
Logical Methods in Computer Science
Vol. 3 (4:5) 2007, pp. 1–1–18
www.lmcs-online.org

Submitted Dec. 23, 2004
Published Nov. 5, 2007

MODEL CHECKING SYNCHRONIZED PRODUCTS OF INFINITE

TRANSITION SYSTEMS ∗

STEFAN WÖHRLE AND WOLFGANG THOMAS

Informatik 7, RWTH Aachen, 52056 Aachen, Germany
e-mail address: {woehrle,thomas}@informatik.rwth-aachen.de

Abstract. Formal verification using the model checking paradigm has to deal with two
aspects: The system models are structured, often as products of components, and the
specification logic has to be expressive enough to allow the formalization of reachability
properties. The present paper is a study on what can be achieved for infinite transition sys-
tems under these premises. As models we consider products of infinite transition systems
with different synchronization constraints. We introduce finitely synchronized transition
systems, i.e. product systems which contain only finitely many (parameterized) synchro-
nized transitions, and show that the decidability of FO(R), first-order logic extended by
reachability predicates, of the product system can be reduced to the decidability of FO(R)
of the components. This result is optimal in the following sense: (1) If we allow semifinite
synchronization, i.e. just in one component infinitely many transitions are synchronized,
the FO(R)-theory of the product system is in general undecidable. (2) We cannot extend
the expressive power of the logic under consideration. Already a weak extension of first-
order logic with transitive closure, where we restrict the transitive closure operators to
arity one and nesting depth two, is undecidable for an asynchronous (and hence finitely
synchronized) product, namely for the infinite grid.

1. Introduction

In the theory of algorithmic verification, a standard framework for modeling systems
is given by finite transition systems (often in the form of Kripke structures). Much effort
is presently spent on extending this framework to cover infinite transition systems, and to
deal adequately with the internal structure of the systems under consideration, such as their
composition from several components. The present paper is a study on the scope of algo-
rithmic model checking over transition systems that are composed from infinite components
as products with various constraints on the synchronization of their transitions.

We consider transition graphs in the format G = (V, (Ea)a∈Σ) where V is the set of
states (or vertices) and Ea ⊆ V × V the set of a-labeled transitions. The direct product
of two transition graphs has an a-labeled transition from (p, q) to (p′, q′) if there are such
transitions from p to p′ and from q to q′. This is the case of complete synchronization. The

2000 ACM Subject Classification: F.4.1.
Key words and phrases: Model checking, synchronized products, reachability, transitive closure logic.

∗ A preliminary version of the paper appeared in 19th IEEE Symposium on Logic in Computer Science,
Turku, July 2004 [WT04].

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-3 (4:5) 2007

c© S. Wöhrle and w. Thomas
CC© Creative Commons

http://creativecommons.org/about/licenses

2 S. WÖHRLE AND W. THOMAS

other extreme is the asynchronous product, where a transition in one component does not
affect the other components. A main result below deals with the “intermediate” case where
the component graphs are infinite and in each component only finitely many transitions are
used for synchronization. We call these product structures “finitely synchronized”. They
arise whenever the local computations in the components involve infinite state-spaces but
synchronization is restricted to a finite number of actions in each component.

We study the model checking problem for products of transition graphs with respect to
several logics that are extensions of first-order logic FO. A basic requirement in verification
is that reachability properties should be expressible. There are numerous ways to extend FO
by features that allow to express reachability properties. We consider here four extensions
that cover reachability relations, listed in the order of increasing expressiveness:

• Reachability logic FO(R), which is obtained from FO-logic by adjoining transitive
closure operators ReachΓ over subsets Γ of edge relations.

• FO(Reg) as a generalization of FO(R) in which path labels have to match a given
regular expression.

• Transitive closure logic over binary relations, which allows to proceed from any
definable relation (and not just from some edge relations) to its transitive closure.

• Monadic second-order logic MSO, which results from FO-logic by adjoining variables
and quantifiers for sets (and in which transitive closure over binary relations can be
expressed).

The purpose of this paper is to analyze for which types of products and for which of
these logics L the decidability of the model checking problem for a product can be inferred
from the decidability of the corresponding model checking problem for the components. In
other words, we analyze for which kinds of products the decidability of the L-theory of the
product can be derived from the decidability of the L-theories of the components.

Our first result is such a transfer result for the logic FO(R) over finitely synchronized
products of transition graphs. For this, we use a technique of “composition” which resembles
the method of Feferman and Vaught [FV59] in first-order model theory (see [CK73], [Hod93]
for introductions and [Mak04] for a comprehensive survey). The Feferman-Vaught method
(applied to FO) allows to determine the FO-theory of a product structure (e.g., a direct
product) from the FO-theories of the components and some additional information on the
index structure. Our proof involves a more detailed semantic analysis of the components,
thereby exploiting the assumption on finite synchronization. The result extends a theorem
of Rabinovich [Rab07] on propositional modal logic extended by the modality EF over
asynchronous products.

We show that our result is optimal in two ways.
Firstly, the result does not extend to a case where we allow a slight liberalization of the

constraint on finite synchronization: We consider “semi-finite synchronization”, in which all
components except one can synchronize via finitely many transitions. In the presence of a
single component with infinitely many synchronizing transitions we may obtain a structure
with undecidable FO(R) model checking problem, whereas the problem is decidable for the
components individually.

Secondly, we investigate whether the logic FO(R) can be extended in the above men-
tioned preservation result. For a strong extension like MSO it is clear that decidability of
the component theories does not carry over to the theory of the product system. As is
well-known, we may work with the asynchronous product of the successor structure of the

MODEL CHECKING SYNCHRONIZED PRODUCTS 3

natural numbers, which is the infinite (ω × ω)-grid. (Note that the asynchronous product
is finitely synchronized with an empty set of synchronizing transitions.) The grid has an
undecidable monadic theory, whereas the component structures have decidable monadic
theories.

We clarify the situation for weaker extensions of FO(R), namely FO(Reg) and transi-
tive closure logic. We show that asynchronous products do not preserve the decidability of
the FO(Reg)-theory. For transitive closure logic this undecidability result can already be
obtained for a very simple example of an asynchronous product, namely the infinite grid as
considered above. Moreover, we show that this undecidability phenomenon only appears
when the TC-operator is nested. For the fragment of transitive closure logic with unnested
TC-operators interpreted over the infinite grid, we obtain a reduction to Presburger arith-
metic and hence the decidability of the corresponding theory.

These undecidability results complement a theorem of Rabinovich [Rab07] where the
corresponding fact is shown for propositional modal logic extended by the modality EG
over finite grids.

In our results the component structures are assumed to have a decidable theory in one
of the logics considered above. Let us summarize some of the relevant classes and their
closure properties with respect to synchronization.

A fundamental result is that pushdown graphs have a decidable monadic second-order
theory [MS85]. Since then several extensions like prefix recognizable graphs [Cau96] or
Caucal graphs [Cau02] have been considered, see [Tho03] for an overview. These classes
form an increasing sequence in this order, and all of them enjoy a decidable MSO-theory.
None of these classes is closed under asynchronous products.

