
Model Checking Techniques applied to the design of Web Services

Gregorio Dı́az, M. Emilia Cambronero, Juan J. Pardo ,
Valent́ın Valero and Fernando Cuartero

Department of Computer Science, Univ. of Castilla La Mancha
EPSA, Avd. España s/n, Albacete, Spain, 02071.

email: [gregorio,emicp,jpardo,valentin,fernando]@info-ab.uclm.es

May 10, 2007

Abstract

In previous work we have presented the generation of WS-CDL and WS-BPEL documents.
In this paper we show the unification of both generations. The aim is to generate correct
WS-BPEL skeleton documents from WS-CDL documents by using the Timed Automata as an
intermediary model in order to check the correctness of the generated Web Services with Model
Checking Techniques. The model checker used is UPPAAL, a well known tool in theoretical and
industrial cases that performs the verification and validation of Timed Automata. Note that
our interest is focused on Web services where the time constraints play a critical role.

1 Introduction

Web Service technology is a framework, in which the study of design errors can become a master
piece, due to the big amount of money and other resources spent on it. Recent studies have been
realized about the acceleration of the increasing of the percent of gross domestic product that e-
commerce represents for the world economy. Thus, possible errors on the technologies supporting
this framework could cause a big cost, not just economically, but also sociologically. For instance,
you can think of an e-stock market, where, due to a design error, the system always forces all
transactions to use the most expensive seller. This situation can avoid the money saving for
users of this platform. Then, it is economically feasible the use of algorithms, methodologies and
techniques in order to allow system designers to determine whether designs are free of errors or
not.

In Web Services the design phase is the most important phase for Choreography and Orches-
tration layers, figure 1. These layers describe the behaviors of each participant in a Web Service.
In brief the Choreography describes the general behavior and the Orchestration describes each
particular behavior. Thus an important goal is the validation and Verification of these layers in
order to prove their correctness.

There is growing consensus that the use of formal methods, development methods based on some
formalism, could have significant benefits in developing E-business systems due to the enhanced
rigor these methods bring [7, 10]. Furthermore, these formalisms allow us to reason with the

CLEI ELECTRONIC JOURNAL, VOLUME 10, NUMBER 2, PAPER 2, DECEMBER  2007



TrasportHTTP, BEEP, IIOP, JMS, SMTP

XML, Encodings

SOAP

Trasport

DescriptionWSDL

DiscoveryUDDI

Reliable
Messaging

Context

Transactions

Coordination
Quality of
Service

Security

Quality of
Service

Business Process Languages:
BPEL, CI, XPDL, BPML

Business Collaboration Language:
Choreography Description Language

Figure 1: The Stack Protocol for WS.

constructed models, analysing and verifying some properties of interest of the described systems.
One of these formalisms are timed automata [1], which are very widely used in model checking [4],
and there are some well-known tools supporting them, like UPPAAL [9].

Web services choreography and orchestration layers are the highest layers of the web services
framework and they have the proper level of abstraction that is necessary due to the verifica-
tion complexity. Thus, our goal with this work is to generate “correct” web services by applying
formal techniques. In order to achieve it, we will describe the translation processes from choreogra-
phy specifications written in Web Services Choreography Description Language (WS-CDL) [8] into
Timed Automata UPPAAL XML format and from Timed Automata into orchestration specifica-
tions written in web services business process execution language (WS-BPEL) [2]. However, before
the translation between Timed Automata and WS-BPEL, we must verify the time restrictions that
the web service must fulfill.

To illustrate this methodology, we use a particular case study, an airline ticket reservation
system, whose description contains some time constraints.

The paper is structured as follows. In Section 2, we describe the main features of WS-CDL and
WS-BPEL. The translation of WS-CDL documents into Timed Automata is presented in Section
3. In Section 4 we apply the first translation to the case study, and the UPPAAL tool is used to
describe, simulate and analyze the timed automata obtained. The generation of WS-BPEL from
timed automata is presented in section 5. Finally, the conclusions and future work are presented
in Section 6.

CLEI ELECTRONIC JOURNAL, VOLUME 10, NUMBER 2, PAPER 2, DECEMBER  2007



Choreography Layer

WS-CDL

Orchestration Layer

WS-BPEL

DIRECTOR

WS-CDL

DOC

WIND

WS-BPEL

DOC

PERCUSSION

WS-BPEL

DOC

STRINGS

WS-BPEL

DOC

ORCHESTRA

Figure 2: WS-CDL and WS-BPEL relationship.

