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Abstract

Software has been under scrutiny by the verification
community from various angles in the recent past. There
are two major algorithmic approaches to ensure the cor-
rectness of and to eliminate bugs from such systems: soft-
ware model checking and static analysis. Those approaches
are typically complementary. In this paper we use a model
checking approach to solve static analysis problems. This
not only avoids the scalability and abstraction issues typi-
cally associated with model checking, it allows for specify-
ing new properties in a concise and elegant way, scales well
to large code bases, and the built-in optimizations of mod-
ern model checkers enable scalability also in terms of num-
bers of properties to be checked. In particular, we present
Goanna,the first C/C++ static source code analyzer using
the off-the-shelf model checker NuSMV, and we demonstrate
Goanna’s suitability for developer machines by evaluating
its run-time performance, memory consumption and scala-
bility using the source code of OpenSSL as a test bed.

1 Introduction

The application of formal verification techniques to soft-
ware is hard. While full functional correctness can be
shown by proof-based methods such as interactive theorem-
proving, the effort is high—i.e., there is substantial expert
manpower needed over an extended period of time. This
is not always practical. Drivers, for instance, have typi-
cally short development times as they need to be supplied in
time with the hardware release. Also, ongoing code changes
have to be taken care of, creating the demand for automated
analysis tools working at compilation time.

Model checking [8, 25] and static analysis [21, 23] are
automated techniques promising to ensure (limited) correct-
ness or to find bugs in software. Software model checking
typically operates on the semantic level of a program. The
common approach is to find a finite state abstraction and to

model check this abstraction. If the abstraction is too coarse
it will be further refined. Finding the right level of abstrac-
tion is challenging and the subject of much research. With-
out user interaction, software model checking approaches
are often not mature enough yet to cope with real life code
efficiently [26, 22].

Static analysis, on the other hand, works on the syntac-
tic level of the program. As such, any finite program and
its control flow graph results in a finite state system and
is, therefore, suitable for algorithmic analysis. While static
analysis is known to scale well to large code bases, it is
limited by the number of properties to be checked and the
definition of new properties is often cumbersome [13]. In
contrast, model checking allows for a convenient and often
concise specification of program properties and optimiza-
tions in the checker technology makes it less affected by the
number of properties checked within the same model.

In this work we present an approach that combines the
best of both worlds by using the off-the-shelf model checker
NuSMV [6] and its specification language to define and
check static analysis type properties on large C/C++ pro-
grams. This allows for a concise and flexible specification
of properties and an analysis scalable both in the size of the
code base as well as the number of properties analyzed.

Contribution. We demonstrate that model checking is
a practical and scalable solution to solve static analysis
problems. We demonstrate the practicality by presenting
a method of encoding C/C++ program analysis as model
checking problems for the NuSMV model checker. We
implement the proposed encoding in our prototype tool
Goannaand present its architecture. Moreover, we demon-
strate that Goanna is competitive with respect to run-time
performance, memory consumption and scalability.

The ability to directly use all the optimizations built into
modern model checkers, automatically obtain a counterex-
ample trace in case of a property violation, and add more
semantic-based software model checking techniques in the
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future makes the proposed approach a viable alternative to
existing technology.

The remainder of this paper is organized as follows: In
Section 2 we discuss a number of related approaches in this
area. In Section 3 we give a presentation of our approach
and illustrate this by an extended example in Section 4.
We give a detailed runtime evaluation of our approach by
checking the source code of OpenSSL and present a pre-
liminary evaluation on precision in Section 5. In Section 6,
we discuss current limitations of our tool, ideas for future
work and our conclusions.

2 Related Work

The basic ideas of solving static analysis problems
by model checking were first developed by Steffen and
Schmidt [28, 27]. Their main focus is on developing a
safe approximation of the program’s behaviour and, there-
fore, checking for a safe subset of CTL, i.e.,qualified safety
properties. The drawbacks of this approach are that safe
approximations of real C/C++ programs including pointer
arithmetic are either hard to compute or too coarse, leading
to unnecessary over-approximations.

