
 

Model checking the FlexRay startup phase

Citation for published version (APA):
Cranen, S. (2012). Model checking the FlexRay startup phase. (Computer science reports; Vol. 1201).
Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2012

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Aug. 2022

https://research.tue.nl/en/publications/a0bc6ddc-14c7-4016-8569-9b399a7aa669


Technische Universiteit Eindhoven 
 Department of Mathematics and Computer Science 
 
 
 
 
 
 

 
Model Checking the FlexRay startup phase 

 
 
 
 

S. Cranen 
 
 

 
 

 
 
 
 
 
 

12/01 
 
 
 
 
 

ISSN 0926-4515 
 
All rights reserved 
editors:  prof.dr. P.M.E. De Bra 

 prof.dr.ir. J.J. van Wijk 
 
 
 
 
Reports are available at: 
http://library.tue.nl/catalog/TUEPublication.csp?Language=dut&Type=ComputerScienceReports&S
ort=Author&level=1 and 
http://library.tue.nl/catalog/TUEPublication.csp?Language=dut&Type=ComputerScienceReports&S
ort=Year&Level=1 

 
 
 
 
 

Computer Science Reports 12-01 
Eindhoven, January 2012 





Model checking the FlexRay startup phase

S. Cranen
s.cranen@tue.nl

Eindhoven University of Technology

Abstract. This report describes a discrete-time model of the startup
phase of a FlexRay network. The startup behaviour of this network is
analysed in the presence of several faults. It is shown that in certain cases
a faulty node can prevent the network from communicating altogether.
One previously unknown scenario is uncovered.

1 Introduction

In the year 2000, a consortium was established with the goal to design a new,
time-triggered communication protocol for use in the automotive industry that
would outperform CAN and TTP in both speed and reliability. At the end of
2009, the consortium was disbanded, leaving a final version of a time-triggered
protocol called FlexRay. The protocol definition is currently being transformed
into an ISO standard.

Already in 2006, the first commercially available cars were equipped with
FlexRay networks, enabling new algorithms for vehicle control because of its
higher bandwidth.

Since FlexRay will be the basis for communication in many vehicles to come,
we would like to establish that the protocol itself is inherently correct, i.e., that
implementing a system according to the latest specification leads to a system that
behaves predictably. We restrict ourselves to analysing the startup behaviour of
FlexRay networks.

As the specification has been declared final, there is no way to avoid any
unwanted behaviour that might occur (that is, any behaviour that an end user
might find inconvenient). For any such behaviour we would therefore also like to
know whether an external party such as a so-called central bus guardian can be
used to improve such behaviour without having to alter the protocol.

In this report, we start by giving a brief overview of the FlexRay protocol. We
then discuss some of the research done towards verifying parts of the FlexRay
protocol, and we explain how our research compares. After this, we give a more
detailed description of the startup phase of a FlexRay network, which is the part
of the protocol that we wish to analyse. We show how the startup phase can be
modelled using the mCRL2 language. We then analyse the startup behaviour in
several scenarios with noisy channels and faulty nodes. To conclude, we discuss
the results and suggest how the startup behaviour of FlexRay networks might
be improved by a central bus guardian.



2 The FlexRay protocol

We base our analysis on the 2.1A version of the protocol [8]. For those parts
of the protocol that this report discusses in detail, the publicly available 3.0.1
version is identical.

The aim of the protocol, as stated in the accompanying requirements doc-
ument [9], is to provide both ‘deterministic’ communication and ‘on-demand’
communication. Essentially, this means that some bandwidth is reserved for
communication between specific nodes in the network, and some bandwidth is
assigned at runtime to nodes that wish to send data.

All scheduling in the protocol is based on a shared time base, which is es-
tablished through a clock synchronisation mechanism that is implemented on
the same physical channel as the communication uses. In the 3.0.1 specification,
additional means of clock synchronisation are added, namely synchronisation on
an externally supplied clock, or synchronisation on another FlexRay network.

To communicate over a FlexRay network, the network must first be brought
to a state in which it is synchronised, and aware of the communication schedule
and the current position in that schedule. Firstly, the network is woken up; a
special symbol is sent over the channel that causes nodes to switch to an active
mode.

When woken up, a distinction is made between coldstart nodes and non-
coldstart nodes. Coldstart nodes will attempt to initiate communication on a
silent bus when woken up, where non-coldstart nodes will wait until they de-
tect ongoing communication and then integrate. For each node (coldstart or
non-coldstart) we call the period in which it is awake and trying to establish
communication or trying to integrate into existing communication the startup
phase of that node.

During this startup phase, clock synchronisation is initialised and some con-
sistency checks are done. When startup is completed, all nodes in the network
should have reached agreement on what the global time is. Communication pro-
ceeds according to a schedule, of which one execution is called a communication
cycle. The term cycle is somewhat confusing here, because nodes keep track of
a cycle counter, which is reset periodically (with a period smaller than 65 cy-
cles), and which must correspond to the other nodes’ cycle counters. Hence the
schedule is only truly cyclical in this period of cycles. The structure of a com-
munication cycle is however always the same, and we will therefore use the term
communication schedule to refer to this structure.

The communication schedule consists of two parts: the so-called static seg-
ment and the dynamic segment. The lengths of these two segments are fixed. The
communication in the static segment is based on time-division multiple access
(TDMA). Every node has time slots assigned to it in which it may send, while
all other nodes will attempt to receive the message it sends.

The dynamic segment is also TDMA based, the difference being that slots are
smaller and hence called ‘minislots’. They are not assigned to a specific node;
instead, they are assigned to nodes based on their priority. The first minislot
in the dynamic segment is allocated to the highest priority node. A node can

2



use a series of minislots (possibly 0) to send its on-demand data, followed by a
single minislot that indicates the end of the transmission. The next minislot is
then assigned to the highest priority node that did not yet send anything. As
the length of the dynamic segment is fixed, it may be the case that no more
bandwidth is available for lower priority nodes if higher priority nodes claim
many minislots.

The FlexRay protocol states that nodes may be connected to at most two
channels. A channel is simply a communication medium such as a copper wire or
optical fibre (depending on hardware support). The two channels may be used
to create redundancy, or to connect to two different sets of nodes.

3 Related work

The FlexRay protocol has been studied quite extensively, from different perspec-
tives. In this section we give a brief overview of previous studies known to us,
and describe the aspects that these studies cover.

The German Verisoft project1 is a project in the automotive realm that
has the verification of the FlexRay protocol as a sub-goal. Within this project,
Kühnel et al. aim to provide a framework in which distributed applications
can be verified if they use a combination of an osektime compliant (real-time)
operating system, ftcom (a fault-tolerant communication layer for osektime
operating systems) and FlexRay communication [17]. They use the focus [5]
language as a basis for their toolkit. A model is created on a specification that
is “based on” the FlexRay protocol specification version 2.0. They apply the
following abstractions to simplify their model [16]:

1. All clocks are synchronized, i.e. clock synchronization is not modelled.
2. Start-up behaviour is not modelled (because the clocks are synchronised).
3. The coding/decoding process is not modelled.
4. Bus guardians are not modelled.
5. Only the static segment of a communication cycle is modelled, not the dy-

namic segment.
6. Slots are assumed to have a size of one tick in focus.
7. Lossiness of the channel is not modelled.
8. Single-channel nodes are modelled.

The above lists the aspects of FlexRay that are not modelled, but we could
not find a textual explanation of the part of FlexRay that is incorporated in
the model. Instead, a specification in focus is given directly, and it is shown—
using a theorem prover—that the used interface specification of the FlexRay
component is indeed refined by the presented model [22].

The clock synchronization mentioned in abstraction 1 is a modification of a
clock synchronisation protocol described by Lundelius and Lynch [18]. Barsotti et
al. have verified (amongst other protocols) the latter [1,11] using a combination of

1 http://www.verisoft.de/SubProject6.html

3



a theorem prover and an SMT2 solver. Zhang notes, however, that the correctness
of the FlexRay clock synchronisation protocol does not trivially follow from the
correctness of Lundelius and Lynch’s algorithm [25].

The start-up behaviour (not modelled because of abstraction 2) is addressed
by Malinsky in [19,20]. He uses Uppaal to create a timed-automata representa-
tion of a system consisting of two coldstart nodes and one non-coldstart node.
Using a few different settings for a number of FlexRay parameters, this system
is checked for deadlock, and it is checked that the system starts up normally.
It should be noted that this setup is not a valid FlexRay setup, because in a
network with three nodes all nodes must be coldstart nodes, according to [8].
However, the requirements document [9] does state that startup must succeed
when, due to a fault, only two coldstart nodes are active.

Local bus guardians [7] are considered by Zhang, who proves three functional
properties under the assumption of synchronised clocks [26]. This partially ad-
dresses abstraction 4, although central bus guardians [6] are not taken into ac-
count. Zhang does however mention research done towards systems employing
a central bus guardian in another industry standard, Time-Triggered Architec-
ture3.