2 WS-CDL and WS-BPEL Descriptions

Figure 2 illustrates the relationship between WS-CDL, the choreography layer and the orchestra-
tion level (WS-BPEL), taking an orchestra as a metaphor of this relation. The key document
is the director score, which corresponds to the WS-CDL document, in which each participant is
represented as well as the time it enters into action. Furthermore, the wind, percussion and strings
scores correspond to the WS-BPEL documents, which show the behaviour of each particular group.

2.1 WS-CDL Description

WS-CDL describes interoperable collaborations between parties. In order to facilitate these col-
laborations, services commit themselves to mutual responsibilities by establishing Relationships.
Their collaboration takes place in a jointly agreed set of ordering and constraint rules, whereby
information is exchanged between the parties. The WS-CDL model consists of the following entities:

• Participant Types, Role Types and Relationship Types. Within a Choreography,
information is always exchanged between parties within or across trust boundaries. A Role
Type enumerates the observable behavior a party exhibits in order to collaborate with other
parties. A Relationship Type identifies the mutual commitments that must be made between
two parties for them to collaborate successfully. A Participant Type is grouping together
those parts of the observable behavior that must be implemented by the same logical entity
or organization.

• Information Types, Variables and Tokens. Variables contain information about com-
monly observable objects in a collaboration. Tokens are aliases that can be used to reference
parts of a Variable. Both Variables and Tokens have Types that define the structure of what
the Variable contains or the Token references.

• Choreographies define collaborations between interacting parties:

– Choreography Life-line expresses the progression of a collaboration. Initially, the

CLEI ELECTRONIC JOURNAL, VOLUME 10, NUMBER 2, PAPER 2, DECEMBER  2007



collaboration is established between parties, then work is performed within it and finally
it completes either normally or abnormally.

– Choreography Exception Block specifies what additional interactions should occur
when a Choreography behaves in an abnormal way.

– Choreography Finalizer Block describes how to specify additional interactions that
should occur to modify the effect of an earlier successfully completed Choreography, for
example to confirm or undo the effect.

• Channels realize a point of collaboration between parties by specifying where and how
information is exchanged.

• Work Units prescribe the constraints that must be fulfilled for making progress and thus
performing actual work within a Choreography.

• Activities and Ordering Structures. Activities are the lowest level components of the
Choreography that perform the actual work. Ordering Structures combine activities with
other Ordering Structures in a nested structure to express the ordering conditions in which
information within the Choreography is exchanged.

• Interaction Activity is the basic building block of a Choreography, which results in an
exchange of information between parties and possible synchronization of their observable
information changes and the actual values of the exchanged information.

• Semantics allow the creation of descriptions that can record the semantic definitions of every
component in the model

In Figure 3 we can see a detailed piece of the WS-CDL document describing our study case.
It describes part of the relationship between the Airline and the Travel Agent. The interaction
determines the time that the reservation is available, namely, one day.

2.2 WS-BPEL Description

The Web Services Orchestration specification is aimed at being able to precisely describe the behav-
ior of any type of party and the collaboration among them, regardless of the supporting platform
or programming model used by the implementation of the hosting environment.

WS-BPEL is an interface description language and describes the observable behavior of a ser-
vice by defining business processes consisting of stateful long-running interactions in which each
interaction has a beginning, a defined behavior and an end, all of this being modelled by a flow,
which consists of a sequence of activities. The behavior context of each activity is defined by a
scope, which provides fault handlers, event handlers, compensation handlers, a set of data variables
and correlation sets.

Let us now see a brief description of these components:

• Events, describe the flow execution in an event driven manner.

• Variables, are defined by using WSDL schemes, for internal or external purposes, and are
used in the message flow.

• Correlations, identify processes interacting by means of messages.