We have a stronger focus on the effectiveness of the anal-
ysis and abandon in some cases soundness as defined by
Steffen. This means, we treat programs purely as a set of
syntactic objects on the program’s CFG and allow to check
any CTL property on that level. While our analysis is sound
on this syntactic level it is not necessarily a sound abstrac-
tion of the program’s semantics. However, this approach
has been followed by others (e.g.,[12, 11]) and proves to be
well-suited for checking real-life systems.

A similar approach to ours can be found in the Uno
tool [17] and its later development into Orion [11]. The
analysis is also done by model checking on a syntactic level.
However, the authors do not use an off-the-shelf model
checker, but implement model checking techniques. Orion
is currently more limited to checking for three properties:
uninitialised variables, nil-pointer dereferences and out-of-
bounds array indexing. The tool currently has a strong fo-
cus on achieving a good signal to noise ratio by incorpo-
rating symbolic solver techniques. Goanna focuses on a
wider range of properties, with future plans to include user-
defined rules and embedded assembly. It will be interesting
to compare future versions of both tools.

Related to our philosophy is, e.g., the work in the static
analysis community done by Engler et al. [12]. The authors
use meta-level compilation (MC) which allows system im-
plementors to build their own application-specific compiler
extensions based on theMetal language. Those extensions
are used as specifications for searching the abstract syntax
tree, control flow and data flow graph. The approach has
been further developed into a commercial product [10].

There are other commercial static analysis tools, e.g. [14,
19, 15, 20] which, however, mostly do not support specifi-
cation languages such as Metal or CTL. This limits their
applicability for system development.

A semantic model checking approach to software ver-
ification is realised in SLAM [1] and its successor SDV,
a tool used to verify device drivers. SLAM is a suite
of tools for counterexample-guided abstraction refinement.
SLAM starts with a coarse Boolean program abstraction
that is subsequently refined given predicates discovered
from counterexamples in the abstraction, until an abstrac-
tion is found that satisfies the property. Other tools that im-
plement counterexample-guided abstraction refinement are
Blast [16] and Magic [4].

A tool for bounded model checking of ANSI-C code was
presented in [7]. This tool, called CMBC, can be used
to verify safety properties, and also to verify an ANSI-C
model of a circuit against a specification in a hardware de-
scription language such as Verilog. The tool unrolls the pro-
gram and checks with a SAT-solver if there exists an error
trace up to the given depth. CMBC is particularly useful for
debugging since it can find all errors up to a certain depth
quickly.

The Eau Claire tool [5] makes use of automatic theorem
proving. It is an extended static checker for C, based on
the earlier ideas in [18]. The tool translates C code into a
set of guarded commands which will then be transformed
into verification conditions. These verification conditions
are checked automatically by the Simplify theorem prover.

Based on abstract interpretation [9] are the Poly-
Space [24] and Astrée [3] static analyzers. They aim at
proving the absence of run-time errors in programs writ-
ten in the C/C++ programming languages. Astrée analyzes
structured C programs, without dynamic memory alloca-
tion or recursion. Abstract interpretation is particularly well
suited for array bound checking and alike, as it provides a
semantic framework to capture domains and the operations
on them, but suffers from high computational costs result-
ing in much longer analysis times.

3 Syntactic Software Model Checking

In this section we present details of how to encode static
analysis properties by model checking in a practical way.
The goal is to determine syntactic properties of C/C++ pro-
grams ranging from uninitialized variables to null pointer
dereferences. Given a programP and a propertyφ the task
of checking whetherP satisfiesφ, i.e.,P |= φ, is reduced
to checkingPs |= φs wherePs is a finite syntactic repre-
sentation ofP andφs a syntactic encoding ofφ.

Although we use model checking for our analysis, the
type of properties we are addressing are similar to those in
static analysis. For instance, we check whether a variablev
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is initialized, but not, e.g., whetherv holds the correct com-
putation result by the end of the program execution. The
latter often requires more information about the program’s
semantics.