Pop et al. have looked into properties related to the dynamic segment in
a FlexRay communication cycle as meant in abstraction 5. Their analysis is
however of a rather different kind, as they provide a schedulability analysis
based on a correctly working protocol [21]. Such results can be extremely useful
in proving correctness of a distributed application, as it may guarantee that—
under given circumstances—data will travel through the system.

Botaschanjan et al. present a methodology that uses the framework developed
in the Verisoft project [4]. The method aims at formally modelling tasks (a
concept taken from the automotive industry) in the focus tool. The application
logic can then be verified, while automatic, verified code generation should ensure
that these properties still hold in the deployed system. Later this approach is
refined and formalised [3].

Steiner uses the SAL model checker to find failures in the startup protocol
[23,24]. He identifies a scenario in which the system does not start up due to a
single fail-silent node.

In this report, we try to establish some correctness results on the discrete
behaviour during the startup phase of the FlexRay protocol. This aim resem-
bles that of Malinský, but we do not focus on modelling timing properties. The
approach of Steiner et al. is comparable, but their model is hand-crafted and
therefore does not have an obvious one-to-one correspondence with the specifi-
cation. The time model chosen in their model is also coarser than the one we
present. Our aim is to create a model that can be easily seen to correspond to
the specification document, and of which we can describe fairly accurately the
characteristics that do not match reality.

2 Satisfiability Modulo Theories
3 http://www.vmars.tuwien.ac.at/projects/tta

4



4 The FlexRay startup phase

We study the behaviour of a FlexRay network in the startup phase. The startup
phase starts when a node is awake (i.e., it is powered on and ready to send and
receive), and ends when the node has succesfully integrated into the network or
when it has done a number of unsuccessful integration attempts.

Our aim is to create a model that allows us to analyse the state behaviour
of the FlexRay protocol during startup. We focus on creating a model that has
a direct link with the SDL models in the FlexRay protocol specification.

We wish to assess the correctness of the FlexRay startup protocol itself. The
protocol description is not very clear about what correct operation entails, so
we discuss this issue separately in Section 4.2.

The model that we provide later in this document is not complete; like
the models mentioned in Section 3, we must simplify the problem to make it
tractable. The applied simplifications are discussed in Section 4.3. Finally, we
discuss the model itself in Section 4.4.

4.1 Operation

The startup phase in a FlexRay network is initiated by so-called coldstart nodes.
These nodes have the ability to start communication on a network. Regular
nodes must wait for communication to start on the network, after which they
may join in. Coldstart nodes send special ‘startup frames’ on fixed locations
in the schedule. These startup frames are the only frames that are sent during
startup of a network, and they are sent every cycle.

All nodes start listening to the bus as soon as they are awake. If a listening
node decodes a startup frame header or a collision avoidance symbol (CAS) from
the bus, then it will assume that communication has already started and it will
try to integrate into the schedule.

Integrating into ongoing communication is done by first waiting for the same
startup frame header in two adjacent communication cycles, so the node’s clock
can be adjusted to account for any relative clock drift that the sender might
have. Once it has adjusted its clock speed, it will listen for a few more cycles to
see whether communication is indeed still going as expected, and eventually it
will join in.

If a node does not hear anything on the bus for two communication cycles, it
sends a collision avoidance symbol, after which it starts sending startup frames
according to its schedule. The CAS is always sent at a specific point in a com-
munication cycle, so, effectively, every node waits for a different amount of time
after sending a CAS before sending a startup frame. It is this timing difference
that implements a leader election protocol: should more than one node (almost)
simultaneously send a CAS, then the first of them to send a startup frame will
cause the others to stop sending. These nodes will then once more listen to the
bus, and integrate to the remaining node.

After a node has successfully started communicating on the bus, it observes
the traffic for another two cycles and restarts the whole procedure if it does

5



bus

node 1

node 2

node 3

Legend CAS Frame header Frame body

Fig. 1. Three nodes starting up. Black is CAS, dark grey is frame header and light
grey is frame body. The bus line is the combined signal of the three nodes.

not see the other parties anymore. The network traffic of a successful startup is
depicted schematically in Figure 1.

In our report, we assume that all nodes are coldstart nodes, and hence we
will sometimes talk about ‘nodes’, rather than ‘coldstart nodes’. Furthermore, we
assume that all frames are in fact startup frames, so again we do not distinguish
between the two.

4.2 Correctness

Although the FlexRay specification documents do not say what correct operation
means, we do find the following in the requirements document [9]:

To say that “a cluster is able to start up in the presence of a fault” has
a meaning that depends on the type of fault.

– Fault class 1: The fault is associated to a channel or a star: All
nodes which are intended to participate in communication and are
connected to the other channel reach a state where they communicate
to one another as scheduled. They reach this state within a defined
maximum time.

– Fault class 2: The fault is associated to a node: All fault-free nodes
which are intended to participate in communication reach a state
where they communicate to one another as scheduled. They reach
this state within a defined maximum time.

– Fault class 3: Transient fault: All nodes which are intended to par-
ticipate in communication reach a state where they communicate to
one another as scheduled. They reach this state within a defined max-
imum time (For a value see the requirements specification).

The requirement then gives some faults that FlexRay networks should be
robust against. In some cases, the use of both FlexRay channels is required to
ensure correct operation. The scope of this document only covers single-channel

6



networks, and therefore all faults in class 1 are considered fatal (if the only used
channel is not working, then no communication can take place).

The class 2 and 3 faults within the scope of our investigations are the following
(we again quote, and numbering corresponds to the numbering in [9]).

3 A single I/O signal/pin connecting two of the components com-
munication module, bus guardian or bus driver has become dis-
connected inside one of the node in the cluster. e.g. bus driver’s
Transmit Enable input disconnected.

3b signal wave form degraded on one channel [only has to work in
certain circumstances].

4 A single arbitrary node in the cluster is not communicating on
all attached channels for whatever reason. It doesn’t transmit any-
thing, or it starts to transmit somewhat later than the other nodes.

5 A single clock oscillator in the cluster erroneously runs at the
wrong frequency. [. . . ]

6 A node (e.g. coldstart node) cannot receive any communication
element on all its attached channels.

8 A star cannot receive any communication element of a certain
branch [only has to work in certain circumstances].

9 A periodic reset event is present in a node.
12 One single bit of a communication element on one channel flips.
13 For a given time of less than one frame length, all present channels

are forced to an arbitrary pattern.
14 A bus driver in a node cannot receive anything.
15 A bus driver in a node cannot transmit anything.
17 A coldstart node sends sporadically CASs. After occurrence, the

fault does not manifest itself for at least 10 communication cycles.
18 No node is operational except of 2 fault free nodes and these two

nodes are assigned to perform startup (“coldstart nodes”). (Req
ID 326)

Our aim is to verify that in these cases, the correctly functioning nodes in a
FlexRay network will indeed start up as usual. We saw before that, according to
the requirement, startup has succeeded when all non-faulty nodes communicate
to one another as scheduled. This will never be the case in for instance fault
scenario 17, as the communication will be periodically interrupted by the CAS.

We reinterpret the definition of correct startup to mean that on all nodes
the startup protocol has terminated successfully, and during one cycle in which
no startup protocol is active anymore, every frame that is sent by a non-faulty
node is received by all other non-faulty nodes, unless a faulty node or transient
fault prevents reception.

4.3 Simplifications

Although our choice of modelling language would permit us to exactly describe
every detail of the FlexRay protocol, we must abstract away some of the com-

7



plexity in order to be able to automatically analyse our model. The aim is to
have a model of which the behaviours are a subset of the behaviours that a real
system might display. Note that this means that proving the model correct is
not enough to conclude that the actual system will behave correctly. However,
any unwanted behaviour that is detected in the model will indeed be observable
in the actual system.

Important but straightforward restrictions are that in our model, only a
single channel is used, each node is assigned a single static slot, and all frames
are startup frames. The dynamic segment remains unused.

Two concepts that require more complicated measures are the notions of time
and data. We discuss these in more detail, and try to give an intuition about the
implications of the simplifications for the accuracy of our model.

Time In [20], Malinský and Novák present a model of the startup phase of a
FlexRay network. Their approach is to make no assumption about the correct
working of the clock synchronisation protocol, and they subsequently show that
several parameters of their model can be adjusted in such a way that the network
model does not properly start up.

Our approach is fundamentally different in a number of ways. We assume a
discrete-time global clock, i.e., we assume that for all nodes in the network the
clock drift is zero and that the nodes’ timed behaviour can be modelled using
time slots. The advantage of this approach is that the clock synchronisation
process need not be modelled, which is a great advantage indeed as it is a very
data-intensive process. The downside is that the model becomes less realistic,
as many scenarios are not permitted by our model (namely the ones in which
the clocks of the nodes are not synchronised). However, because we only discard
behaviour by making this assumption, any faulty behaviour in the model should
still correspond to faulty behaviour in the real system.

The resolution for time slots is chosen to be one bit length (gdBit in [8]).
When clock synchronisation works correctly, the external behaviour of a node
can be modelled using this time base, as all lengths of symbols sent over the bus
are defined (either directly or indirectly) as multiples of one bit length.