Two other classes of infinite graphs we like to mention are the graphs of ground term
rewriting systems [Col02] for which the FO(R)-theory is decidable, and ground tree rewriting
systems [Löd02] for which a temporal logic with reachability and recurrence operators is
decidable. Both classes are closed under asynchronous products.

Classes which are closed under synchronized products are rational graphs [Mor00],
graphs of Thue specifications [Pay00], or graphs of linear bounded machines [KP99]. How-
ever for all these classes already the FO-theory is undecidable and hence they are not
suitable for model checking purposes.

The paper is organized as follows. In Section 2 we give the definition of a synchronized
product of a family of graphs or transition systems, recall the definition of transitive closure
logic, and define FO(R) and FO(Reg).

In Section 3 we show the composition theorem for finitely synchronized products and
reachability logic and prove that this result cannot be extended to FO(Reg) or semifinite
synchronization in general.

In Section 4 we investigate transitive closure logic over the infinite grid. We show that
if we allow transitive closure operators of arity one without parameters but of nesting depth
two the theory of the grid is undecidable. On the other hand we show that if no nesting of
transitive closure operators is allowed, the respective theory is decidable even in presence
of parameters in the scope of the transitive closure operators.

4 S. WÖHRLE AND W. THOMAS

2. Preliminaries

Let (Vi)1≤i≤n be a family of sets. We denote by "1≤i≤nVi the Cartesian product of
these sets. Tuples (v1, . . . , vn) ∈ "1≤i≤nVi are usually denoted by v̄, and the ith component
of v̄ as vi .

Let Σ be a finite set of labels. A transition system is a Σ-labeled directed graph
G = (V G, (EG

a)a∈Σ) where V
G is the set of vertices of G and EG

a ⊆ V G × V G denotes the
set of a-labeled edges in G.

2.1. Synchronized Products. For 1 ≤ i ≤ n let Gi := (Vi, (E
i
a)a∈Σi

) be a Σi-labeled
graph. We assume that Σi is partitioned into a set Σl

i of local labels (or actions) and a
set Σs

i of synchronizing labels, and to avoid notational complication we require the sets of
local labels to be pairwise disjoint. An asynchronous transition labeled by a ∈ Σl

i is applied
only in the i-th component of a state (v1, . . . , vn) of the product graph while the other
components stay fixed. For synchronizing transitions we distinguish explicitly between the
components where a joint change of states is issued and the components where the state
does not change. To describe the latter, define Ei

ε := {(v, v) | v ∈ Vi} and Σ̃s
i := Σs

i ∪{ε}. A

synchronization constraint is a set C ⊆ "1≤i≤nΣ̃
s
i . If c̄ ∈ C, a c̄-labeled transtition induces

a simultaneous change in the components i where ci 6= ε while the states do not change in
the other components.

Formally, the synchronized product of (Gi)1≤i≤n defined by C is the graph G with vertex
set V := "1≤i≤nVi, asynchronous transitions with labels a ∈

⋃

1≤i≤n Σ
l
i defined by EG

a v̄w̄ if

Ei
aviwi and vj = wj for j 6= i, and synchronized transitions with labels c̄ ∈ C defined by

EG
c̄ v̄w̄ if Ei

civiwi for every 1 ≤ i ≤ n. We denote the set of local transitions labels
⋃

1≤i≤nΣ
l
i

of G by Σl, and the set C ∪ Σl of all transition labels by Σ. A product is asynchronous if
C = ∅.

Note that we slightly deviate from the definition in [Arn94] since we require the sets of
local labels and synchronizing labels to be disjoint, and implicitly assume an asynchronous
behavior of local transitions.

Let (Gi)1≤i≤n be a family of graphs and C ⊆ "1≤i≤nΣ̃
s
i be a synchronization constraint.

For c̄ ∈ C let Xc̄ := {i | ci 6= ε}. For C ′ ⊆ C we write XC′ =
⋃

c̄∈C′ Xc̄. Define

ū ∼c̄ v̄ :⇔ u[Xc̄] = v[Xc̄],

i.e. ū ∼c̄ v̄ if ū and v̄ agree on the synchronizing components. The synchronized product
G of (Gi)1≤i≤n defined by C is called finitely synchronized if index(∼c̄), i.e. the number of
equivalence classes of ∼c̄, is finite for every c̄ ∈ C. In the conference version [WT04] of this
paper, finitely synchronized products involve only finitely many individual synchronizing
transitions, thus disallowing the label ε in the synchronization constraint. In the present
treatment we allow finitely many parametrized synchronized transitions: The inclusion
of constraints c̄ with ci = ε means that in the i-th component the transition c̄ applies to
arbitrary states of Vi and hence possibly infinitely many individual synchronizing transitions
may be present in a finitely synchronized product1.

1Thus, the proof of Theorem 3.1 below involves more technicalities than the corresponding proof in
[WT04].

MODEL CHECKING SYNCHRONIZED PRODUCTS 5

We collect some technical preparations in the subsequent Lemma 2.1. For this we define
for every ∅ 6= C ′ ⊆ C the eqivalence relation

ū ∼C̄′ v̄ :⇔ ū ∼c̄ v̄ for every c̄ ∈ C ′

and restrict the relation ∼C′ to the set of vertices of the synchronized product from which
an outgoing transition exists for every c̄ ∈ C ′, i.e. to the set

VC′ := {ū ∈ "1≤i≤nVi | ∀c̄ ∈ C
′ ∃v̄ such that (ū, v̄) ∈ Ec̄}.

Lemma 2.1. Let (Gi)1≤i≤n be a family of graphs and C ⊆ "1≤i≤nΣ̃
s
i be a synchronization

constraint.

(a) If G is finitely synchronized, then index(∼C′) is finite for every ∅ 6= C ′ ⊆ C.
(b) For every subset ∅ 6= C ′ ⊆ C, if u ∼C′ v and G |= ReachΣl∪C′ [u,w] there exists a w′

such that G |= ReachΣl∪C′ [v,w′] and w ∼C′ w′.
(c) Let Γ ⊆ Σl ∪ C ′. If G |= ReachΓ[u, v], G |= ReachΓ[v,w] and u ∼C′ v then G |=

ReachΓ[u,w] and the path from u to w can be chosen such that no intermediate vertex
is ∼C′-equivalent to u.

Proof. (a) If G is finitely synchronized, then index(∼c̄) is finite for every c̄ ∈ C. If C ′ ⊆
C ′′ ⊆ C then C ′′ refines C ′ on VC′′ ⊆ VC′ . Therefore, for every C ′ ⊆ C the number of
equivalence classes of ∼C′ is bounded by "c̄∈C index(∼c̄).

(c) is a direct consequence of (b) which remains to be shown. Let u ∼C′ v and
G |= ReachΓ[u,w]. Since transitions labeled with symbols from

⋃

i/∈XC′
Σl
i commute with

transitions labeled by symbols from
⋃

i∈XC′
Σl
i ∪ C

′ we may w.l.o.g. assume that the path

from u to w is of the form

u = u1
a1−→ u1

a2−→ . . .
am−1

−−−→ um = u′1
b1−→ u′2

b2−→ . . .
bn−1

−−−→ u′n = w

and aj ∈
⋃

i/∈XC′
Σl
i for 1 ≤ j ≤ m and bj ∈

⋃

i∈XC′
Σl
i ∪ C ′ for 1 ≤ j ≤ n. Hence by

definition of ∼C′ we have u[XC′] = u′1[XC′] = v[XC′]. Thus there is a path v′ = v1
b1−→

v2
b2−→ . . .

n−1
−−→ vn = w′ in G and w ∼C′ w′.

