than 1 second.

V. AUTOMATION OF THE VERIFICATION METHOD

As mentioned before, the CTL specification is set up using
the descriptions of the test case and the module interfaces
(cf. Fig. 5). CTL formulae are constructed automatically
by combining information from the tables. Creating the
NuSMV model, however, is a little more complicated, but
it can be automated.

With the method described here, an arbitrary FBD pro-
gram is modeled in a way that makes it possible to verify
it with the NuSMV model checker. As mentioned above in
section III, we propose to first construct the textFBD model,
then the tFBD model, and then the NuSMV model. In what
follows, we give a more detailed description of this process.

A. Constructing the textFBD format

This is the first step in verifying an FBD program. The
textFBD representation is generated from the IL representa-
tion of the program. IL is a machine-oriented PLC program-
ming language, and each FBD program can be represented
in IL. The range of textFBD statements is equivalent to that
of FBD statements (cf. [12]).

The IL format of an FBD program can be transformed to
textFBD using an unambiguous context-free grammar. An
excerpt of it is shown in table IV. In the table, transformation
rules are shown as they are used for transforming the
network in figure 2. The IL format of the network is shown
in figure 6.

FBD

IL

program
(format)

Modelising

NuSMV model

Model Checking

satisfied
not satisfied +

counterexample

Create
format

textFBD

textFBD format

Create
modelNuSMV

List of Op. with
local variables

Substitution

tFBD format
Variable

description
CTL specification

Table of
testcases

Interface
description

Formalisation

Figure 5. Model checking FBD programs

_L1 = (int1 == 20);

_L2 = ((bool2 & bool1) & _L1);

_L3 = (bool4 & bool3);

_L4 = (_L3 | L2);

result1 = _L4;

result2 = _L4;

A(;
L int1;
L 20;
==I;
);
A bool1;
A bool2;
O;
A bool3;
A bool4;
= result1;
= result2;

IL

textFBD

Figure 6. Example: IL and textFBD formats of an FBD program

The example network may be considered as a complex
statement consisting of a logical bit operation followed by
two assignments (cf. rule (1) in table IV). A logical bit
operation always has an output. Since no dangling lines
may exist in a network, this output must be consumed
in some way. In our case, the logical bit operation ends
with assignments (cf. rule (7)). To enable using two such
assignments, rules (8) and (9) are needed.

Among the logical bit operations, we have a comparison
of two integers (rule (6)). If the result of this operation is to
be combined with the AND of two further Boolean variables,
first rule (3) and then rule (4) must be applied. An AND
operation of two Boolean variables can be recognized using
rules (2) and (4). Rule (5) describes how two logical bit
operations can be combined with an OR operation.

The circuit variables in the textFBD file (Li variables)
are generated when connections between two operands are
to be represented (cf. fig. 6). Such a variable is generated
when the recognition of an FBD operand is terminated. In
our example, this means the following.

• As soon as the comparison is recognized, L1 is
generated.

• Then the recognition of the AND operation follows
(until the OR operation is read), with the subsequent
generation of L2.

• In order to execute the OR operation, the subsequent
AND operation (L3) is needed.

• Only then L4 is generated as a disjunction of L2 and
L3.

• Finally, the result of the logical bit operation in variable
L4 is assigned to the variables result1 and result2.

On the basis of the grammar and the circuit variable
concept, textFBD files are generated.

B. Constructing the tFBD format

Although the textFBD format of the FBD program can be
transformed to NuSMV directly, we first minimize the model
in order to minimize the NuSMV state space. As shown in
section III, we may do away with many circuit variables and
thus reduce the model size. This substitution is expressed in
the tFBD format of the FBD program.

For constructing the tFBD format, only the list of FBD
operations is needed which use local circuit variables. When
transforming a textFBD file, each statement is checked
whether it uses an operator from the list. If yes, it is
copied into the tFBD file without change. Otherwise, we
first substitute the circuit variable (cf. fig. 5).

C. Constructing the NuSMV model

Transforming a tFBD file to the NuSMV input language
has been treated above in subsection III-C. We have shown
how to represent tFBD statements by NuSMV transfor-
mation rules. In order to complete a NuSMV model, the

variable declarations have to be added (cf. Fig. 5). Here, for
instance, integer ranges are declared . Overflow is avoided
by the way the programs are constructed.

VI. CONCLUSION

In this paper, we present a method for the automated
formal verification of PLC software. In particular, we look at
FBD software. In order to verify the software, we propose to
represent the graphical SPS programming language textually
in two observationally equivalent ways: textFBD and tFBD.
From the latter format, we derive a NuSMV model. Its
state space is dramatically smaller than that of a NuSMV
model derived directly from textFBD, so that applications
of practical size can be model checked.