As model checking is the analysis of a labeled graph (a
Kripke structure over atomic propositions) with respect to
some formula, typically in temporal logic, we have to de-
velop:

1. A temporal logic formula expressing the desired prop-
erty.

2. A graph representing the C/C++ program, labeled with
propositions relevant to evaluate the property.

3. A translation to a model checker.

In the following we describe our approach to a path-
sensitive, intra-procedural analysis in the order of the dif-
ferent steps above. Throughout the remainder of this paper
we will use absence of uninitialized variables as an exam-
ple property, because it is simple in comparison to other
properties that we check, but serves well to demonstrate our
approach.

3.1 Temporal Logic Properties over Pro-
grams.

Under the assumption that we can identify atomic propo-
sitionsdeclx, usedx andassignedx, representing program
locations where a variablex is declared, used, or assigned
a value respectively, we can specify that this variable is al-
ways initialized before it is used as follows in CTL:

AG declx ⇒ (A ¬usedx W assignedx) (1)

This means we require that on all program paths if a vari-
ablex is declared it must not be used until it has a value
assigned or it will not be used at all. We use theweak un-
til operator W here to include the second possibility. The
latter can also point to unused variables, which is checked
separately.

In the same style we can express other properties on cor-
rect pointer handling, variable usage or memory allocation
and deallocation. Moreover, it allows specifying application
specific properties to handle general programming guide-
lines, API-specific rules or even hardware/software inter-
face rules for drivers.

In the remainder of this section we describe how to map
programs to transition systems labeled with atomic propo-
sitions such as the ones above and how to derive the labels
themselves from a program.

3.2 Model Construction

To construct a model from the program, we require a
formal notion of an abstract syntax tree (AST) and a labeled
graph. We define a labeled graph/tree and an attributed tree
as follows.

Definition A labeled graph(L, E, µL) over the alphabet
ΣL is a finite and directed graph, whereL is a set of nodes,
E ⊆ L × L is an edge relation between the nodes, and
µL : L → ΣL is a node labeling function.

A labeled treeis a labeled graphT = (L, E, µL) if it has
a single root noderoot(T ) for which we have the following:
For each nodel ∈ L there exists exactly one path from the
root to the node, i.e. exactly one sequencel0, . . . , ln, such
that l0 = root(T ), ln = l, and (li−1, li) ∈ E, for i =
1, . . . , n.

An attributed tree(L, E, µL, µE) over the alphabetsΣL

andΣE is a labeled tree where there is an additional label-
ing functionµA : L → ΣA, assigningattributesto nodes.

Given two nodesl1 andl2 of a labeled tree(L, E, µL), we
call l1 the parentof l2 and l2 the child if (l1, l2) ∈ E. If
there exists a (non-empty) path froml1 to l2, l1 is called
ancestorof l2, andl2 is adescendantof l1.

An AST can be seen as an attributed tree where the nodes
are labeled with program statements and (sub)expressions
while the attributes describe the role of a node’s branch.
E.g., the construct in Figure 3(a) shows part of an AST for
an if-then branching. The attributes describe whether the
subtree is the if-branch, the condition, or the next instruc-
tion of its parent node. The labels then describe the kind
of statement or expression of the condition or the statement
following the if-then.

From the AST we can construct in a straightforward
manner the control flow graph (CFG). Note that a CFG
does typically not contain all the information available in
the AST, only the control structure down to the level of
statements, but not the structure of expressions, types, and
constant values.

A CFG is a graph, typically with a single root node.
Later we add labels making it a labeled graph. We denote
the labeled CFG of an ASTT by CFGT . The labels rep-
resent whether certain atomic propositions hold in a node.
E.g., if a particular variable is assigned a value, if it is used
on the right-hand side of an assignment, or if it is derefer-
enced and so on.