2.2. First-Order Logic and Extensions. We assume that the reader is familiar with
first-order logic FO over graphs. We denote formulas by ϕ(x1, . . . , xn) to express that the
free variables of ϕ are among x1, . . . , xn. If G is a graph and v1, . . . , vn are the vertices
assigned to the variables x1, . . . , xn, we denote by (G, v1, . . . , vn) |= ϕ(x1, . . . , xn) or shortly
by G |= ϕ[v1, . . . , vn] that the formula ϕ is satisfied in G under the respective variable
assignment.

Transitive closure logic FO(TC) is defined by extending FO with formulas of the type

ψ := [TCx̄,ȳ ϕ(x̄, ȳ, z̄)] s̄, t̄

where ϕ(x̄, ȳ, z̄) is a FO(TC)-formula, x̄, ȳ are disjoint tuples of free variables of the same
length k > 0, s̄, t̄ are tuples of variables of length k and free(ψ) := (free(ϕ) \{x̄, ȳ})∪{s̄, t̄}.
Note that in the notation [TCx̄,ȳ ϕ(x̄, ȳ, z̄)] x̄, ȳ the variables inside the square brackets are
bound while the variables at the end of the formula occur free.

Let G be a graph, let c̄, d̄, and ē be the interpretations of the variables z̄, s̄, and t̄ in
ϕ. Let E be the relation on k-tuples defined by E(c̄) := {(ā, b̄) | (G, ā, b̄, c̄) |= ϕ(x̄, ȳ, z̄)},
and E′(c̄) be its transitive closure, i.e. (ā, b̄) ∈ E′(c̄) iff there exists a sequence f̄0, f̄1, . . . , f̄l

6 S. WÖHRLE AND W. THOMAS

such that f̄0 = ā, (f̄i, f̄i+1) ∈ E(c̄) for 1 ≤ i < l, and f̄l = b̄. The semantics of the
FO(TC)-formula above is defined by

(G, c̄, d̄, ē) |= [TCx̄,ȳ ϕ(x̄, ȳ, z̄)] s̄, t̄ ⇔ (d̄, ē) ∈ E′(c̄).

We call the variables z̄ parameters for the transitive closure operator. By FO(TC)(k)
be denote the fragment of FO(TC) where the transitive closure operation is only allowed to
define relations over tuples of length ≤ k, i.e. the length of the tuples x̄, ȳ in the definition
above is bounded by k. For example, in FO(TC)(1) we can only define binary relations

using a transitive closure operator. For finite models the arity hierarchy (FO(TC)(k))k≥0 is

strict [Gro96].

By FO(TC)l(k) we denote the fragment of FO(TC)(k) where the nesting depth of tran-

sitive closure operations is bounded by l.
In transitive closure logic we can express that from a vertex x a vertex y is reachable

via a path with labels from some set Σ′ ⊆ Σ by

ReachΣ′(x, y) :=
[

TCx,y

(

x = y ∨
∨

a∈Σ′

Eaxy
)

]

x, y.

We call the restriction of FO(TC) where the only transitive closure formulas allowed
are of the form ReachΣ′(x, y) for Σ′ ⊆ Σ reachability logic and denote it by FO(R).

The expressive power of the reachability predicates in FO(R) is limited, e.g. we cannot
express that there is a path between vertex v and w in the graph whose labels form a word
in a given regular language.

We denote by FO(Reg) first-oder logic extended by reachability predicates Reachr(x, y)
for regular expressions r over Σ, where G |= Reachr[v,w] if there is a path in G from v to
w labeled by a word contained in the language described by r.

3. Synchronization and FO(R)

In this section we show that synchronization preserves the decidability of the FO(R)-
theory if (and only if) the product is finitely synchronized. For this case we prove a com-
position theorem that reduces the evaluation of a formula in the product graph to the
evaluation of several formulas in the component graphs and a Boolean combination of these
truth values. This result does not extend to the case of FO(Reg).

Furthermore we show that semifinite synchronization of two components, where in just
one of the components infinitely many edges are allowed to be synchronized, does in general
not preserve the decidability of the FO(R)-theory.

Theorem 3.1. Let G be a finitely synchronized product of a family (Gi)1≤i≤n of graphs
with decidable FO(R)-theories. Then the FO(R)-theory of G is also decidable, and for an
FO(R)-formula ϕ we can effectively construct sets of formulas Ψi and a Boolean formula α
such that G |= ϕ iff α is true under an Boolean interpretation defined by the truth values of
the formulas in Ψi.

Proof. Let (Gi)1≤i≤n be a family of graphs whose signatures Σi := Σl
i ∪ Σs

i are partitioned

into local and synchronizing labels. Let C ⊆ "1≤i≤nΣ̃
s
i be a synchronization constraint such

that the product G of (Gi)1≤i≤n is finitely synchronized with respect to C.

MODEL CHECKING SYNCHRONIZED PRODUCTS 7

We show by induction that for every FO(R)-formula over Σ there are finite sets Ψi of
Σi-formulas and a Boolean formula α over predicates pi(ψ

i
j) (1 ≤ i ≤ n, 1 ≤ j ≤ |Ψi|) such

that
(G, v̄1, . . . v̄m) |= ϕ(x1, . . . , xm) ⇔ I(v̄1, . . . , v̄m) |= α (3.1)

where I(v̄1, . . . , v̄m) is the Boolean interpretation defined by

I(v̄1, . . . , v̄m)(pi(ψj)) =

{

true if (Gi, v
i
1, . . . , v

i
m) |= ψi

j

false otherwise.

We start with the atomic formulas. For x = y let ψi := (x = y), for Eaxy with a ∈ Σl
i let

ψi := Eaxy and ψj := (x = y) for i 6= j, and for Ec̄xy with c̄ ∈ C let ψi := Ecixy. For every
formula above let α :=

∧

1≤i≤n pi(ψi). Obviously (3.1) holds in all cases, so the remaining

“atomic” formulas we have to take care of are of the form ReachΓ(x, y) for Γ ⊆ Σ.
For this part of the proof we proceed by induction on the number of synchronizing

transitions from C which appear in Γ. We may assume that Γ comprises all local transition
labels, i.e. that Σl ⊆ Γ; otherwise in the following every occurrence of Σl

i has to be replaced
by Σl

i ∪ Γ.
We first consider the case that there is only a single synchronizing transition c̄ ∈ Γ.