Another issue concerning time is caused by the semantics of SDL. Signals are
sent to processes, which store them in queues. Each such queue is partially visible,
the invisible part modelling signals that have not reached their destination yet,
and the visible part modelling those signals that are ready to be processed by
the receiver.

We assume that signals are delivered immediately, thus avoiding the need for
the invisible part of the queue. The need for the visible part of the queue stems
from the fact that a process can be busy performing a calculation when events
arrive. We assume that calculations are also done instantly. Since the queues in
the SDL semantics are FIFO, we can now simply process events when they come
in.

This abstraction comes at the cost of modelling only part of the possible
behaviour of the real system. By synchronising the bus communication per bit,

8



we cannot detect any faults in the clock synchronisation protocol. This however
is outside the scope of our investigations.

It is more difficult to assess what part of the state behaviour we might have
excluded by this synchronisation. Obviously, we cannot model a system in which
one node starts sending a symbol less than a bit time after another node; a
scenario that might occur when more than one node is sending a CAS symbol.
It is unclear to what extent this may influence the behaviour of the system.

Data During the startup phase, the only data communicated over the bus
are collision avoidance symbols and startup frames. As mentioned before, our
time model assumes a global clock with a 1-bit resolution, so these symbols are
encoded one bit at a time.

We do not wish to model the sending of actual bit patterns, as that would
lead to an enormous amount of allowed combinations. Instead, we model the
relevant symbols by using an encoding that models some relevant properties.

The symbols that are relevant during the startup procedure are the following.

FRAME HEADER(id) A (startup) frame header sent by node id. According
to the specification, the frame header would carry information such as the
frame identifier, the length of the payload that follows, a CRC, the cycle
counter and some indicator bits.

FRAME BODY(id) The body of a (startup) frame sent by node id. The body
in reality carries the payload of a frame and a CRC checksum.

Both the frame header and the frame body contain a CRC checksum. This check
is in place to detect corrupted frames. We make the assumption that this check
is flawless, and model this by sending the id of the sender along with every bit
in a frame. This enables the receiver to decide whether a string of received bits
forms a valid frame.

length(FRAME HEADER(id))︷ ︸︸ ︷
Hid Did Did · · ·

length(FRAME BODY(id))︷ ︸︸ ︷
Bid Did Did · · · Did

CAS CAS · · · CAS︸ ︷︷ ︸
length(CAS)

None None · · · None︸ ︷︷ ︸
CHIRP length

Fig. 2. Encoding of symbols on the bus.

The following two symbols are much simpler, but pose another technical
difficulty: these symbols are defined as a period during which the bus is in a
certain state. The lengths of these periods are given in microseconds, so the
symbols cannot in general be seen as bit patterns. However, the periods are
both multiples of gdBit, which is the length of one bit. In our model, we will
therefore model them as bit patterns, because our time model allows it.

9



CAS A collision avoidance symbol, the length of this symbol is defined by the
protocol constants cdCASRxLowMin and cdCAS, which are set to 29 gdBit
and 30 gdBit, respectively.

CHIRP The channel idle recognition point (CHIRP) is defined as an offset
relative to the last time activity was seen on the channel. The length of this
symbol is defined by the protocol constant cChannelIdleDelimiter, which is
defined to be 11 gdBit.

The mCRL2 encoding of these symbols is schematically depicted in Figure
2. It is clear that this encoding does not allow us to model certain corner cases;
every scenario in which frame data from two different sources is accidentally
interpreted as a valid frame cannot be modelled, for instance. This is because
in our model the recipient of a bit can identify the sender of that bit, which
corresponds to the assumption that the CRC check can detect any form of data
corruption.

media access
control

macrotick
generation

clock
synchronization

processing

protocol
operation

control

controller
host interface

coding / decoding
processes
channel A

frame and symbol
processing
channel A

media access
control

channel A

clock
synchronization

startup channel A

to channel interface from channel interface

to / from host

media
access
control
channel B

coding / decoding
processes
channel B

frame and
symbol
processing
channel B

clock
synchronization

startup
channel B

Fig. 3. The context of the POC process. Grey areas are not modelled.

10



4.4 Model

We use the mCRL2 modelling language [12,14] to model a small FlexRay net-
work. In the following, we assume a basic knowledge of mCRL2, and explain
how our model relates to the FlexRay protocol specification.

Structure

We model a network of three coldstart nodes during the startup phase. The
structure of a single node, as presented in the FlexRay specification, is shown in
figure 3. We will only model the Process Operation Control component in detail,
and the simplifications described in the previous section allow us to not model
the components shown in grey altogether. For the remaining components, a very
abstract model is created.

Figure 4 shows a high level model of our system. Three nodes and one bus
are each modelled as a separate process. The processes run in parallel, and
communicate by synchronising actions. Each process has a notion of a clock
tick, which is modelled using an action. We require that if a clock tick occurs
in one process, it must simultaneously occur in all other processes. This type of
synchronisation is called barrier synchronisation; the dotted line represents the
barrier.

The Put and Get actions occur between clock ticks, and define what a process
writes and reads in the current time slot. The system will in each time slot first
perform three Put actions, one for each node, followed by three Get actions. In
a fault-free scenario, the data that is read by each node will be the same; it will
be the combination of the data that was written by the three nodes.

Node

Bus

Put Get

Node

Put Get

Node

Put Get

Synchronisation

Fig. 4. The system model consists of three nodes and one bus, that communicate by
Put and Get actions.

A more detailed view of the Node and Bus processes is given in Figure 5.
Their interface consists of the actions involved in the barrier (again indicated
by the dotted line), and the actions named put, get, put’ and get’. The first
two represent a node respectively writing to or reading from the bus. The last
two represent the bus receiving data from a node and providing data to a node.
The put and put’ together form the Put action from Figure 4 when they occur
simultaneously. Moreover, we do not allow put or put’ to occur on their own;

11



a node can only read data from the bus if the bus is providing that data, and
likewise, a node can only write data to the bus if the bus is receiving it. This type
of synchronisation is a widely used technique to model communication between
processes running in parallel.

The Node process consists of three subprocesses that run in parallel: the
CODEC, MAC and POC. These components correspond closely with the SDL
processes described in [8]. Figure 5 also shows the flow of data between the
components. The names on the arrows are the actions involved in the commu-
nication between components (which is again modelled in the same way as the
communication between the nodes and the bus).

CODEC

MAC

POC

macCAS,
macStart,
macStop

wait,
Encode

Decode,
Is idle

put get

Node

bit

bit

S
y
n
ch
ron

isation
Bus

bus

get’ put’

Fig. 5. Detail of the Node and Bus processes.

Figure 6 shows the mCRL2 code that corresponds to the structure of Figures
4 and 5.

For a single node, the POC (process operation control) process is the process
that drives the startup protocol. It is defined in terms of SDL macros in [8]
Chapter 7.2. Figure 7 shows the parts of the POC process that are modelled.

Bus model

We wish to verify properties of a network with deaf nodes (nodes that cannot
read anything from the bus) and mute nodes (nodes that cannot write anything
to the bus). The easiest way to deal with this is to see such faulty behaviour as
a trait of the physical bus.

12



proc Node(id: Sender, faulty: Bool) =
allow({...},
comm({encode|encode->Encode,

decode|decode->Decode,
is_idle|is_idle->Is_idle},

CODEC(id) ||
POC(id, 0, faulty) ||
MAC(id, 0, false)

));

init
allow({...},
comm({...},

Bus({}, {}, 0, 0, NONE) ||
Node(S0, false) ||
Node(S1, false) ||
Node(S2, false)

));

Fig. 6. The mCRL2 code that implements the structure of Figures 4 and 5. Ellipses
indicate omitted text.

The physical bus is modelled as a process that reads, per time slot, a signal
from all connected nodes that are not mute and delivers the combination of all
those signals back to all connected nodes that are not deaf.

proc Bus(r, w: Sender, s: Signal) =
(r <= NODES + 1) -> (
sum s’: Signal . put’(r, s’) .

Bus(r + 1, w, if(r == mute, s, combine(s, s’)))
) <> (
(w <= NODES + 1) -> (
get’(w, if(w == deaf, NONE, s)) . Bus(r, w + 1, s)

) <> (
bus(s) . Bus(1, 1, NONE)

)
);

If a node is not sending, it is modelled as a node that is sending silence. The
combination of a signal and silence is that signal. The combination of two signals
is defined to be noise.

When a bit has been sent and received in this manner, the bus action marks
the progress of time and the process repeats itself (it is part of the clock tick
barrier).