In our framework, these labels are associated with tree
patterns on the AST. We define the syntax of a query lan-
guage to match tree patterns as follows:

P ::= ǫ | ∅ | σE | σL | ↓ | ↓∗ | P/P | P ∪ P | P [Q]

Q ::= P | label = σL | attr = σA | Q ∧ Q | Q ∨ Q
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whereσL ∈ ΣL andσA ∈ ΣA.
Given an (attributed) treeT and a nodel, a pattern de-

fines a set of nodes in the subtree rooted inl. The patternǫ
defines the nodel itself,∅ the empty set, and patternσA and
σL children labeledσA or σL respectively. The patterns↓
and↓∗ stand for the children and descendants ofl, / and∪
for concatenation and union. Finally, patternP [Q] filters all
nodes satisfyingQ.

This tree query language is the downward, recursive
fragment of the language defined in [2]. We refer the reader
to this paper for formal semantics and a discussion on ex-
pressiveness. The only difference is that we allow for two
types of labels, which however, does not add expressivity.

Given an atomic propositionp, we associate a tree pat-
ternP with it. We label every nodel that matchesP , in the
AST T with respect to the root node ofT , with p. In the
case thatl is not inCFGT , we label its closest ancestor in
T which is inCFGT .

Example 1 Take as an example an atomic proposition
declx, used to label declarations of variablex. This propo-
sition is associated with pattern↓∗ Decl[Var:x], i.e. it
matches all nodes (descendants of the root node) in the AST
labeledDecl, that have a child labeledVar:x. Those nodes
will then be labeled withdeclx in the CFG.

3.3 Translation to NuSMV

In order to check our generated model automatically
with respect to the defined properties, we developed a trans-
lation to the NuSMV model checker. In this section we
sketch how to translate a labeled CFG and a CTL formula
into a simple NuSMV model.

For a given C/C++ functionf we translate the corre-
sponding labeled CFG(Lf , Ef , µf ) into a simple NuSMV
model, NuSMVf = (varf , ∆f , Deff , CTLf ), where

• varf is oneenumerated type variable in NuSMV over
the set of typesl ∈ Lf . Enumerated type variables are
implemented efficiently in NuSMV and guarantee a
much smaller state space than, e.g., using one boolean
variable for each control location.

• ∆f = {(l, Succ(l))|l ∈ Lf , Succ(l) = {l‘|(l, l‘) ∈
Ef}}. This means, the CFG transition relation is trans-
lated into a transition relation, where the target for each
transition is the set of locations we possibly can branch
to. This is according to NuSMV’s syntax and does not
change the original CFG transition relation.

• Deff = {define(p) = {l|µf(l) = p, l ∈ Lf}|p ∈ Σf}.
Where everydefine(p) is aDEFINE declaration ofp in
NuSMV. A define declaration is a space efficient way
to declare, e.g., that a propositional variablep holds
exactly in a particular set of locations. In our case, that
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Figure 1. Model checking approach for stati-
cally analysing C/C++ code.

a label is evaluated to true iff it has been a label in the
original labeled CFG.

• CTLf is the set of CTL properties in NuSMV syntax.

In the subsequent Section 4 we will give an example of
the actual NuSMV code which is a syntactic expression of
the above model.

3.4 Architecture

The architecture of our approach is outlined in Figure 1.
Given a C/C++ program, the only interaction needed from
the user is to

1. provide a CTL specification, and

2. define the atomic proposition of the specification in
terms of queries as described in Section 3.2.

The translation of a program into the CFG, the pat-
tern matching, the subsequent labeling, the translation to
NuSMV, as well as the error reporting, are all fully auto-
matic. This reduces the burden on the user to a minimum
and for generic pre-defined properties to zero.

4 Example

This section presents an example to illustrate the pro-
posed approach of combining syntactic checking with
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63: Cond

36: Var: a

exp

lhs

rhs

rhs lhs
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if

105: IndirectRef

44: Var: b
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98: Plus

72: Exp

48: Var: p
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78: Exp

(a)

a
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decl

a
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assign

52: Exp

47: Exp

72: Exp

39: Decl

78: Exp

34: Decl

63: Cond

86: Exp

59: If

26: Decl

12: Return

(b)

Figure 3. Fragments of (a) the attributed abstract syntax tr ee (AST), and (b) the annotated control
flow graph (CFG).