By the definition of finitely synchronized product we know that index(∼c̄) is finite, and by
Lemma 2.1 (c) that we have to pass through every equivalence class at most once. Let
k = index(∼c̄). For i ∈ Xc̄ and 1 ≤ m ≤ k define

ψi
(c̄,m)(x, y) := ∃z1 . . . ∃zm

(

ReachΣl
i
(x, z1) ∧ y = zm

∧
∧

1≤i<m

∃w
(

Eciziw ∧ ReachΣl
i
(w, zi+1)

)

)

which expresses that on a path from x to y in component i exactly m vertices z1, . . . , zm
are passed from which a synchronized transition is possible. For i /∈ Xc̄ we set

ψi
c̄,m(x, y) := ReachΣl

i
(x, y)

and define Ψi(c̄) := {ψi
(c̄,m)(x, y) | 1 ≤ m ≤ k}. Setting

α(c̄) :=
∨

1≤m≤k

∧

1≤i≤n

p(ψi
c̄,m)

ensures (3.1) for sets Γ which contain at most one synchronizing edge label c̄.
Let now C ′ = C ∩Γ. By the induction hypothesis we may assume that for every subset

C ′′ ⊂ C ′ there are families of formulas Ψi(C
′′) := {ψi

(C′′,m)(x, y) | m ≤ m(C ′′)} and Boolean

formulas α(C ′′) such that (3.1) holds, i.e.

G |= ReachC′′∪Σl [v̄, w̄] ⇔ I(v̄, w̄) |= α(C ′′). (3.2)

Let k := index(∼C′) and l :=
∑

C′′⊂C′ index(∼C′′), for 1 ≤ r ≤ k let σ1 be a mapping σ1 :
{1, . . . , r} → {1, . . . , l} and σ2 a mapping σ2 : {1, . . . , l} → {(C ′′, s) | C ′′ ⊂ C ′, s ≤ m(C ′′)}.
The number of vertices in VC′ which are passed on the path from vertex ū to w̄ is r. The
mapping σ1 then determines the number of ∼C′′ equivalence classes which are passed on
the path between consecutive vertices in VC′ and σ2 determines the order in which vertices
from ∼C′′ eqivalence classes appear.

8 S. WÖHRLE AND W. THOMAS

Let π1, . . . , πt be an enumeration of all mappings which can be obtained by composing
the mappings σ1 and σ2. We define for t′ ≤ t, πt′ := σ2 ◦σ1 with σj as above and 1 ≤ i ≤ n
the formula

ψi
(C′,t′)(x, y) := ∃y1 . . . yr

[

y1 = x ∧ yr = y

∧
∧

1≤p<r

(

∃z1 . . . zσ1(p)

(

z1 = yp ∧ zσ1(p) = yp+1

∧
∧

1≤q<σ1(p)
ψi
σ2(q)

(zq, zq+1)
)

)]

.

The Boolean formula α(C ′) is then defined to be

α(C ′) :=
∨

1≤t′≤t

∧

1≤i≤n

p(ψi
(C′,t′)).

We claim now that for every C ′ ⊆ C

G |= ReachΣl∪C′ [ū, v̄] ⇔ I(ū, v̄) |= α(C ′). (3.3)

We first consider the direction from right to left. Let I(ū, v̄) |= α(C ′). The case C ′ = {c̄}
has already been dealt with above. So assume that (3.3) holds for every C ′′ ⊂ C ′. Then
I(ū, v̄) |=

∧

1≤i≤n p(ψ
i
C′,t′) for some t′, i.e there exits an r and mappings σ1 : {1, . . . , r} →

{1, . . . , l} and σ2 : {1, . . . , l} → {(C ′′, s) | C ′′ ⊂ C ′, s ≤ m(C ′′)} such that for 1 ≤ i ≤ n

(G,ui, vi) |= ∃y1 . . . yr
[

y1 = x ∧ yr = y

∧
∧

1≤p<r

(

∃z1 . . . zσ1(p)

(

z1 = yp ∧ zσ1(p) = yp+1

∧
∧

1≤q<σ1(p)
ψi
σ2(q)

(zq, zq+1)
)

)]

.

If we denote the the valuation of the variables zj (respectively yj) in Gi which make the
formula above true by zij (respectively y

i
j) and their n-tuple by z̄j (respectively ȳj) we obtain

that I(z̄j , z̄j+1) |= α(σ2(q)1) for 1 ≤ j < σ1(p) (here σ2(q)1 denotes the first component of
σ2(q)). Hence G |= ReachΣl∪σ2(q)1 [z̄j , z̄j+1] for 1 ≤ j ≤ σ1(p) and since

⋃

1≤q≤σ1(p)
σ2(q)1 ⊆

C ′ also G |= ReachΣl∪C′ [ȳj, ȳj+1] for 1 ≤ j ≤ r. Hence we obtain G |= ReachΣl∪C′ [ū, v̄].
For the direction from left to right suppose that G |= ReachΣl∪C′ [ū, v̄]. By Lemma 2.1

(c) we know that there is a path from ū to v̄ in G which passes every ∼C′ equivalence class
ot most once. Let ȳ1, . . . , ȳr be the sequence of these vertices from VC′ on the path. We now
consider for 1 ≤ j < r the path segments between ȳj and ȳj+1. Every such path segment
can be further decomposed in the following way: Let z̄1 be the first vertex in the segment
which is contained in some VC′′ for ∅ 6= C ′′ ⊂ C ′. If there is no such z̄1 only local labels can
appear on the path from ȳj to ȳj+1. In this case choose z̄1 := ȳj+1.

Then we choose z̄2 to be the last vertex on the path from ȳj to ȳj+1 such that G |=
ReachΣl∪C′′ [z̄1, z̄2], i.e. z2 ∈ VC′′′ for some C ′′′ ⊂ C ′ with C ′′′ \C ′′ 6= ∅. This decomposition
can be continued until ȳj+1 is reached.

Figure 1 shows such a decomposition of a path from ū to v̄. Every path segment from
ȳj to ȳj+1 is again partintioned as shown. For sake of readability we mention only the set

of synchronizing labels allowed on the intermediate paths and write C ′ for C ′ ∪ Σl.
By Lemma 2.1 (c) we again know that the number of intermediate vertices z̄ can be

bounded by l :=
∑

C′′⊂C′ index(∼C′′). By the induction hypothesis on subsets C ′′ ⊂ C ′ we
know that for every pair of successive vertices z̄j , z̄j+1 with z̄j ∈ VC′′ there exists a conjunct

MODEL CHECKING SYNCHRONIZED PRODUCTS 9

ū = ȳ1
C′

///o/o/o/o/o ȳ2
C′

///o/o/o/o/o

�
�
�
�

y3
C′

///o/o/o/o/o/o

J
J

J
J

J
C′

///o/o/o/o ȳr = v̄

ȳ2
Σl

///o z̄1
C′′

1
///o z̄2

C′′
2

///o/o

C′′
q

///o z̄q = ȳ3

Figure 1: Sample decomposition of a path

of α(C ′′), i.e. some s such that

G |= ReachC′′∪Σl [z̄j , z̄j+1] ⇒ I(z̄j , z̄j+1) |=
∧

1≤i≤n

p(ψi
(C′′,s)).