CLEI ELECTRONIC JOURNAL, VOLUME 10, NUMBER 2, PAPER 2, DECEMBER  2007



<interaction

name="reservation&booking" align="true"

channelVariable="travelAgentAirlineChannel"

operation="reservation&booking" initiate="true">

<participate

relationshipType="TravelAgentAirline"

fromRole="TravelAgent" toRole="Airline" />

<exchange name="reservation"

informationType="reservation" action="request">

<send variable="tns:reservationOrderID"

causeException="true" />

<receive variable="tns:reservationAckID"

causeException="true" />

</exchange>

<timeout time-to-complete="24:00" />

<record name="bookingTimeout"

when="timeout" causeException="true" />

<source variable=

"AL:getVariable(’tns:resOC’, ’’, ’’)" />

<target variable=

"TA:getVariable(’tns:resOC’, ’’, ’’)" />

</record>

</interaction>

Figure 3: Part of WS-CDL especification

§ Time Restrictions

Choreography Layer

WS-CDL

Orchestration Layer

WS-BPEL

TIMED

AUTOMA

XSLT
XSLT

Figure 4: From WS-CDL to WS-BPEL.

• Fault handling, defines the behavior when an exception has been thrown.

• Event handling, defines the behavior when an event occurs.

• Activities, represent the basic unit of behavior of a Web Service. In essence, WS-BPEL
describes the behavior of a Web Service in terms of choreographed activities.

3 Translation from WS-CDL to Timed Automata

Figure 4 depicts the translation processes that we present. In this figure, we can also see that
WS-CDL documents are translated into timed automata in a first step and in a second step the
timed automata latter are translated into WS-BPEL documents. We now present the automatic
translation from WS-CDL documents into timed automata that we have presented in [6]. For this
purpose, we must first analyze the WS-CDL documents in order to identify the common points
shared between them. The first stage is to obtain the general structure describing the system that
we are analyzing. In timed automata, this structure is defined by the so-called System, which

CLEI ELECTRONIC JOURNAL, VOLUME 10, NUMBER 2, PAPER 2, DECEMBER  2007



consists of the individual processes that must be executed in parallel. Each one of these processes
is defined by using a template. Templates are used to describe the different behaviors that are
available in the system.

Then, for each component of a WS-CDL description we have the following correspondence in
timed automata (see Fig. 5 for a schematic presentation of this correspondence):

Roles : These are used to describe the behavior of each type of party that we are using in the
choreography. Thus, this definition matches with definition of a template in timed automata
terminology.

Relation types : These are used to define the communications between two roles, and the chan-
nels needed for these communications. In timed automata we just need to assign a new
channel for each one of these channels, which are the parameters of the templates that take
part in the communication.

Participant types : These define the different parties that participate in the choreography. In
timed automata they are processes participating in the system.

Channel types : A channel is a point of collaboration between parties, together with the spec-
ification of how the information is exchanged. As mentioned above, channels of WS-CDL
correspond with channels of timed automata.

Variables : They are easily translated, as timed automata in UPPAAL support variables, which
are used to represent certain information.

Now the problem is to define the behavior of each template. This behavior is defined by using
the information provided by the flow of choreographies. Choreographies are sets of workunits or sets
of activities. Thus, activities and workunits are the basic components of the choreographies, and
they capture the behavior of each component. Activities can be obtained as result of a composition
of other activities, by using sequential composition, parallelism and choice. In terms of timed
automata these operators can be easily translated:

• The sequential composition of activities is translated by concatenating the corresponding
timed automata.

• Parallel activities are translated by the cartesian product of the corresponding timed au-
tomata.

• Choices are translated by adding a node into the automata which is connected with the initial
nodes of the alternatives.

Finally, time restrictions are associated in WS-CDL with workunits and interaction activities.
These time restrictions are introduced in timed automata by means of guards and invariants.
Therefore, in the case of a workunit of an activity having a time restriction we associate a guard
to the edge that corresponds to the initial point of this workunit in the corresponding timed
automaton.

CLEI ELECTRONIC JOURNAL, VOLUME 10, NUMBER 2, PAPER 2, DECEMBER  2007



Role = Template
Relation Type = Channel+

Participant Type = Process+

Channel Type = Channel
Variables = Variables
Choreography = Choreography+ | Activity
Activity = Work Unit | Sequence | Paralelism | Choice
Sequence = Activity+

Paralelism = Activity+

Choice = Activity+

Work Unit = State & Guard & Invariant

where the symbols +, | are BNF notation,
em and & is used to join information

Figure 5: Schematic view of the translation.

4 The verification of the Case Study

Some examples of the use of WS-CDL can be found in [3, 5]. The case study that we are going to
use to illustrate how the translation works is closely linked to [5], where this particular case study
was used to illustrate how timed automata can be used for the formal verification of properties for
WS-CDL documents.