The method was put to the test in the area of railway
automation. In a case study, a component of an interlocking
software, the logic controlling a point, was verified. The de-
sign of the model as well as the construction of the NuSMV
model were automated. With this successful project, we
are confident to pave the way for applying the method in
practice.

NuSMV was chosen by convention, not by rational de-
cision. So it would be interesting to look at other model
checkers, for instance SPIN, and see whether improvements
in the process can be achieved.

There are two important aspects in applying formal ver-
ification in practice: 1) the method should be applicable
to relatively big and realistic models; 2) the execution
times should be acceptable. The 1st point is satisfied by
our method because the case study is directly taken from
practice, without any omissions or abstractions which would
make it more “academic”. As for the 2nd point, the execution
times for setting up and transforming the model and veri-
fying the specifications are acceptable. It is true that they
are greater than what simulations would take. But there is a
fundamental difference between simulation and verification
where the entire state space is being explored.

Our realistic case study is an important step to convince
not only railway engineers that automated formal methods
are practical. The next step in applying our methods should
be a state-based specification. This way, we expect that the
advantage of our method would become even more evident.

ACKNOWLEDGEMENTS

We are very grateful to the three anonymous referees who
did a wonderful job in caring about the details of our paper
and made many valuable suggestions. For all remaining
deficiencies, of course, the authors are responsible.

REFERENCES

[1] W. Giessler, SIMATIC S7 SPS-Einsatzprojektierung und -
programmierung. VDE Verlag GMBH, 2005.

[2] International Electrotechnical Commission, International
Standard 61131-3, Programmable controllers - Part 3: Pro-
gramming languages, 2003.

[3] A. Mader and H. Wupper, “Timed automaton models for
simple programmable logic controllers,” in Proc. of 11th
Euromicro Conference on Real Time Systems, 1999, pp. 114–
122.

[4] M. Heiner and T. Menzel, “A Petri net semantics for the
PLC language Instruction List,” in Proc. of the International
Workshop on Discrete Event Systems (WoDES), 1998, pp.
161–166.

[5] G. Canet, S. Couffin, J. j. Lesage, and A. Petit, “Towards the
automatic verification of PLC programs written in Instruction
List,” in IEEE International Conference on Systems, Man and
Cybernetics, 2000, pp. 2449–2454.

[6] O. Pavlovic, R. Pinger, M. Kollmann, and H. Ehrich, “Princi-
ples of formal verification of interlocking software,” in Proc.
of the 6th Symposium on Formal Methods for Automation and
Safety in Railway and Automotive Systems (FORMS/FORMAT
2007), E. Schnieder and G. Tarnai, Eds. GZVB, 2007.

[7] O. Pavlovic, R. Pinger, and M. Kollmann, “Automation of
formal verification of PLC programs written in IL,” in Proc.
of 4th International Verification Workshop in connection with
CADE-21, B. Beckert, Ed. CEUR-WS.org, 2007.

[8] ——, “FBD-based PLC verification demonstrated on inter-
locking software,” in International Conference : ERTS EM-
BEDDED REAL TIME SOFTWARE 2008, S. 01/02/2008, Ed.

[9] M. J. Song, S. R. Koo, and P.-H. Seong, “Verification method
for the FBD-style design specification using SDT and SMV,”
in IASTED Conf. on Software Engineering, 2004, pp. 206–
211.

[10] K. Y. Koh, E. K. Jee, S. J. Jeon, P. H. Seong, and S. D. Cha,
“A formal verification method of Function Block Diagrams
with tool supporting: Practical experiences,” in Annals of
DAAAM for 2008 & Proceedings of the 19th International
DAAAM Symposium, 2008.

[11] Working with STEP 7 V5.3, SIEMENS, 2004.

[12] Function Block Diagram (FBD) for S7-300 and S7-400
Programming, SIEMENS, 2004.

[13] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri,
“NuSMV: a new symbolic model verifier,” International
Journal on Software Tools for Technology Transfer, vol. 2,
2000.

[14] O. Pavlovic, Formale Verifikation von Software für speicher-
programmierbare Steuerungen mittels Model Checking. TU
Braunschweig, 2009, Dissertation.

[15] J. Pachl, Systemtechnik des Schienenverkehrs. Bahnbetrieb
planen, steuern und sichern. Vieweg+Teubner, 2008.

[16] R. Cavada, A. Cimatti, C. Jochim, G. Keighren, E. Olivetti,
M. Pistore, M. Roveri, and A. Tchaltsev, NuSMV 2.4 User
Manual, CMU and ITC-irst, http://www.nusmv.irst.itc.it.

[17] R. Cavada, A. Cimatti, G. Keighren, E. Olivetti, M. Pistore,
and M. Roveri, NuSMV 2.2 Tutorial, CMU and ITC-irst,
http://www.nusmv.irst.itc.it.