1 void f(int x) {
2 int a, b;
3 int *p;
4
5 p = (int *)

malloc(sizeof(int));
6 *p = 42;
7 if(x == 0) {
8 free(p);
9 a = *p;
10 }
11 b = a + *p;
12 }

Figure 2. Source code example

model checking. Consider the contrived code fragment in
Figure 2, which is obviously flawed. Not only does it con-
tain a potential access of an uninitialized variable (a in
line 11), but also dereferences a pointer that has already
been freed (p in line 9), and assigns a value to a variable
that is never used afterwards (b in line 11).

We will illustrate the labeling of the AST and CFG, the
generation of NuSMV code that implements the checks and
the ease of adding properties to Goanna. Again, we demon-
strate it in the context of uninitialized variables for the sake
of simplicity.

4.1 Annotation of CFG

The program analysis builds on an annotated control
flow graph. Generating the control flow graph—without
annotations—for the code fragment is straightforward. A
fragment of the AST is depicted in Figure 3 (a) and the re-
sulting CFG in Figure 3 (b). Each node is labeled with an
ID and a label. The IDs refer to identifiers in the intermedi-
ate format generated by the parser and are used for technical
reasons only. The attributes of nodes in the AST are used
to label the edge with the parent node in Figure 3 (a). Only
nodes on certain levels in the AST will be used to build the
CFG, in this example nodes 59, 63, 72 and 78.
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The atomic propositions that are used as labels on the
CFG are generated, as mentioned before, in two steps. In
the case of uninitialized variable analysis, the procedurein-
troduces three labels for each variable. E.g., the declaration
of variablea in line 2 of the code fragment, for example,
leads to the introduction of the labels:decla, useda and
assigneda. Each of these labels will be an atomic proposi-
tion in the model checking framework.

Next, we describe the associated tree patterns for each
proposition. Propositiondecla, used to label declarations of
variablea, is associated with pattern↓∗ Decl[Var:a]. Only
node 26 in the CFG matches this pattern, corresponding to
the declaration in line 2 of the source code, and will be la-
belleddecla.

Propositionuseda will label nodes that use the vari-
ablea. These are nodes which are either (i) labelledPlus,
Postinc or Preinc, and have a child labelledVar:a , or
(ii) nodes labeledModif with a righthand-side childVar:a.
The corresponding pattern is↓∗ (Plus∪ Postinc∪ Preinc∪
. . .)[Var:a]

⋃
↓∗ Modif[Var:a[attr = ”rhs”]]. Node 98 in

Figure 3 (a) matches this pattern. However, this node is not
part of the CFG. Hence, we backtrack to the nearest ances-
tor which is part of the CFG, in this case node 72, and label
it useda. Node 72 corresponds to line 11 in the code frag-
ment.

Finally, for propositionassigneda we look for nodes
that modify a variable which have labels such asModif,
Postinc or Preinc and a left-hand-side successorVar:a.
This corresponds to the pattern↓∗ (Modif ∪ Postinc∪
Preinc)[Var:a[attr = ”lhs”]]. Node 86 will be labeled
assigneda, because it is the nearest ancestor of a node that
matches this pattern. The described process results in the
labelled CFG depicted in Figure 3 (b).

4.2 Model Checking with NuSMV

Parts of the NuSMV code resulting from the translation
of the labelled CFG are shown in Figure 4. As described
in Section 3.3 we introduce one enumerated type variable,
i.e., location , ranging over the control locations (i.e. the
nodes in the CFG), describe the transition relation as a set
of transitions from locations to a set of locations, and use
DEFINE declarations to associate labels to certain loca-
tions. Note that, for clarity of presentation, we use the weak
until operandWin the CTL specification, which does not ex-
ist in NuSMV syntax, but can be equally expressed through
other existing operators.