This system consists of three participants: a Traveller, a Travel Agent and an Airline Reservation
System, whose behavior is as follows:

A Traveller is planning on taking a trip. Once he has decided the concrete trip he wants to
make he submits it to a Travel Agent by means of his local Web Service software (Order Trip ).
The Travel Agent selects the best itinerary according to the criteria established by the Traveller.
For each leg of this itinerary, the Travel Agent asks the Airline Reservation System to verify the
availability of seats (Verify Seats Availability ).

Thus, the Traveller has the choice of accepting or rejecting the proposed itinerary, and he can
also decide not to take the trip at all.

• In the case where he rejects the proposed itinerary, he may submit the modifications (Change
Itinerary ), and wait for a new proposal from the Travel Agent.

• In the case where he decides not to take the trip, he informs the Travel Agent (Cancel
Itinerary ) and the process ends.

• In the case where he decides to accept the proposed itinerary (Reserve Tickets ), he will
provide the Travel Agent with his Credit Card information in order to properly book the
itinerary.

Once the Traveller has accepted the proposed itinerary, the Travel Agent connects with the
Airline Reservation System in order to reserve the seats (Reserve Seats ). However, it may occur
that at that moment no seat is available for a particular leg of the trip, because some time has
elapsed from the moment in which the availability check was made. In that case the Travel Agent

CLEI ELECTRONIC JOURNAL, VOLUME 10, NUMBER 2, PAPER 2, DECEMBER  2007



x<24

check_seats? available_seat!
reserve_seat?

reserve_seat_ok!
x:=0

x<24

book_seat?

no_available_seat!

x==24
timeout!

x<24
cancel_reserve_seat?

cancel_reserve_seat_ok!

book_seat_ok!

receive_tickets!

book_seat_no!

reserve_seat_no!

Figure 6: Timed automata for airline Reservation System.

is informed by the Airline Reservation System of that situation (No seats), and the Travel Agent
informs the Traveller that the itinerary is not possible (Notify of Cancellation ).

Once the reservation is made the Travel Agent informs the Traveller (Seats Reserved ). However,
this reservation is only valid for a period of one day, which means that if a final confirmation has
not been received in that period, the seats are unreserved and the Travel Agent is informed. Thus,
the Traveller can now either finalize the reservation or cancel it. If he confirms the reservation
(Book Tickets ), the Travel Agent asks the Airline Reservation System to finally book the seats
(Book Seats ).

4.1 Translation of the Case Study

Figure 3 presents a detailed piece of the WS-CDL document describing the example that we have
used to obtain the translation into timed automata. Following the guidelines described above we
have obtained in this case three timed automata: the traveler, the travel agent and the airline
company. These automata are shown in Figures 6, 7 and 8. Notice the use of the clock x in the
timed automaton corresponding to the airline reservation system, which is used to control when
the reservation expires. This clock is initialized when the action reserved seat is carried out.

4.2 Simulation and Verification

In the simulation we can check whether the model keeps the system behavior or not. This can
partially be done by means of simulations. These are made by choosing different transitions and
delays along the system evolution. At any moment during the simulation, you can see the variable
values and the enabled transitions. Thus, you can choose the transition that you want to execute.
Nevertheless, you can also select the random execution of transitions, and thus, the system evolves
by executing transitions and delays which are selected randomly. We have some other options in
the Simulator. For example, you can save simulation traces that can later be used to recover an
specific execution trace. Actually, the simulation is quite flexible at this point, and you can move
back or forward in the sequence.

CLEI ELECTRONIC JOURNAL, VOLUME 10, NUMBER 2, PAPER 2, DECEMBER  2007



ordertrip!

available!

cancel_itinerary?

change_itinerary?

reserve_tickets?

reserve_seat!reserve_seat_no?

reserve_seat_ok?timeout?
notify_timeout!

check_seats!

available_seat?

no_available_seat?

no_available!

book_seat!
book_seat_ok?

receive_statement!

cancel_reserve_seat!

cancel_reserve_seat_ok?

accept_cancel!

book_seat_no?

book_ticket?

cancel_reservation?

timeout?

no_reservation!

no_reservation!

Figure 7: Timed automata for Travel agent web service.

Start

ordertrip?

available?

change_itinerary!

cancel_itinerary!

reserve_tickets!

cancel_reservation!

book_ticket!

receive_statement?

notify_timeout?

receive_tickets?

accept_cancel?

no_available?

no_reservation?

no_reservation?

Figure 8: Timed automata for traveler.