In particular we have Gi |= ψi
(C′′,s)[z

i
j , z

i
j+1] for every 1 ≤ i ≤ n and all inermediate vertices

zj .
Combining these decomposition results we obtain that there exists some r bounded

by index(∼C′) (the number of vertices ȳ), a function σ1 : {1, . . . , r} → {1, . . . , l} which
determines the number of intermediate vertices z̄ between the ȳ vertices, and a function
σ2 : {1, . . . , l} → {(C ′′, s) | C ′′ ⊆ C ′′, s ≤ m(C ′′)} which determines to which VC′′ an
intermediate vertex z̄j belongs and which conjunct of α(C ′′) is satisfied by the interpretation
induced by z̄j and z̄j+1. Thus we obtain that Gi |= ψi

(C′,s)[ui, vi] for 1 ≤ i ≤ n and some s

an hence I(ū, v̄) |= α(C ′).
The finishes the proof for atomic formulas. Formulas composed by Boolean connectives

and existential quantification are now easy to handle.
The case of Boolean connectives may be solved in the standard way. Let ϕ1(x̄) and ϕ2(ȳ)

be FO(R)-formulas and α1, (Ψ
1
i)1≤i≤n as well as α2, (Ψ

2
i)1≤i≤n be given by the induction

hypothesis. Then, for ¬ϕ1(x̄) we can choose the same (Ψ1
i)1≤i≤n and the Boolean formula

to be ¬α1, and for ϕ1(x̄) ∨ ϕ2(ȳ) we choose Ψi := Ψ1
i ∪Ψ2

i and α = α1 ∨ α2.
To finish the proof let ϕ(x1, . . . , xn) := ∃xn+1ϕ1(x1, . . . , xn+1). Let Ψ1

i and α1 be the
formulas computed for ϕ1(x1, . . . , xn+1). Let I be the set of all satisfying assignments for

α1. For every I ∈ I let Ii := {j | I(pji) = true}. Then sets Ψi for 1 ≤ i ≤ n are constructed
by adding for every I ∈ I the formula

ψI
i (x1, . . . , xn) := ∃xn+1

(

∧

j∈Ii

ψj
i ∧

∧

j /∈Ii

¬ψj
i

)

.

Then we can define α :=
∨

I∈I

∧

1≤i≤n p(ψ
I
i).

For a complexity analysis of this algorithm, note that even in the special case in which
the synchronization constraint does not contain ε, the number of formulas which have to be
evaluated in the components cannot be bounded by an elementary function. This is due to
the exponential increase of the sets Ψi which result from dealing with existential quantifiers.

It is easy to see that Theorem 3.1 also covers FO(Reg)-formulas with regular expressions
built from Γ∗

i for Γi ⊆ Σ using · and +. However, if we allow reachability predicates with
regular expressions of the form (Γ1 · Γ2)

∗ the decidability of the corresponding theory will
be lost.

Theorem 3.2. Asynchronous products do not preserve the decidability of the FO(Reg)-
theory.

10 S. WÖHRLE AND W. THOMAS

Proof. We use a 2-PDA A (pushdown automaton with two stacks) that simulates a universal
Turing machine (cf. [HU79]). Formally a 2-PDA is a tuple A = (Q,Σ,Γ, q0,∆, f) where
Q is a finite set of states, Σ and Γ the input alphabet, respectively stack alphabet, q0 is
the initial state, f is the final state, and ∆ ⊆ Q × Σ × (Γ ∪ {ε})2 × (Γ ∪ {ε})2 × Q the
transition relation. The configuration with state p and stack contents u, v (discarding the
stack bottom symbols) is denoted by (p, u, v) (similarly a pair (p, u) is a configuration of a
standard PDA). We assume that Turing machines (as well as 2-PDA’s) are normalized, i.e.
that each state is reachable from the initial state q0, the only sink state is the final state f
and there are no incoming transitions to q0.

Input words for the universal 2-PDA A are of the form w1$w2# where w1 is the code
of a Turing machine and w2 an input word for the Turing machine. We assume that A
processes such an input word in two phases: First w1$w2# is written into the first stack (in
reverse order) and then transferred into the second stack (with the first letter of w1 on top
of the stack). With this configuration the second phase starts (and we call its initial state
q20), realizing the actual simulation of the universal Turing machine. It is well-known that
the reachability problem for A (“Given w1$w2# as input, does A reach the final state?”)
is undecidable.

To reduce this reachability problem for A to the model checking problem for FO(Reg)
over an asynchronous product of graphs with decidable FO(Reg)-theory, we split A into
two component pushdown automata

A1 = (Q,Σ×∆,Γ, q0,∆1, f)

A2 = (Q, Σ̄× ∆̄,Γ, q0,∆2, f̄)

where for every δ = (q, a, γ1, γ2, γ3, γ4, p) ∈ ∆ the following transitions are included:

(q, (a, δ), γ1 , γ3, p) to ∆1,

(q, (ā, δ̄), γ2, γ4, p) to ∆2.

Each of the graphs generated by A1 and A2 has a decidable MSO-theory and therefore
also a decidable FO(Reg)-theory. Let B their asynchronous product.

Let r be the regular expression

r =
(

∨

δ∈∆
a∈Σ

(a, δ)(ā, δ̄)
)∗

which states that a transition of A1 is followed by the corresponding transition of A2.
We obtain that

B |= Reachr(x, y)[((q, u), (q, v)), ((q
′ , u′), (q′′, v′))]

iff q′ = q′′ and A can reach from configuration (q, u, v) the configuration (q′, u′, v′).
It is now easy to construct for every word w1$w2# a first-order formula ϕw1$w2#(x, y)

such that
B |= ϕw1$w2#(x, y)[((q0, ε), (q0, ε)), ((q, u1), (q, u2))]

MODEL CHECKING SYNCHRONIZED PRODUCTS 11

iff u1 = ε, u2 = w1$w2# and q = q20 . Then we obtain that

B |= ∃z1∃z2∃z3
(

ϕw1$w2#(((q0, ε), (q0, ε)), z1) ∧ Reachr(z1, z2)

∧
∨

δ∈∆
a∈Σ

(

E(a,δ)z2z3 ∧ E(ā,δ̄)z3((f, u), (f, v))
)

)

iff A reaches a halting configuration after processing w1$w2#. Note that since A is normal-
ized we can ensure that the initial configuration ((q0, ε), (q0, ε)) and all final configurations
((f, u), (f, v)) are first-order definable.

We now turn to the proof that semifinite synchronization in general does not preserve
the decidability of the FO(R)-theory. We reduce the halting problem of deterministic Turing
machines to the model checking problem for FO(R) for synchronized products of finite
graphs and infinite graphs which are generated by ground tree rewriting systems (GTRS).
The GTRS graphs we will construct are of finite out-degree and hence have a decidable
FO(R)-theory [Löd02, Löd03].

The GTRS graph will encode computations of the Turing machine M , but not all of
them are valid. We will use the synchronization with a finite graph to eliminate computa-
tions which are not valid.

Our construction of the GTRS graph encoding computations of M follows ideas of
[Löd03]. Before we start the proof we give a short definition of the Turing machine model
we use and of ground tree rewriting systems. For a more detailed description we refer to
[HU79] and [Löd03].

A deterministic Turing machine is a tupleM = (Q,Γ, q0, qf , δ) where Q is a finite set of
states, Γ is an alphabet containing a designated blank symbol , q0 is the initial state, qf is
the halting state, and δ : Q×Γ → Q×Γ×{L,R} is the transition function. A configuration
of M is a sequence a1, . . . ak, q, bl, bl−1 . . . b1 where ai, bi ∈ Γ, q ∈ Q and bl denotes the
symbol currently read by the head of the machine. We consider two configurations to be
equivalent if they differ only in heading or trailing blank symbols, and do not distinguish
between equivalent configurations.