In the model in appendix C, two variants of the bus are included. One of
them reads in an arbitrary order, and one reads in a fixed order. The latter was
used for verification purposes (because it is the more general model), but the
model as listed above was used to generate the traces in section 5.1, as it is

13



enter startup
prepare

tStartup := pdListenTimeout;
tStartupNoise := gListenNoise * pdListenTimeout;
vRemainingColdstartAttempts := gColdstartAttempts;
’update vRemainingColdstartAttempts in CHI’

STARTUP

INTEGRATION_
LISTENCOLDSTART_LISTEN

enter coldstart
collision resolution

enter
initialize schedule

COLDSTART_COL-
LISION_RESOLUTION

enter
initialize schedule

abort
startup

enter coldstart
consistency check

COLDSTART_CON-
SISTENCY_CHECK

abort
startup

enter
coldstart gap

enter
operation

enter integration
consistency check

enter startup
prepare

INTEGRATION_CON-
SISTENCY_CHECK

enter
operation

STARTUP_PREPARE

enter
coldstart listen

enter
integration listen

done

COLDSTART_GAP

abort
startup

enter coldstart
collision resolution

ABORT_STARTUP

abort
startup

done

INITIALIZE_
SCHEDULE

INTEGRATION_COLD-
START_CHECK

COLDSTART_JOIN

enter
operation

abort
startup

done

enter integration
coldstart check

enter
coldstart join

abort
startup

Fig. 7. The POC startup phase, taken from [8]. Grey parts are not included in our
model.

quicker. The reason the model that performs reads and writes in an arbitrary
order is more time-consuming to generate is that it generates more states, and
uses set operations where the ordered model needs only enumerated and integral
types.

POC model

Because the FlexRay protocol specification is already quite formal (in the sense
that a systematic notation is used to describe processes), we set out to create our
model in a way that remains as close to the specification as possible. Because a
large part of the specification is abstracted away, we cannot use an automated
conversion to an mCRL2 model, but where our model attains the same degree
of detail as the original specification, we attempt to make our translation as
systematic as possible. We have taken the diagrams from Chapter 7.2 in [8] as
the basis for our model. The semantics of these diagrams is given in [15].

14



To create a model that would not inevitably blow up to unreasonable pro-
portions, we use a slightly simplified version of these semantics. We assume that
the calculations in the diagrams do not take time; moving from one state to
the next can then be seen as an instantaneous change. Secondly, we assume that
signals do not take time to be delivered. In [15], event queues are used to capture
the semantics of these phenomena. In a finite-state model, this would lead to a
very large state space, as the state of the queues must be taken into account.
Our simplifications eliminate the need for queues. The downside is that not all
possible sequences of events that may occur in reality are modelled; for instance,
a signal from another process never arrives when the receiving process is busy.

We note here that the FlexRay specification does not claim to use the precise
SDL semantics (in fact, it claims that it may not do so). Given that the specifi-
cation is at the detail level of a reference implementation, this is not surprising,
as the use of event queues would be infeasible in a hardware implementation.
The specification does however not give any guidelines on how to interpret the
diagrams, which is why we have taken the official SDL semantics as a starting
point.

Using the simplified semantics, the SDL diagrams in Chapter 7.2 of [8] were
translated into mCRL2 code (using a slightly altered syntax, see appendix A).
As an example, we show the part of the mCRL2 code that models the ‘coldstart
collision resolution’ diagram in the specification (Figure 7–12 in [8]):

state ColdstartCollisionResolution(timer: Nat) =
(
% Inputs from CODEC
decode(CAS) . bit . AbortStartup()

+ sum id’: Sender . decode(FRAME_HEADER(id’)) .
hdr(id, id’) . AbortStartup()

+ sum id’: Sender . decode(FRAME(id’)) .
ColdstartCollisionResolution()

% Wait for four cycles
+ (timer < FRM_START(id) + CYCLE_length * 4 - 1) ->

bit . ColdstartCollisionResolution(timer=timer + 1)
+ (timer >= FRM_START(id) + CYCLE_length * 4 - 1) ->

bit . cs_cons . ColdstartConsistencyCheck(0)
)

Looking at SDL diagram 7–12, we see a single state in which the POC may
respond to a number of different events:

– SyncCalcResult. This event is emitted by the clock synchronisation process,
just before a new communication cycle starts. We assume a global clock with
a resolution of one bit, of which the ticks are modelled by the bit actions.
Rather than waiting for four SyncCalcResult events, we instead look at the
global clock to decide when four cycles have passed.

– header received on A/B. This event is emitted by CODEC right after a
frame header has been received. It is modelled using the decode action with
a FRAME_HEADER parameter.

15



– symbol decoded on A/B. This event is emitted by CODEC right after a colli-
sion avoidance symbol or media test symbol is decoded. It is again modelled
using the decode action, this time with a CAS parameter.

In the mCRL2 model, we need to absorb decode(FRAME(id’)) events (not
doing so would prevent the source from sending the event, thus potentially lead-
ing to deadlock states). In the semantics of SDL [15], this corresponds to dis-
carding an event from the event queue when it cannot be processed.

To allow time to progress in a state, we must additionally allow the bit action
to occur. The above piece of code implements a timeout of four cycles by letting
time progress for four cycles, and then moving to the ‘coldstart consistency
check’ state. If a CAS or frame header is received before the timeout occurs, the
startup is aborted.

MAC

Media access control is modelled by the mCRL2 process below. It starts in
inactive mode (not shown) and can then receive macCAS, macStart and macStop

commands.

proc MAC(id: Sender, togo: Int, active: Bool) =
macCAS . encode(CAS) .
MAC(active=true, togo=FRM_START(id) + length(CAS))

+ macStart . MAC(active=true, togo=FRM_START(id))
+ macStop . wait . MAC(active=false)
+ active -> (

(togo > 0) -> (
wait . MAC(togo=togo - 1)

) <> (
encode(FRAME_HEADER(id)) . MAC(togo=CYCLE_length)

)
) <> wait . MAC();

When a macCAS command is received, it requests the CODEC to send a collision
avoidance symbol and then switches to active mode. In the specification, MAC
waits for one macrotick before sending the CAS, but it seems that the waiting
for the macrotick is not intended as a delay, but merely as a check that the clock
synchronisation process has started. Since we assume a global clock, we do not
need to model this delay.

When a macStart command is received, the MAC proceeds to active mode,
and when it receives a macStop command, it goes back to inactive mode. In
active mode, MAC periodically requests CODEC to encode a frame.

CODEC

The CODEC is modelled as a process that either reads from or writes to the
bus. When in reading mode, it processes bits it reads from the bus, and writes
silence to the bus (i.e., it does not write anything to the bus). When it is in

16



writing mode, bits it reads from the bus are ignored, and it writes an encoding
of the last requested symbol to the bus.

Remainder

It can be seen from the context diagrams in [8] that the POC process commu-
nicates with all other processes during the startup process. We covered MAC
and CODEC, and we argue that we may safely omit models for the remaining
processes.

By assuming a global clock, we can avoid modelling the macrotick generation,
clock synchronisation startup and clock synchronisation processes. Furthermore
we assume that nodes are never in coldstart inhibit mode. This eliminates the
influence of the controller host interface, so we can also omit a model for that
process. During startup, only the clock synchronisation depends on events gen-
erated by frame and symbol processing, so this process is also ignored.

5 Verification

From the viewpoint of the POC, the faults mentioned in Section 4.2 can be
seen as instances of a few general problems that may occur. Either a node is
not able to send anything, a node is not able to receive anything, or the bus
misbehaves in such a way that symbols are not always transmitted correctly.
Only the periodic resetting of a node requires the node to display slightly more
complicated behaviour.

Since for the POC a noisy signal is observably equal to no signal at all (the
CODEC simply does not generate events), we model a limited set of scenarios.
Each of the descriptions below describes two scenarios: one in which the node
with the lowest identifier is the faulty node, and one in which another node is
faulty. This is necessary because the protocol relies on a leader election mecha-
nism that is not quite symmetric: although the process descriptions for startup
are the same for every node, the leader that will be elected depends on the con-
figuration of the nodes. The candidate configured with the lowest identifier will
be elected as leader. At least one failure scenario (viz. the resetting node scenario
below) is known [23] that is only possible if the node with the lowest identifier
is the faulty node.

In this manner, the following categories of scenarios are modelled.

Two nodes A faulty node does not switch on at all, so effectively there are
only two nodes present in the network.

Silent node A faulty node is not able to send anything. Although we do model
this separately, we note that this scenario is equivalent to the two-node
scenario if we are not interested in the behaviour of the faulty node. We
include this scenario because it shows that the silent node is still able to
integrate into the communication correctly, albeit in a read-only mode.

Deaf node A faulty node does not receive anything.
Resetting node A node resets itself periodically.

17



Noisy channel Signals sent by nodes are corrupted on the channel. We use a
noise model that consisting of a burst length and a maximum backoff time.
The burst length determines the maximum number of sequential bits that
are corrupted, the maximum backoff time determines the maximum number
of sequential bits that pass through the channel unaltered.
Due to practical limitations, we were only able to model this scenario in a
two-node scenario.

For each of these scenarios, we check that the correctly functioning nodes
start up. We do this by checking three properties. The first is absense of deadlock;
our model is constructed in such a way that we do not expect a deadlock to occur
(we always allow time to progress, so a deadlock would indicate an error in the
model).