CLEI ELECTRONIC JOURNAL, VOLUME 10, NUMBER 2, PAPER 2, DECEMBER  2007



Then, with respect to our study case, our main goal in the validation phase is to check the
correctness of the message flow and time-outs, taking into account the protocol definition. Having
made a number of simulations, we have concluded that the system design satisfies the expected
behavior in terms of the message flow between the parties.

Before starting the automatic verification, we must establish the properties that the model must
fulfill. We have divided these properties into three classes: Safety, Liveness and Deadlocks. These
properties are specified by means of a Temporal Logic. The temporal Logic used by UPPAAL is
described in [9].

Safety Properties allow us to check if our model satisfies some security restrictions. For
example, if we have two trains that have to cross the same bridge, a security property is that both
trains cannot cross the bridge at the same time: ∀�¬(Train1.crossing ∧ Train2.crossing) or
¬∃♦(Train1.crossing ∧ Train2.crossing)

The main Safety properties are:

• The TravelAgent always sends the itinerary on the traveler’s demand:

∀�Traveler.Itinerary ⇒ (1)

TravelAgent.sendItinerary

• The TravelAgent always changes the itinerary on the traveler’s demand:

∀�Traveler.ChangeItinerary ⇒ (2)

TravelAgent.PerformChange

• The TravelAgent always cancel the reservation on the traveler’s demand:

∀�Traveler.CancelReservation → (3)

(TravelAgent.CancelReservtRcv ∧

Airline.PerformCancel ∧

Airline.Clockx < 24)

• A reservation is only available 24 hours before performing the booking:

∀�(TravelAgent.Booking ∧ (4)

Airline.ReceiveBoking ∧

Airline.ClockX <= 24)

• A Traveler always receive theirs ticket and statement after perform the payment:

∀�Traveler.PaymentPerform → (5)

(Traveler.F inish ∧ Airline.SnddTckt ∧

TravelAgent.SenddSttment)

Liveness Properties are used to check that our model can evolve in the right order. Returning
to the train example, if a train approaches the bridge, some time later, the train could cross it.
Train.approach → Train.crossed

CLEI ELECTRONIC JOURNAL, VOLUME 10, NUMBER 2, PAPER 2, DECEMBER  2007



Liveness Properties for our model are simple. For example, if a Traveler sends a trip demand,
some time later, the TravelAgent will send the itineraries. Translating it into Temporal Logic we
have:

Traveler.P lanOrder −→ TravelAgent.SendItinerary (6)

Or for example, if a Traveler makes a booking, within 24 hours after the reservation, the Airline
performs the booking. Translating it into Temporal Logic we have:

(Traveler.BookOdr ∧ Airline.ClockX < 24) −→ (7)

Airline.PerformBook

Deadlocks are clear restrictions. We could check if our model is deadlock-free:

∀�¬Deadlock (8)

5 Translation from Timed Automata into WS-BPEL

For each component of timed automata we have the following correspondence in WS-BPEL speci-
fication:

Templates and Processes : These are used to describe the behavior of each type of party that
we are using in the choreography. Thus, this definition matches with the definition of a process
in WS-BPEL terminology.

Synchronization : These are used to define the communications between two automata tem-
plates, and the constraints needed for these communications. In WS-BPEL we just need to
assign a correlation set for each one of these synchronizations.

Channel : The channel is a point of collaboration between parties, together with the specification
of how the information is exchanged. Channels of Timed Automata correspond with ports of
WS-BPEL.

Variables : These are easily translated, as WS-BPEL supports variables, which are used to rep-
resent certain information.

Now the problem is to define the behavior of each template. This behavior is defined by
using the information provided by the flow and synchronization between the different automata.
Timed Automata are sets of processes. Thus, processes are the basic components of the Timed
Automata, and they capture the behavior of each component. Process can be obtained as a result
of a composition of process activities, by using sequential, choice and parallel operators. In terms
of timed automata these operators can be easily translated:

• The sequence of transitions is translated by composing a sequence of activities.

• Parallel proceses are translated by the parallel operator with the involved processes.

• Choices are translated by adding activities to a choice operator.

CLEI ELECTRONIC JOURNAL, VOLUME 10, NUMBER 2, PAPER 2, DECEMBER  2007



Finally, time restrictions are associated in WS-BPEL with activities and correlations. These
time restrictions are introduced in timed automata by means of guards and invariants. Therefore,
in the case of a guard in a loop transition having a time restriction we generate a workunit that
involves the activities generated from the target of the loop transition to the beginning.