A ground tree rewriting system is a tupleR = (A,Σ, R, t0) where A is a ranked alphabet,
Σ is a set of labels for the rules, R is a finite set of rules, and t0 is a finite tree over A. We

denote the set of all finite trees over A by TA. A rewriting rule r is of the form t
b
−→ t′ with

t, t′ ∈ TA and b ∈ Σ. A rule r is applicable to a tree s if there is a subtree s1 of s equal to
t, and the result of an application of r to s is a tree s′ obtained from s by replacing s1 with
t′. R generates a Σ-labeled graph whose vertices are the trees that can be obtained from
t0 by applying rewriting rules from R, with a b-labeled edge between s and s′ if s′ results

from s by an application of a rule of the form t
b
−→ t′ ∈ R.

Theorem 3.3. Semifinite synchronization does not preserve the decidability of the FO(R)-
theory.

12 S. WÖHRLE AND W. THOMAS

Proof. LetM = (Q,Γ, q0, qf , δ) be a deterministic Turing machine. We assume that q0 6= qf ,
Q∩Γ = ∅, X /∈ Q∪ Γ and encode a configuration a1, . . . , ak, q, bl, bl−1, . . . b1 of M by a tree

•
}} @@

X X

a1 b1

ak bl

q

Every transition of the Turing machine will be simulated by the rewriting system in two
steps, by first rewriting the right branch of the configuration tree, and then rewriting the
left branch. The labels of the rewriting rules will indicate which letter from Γ has to be
added (+) or removed (−) from the left branch of the configuration tree, and ⊤ respectively
⊥ indicate whether the halting state has been reached or not.

More precisely we define a GTRS R = (A,Σ, R, t0) where A2 = {•}, A1 = Γ ∪ {X},
A0 = A1 ∪Q, Σ = {+,−} × (Γ ∪ Γ̄)× {⊥,⊤} and

t0 :=

•
~~ @@

X X

q0

.

The set R is defined by adding for δ(q, b) = (p, c, L) and every a ∈ Γ the rules

b

q

(−,a,∗)
−−−−→

c

a

p
and

X

q

(−,a,∗)
−−−−→

c

a

p
if b = ,

and for δ(q, b) = (p, c,R) and every a ∈ Γ the rules

a

b

q

(+,c,∗)
−−−−→

a

p
and

X

q

(+,c,∗)
−−−−→

X

p
if b =

where ∗ = ⊤ if p = qf and ∗ = ⊥ otherwise. Note that these rules can only be applied to
the right branch of a configuration tree. For the left branch we add for every a, c ∈ Γ and
∗ ∈ {⊥,⊤} the rules

a
(−,ā,∗)
−−−−→ ε and X

(−,ā,∗)
−−−−→ X if a = ,

as well as

a
(+,c̄,∗)
−−−−→

a

c

and

X
(+,c̄,∗)
−−−−→

X

c
if c 6= and X

(+,c̄,∗)
−−−−→ X if c = .

By construction, a path through the graph G generated by R corresponds to a valid com-
putation of M started on the empty tape iff every transition with label (+, a, ∗) respec-
tively (−, a, ∗) is followed by its counterpart labeled (+, ā, ∗) respectively (−, ā, ∗). Let
H be the star graph with |Σ| + 1 many vertices where the center vertex v has for every
($, a, ∗) ∈ {+,−}× Γ×{⊥,⊤} a single outgoing edge with this label to a vertex w and the

MODEL CHECKING SYNCHRONIZED PRODUCTS 13

single corresponding incoming edge from w labeled ($, ā, ∗). If we define the synchronization
constraint C := {(σ, σ) | σ ∈ Σ}, the synchronized product of G and H will contain exactly
the valid computations of M . To decide whether M halts on the empty tape we thus have
to check the truth of the formula

∃xy
[

∀z
∧

σ∈Σ

¬Eσzx ∧ ∃z
(

ReachΣ(x, z) ∧
∧

σ∈{+,−}×Γ̄×{⊤}

Eσzy
)]

in the semifinitely synchronized product of G and H.

4. Transitive Closure Logic over the Infinite Grid

The infinite grid is the structure G = (ω2, S1, S2) with two successor relations S1 and
S2. It can be viewed as the asynchronous and hence finitely synchronized product of two
copies of the natural numbers with successor relation, N1 = (ω, S1) and N2 = (ω, S2),
defined by the empty synchronization constraint.

We show in this section how to interpret the first-order theory of addition and multi-
plication of the natural numbers in FO(TC)2(1) (without parameters) over the infinite grid.

FO(TC)2(1) allows only transitive closure operators of arity one and a nesting depth of two.

It is well known that the FO-theory of addition and multiplication of N is undecidable.
However, since FO(TC)(1) can be interpreted in MSO, FO(TC)(1) is decidable over N .

From these results we can conclude that the FO(TC)2(1)-theory is not preserved by finitely

synchronized products and thus obtain that we cannot extend FO(R) much without losing
decidability for finitely synchronized products.

To interpret the theory of addition and multiplication in FO(TC)2(1) over the infinite

grid we first connect the transitive closure theories of N and G.

Lemma 4.1. Let k ≥ 1.

(a) For every FO(TC)n(k)-sentence ϕ there is a FO(TC)n(2k)-sentence ϕ̃ such that G |= ϕ⇔

N |= ϕ̃.
(b) For every FO(TC)n(2k)-sentence ϕ there is a FO(TC)n(k)-sentence ϕ̂ such that N |= ϕ⇔

G |= ϕ̂.

Proof. For (a) there is almost nothing to show. It suffices to split every variable x (inter-
preted as vertex of the grid) into coordinate variables x1 and x2 (interpreted as natural
numbers) and to replace the atomic formulas S1xy by Sx1y1 and S2xy by Sx2y2.

For (b) we identify every x ∈ ω with (x, 0) ∈ ω2. To reduce the number of variables
needed in a TC operator we represent a pair of variables x1, x2 by a single variable x =
(x1, x2) to be interpreted as a vertex of the grid.

To finish the proof it suffices to show that the following operations are FO(TC)(1)
definable:

(i) πi with π1((x1, x2)) := (x1, 0) and π2((x1, x2)) := (0, x2),
(ii) swapi with swap1((x, 0)) := (0, x) and swap2((0, x)) := (x, 0),
(iii) comb with comb((x, 0), (0, y)) := (x, y)

Then a FO(TC)(2k) formula [TCx̄,ȳ ϕ(x̄, ȳ, z̄)]x̄, ȳ is equivalent to the FO(TC)(k) formula

14 S. WÖHRLE AND W. THOMAS

∃ūv̄
(

∧

1≤i≤k

(

ui = comb(x2i−1, swap2(x2i)) ∧ vi = comb(y2i−1, swap2(y2i))
)

∧ [TCū,v̄ ϕ̃(ū, v̄, z̄)]ū, v̄
)

where

ϕ̃ := ∃x̄ȳ
(

∧

1≤i≤k

(

x2i−1 = π1(ui) ∧ x2i = swap2(π2(ui)) ∧ y2i−1 = π1(vi)

∧ y2i = swap2(π2(vi))
)

∧ ϕ(x̄, ȳ)
)

and in ϕ every occurrence of the symbol S is replaced by S1.
Let us now define the operations above:

π1(x) = y ↔ y ≤2 x ∧ ∀z(z ≤2 x→ z = y)

swap1(x) = y ↔ ∀z(z ≤2 x→ z = x) ∧ [TCx,y ∃z(S1xz ∧ S2yz)]x, y

∧∀z(z ≤1 y → z = y)

comb(x, y) = z ↔ ∀u(u ≤2 x→ u = x) ∧ ∀u(u ≤1 y → u = y)

∧x ≤1 z ∧ y ≤2 z

Observe that if the formula ϕ has no TC operators with parameters, then neither ϕ̃ nor
ϕ̂ has (in ϕ̃ only TC-formulas without parameters are introduced), and that the nesting
depth is not increased.