Using NuSMV for checking property (1) (described
in Section 3.1) on the annotated CFG now reveals a
violation of the NuSMV specification from Figure 4.
Goanna automatically examines the violation reported by
NuSMV and concludes that there is an incorrect use
of variable a—in fact, there is a path in the program

MODULE main

VAR location : {loc26, loc34,..., loc12 }

next(location) :=
case

location = loc26 : {loc34 };
location = loc34 : {loc39 };
...
location = loc63 : {loc78, loc72 };
...

esac

DEFINE
decl a := location in {loc26 };
used a := location in {loc86 };
assign a := location in {loc72 };

SPEC AG decl a => (A ˜used a W assign a)

Figure 4. NuSMV code (fragment)

on which a is used, but not assigned any value be-
forehand. The prototype tool Goanna will warn the
user with: “Warning: Variable ‘a’ might be
uninitialized ” and automatically produces a coun-
terexample with the sequence of line numbers 2, 3, 5, 6, 7,
11. Note that this analysis points to apotentialbug. There
are other properties that, if violated, point to definite bugs.

4.3 Property Implementation in Goanna

In order to implement such a property in our Goanna
tool, we only need to identify the nodes of interest (as de-
scribed in Section 4.1), describe their relationships in CTL
formulas and print these formulas in NuSMV syntax to
NuSMV’s input file (as described in Subsection 4.2). An
implementation of our example property is shown in pseudo
code in Figure 5. In the code, we first find the set of all
variables that are declared in a function, because these are
the ones that need to be checked for proper initialization.
For each of these variables, we then print the CTL specifi-
cations to the NuSMV input file (the functionNuSMV()
simply prints text to NuSMV’s input file). In the next
step, for every variable in the set of declared variables, we
search for the set of nodes in the AST where the variable
is assigned a value and where it is used, respectively. For
this search we use the functionFindAST() that identi-
fies nodes in the AST according to specific patterns. Fi-
nally, from these three sets, we get the corresponding sets
of locations of the respective nodes in the CFG by using
the functionCFGlocations() . That function translates
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# Find all variables declared in a function:
SetvarDecl = FindAST(type=var, label=decl);

# Print specification for each declared variable:
foreach $var in SetvarDecl
{

NuSMV( "SPEC AG decl_$var ->
(A !used $var W assign $var);" );

}
NuSMV( "DEFINE" );
foreach $var in SetvarDecl {

# Identify nodes that use or assign $var:
SetvarAssigned = FindAST(var= $var, attr=lhs,

label=Modif|Postinc|Preinc|...);
SetvarUsed = FindAST(var= $var, attr=rhs,

label=Modif)
+ FindAST(var= $var, label=Postinc|Preinc);

# Output locations of propositions:
NuSMV( "decl $var := location in {"

+ CFGlocations( SetvarDecl ) + " };" );
NuSMV("assigned $var := location in {"

+ CFGlocations( SetvarAssigned ) + " };" );
NuSMV("used $var := location in {"

+ CFGlocations( SetvarUsed ) + " };" );
}

Figure 5. Pseudo code to create a NuSMV
code fragment for the “uninitialized vari-
ables” property

AST nodes to CFG nodes and, if required, backtracks to the
nearest ancestor node that has a corresponding node in the
CFG. Then we print the locations to NuSMV’s input file.

Note that the code doesnot have to describehow the
check is implemented. In Goanna, we only describe the
checks that need to be done—the implementation of the
checks is left to NuSMV.

This might seem like heavy machinery to check for
uninitialized variables. However, during analysis this prop-
erty is checked for all variables at once. Furthermore, hav-
ing this framework in place enables us to define other syn-
tactic properties easily—e.g., properties for inappropriate
use of dereferenced pointers, or unused variables. Applying
Goanna to the source code example shown in Figure 2 will
warn that the value assigned to variableb in line 11 is never
used, that variableb is never used at all (on a right-hand
side), that variablea might be used uninitialized, and that
pointerp is dereferenced after being freed.