Absence of deadlock is checked while generating the statespace. The other
two properties are formulated in the first order modal µ-calculus (see, e.g., [13]).
For brevity, we use mathematical syntax rather than concrete mCRL2 µ-calculus
syntax, and extra statements to help the mCRL2 toolset (e.g., to prevent quan-
tifiers from being expanded forever) are left out. The concrete formulae are given
in Appendix B. It is important to note that these formulae only represent the
intended properties correctly if the system they are checked on is deadlock free,
as otherwise the [true]ϕ subformulae might trivially hold.

The second property asserts that eventually all correctly functioning nodes
enter normal operation exactly once, an event that is flagged by the enter operation
action. It is expressed by the formula in Figure 8, in which N is the total number
of nodes and C is the set of correctly functioning nodes.

µX(r : 2N = C) .
(

r 6= ∅
∧ (∀i : N . (i ∈ r ⇒ [enter operation(i)]X(r \ {i})))
∧ [¬∃i : N . enter operation(i)]X(r)

)
∨
(

r = ∅
∧ νY . [∃i : N . i ∈ C ∧ enter operation(i)]false

∧[true]Y
)

Fig. 8. Eventual startup, expressed as a first order µ-calculus formula.

The last property says that eventually all correctly functioning nodes will
keep receiving each others messages. Even though our model is not intended to
model the ongoing traffic after startup, we have constructed our model in such
a way that this property should hold. If this property does not hold, then it

18



µX . [true]X ∨
(

νY (r : 2N = C, s : Symbol = FRAME_HEADER(head(C))) .
(
µZ .
((

r 6= ∅
∧ (∀i :N, s′ :Symbol .

[Decode(i, s′)]( (i ∈ C ∧ s = s′ ∧ i ∈ r ∧ Y (r \ {i}, s))∨
(i /∈ C ∧ Z))

)
∧ [¬∃i :N, s′ :Symbol .Decode(i, s′)]Z

() ∨ ()
r = ∅
∧ Y (C \ nextsender(s),nextsymbol(s))

)) ) )

Fig. 9. Eventual communication, expressed as a first order µ-calculus formula.

is likely that the nodes did not synchronise correctly. The formula in Figure 9
states this property formally.

Verification of these properties is done by linearising the mCRL2 specification
and combining it with the formulae to form parameterised Boolean equation
systems. These are instantiated to Boolean equation systems, which are in turn
reduced modulo stuttering equivalence on parity games. The resulting smaller
equation systems are then solved. A description of this procedure can be found
in [10]. We use the July 2011 release of the mCRL2 toolset.

We note that it is also possible to check eventual startup and eventual com-
munication manually. By hiding all actions but enter operation and then re-
ducing the statespace using branching bisimulation, the first property can be
checked. The second property can be checked manually by hiding all but De-
code, reducing the statespace using branching bisimulation and then manually
inspecting all strongly connected components.

5.1 Results

No faulty nodes The statespace is deadlock free, and both properties hold on
the system.

Two nodes The statespace is deadlock free, and both properties hold on the
system.

Silent node The statespace is deadlock free, and both properties hold on the
system.
Manually inspecting the branching-bisimulation reduced statespace reveals
that the failing node can in this case enter normal operation using the wrong
schedule (see Figure 10). The clock synchronisation process will allow this
scenario, and frame and symbol processing will also not detect the mistake

19



bus

node 1

node 2

node 3

Legend CAS Frame header Frame body Noise

Fig. 10. Node 2 is mute, and can therefore start operation out of sync.

while the startup protocol has not finished. The mistake is harmless, however,
because the silent node cannot disturb ongoing communication. As soon as
normal operation is entered, the clock correction process or the frame and
symbol processing process of the faulty node will notice the error. A next
attempt to integrate will succeed, because there is then already ongoing
traffic.
Notice that the above scenario is possible because a process is not able to
read while writing (as can be seen from Figure 3-18 in [8]).

Deaf node The statespace is deadlock free, but neither of the µ-calculus prop-
erties hold.
In case of a deaf node, there is a possibility of the network not starting at
all. Figure 11 shows such a scenario.

bus

node 1

node 2

node 3

Legend CAS Frame header Frame body Noise

Fig. 11. Node 2 is deaf, and prevents other nodes from starting up.

The deaf node can choose to align its frames with those of another startup
node, causing only the headers of the other node to be readable on the bus.
The non-faulty node that is broadcasting startup frames will not detect that
every sent frame is corrupted by the faulty node. Because the non-faulty

20



node’s frame headers are untouched, all other nodes will wait until it gives
up after the maximum number of startup attempts.
When there are more than three coldstart nodes in the system, the remaining
nodes will be able to start normally after that. In Figure 11 however, there
are only three, and the remaining coldstart node cannot start the system by
itself. In this case, the entire network fails to start.
This scenario again is due to the fact that the CODEC cannot read and
write simultaneously.

Resetting node The statespace is deadlock free, but neither of the µ-calculus
properties hold.
Although this scenario was already known (it was described in [24]), the
emergence of the trace in Figure 12 gives us confidence that our model is
correct. The trace shows that the leading node may cause startup of the
network to fail by resetting itself every time it has sent a frame. In fact, it
would just have to send the frame header, but the way we modelled our reset
behaviour does not allow this.

bus

node 1

node 2

node 3

Legend CAS Frame header Frame body Noise

Fig. 12. Node 1 resets periodically, preventing the other nodes from starting up.

It should be noted that in this scenario it is required that node 1 be the
faulty node, which is not necessary in the scenarios for deaf and mute nodes.

Noisy channel The results depend very much on the parameters of the noise
model.
For an arbitrary noise pattern, it is obvious that the system will not start up.
The channel could simply decide to corrupt all traffic going through it. The
noise model we chose guarantees that some information will come through.
Checking exactly for which values of maximum burst size and maximum
backoff period the system starts correctly is too big a task, but simply trying
a few settings soon gives an idea of how robust the system is. We made the
following observation.
If there is noise on the channel for too long while nodes are trying to com-
mence the startup procedure, then obviously startup may fail. The inter-
esting scenarios are those in which some information can be communicated.

21



However, if the minimum backoff time is less than the time needed for fault-
free startup, then one of the sync frames of the leading coldstart nodes can
always be corrupted, causing either the schedule initialisation or the consis-
tency check of the other nodes to fail.
If the presence of noise is the only anomaly in the system, then the minimum
backoff time being at least the time required for fault-free startup is enough
to guarantee that the system will come up.

Techniques

We created a model that is very close to the original specification. As a con-
sequence the model is rather complex, and its state space is large for realistic
values of the various parameters.

The results in this paper are obtained by explicitly generating the statespaces
of systems in which these parameters have been set to (unrealistically) small
values. The resulting statespaces are small enough to minimise modulo branching
bisimulation, and the reduced statespaces are in turn small enough to check
manually.

A natural choice when dealing with extremely large systems is to use symbolic
model checking. In our case, however, the bottleneck does not seem to be in the
memory needed to store the statespace, but in the time needed to generate it;
a problem that cannot be overcome by using for instance the symbolic model
checker LTSMIN [2]. Using this tool we tried to check that the startup failed
action does not occur in a fault-free setting. However, after 9 days of computing,
only 2.2 billion states have been checked. Attempts to speed up the state space
generation by reducing the size of the process equations did not lead to better
results, and different search strategies (BFS, chaining) seem to perform equally
poor.

The µ-calculus properties were checked by using parity game reduction and
parity game solvers, as described in [10]. Although the parity game reduction did
speed up the solving process significantly, the real bottleneck was generating the
game (or, equivalently, boolean equation system) itself, taking over three days
for the second µ-calculus property for the scenario with a resetting leader node.

Specification

As was already mentioned in [23], the absense of a fault hypothesis makes it
difficult to assess whether the specification specifies a correctly operating system.

Modelling the specification is difficult, because the specification is given only
in a high level of detail. This is ideal for implementing the system, because the
mapping to an implementation is very straightforward. However, it makes it
virtually impossible to abstract away implementation details: due to implemen-
tation considerations, it seems, the specification lacks a hierarchical structure;
functionality like clock synchronisation is spread out over multiple components.
In this sense, the specification does not so much specify a general networking
protocol, but rather a reference implementation of one. A lack of explanation on

22



a more abstract level makes it extremely difficult to understand what the exact
functionality of the protocol is, and makes it hard to assess whether simplifica-
tions of a model are valid abstractions.

6 Conclusion

We have modelled a large part of the FlexRay startup protocol using a discrete
time model. We presented a notion of correct operation of the startup protocol,
and mechanically verified that in a number of fault scenarios the startup protocol
operates correctly. The model revealed two scenarios in which a network does
not start up; one of these scenarios was previously unknown.

References

1. D. Barsotti, L.P. Nieto, and A. Tiu. Verification of Clock Synchronization Al-
gorithms: Experiments on a combination of deductive tools. Formal Aspects of
Computing, 19(3):321–341, 2007.

2. S. Blom, J. van de Pol, and M. Weber. Ltsmin: Distributed and symbolic reacha-
bility. In Computer Aided Verification, volume 6174 of Lecture Notes in Computer
Science, pages 354–359. Springer, 2010.