Let us now turn to the undecidability proof.

Theorem 4.2. The FO(TC)2(1)-theory of the infinite grid is undecidable.

Proof. We define addition and multiplication in FO(TC)(1) over G without the use of pa-

rameters. By Lemma 4.1 it is enough to define these operations in FO(TC)(2) over N . The

definition of addition is straightforward.

a+ b = c↔ N |= [TCx1x2,y1y2 Sx1y1 ∧ Sx2y2]0 a, b c

To define multiplication note that x · y = (x+y)2−x2−y2

2 , hence it suffices to define the

square function. To define x2 note that x2 =
∑x−1

i=0 2i+ 1. The formula

ψ(x, y) = [TCx1x2,y1y2 y2 = x2 + (x2 − x1) + 2 ∧ y1 = x2]0 1, xy

defines all pairs of square numbers

(

k−2
∑

i=1

2i+ 1,

k−1
∑

i=1

2i+ 1
)

for k ≥ 3.

Hence N |= ψ[a, b] iff b− a = 2k − 1 for some k ≥ 2. Let

χ(x, y) = ∃z1
(

ψ(z1, y) ∧
y − z1 + 1

2
= x

)

.

Then N |= χ[a, b] iff b = a2.

MODEL CHECKING SYNCHRONIZED PRODUCTS 15

A similar technique was used in [Avr03] to define multiplication in (ω,+, 0) using a
transitive closure operator of arity one.

The nesting of transitive closure operators in the previous proof is necessary. If we
disallow nesting, even in the presence of parameters in the transitive closure formulas, the
theory of the infinite grid is decidable.

Theorem 4.3. The FO(TC)1(1)-theory of the infinite grid is decidable.

Proof. We reduce the FO(TC)1(1)-theory of the infinite grid G to Presburger arithmetic, the

first-order theory of N+ = (ω,+, 0), in the following sense: For every FO(TC)1(1)-formula

ϕ(x1, . . . , xn) one can construct a Presburger formula ϕ̃(x11, x12, . . . , xn1, xn2) such that

G |= ϕ[(k1, l1), . . . , (kn, ln)] ⇔ N+ |= ϕ̃[k1, l1, . . . , kn, ln]. (4.1)

In order to construct ϕ̃ it suffices to consider the case

ϕ(x1, . . . , xn) = [TCx1,x2
ψ(x1, . . . , xn)]x1, x2,

or for better readability

ϕ(x1, . . . , xn) = [TCx,y ψ(x, y, x3, . . . , xn)]x1, x2

where ψ is a first-order formula. The second notation emphasizes that x3, . . . , xn serve as
parameters in the transitive closure formula.

In a first step we rewrite ψ in a normal form, applying Hanf’s Theorem for first-order
logic over graphs (see [Han65, EF95, Tho97]).

For this purpose we recall some definitions. The r-sphere r -sph(d) around a vertex
d ∈ ω2 is the set of grid vertices which are of distance less or equal to r from d, where
we allow to traverse the edges in either direction. Invoking the distributive normal form
and Hanf’s Theorem, there exists a suitable r > 0 such that ψ(x1, . . . , xn) is equivalent to
a disjunction of formulas ϕτ (x1, . . . , xn) where each ϕτ describes the isomorphism type τ
of

⋃

1≤i≤n r -sph(ci) for some tuple c1, . . . , cn of grid vertices. Let T be the set of all such
types. Since T is finite it suffices to consider only finitely many tuples c1, . . . , cn.

Remark. In the general case, over an arbitrary graph instead of the infinite grid, Hanf’s
Theorem involves a statement on the number (up to a certain threshold) of spheres outside
⋃

1≤i≤n r -sph(ci). This statement is superfluous here due to the regular structure of the

infinite grid. (For technical convenience we assume that (0, 0) is included in the set of
parameters, so every isomorphism type realizable in G outside

⋃

1≤i≤n r -sph(ci) occurs an

infinite number of times.)
Due to the special structure of the grid, which we depict as a diagram with the bottom

row and left column as margins, open upwards and to the right, every formula ϕτ (x1, . . . , xn)
can be expressed by conditions on the vertices x1, . . . , xn which fix their distances up to the
radius r from the left margin as well as the bottom margin, and their relative distances up
to 2r.

It is convenient to express ϕτ (x1, . . . , xn) in terms of the 2n components of the vertices,
obtaining a formula ϕ̃τ (x11, x12, . . . , xn1, xn2) The formula ϕ̃τ is interpreted over ω and
equivalent to ϕ in the sense of (4.1) above. It is a conjunction of statements

• xih = k for 0 ≤ k ≤ r or xih > r
• (xi1, xi2) = (xj1, xj2) + (k, l) for −2r ≤ k, l ≤ 2r
• dist((xi1, xi2), (xj1, xj2)) > 2r

16 S. WÖHRLE AND W. THOMAS

where 1 ≤ i, j ≤ n and h ∈ {1, 2}.
We now have to evaluate formulas of the form

[

TC(x11,x12),(x21,x22)

∨

τ∈T ′

ϕ̃τ (x11, x12, . . . , xn1, xn2)
]

(s, t), (u, v) (4.2)

for some T ′ ⊆ T .
In a first step we note that it is possible to add disjuncts to (4.2) such that vertices tied

to occur in a 2r-sphere around a parameter (xi1, xi2) for i > 2 only need to appear as start
vertex or as end vertex of any path described by (4.2). Hence vertices tied to parameters
can be handled without the use of TC, by an appropriate modification of the formula.

Let I be an initial segment of the grid encompassing the 2r-spheres around parameters
(xi1, xi2) for i > 2. Outside this initial segment, in a second step, it suffices to consider
formulas (4.2) in which only type formulas ϕ̃τ which contain

x11 = k1 ∧ x12 > r or x11 > r ∧ x12 = k2 or x11 > r ∧ x12 > r for k1, k2 ≤ r

and
x21 = l1 ∧ x22 > r or x21 > r ∧ x22 = l2 or x21 > r ∧ x22 > r for l1, l2 ≤ r

and

dist((x11, x12), (x21, x22)) > 2r or (x11, x12) = (x21, x22) + (k, l) for − 2r ≤ k, l ≤ 2r

appear.
It is now possible to apply a finite saturation process to obtain a formula

[

TC(x11,x12),(x21,x22)

∨

1≤j≤m

ϕ̃j(x11, x12, . . . , xn1, xn2)
]

(s, t), (u, v) (4.3)

which is equivalent to (4.2) and where TC and
∨

commute, i.e.