5 Evaluation

5.1 Implementation

Our implementation is written in OCaml and we use
NuSMV 2.3.1 as the back-end model checker. The current
implementation is a prototype working on intra-procedural
analysis and is not yet optimized towards performance.
However, it provides the reader with a first impression with
respect to speed and scalability.

At the current stage, we have 15 different checks im-
plemented. These checks cover the correct usage of mal-
loc/free operations, use and initialization of variables,po-
tential null-pointer dereferences, memory leaks and dead
code. The CTL property is typically one to two lines in the
program and the description query for each atomic proposi-
tion is around five lines when covering a lot of exceptions.
This is still rather short compared to standard static analysis
frameworks or meta compilation [12].

5.2 Evaluation Principles

We evaluate our approach regarding run-time perfor-
mance, memory usage, and scalability. The run-time of the
tool should be reasonably low and integrate well into the de-
velopment process, e.g. it should be within the same order
of magnitude as the compile time. The runtime should scale
well with increasing program size and number of properties.
Also, the memory usage must be within the resource limits
of a typical developer machine or build server.

To evaluate Goanna’s speed and memory usage, we ap-
ply it to a larger real-world open-source project of realistic
size: TheOpenSSL1 toolkit implementing the Secure Sock-
ets Layer (SSL) and Transport Layer Security (TLS) proto-
cols (260 kLoC). We build OpenSSL for a Debian Linux 3.1
environment with gcc 3.3.5. Our hardware platform for the
experiments is a DELL PowerEdge SC1425 server, with an
Intel Xeon processor running at 3.4 GHz, 2 MiB L2 cache
and 1.5 GiB DDR-2 400 MHz ECC memory.

5.3 Run-time Performance and Memory
Usage

First, we look at some overall performance numbers. We
measure the wall-clock compile time and compare it with
Goanna’s total analysis time. Furthermore, we measure the
maximum internal memory consumption of our tool as well
as NuSMV’s memory consumption during the analysis.

The results for one property and for all 15 properties are
shown in Table 1. It shows that the overall analysis time
is well within the same order of magnitude as the compile

1http://www.openssl.org/
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Test set Compile Goanna NuSMV Total (Goanna + NuSMV)
[min:sec] [min:sec] [MB] [min:sec] [MB] [min:sec] [MB]

OpenSSL (1 property) 3:07 2:58 23.5 3:07 11.8 6:05 35.3
OpenSSL (15 properties) 3:07 6:19 35.4 5:54 17.9 12:13 53.3

Table 1. Compile time, run-time and maximum memory usage for Goanna and NuSMV separately,
and for the whole tool chain in total.
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Figure 6. Run-times of NuSMV with respect to
size of input source files.

time. In fact, it is twice as long as the compilation for one
property and four times as long for 15 properties.

Moreover, for the analysis with all 15 properties, out of
602 source files, only 3.6% took longer than 2 seconds to
analyze and 99.2% of all files were analyzed in less than
5 seconds. The time spent in NuSMV is mostly negligible
with 98.7% of all files being analyzed in less then 2 seconds.

The overall distribution of the runtime with respect to
the file size is shown in Figure 6 for NuSMV and in Fig-
ure 7 for the overall analysis time. Note that the complexity
of the analysis—and hence its runtime—does not perfectly
correlate with the file size, but the file size is easily under-
standable and typically a measure of interest to the devel-
oper. In fact, the complexity of our current implementation
is mostly dependent on the number of variables and the size
of the CFG.

The memory consumption for one as well as for 15 prop-
erties has been considerably low with 35.3 and 53.3 MB,
respectively. This fits well into the standard memory of a
state-of-the-art machine, making this approach well suited
to be integrated into the standard build process on a devel-
oper’s desktop machine.

0

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500 3000

R
u

n
−

ti
m

e
 [

s
]

Input file size [LoC]

Figure 7. Run-times of the whole Goanna tool
chain with respect to size of input source
files.