Figure 9 presents a detailed piece of the WS-BPEL document describing our example this is
the mirror image of Figure 3 that has been obtained by applying the translations.

...

<context>

<process name ="BookSeats"

instantiation="other">

<action name="bookSeats"

role="tns:travelAgent"

operation="tns:TAtoAirline/bookSeats">

</action>

</process>

<exception>

<onMessage>

<action name="ReservationTimeOut"

role="tns:TravelAgent"

operation=

"tns:TAtoAirline/AcceptCancel">

<correlate

correlation="defs:reservationCorrel"/>

</action>

<action name="NotifyOfTimeOut"

role="tns:TravelAgent"

operation=

"tns:TAtoTraveller/NotifyofCancel"/>

<fault code="tns:reservatTimedOut"/>

</onMessage>

...

</exception>

...

</context>

Figure 9: Part of WS-BPEL especification

6 Conclusions and Future Work

Nowadays, Web Services are becoming a powerful tool for the implementation of distributed ap-
plications over Internet. In many cases these services have associated time restrictions, as we have
seen in the case study that we have presented here. Therefore, the specification and design of Web
Services can be made by using some well known formalisms, such as timed automata, and tools
supporting them (UPPAAL) in order to verify and validate the system behavior. Consequently, it
becomes of interest to obtain correct web services specifications written in WS-CDL and WS-BPEL
languages by using Timed Automata and Model Checking in order to exploit the verification capa-
bilities that they can provide. In this paper we have seen how to exploit these capabilities by using
translations between them, applied to a particular case study. We are currently implementing these
translations in a suite tool that uses UPPAAL as the engine for simulation and verification.

CLEI ELECTRONIC JOURNAL, VOLUME 10, NUMBER 2, PAPER 2, DECEMBER  2007



Our future work addresses the issue of implementing a complete methodology on the generation
of correct web services. We will use UML graphical diagrams and requirements engineering in the
design and analysis of real-time web services respectively, WS-CDL and WS-BPEL as implemen-
tation languages, and Timed Automata and Model Checking as formal techniques.

References

[1] R. Alur and D. Dill, Automata for modeling real–time systems, In Proceedings of the
17th International Colloquium on Automata, Languages and Programming, volume 443,
Editors. Springer–Verlag, 1990.

[2] Assaf Arkin, Sid Askary, Ben Bloch, et. al., Web Services Business Process Execu-
tion Language Version 2.0, Editors. OASIS Open, December 2004. In http://www.oasis-
open.org/committees/download.php/10347/wsbpel-specification-draft-120204.htm.

[3] Mario Bravetti, Claudio Guidi, Roberto Lucchi and Gianluigi Zavattaro , Supporting E-
commerce system formalization with Choreography Languages, In Proc. of the 20th ACM
Symposium on Applied Computing (SAC’05), special track on E-Commerce Technologies
, ACM Press, 2005.

[4] Edmund M. Clarke and Jr. and Orna Grumberg and Doron A. Peled, Model Checking,
MIT Press, 1999.

[5] G. Diaz, J. J. Pardo, M. E. Cambronero, V. Valero and F. Cuartero, Verification of
Web Services with Timed Autoamata, In proceedings of First International Workshop on
Automated Specification and Verification of Web Sites, Valencia, March 2005.

[6] G. Diaz, J. J. Pardo, M. E. Cambronero, V. Valero and F. Cuartero, Automatic Translation
of WS-CDL Choreographies to Timed Automata, In proceedings of WS-FM, 2005.

[7] Constance Heitmeyer and Dino Mandrioli. Formal Methods for Real-Time Computing.
John Wiley & Sons. 1996.

[8] Nickolas Kavantzas et al. Web Service Choreography Description Language (WSCDL) 1.0.
In http://www.w3.org/TR/ws-cdl-10/.

[9] K. Larsen and P. Pettersson and Wang Yi, Uppaal in a Nutshell, Int. Journal on Software
Tools for Technology Transfer, Editors. Springer–Verlag vol.1, 1997.

[10] Simon Woodman, et al., Specification and Verification of Composite Web Services, In
proocedings of The 8th Enterprise Distributed Object Computing Conference 2004.

CLEI ELECTRONIC JOURNAL, VOLUME 10, NUMBER 2, PAPER 2, DECEMBER  2007