3. J. Botaschanjan, M. Broy, A. Gruler, A. Harhurin, S. Knapp, L. Kof, W. Paul, and
M. Spichkova. On the correctness of upper layers of automotive systems. Formal
Aspects of Computing, 20(6):637–662, 2008.

4. J. Botaschanjan, A. Gruler, A. Harhurin, L. Kof, M. Spichkova, and D. Tracht-
enherz. Towards modularized verification of distributed time-triggered systems.
Lecture Notes in Computer Science, 4085:163, 2006.

5. M. Broy and K. Stølen. Specification and development of interactive systems: focus
on streams, interfaces, and refinement. Springer Verlag, 2001.

6. FlexRay consortium. FlexRay Preliminary Central Bus Guardian Specification
v2.0.9, 2005.

7. FlexRay consortium. FlexRay Preliminary Node Local Bus Guardian Specification
v2.0.9, 2005.

8. FlexRay consortium. FlexRay Protocol Specification v2.1 rev. A, 2005.

9. FlexRay consortium. FlexRay Requirements Specification v2.1, 2005.

10. S. Cranen, J.J.A. Keiren, and T.A.C. Willemse. Stuttering mostly speeds up solv-
ing parity games. In Mihaela Bobaru, Klaus Havelund, Gerard Holzmann, and
Rajeev Joshi, editors, NASA Formal Methods, volume 6617 of Lecture Notes in
Computer Science, pages 207–221. Springer Berlin / Heidelberg, 2011.

11. P. Fontaine, K. Gupta, J.Y. Marion, S. Merz, L.P. Nieto, and A. Tiu. Towards a
combination of heterogeneous deductive tools for system verification: A case study
on clock synchronization. In APPSEM Workshop. Citeseer, 2005.

12. J.F. Groote, J.J.A. Keiren, A. Mathijssen, B. Ploeger, F. Stappers, C. Tankink,
Y. Usenko, M. van Weerdenburg, W. Wesselink, T.A.C. Willemse, et al. The
mCRL2 toolset. In WASDeTT. Citeseer, 2008.

13. J.F. Groote and R. Mateescu. Verification of temporal properties of processes in
a setting with data. In AMAST, pages 74–90, 1998.

23



14. J.F. Groote, A. Mathijssen, M.A. Reniers, Y.S. Usenko, and M. van Weerdenburg.
Analysis of distributed systems with mCRL2. In M. Alexander and W. Gardner,
editors, Process algebra for parallel and distributed processing. CRC Press, 2009.

15. ITU-T. Recommendation Z.100: Specification and Description Language (SDL),
1999.

16. C. Kühnel and M. Spichkova. FlexRay und FTCom: Formale Spezifikation in
FOCUS. Technical report, Technische Universität München, 2006.

17. C. Kühnel and M. Spichkova. Upcoming Automotive Standards for Fault-Tolerant
Communication: FlexRay and OSEKTime FTCom. In EFTS 2006 International
Workshop on Engineering of Fault Tolerant Systems. Universite du Luxembourg,
CSC: Computer Science and Communication, 2006.

18. J. Lundelius and N. Lynch. A new fault-tolerant algorithm for clock synchro-
nization. In Proceedings of the third annual ACM symposium on Principles of
distributed computing, page 88. ACM, 1984.

19. J. Malinský. The application of the timed automata for flexray start-up testing. In
Proceedings of the 13th Workshop on ADC Modelling and Testing (TC4), Florence,
ITALY, 2008.

20. J. Malinský and J. Novák. Verification of flexray start-up mechanism by timed
automata. Metrology and Measurement Systems, XVII(3):461–480, 2010.

21. T. Pop, P. Pop, P. Eles, Z. Peng, and A. Andrei. Timing analysis of the FlexRay
communication protocol. Real-Time Systems, 39(1):205–235, 2008.

22. M. Spichkova. FlexRay: Verification of the FOCUS Specification in Isabelle/HOL.
A Case Study. Technical report, Technische Universität München, 2006.

23. W. Steiner. An assessment of FlexRay 2.0 (safety aspects). Technical Report
45/2005, Technische Universität Wien, 2005.

24. W. Steiner. Model-checking studies of the flexray startup algorithm. Technical
report, Technische Universität Wien, 2005.

25. B. Zhang. On the Formal Verification of the FlexRay Communication Protocol.
Automatic Verification of Critical Systems (AVoCS), pages 184–189, 2006.

26. B. Zhang. Specifying and Verifying Timing Properties of a Time-triggered Proto-
col for In-vehicle Communication. In Proceedings of the 2008 Ninth ACIS Interna-
tional Conference on Software Engineering, Artificial Intelligence, Networking, and
Parallel/Distributed Computing, pages 467–472. IEEE Computer Society, 2008.

24



A Modified mCRL2 syntax

In order to create a more structured specification, an extension of the mCRL2
syntax was used. This syntax is not meant to provide a semantic extension of
the language, but merely to syntactically abbreviate some common constructs
so as to remove clutter. We therefore merely give an explanation of how to read
the syntax, but do not recommend using it in any other setting.

The syntax is best explained using an example. Consider the following spec-
ification:

proc X = nested(n: Nat) {
initial state A =

a(n) . B(0);
state B(m: Nat) =
m < 10 -> b . B(m + 1)

+ m == 10 -> b . X(n + 1)
}

This specification is translated to the following, pure mCRL2 specification.

proc X(n: Nat) = X’A(n: Nat);
proc X’A(n: Nat) = a(n) . X’B(0);
proc X’B(n: Nat, m: Nat) =
m < 10 -> b . X’B(n, m + 1)

+ m == 10 -> b . X(n + 1);

The intuition is that every nested block defines some parameters that are shared
by the states defined in it. The states are mCRL2 process specifications, and can
therefore again be defined in terms of nested blocks.

A state may add parameters to the list provided in its associated nested
statement. Duplicate parameter names are not allowed. When a process or state
name is used within a state, a name lookup is done first in the scope of the
current nested block, then in the one above that etc.

Obviously, name clashes are a big problem in this construction. The models
presented in this document therefore use unique variable and process names in
such a way that the translation scheme does not cause any ambiguity.

25



B Concrete µ-calculus formulae

Bus || Noise || Resetter ||
${TYPE1}Node(1) || ${TYPE2}Node(2) || ${TYPE3}Node(3)

));

% Mappings for the mu-calculus formulae.
map nextin: Nat # List(Nat) -> Sender;

inornext: Nat # List(Nat) -> Sender;
finite: Symbol -> Bool;
nextsym: Symbol # List(Nat) -> Symbol;
correct_nodes: Sender -> List(Sender);
CORRECT_NODES: List(Sender);
remove: List(Sender) # Sender -> List(Sender);

var s, s2: Sender;
l: List(Sender);
sym: Symbol;

eqn nextin(s, l) = inornext((s + 1) mod (NODES + 1), l);
l != [] && s in l -> inornext(s, l) = s;
l != [] && !(s in l) -> inornext(s, l) = nextin(s, l);
finite(sym) = (isHeader(sym) || isFrame(sym)) => s(sym) <= NODES;
nextsym(FRAME_HEADER(s), l) = FRAME(s);
nextsym(FRAME(s), l) = FRAME_HEADER(nextin(s, l));
s <= NODES -> correct_nodes(s) =
if(!(s in {reset_node, deaf_node, mute_node}),

s |> correct_nodes(s + 1),
correct_nodes(s + 1));

s > NODES -> correct_nodes(s) = [];
CORRECT_NODES = correct_nodes(0);
remove(s2 |> l, s) = if(s2 == s, l, s2 |> remove(l, s));
remove([], s) = [];

B.1 Eventually all nodes will start up

mu X(s: List(Sender) = CORRECT_NODES) .
(val(s != [])
&& (forall i: Sender .

(val(i in s) => ([enter_operation(i)]X(remove(s, i)))))
&& [!exists i: Sender .

(val(i <= NODES) && enter_operation(i))]X(s)
)

||(val(s == []) &&
nu Y .

[exists i: Sender .
val(i <= NODES && i in CORRECT_NODES) &&
enter_operation(i)]false

&& [true]Y
)

26



B.2 Eventually all nodes will communicate

mu X . [true]X || (
nu Y(togo: List(Sender) = tail(CORRECT_NODES),

s: Symbol = FRAME_HEADER(head(CORRECT_NODES))) .
mu Z .
(val(togo != [])
&& (forall i: Sender .

(val(i in CORRECT_NODES) &&
(([Decode(i, s)]
(
Y(remove(togo, i), s) &&
val(i in togo)

)
) &&
forall s’: Symbol .
(val(finite(s’) && s != s’) =>
[Decode(i, s’)]false

)
)

)
|| (!val(i in CORRECT_NODES) &&

(forall s’: Symbol .
(val(finite(s’)) => [Decode(i, s’)]Z))

))
&& ([!exists i: Sender, s’: Symbol .