G |=
[

TC(x11,x12),(x21,x22)

∨

1≤j≤m

ϕ̃j

]

(s, t), (u, v) ⇔

G |=
∨

1≤j≤m

[

TC(x11,x12),(x21,x22) ϕ̃j

]

(s, t), (u, v).

The subformulas ϕ̃j in (4.3) have the same format as the subformulas ϕ̃τ in (4.2) except
that the center of the excluded 2r-sphere around (x11, x12) may be shifted by a bounded
distance from (x11, x12) or be missing, or ϕ̃τ defines the complete relation outside I and the
border stripes of width r. Thus it remains to consider two cases.
Case 1. If ϕ̃j contains a conjunct excluding some 2r-sphere then the relation defined by
[TC(x11,x12),(x21,x22) ϕ̃j](s, t), (u, v) is cofinite (w.r.t. the grid excluding I and border stripes
of width r, or a fixed line in one of the border stripes) and hence definable without the use
of a transitive closure operator.
Case 2. If ϕ̃j fixes relations of the form

(x21, x22) = (x11, x12) + (ki, li) (4.4)

for i = 1, . . . , N and −2r ≤ ki, li ≤ 2r. the formula

[TC(x11,x12),(x21,x22) ϕ̃j](s, t), (u, v)

MODEL CHECKING SYNCHRONIZED PRODUCTS 17

expresses that there is a path from (s, t) to (u, v) consisting of steps of the form (4.3). The
set of vertices (u, v) reachable in this way from (s, t) can be represented as the union of
paths in the finite initial segment I of the grid and finitely many sets of the form

{(u, v) | (u, v) = (s′, t′) + y1(k1, l1) + . . .+ yN (kN , lN)}.

Here yi ≥ 0, the (s′, t′) range over boundary vertices of I, and the (ki, li) are from (4.4). It
follows that the relation defined by (4.2) is definable in Presburger arithmetic.

5. Conclusion

We have proved a result on compositional model checking for a logic including reacha-
bility predicates, and we have shown tight limitations for possible extensions of this result.

Let us mention some questions left open in this paper:

(1) The composition result (Theorem 3.1) should be generalized to infinite products.
(2) For an extension of Theorem 3.1, one can enrich FO(R) by an operator for “recurrent

reachability” (existence of an infinite path which visits a designated set infinitely
often), or one can consider stronger logics like (fragments of) CTL.

(3) Interesting subcases of Theorem 3.1 should be found where the mentioned blow-up
of complexity can be avoided.

(4) The distinction between products which are asynchronous, finitely synchronized, or
synchronized should be refined, by allowing other means of coordination between
component structures, also incorporating the special case of synchronization of pa-
rameterized systems composed from identical components.

Acknowledgment

We thank C. Löding for pointing us to GTRS-graphs to prove Theorem 3.3 and the
anonymous referees (both of the conference version and the journal version of this paper)
for many helpful comments and pointers to related literature.

References

[Arn94] A. Arnold. Finite Transition Systems. Prentice Hall, 1994.
[Avr03] A. Avron. Transitive closure and the mechanization of mathematics. In F. Kamareddine, editor,

Thirty Five Years of Automating Mathematics, pages 149–171. Kluwer Academic Publishers, 2003.
[Cau96] D. Caucal. On infinite transition graphs having a decidable monadic theory. In Proceedings of the

23rd International Colloquium on Automata, Languages and Programming, volume 1099 of Lecture
Notes in Computer Science, pages 194–205, 1996.

[Cau02] D. Caucal. On infinite terms having a decidable theory. In Proceedings of the 27th International

Symnposium on Mathematical Foundations of Computer Science, volume 2420 of Lecture Notes in

Computer Science, pages 165–176. Springer, 2002.
[CK73] C. Chang and H. Keisler. Model Theory. North-Holland, 1973.
[Col02] T. Colcombet. On families of graphs having a decidable first order theory with reachability. In Pro-

ceedings of the 29th International Conference on Automata, Languages, and Programming, volume
2380 of Lecture Notes in Computer Science, pages 98–109, 2002.

[EF95] H.D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 1995.
[FV59] S. Feferman and R.L. Vaught. The first-order properties of products of algebraic systems. Funda-

menta Mathematicae, 47:57–103, 1959.
[Gro96] M. Grohe. Arity hierarchies. Annals of Pure and Applied Logic, 82:103–163, 1996.

18 S. WÖHRLE AND W. THOMAS

[Han65] W. Hanf. Model-theoretic methods in the study of elementary logic. In Proceedings of the Sympo-

sium on the Theory of Models, pages 132–145. North Holland, 1965.
[Hod93] W. Hodges. Model Theory. Cambridge University Press, 1993.
[HU79] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and Computation.

Addison-Wesley, 1979.
[KP99] T. Knapik and É. Payet. Synchronized product of linear bounded machines. In Proceedings of the

12th International Symposium on Fundamentals of Computation Theory, volume 1684 of Lecture
Notes in Computer Science, pages 362–373. Springer, 1999.

[Löd02] C. Löding. Model-checking infinite systems generated by ground tree rewriting. In Proceedings of

the 5th International Conference on Foundations of Software Science and Computation Structures,
volume 2303 of Lecture Notes in Computer Science, pages 280–294. Springer, 2002.

[Löd03] C. Löding. Infinite Graphs Generated by Tree Rewriting. PhD thesis, RWTH Aachen, 2003.
[Mak04] J.A. Makowsky. Algorithmic aspects of the Feferman-Vaught theorem. Annals of Pure and Applied

Logic, 126:159–213, 2004.
[Mor00] C. Morvan. On rational graphs. In Proceedings of the 3rd International Conference on Founda-

tions of Software Science and Computation Structures, volume 1784 of Lecture Notes in Computer

Science, pages 252–266. Springer, 2000.
[MS85] D.E. Muller and P.E. Schupp. The theory of ends, pushdown automata, and second-order logic.

Theoretical Computer Science, 37:51–75, 1985.
[Pay00] É. Payet. Thue specifications, infinite graphs and synchronized product. Fundamenta Informaticae,

44:265–290, 2000.
[Rab07] Alexander Rabinovich. On compositionality and its limitations. ACM Transactions on Computa-

tional Logic, 8(1), 2007.
[Tho97] W. Thomas. Languages, automata, and logic. In G. Rozenberg and A. Salomaa, editors, Handbook

of Formal Languages, volume 3, pages 389–455. Springer, 1997.
[Tho03] W. Thomas. Constructing infinite graphs with a decidable MSO-theory. In Proceedings of the 28th

International Symposium on Mathematical Foundations of Computer Science, volume 2747 of Lec-
ture Notes in Computer Science, pages 113–124. Springer, 2003.

[WT04] S. Wöhrle and W. Thomas. Model checking synchronized products of infinite transition systems.
In Proceedings of the 19th Annual Symposium on Logic in Computer Science, pages 2–11. IEEE
Computer Society, 2004.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

	1. Introduction
	2. Preliminaries
	2.1. Synchronized Products
	2.2. First-Order Logic and Extensions

	3. Synchronization and FO(R)
	4. Transitive Closure Logic over the Infinite Grid
	5. Conclusion
	Acknowledgment
	References