Discussion. There are a couple of pathological cases
where NuSMV takes disproportionally long and some
where Goanna, i.e., the tree matching, takes very long.
There are two sometimes interrelated reasons for this: First
of all, Goanna’s tree matching is impacted by the number
of variables in a program. The current implementation runs
all matching operations for all properties and all variables
in separate runs, creating a rather large overhead. For pro-
grams with few variables, the impact is not significant, how-
ever, when analyzing hundreds of variables it is consider-
able. An example of this effect can be seen in Figure 7,
where the outliner with 70 seconds run-time is caused by
a source file that has a large number of variables. Conse-
quently, we have plans to optimize the tree matching in the
future.

Secondly, NuSMV is impacted by the number of vari-
ables and the complexity of the control structure. More-
over, the BDD encoding plays a major role. As is typical in
BDD-based model checking, run-times are sometimes hard
to predict and fluctuate wildly when changing the variable
order. An explicit state model checker might be more suit-
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able for the analysis and we will explore the option in the
future.

5.4 Scalability and Precision

One of the encouraging results of our case study is that
performance scales nicely when adding more properties. In
fact, going from one property to 15 properties only doubles
the analysis time. With an optimized tree matching, we ex-
pect to further improve this ratio.

There are two main reasons for this: Some of the labels
created for certain properties can be reused. E.g., the label
for a variablex being declared (declx) might be part of sev-
eral properties and as such can be reused. Right now, we
only do this to a limited extend in Goanna.

The other reason is that NuSMV scales well when adding
more labels. Since the underlying control structure for one
property and 15 properties is the same—only the number
of labels increases—it is not required to run NuSMV more
often for a larger number of properties. Again, for reasons
of the exact BDD encoding, it is sometimes difficult to pre-
cisely predict how large an increase in run-time can be ex-
pected by adding a certain number of properties/labels.

The precision of our analysis is very much dependent on
the exact property encoding. Some of our properties come
in two flavors: A strict version and a relaxed version. The
strict version tends to be an under-approximationof the pro-
gram’s behavior and the relaxed one an over-approximation.
In the case of uninitialized variables, the strict version flags
a violation if a variable is uninitialized onall paths and the
relaxed version reports a violation if the variable is uninitial-
ized onsomepath. The difference is in the path quantifier
of the CTL formula (for all/exists a path).

The strict versions typically create zero false alarms,
while the relaxed versions are comparable to other static
analysis tools which do not do any additional path pruning
or similar techniques to remove impossible paths.

6 Future Work and Conclusions

Summary. In this work we presented an approach to use
model checking for solving static analysis problems. More-
over, we implemented Goanna, the first tool that uses an
off-the-shelf model checker as a static analysis engine. This
brings the two worlds of static analysis and model checking
one step closer together. We believe that in the future this
will enable the integration of more semantic-based software
model checking techniques into static analysis while retain-
ing one uniform framework.

The approach has been shown to be scalable to real-life
software projects. We evaluated our prototype tool with re-
spect to OpenSSL and showed that most files are analyzed
in the same order of magnitude as the compilation itself.

This enables the integration of model checking into the stan-
dard build process, increasing the overall software quality.

Current limitations and future work. The Goanna tool
is still at a prototype stage. While it is already fast enough
for practical use, it is far from optimal and there is still
much room for significant performance improvements. One
particular aspect is our current implementation of the tree
matching algorithm which traverses the tree for each and
every subpattern, creating a large unnecessary overhead.

Another area that hasn’t been addressed so far is path
pruning to achieve a higher precision for relaxed properties.
We are planning to take advantage of the model checking
approach by including more semantic-based techniques—
such as predicate abstraction—to rule out infeasible path
combinations.

Finally, while in principle our approach extends to
classic inter-procedural analysis, we still have to develop
heuristics to deal with the combinatorial blow up in order
to keep the analysis to a similar speed as it is for intra-
procedural analysis. We are in the process of creating a
two-pass analysis by making use of summaries which can
be generated from the intra-procedural stage.
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