(val(i <= NODES && finite(s’)) &&
Decode(i, s’))]Z)

)
||(val(togo == [])

&& Y(remove(CORRECT_NODES, s(nextsym(s, CORRECT_NODES))),
nextsym(s, CORRECT_NODES))

)
)

27



C mCRL2 specification

Below follows the integral mCRL2 specification for the FlexRay startup protocol. Some values in the
model are parameterised; they are included in the specification using environment variable syntax
(‘${NAME}’). Replacing these values by a concrete value of the appropriate sort yields an instance
that, after preprocessing, can be parsed by the mCRL2 toolset.

% Additional rules for if, to reduce the size of the linearised process.
var a, b: Bool;
eqn if(a, false, true) = !a;

if(a, b, true) = a => b;
if(a, b, false) = a && b;
if(a, true, b) = a || b;

% User defined sorts
sort Sender = Nat;

Signal = struct NONE?isNone
| NOISE?isNoise
| DATA_BIT(s: Sender)?isData
| CAS_BIT?isCAS
| FIRST_HEADER_BIT(s: Sender)?isHeader
| FIRST_BODY_BIT(s: Sender)?isBody;

Symbol = struct CHIRP
| IDLE_END
| CAS
| FRAME(s: Sender)?isFrame
| FRAME_HEADER(s: Sender)?isHeader
| NOTHING;

% Model parameters
map deaf_node,

mute_node,
reset_node: Sender;
MIN_DELAY,
MAX_DELAY: Nat;
CHIRP_length: Nat;
NIT_length,
CYCLE_length: Pos;
length: Symbol -> Nat;
noise_max_burst,
noise_min_backoff,
noise_max_backoff: Nat;

eqn deaf_node = ${DEAF}; % Which is the deaf node (0 to disable)
mute_node = ${MUTE}; % Which is the mute node (0 to disable)
reset_node = ${RESET}; % Which is the resetting node (0 to disable)
MIN_DELAY = ${MIN_DELAY}; % Min and max delay of delayed nodes
MAX_DELAY = ${MAX_DELAY};
CHIRP_length = ${CHIRP}; % Lengths (in bits) of CHIRP, NIT, CAS,

28



NIT_length = ${NIT}; % frame header and frame
length(CAS) = ${CAS};
length(FRAME_HEADER(id)) = ${HDR};
length(FRAME(id)) = ${HDR} + ${PAYLOAD};
length(NOTHING) = 0;
noise_max_burst = ${NOISE_MAX_BURST}; % Noise model
noise_min_backoff = ${NOISE_MIN_BACKOFF};
noise_max_backoff = ${NOISE_MAX_BACKOFF};

% Model constants and helper functions
map NODES: Pos;

FRM_START: Sender -> Nat;
symbol: Signal -> Symbol;
signal: Symbol -> Signal;
noise_id: Nat;

var id: Sender;
eqn NODES = 3;

noise_id = NODES + 1;
CYCLE_length = NODES * length(FRAME(1)) + NIT_length;
FRM_START(id) = Int2Nat(id - 1) * length(FRAME(1));
symbol(CAS_BIT) = CAS;
symbol(FIRST_HEADER_BIT(id)) = FRAME_HEADER(id);
symbol(FIRST_BODY_BIT(id)) = FRAME(id);
symbol(NOISE) = NOTHING;
symbol(NONE) = NOTHING;
signal(CAS) = CAS_BIT;
signal(FRAME_HEADER(id)) = FIRST_HEADER_BIT(id);
signal(FRAME(id)) = FIRST_BODY_BIT(id);

act % Bus <--> Node
get, get’, put, put’, Get, Put: Sender # Signal;
% Barrier
bus: Signal;
bit, wait;
Encode: Symbol;
% MAC <--> CODEC
encode: Symbol;
macCAS, macStart, macStop;
% CODEC <--> POC
decode, Decode: Sender # Symbol;
is_idle, Is_idle: Bool;
% Events (for debugging and visualisation purposes)
enter_operation, init_sched, startup_failed, attempt_startup: Sender;
abort: Nat;
reset, Reset: Sender;

% The noise model is parameterised with three values: the maximum length of a
% noise burst, during which the noise process generates noise. The minimum
% backoff and maximum backoff bound the period in between bursts.
proc

29



Noise = NoiseP(0, 0);
NoiseP(burst, backoff: Nat) =

((backoff >= noise_min_backoff || burst > 0) && burst < noise_max_burst)
-> put(noise_id, NOISE) .

NoiseP(burst=burst + 1, backoff=0)
+ (backoff <= noise_max_backoff)

-> put(noise_id, NONE) .
NoiseP(burst=0, backoff=backoff + 1)

+ (burst == noise_max_burst)
-> put(noise_id, NONE) .

NoiseP(burst=0, backoff=1)
+ sum s: Signal . get(noise_id, s) . NoiseP();

% The bus process is modelled as a discrete-time process that reads from NODES
% processes and writes the combined signal (two senders results in noise) back
% to those processes.
map combine: Signal # Signal -> Signal;
var a, b: Signal;
eqn combine(NONE, b) = b;

combine(a, NONE) = a;
!(isNone(a) || isNone(b)) -> combine(a, b) = NOISE;

% Two variants are given: one that reads and writes in arbitrary order every bit
% period...
proc

UnorderedBus(r, w: Set(Sender), nr, nw: Nat, s: Signal) =
(nr <= NODES) -> (

sum i: Sender, s’: Signal . (!(i in r)) -> put’(i, s’) .
UnorderedBus(r + {i}, w, nr + 1, nw,

if(i == mute_node, s, combine(s, s’)))
) <> (

(nw <= NODES) -> (
sum i: Sender . (!(i in w)) -> get’(i, if(i == deaf_node, NONE, s)) .

UnorderedBus(r, w + {i}, nr, nw + 1, s)
) <> (
bus(s) . UnorderedBus({}, {}, 0, 0, NONE)

)
);

% ... and one that does it in a fixed order.
OrderedBus(r, w: Sender, s: Signal) =
(r <= NODES + 1) -> (

sum s’: Signal . put’(r, s’) .
OrderedBus(r + 1, w, if(r == mute_node, s, combine(s, s’)))

) <> (
(w <= NODES + 1) -> (

get’(w, if(w == deaf_node, NONE, s)) . OrderedBus(r, w + 1, s)
) <> (

bus(s) . OrderedBus(1, 1, NONE)
)

);
% It should not make a difference which is used, so the UnorderedBus is only

30



% there fore debugging purposes.
Bus = OrderedBus(1, 1, NONE);

% The CODEC process models the SDL process of the same name. We abstract away
% from the process of bitstrobing. What remains is the mutually exclusive
% sending and receiving of bit patterns.
proc CODEC = nested(id: Sender)
{

initial state Init() = Receive(0, 0, 0, NONE);

state Receive(lastsender: Sender, idle, data: Nat, sig: Signal) =
is_idle(idle >= CHIRP_length) . Receive()

+ bit . Receive()
+ put(id, NONE) . Receive()
+ sum S: Symbol . encode(S) . Send(signal(S), 0, length(S))
+ sum S: Signal . get(id, S) .

(
isNone(S) -> Receive(0, if(isNone(sig),

min(CHIRP_length, idle + 1), 1), 0, S)
+ isNoise(S) -> Receive(0, 0, 0, S)
+ isData(S) -> Announce(s(S), 0, if(lastsender == s(S), data+1, 0), sig)
+ isCAS(S) -> Announce(s(S), 0, if(isCAS(sig), data + 1, 1), S)
+ isHeader(S) || isBody(S) -> Announce(s(S), 0, 1, S)
);

state Announce(lastsender: Sender, idle, data: Nat, sig: Signal) =
is_idle(false) . Announce()

+ (data > 0 && data == length(symbol(sig)))
-> decode(id, symbol(sig)) .

Receive(sig=if(isHeader(sig), FIRST_BODY_BIT(s(sig)), sig))
<> Receive();

state Send(sig: Signal, sent, len: Nat) =
is_idle(false) . Send()

+ bit . Send()
+ (sent == 0) -> put(id, sig) . Send(sent = 1)
+ (sent > 0 && sent < len)

-> put(id, if(isCAS(sig), sig, DATA_BIT(id))) .
Send(sent = sent + 1)

+ (sent == len && isHeader(sig))
-> put(id, DATA_BIT(id)) .

Send(DATA_BIT(id), sent + 1, length(FRAME(id)))
+ (sent == len && !isHeader(sig))

-> sum S: Signal . get(id, S) . Receive(0, 0, 0, NONE)
<> sum S: Signal . get(id, S) . Send();

};

% The MAC process models the SDL process of the same name, and decides when the
% CODEC process should send data. When it is active, it periodically sends a
% (startup) frame. If activation is done by a macCAS action, a CAS symbol is

31



% sent before activation. The MAC process is deactivated by a macStop action.
proc MAC(id: Sender, togo: Int, active: Bool) =
macCAS . encode(CAS) . MAC(active=true, togo=FRM_START(id) + length(CAS) - 1)

+ macStart . MAC(active=true, togo=FRM_START(id))
+ macStop . MAC(active=false)
+ active -> (

(togo > 0) -> (
wait . MAC(togo=togo - 1)

) <> (
encode(FRAME_HEADER(id)) . MAC(togo=CYCLE_length - 1)

)
) <> wait . MAC();

% The DelayedController models a normal POC process that starts after MIN_DELAY
% and before MAX_DELAY clock ticks.
proc DelayedController = nested(id: Sender)
{

initial state Off = Wait(0);

state Wait(counter: Nat) =
decode(id, CAS) . Wait()

+ sum id’: Sender .
decode(id, FRAME_HEADER(id’)) .
Wait()

+ sum id’: Sender .
decode(id, FRAME(id’)) .
Wait()

+ (counter < MAX_DELAY) -> bit . Wait(counter=counter + 1)
+ (counter >= MIN_DELAY) -> Controller(id, 0);

};

% The Controller process models the startup behaviour of the POC SDL process.
% Its states correspond directly to the SDL states defined in the FlexRay
% specification.
proc Controller = nested(id: Sender, attempts: Nat)
{

% StartupPrepare is called every time a startup attempt is initiated. If the
% number of startup attempts exceeds some maximum (in our case, we choose this
% maximum to be 3), then startup is aborted altogether.
initial state StartupPrepare =

(attempts < 3) -> attempt_startup(id) . ColdstartListen(0, 0)
<> startup_failed(id) . Failed(id);

% In the ColdStartListen state, the node waits for communication on the bus.
% If no communication is detected, a coldstart is attempted by sending a CAS
% symbol (by activating the MAC through a macCAS action).
state ColdstartListen(tStartup, tStartupNoise: Nat) =
(

decode(id, CAS) . ColdstartListen(tStartupNoise=0)

32



+ sum id’: Sender .
decode(id, FRAME_HEADER(id’)) .
ColdstartListen(tStartupNoise=0)

+ sum id’: Sender .
decode(id, FRAME(id’)) .
bit .
init_sched(id) .
InitialiseSchedule(0, id’)

+ reset(id) . AbortStartup(attempts=0)

+ bit .
(
(tStartup >= 2 * CYCLE_length - 1 ||
tStartupNoise >= 4 * CYCLE_length - 1)

-> ( is_idle(true) .
macCAS .
abort(id) .
ColdstartCollisionResolution(attempts=attempts+1, timer=-length(CAS))

+ is_idle(false) .
ColdstartListen(tStartup=0,

tStartupNoise=tStartupNoise + 1)
)

+ (tStartup < 2 * CYCLE_length - 1 &&
tStartupNoise < 4 * CYCLE_length - 1)

-> ( is_idle(true) .
ColdstartListen(tStartup=tStartup + 1,

tStartupNoise=tStartupNoise + 1)
+ is_idle(false) .
ColdstartListen(tStartup=0,

tStartupNoise=tStartupNoise + 1)
)

)
);

% In InitialiseSchedule, the node waits for the clock synchronisation process
% to finish its initialisation. In this model, we abstracted away from clock
% synchronisation, and therefore this state can be left as soon as the second
% frame of the sender that this node is synchronising on (syncon) is received.
state InitialiseSchedule(timer: Nat, syncon: Sender) =
(

decode(id, CAS) . InitialiseSchedule()
+ sum id’: Sender .

decode(id, FRAME_HEADER(id’)) .
InitialiseSchedule()

+ sum id’: Sender .
decode(id, FRAME(id’)) .
(

(id’ == syncon)
-> ((timer == CYCLE_length - 1)

-> bit .

33



IntegrationColdstartCheck(
Int2Nat(FRM_START(syncon) + length(FRAME(id’))), syncon,
false, false, false, false)

<> AbortStartup()
)

<> InitialiseSchedule()
)

+ reset(id) . AbortStartup(attempts=0)

+ bit .
(timer > CYCLE_length)
-> AbortStartup()
<> InitialiseSchedule(timer=timer + 1)

);

% Once a CAS symbol was sent, the ColdStartCollisionResolution state is
% entered to see if any other node is taking on the role of leading coldstart
% node. If not, then this node is the leading coldstart node, and the
% ColdstartConsistencyCheck state is entered. Otherwise, startup is aborted.
state ColdstartCollisionResolution(timer: Int) =
(

decode(id, CAS) . AbortStartup()
+ sum id’: Sender .

decode(id, FRAME_HEADER(id’)) .
AbortStartup()

+ sum id’: Sender .
decode(id, FRAME(id’)) .
ColdstartCollisionResolution()

+ reset(id) . AbortStartup(attempts=0)

+ bit .
(timer < CYCLE_length * 4)
-> ColdstartCollisionResolution(timer=timer + 1)
<> ColdstartConsistencyCheck(0, false, false)

);

% During the ColdstartConsistencyCheck, the node checks that during two
% consecutive cycles a frame is decoded. If no-one followed, then it is
% assumed that the other nodes were not actve yet, and the ColdStartGap state
% is entered. If in the first cycle a frame is decoded, but not in the second,
% then it is assumed that something went wrong, and the startup attempt is
% simply aborted. If all went well, normal operation is entered.
state ColdstartConsistencyCheck(timer: Nat, ok1, ok2: Bool) =
(

decode(id, CAS) . ColdstartConsistencyCheck()
+ sum id’: Sender .

decode(id, FRAME_HEADER(id’)) .
ColdstartConsistencyCheck()

+ sum id’: Sender .
decode(id, FRAME(id’)) .

34



ColdstartConsistencyCheck(ok1=true, ok2=timer >= CYCLE_length)
+ reset(id) . AbortStartup(attempts=0)

+ (timer < CYCLE_length * 1 - 1)
-> bit . ColdstartConsistencyCheck(timer=timer + 1)

+ (timer < CYCLE_length * 2 - 1 && timer >= CYCLE_length * 1 - 1)
-> (ok1 -> bit . ColdstartConsistencyCheck(timer=timer + 1)

<> ((attempts < 3) -> macStop .
ColdstartGap(attempts=attempts + 1, timer=0)

<> bit . AbortStartup()))
+ (timer >= CYCLE_length * 2 - 1)
-> (ok1 -> bit . enter_operation(id) . NormalOperation()

<> AbortStartup())
);

% During the ColdStartGap, no frames are sent for one cycle. After this cycle,
% frame sending is recommenced, so that other nodes may follow. Entering the
% ColdStartGap state counts as a new coldstart attempt, and can therefore only
% be done a limited number of times.
state ColdstartGap(timer: Nat) =
(

decode(id, CAS) . AbortStartup()
+ sum id’: Sender .

decode(id, FRAME_HEADER(id’)) .
AbortStartup()

+ sum id’: Sender .
decode(id, FRAME(id’)) .
ColdstartGap()

+ reset(id) . AbortStartup(attempts=0)

+ (timer < CYCLE_length * 1)
-> bit . ColdstartGap(timer + 1)
<> macStart . bit .

attempt_startup(id) . ColdstartCollisionResolution(1)
);

% The IntegrationColdstartCheck is performed when a node is not the leading
% coldstart node. It checks that either the leading coldstart node is still
% sending frames as expected, or otherwise at least two other nodes are
% sending frames. If this is not the case, then the coldstart attempt is
% aborted.
state IntegrationColdstartCheck(timer: Nat, syncon: Sender,

seen1, seen2, ok1, ok2: Bool) =
(

decode(id, CAS) . IntegrationColdstartCheck()
+ reset(id) . AbortStartup(attempts=0)
+ sum id’: Sender .

decode(id, FRAME_HEADER(id’)) .
IntegrationColdstartCheck()

+ sum id’: Sender .

35



decode(id, FRAME(id’)) .
IntegrationColdstartCheck(

seen1=timer >= 1 * CYCLE_length,
ok1=seen1 || (id’==syncon && timer >= 1 * CYCLE_length),
seen2=timer >= 2 * CYCLE_length,
ok2=seen2 || (id’==syncon && timer >= 2 * CYCLE_length))

+ (timer < 1 * CYCLE_length - 1)
-> bit . IntegrationColdstartCheck(timer=timer + 1)

+ (timer < 2 * CYCLE_length - 1 && timer >= 1 * CYCLE_length - 1)
-> bit . IntegrationColdstartCheck(timer=timer + 1)

+ (timer < 3 * CYCLE_length - 1 && timer >= 2 * CYCLE_length - 1)
-> (ok1 -> bit . IntegrationColdstartCheck(timer=timer + 1)

<> bit . AbortStartup())
+ (timer >= 3 * CYCLE_length - 1)

-> (ok2 -> macStart . ColdstartJoin(0)
<> AbortStartup())

);

% During the ColdstartJoin phase, a coldstart node that is not the leading
% coldstart node starts sending frames.
state ColdstartJoin(timer: Nat) =
(

decode(id, CAS) . ColdstartJoin()
+ sum id’: Sender .

decode(id, FRAME_HEADER(id’)) .
ColdstartJoin()

+ sum id’: Sender .
decode(id, FRAME(id’)) .
ColdstartJoin()

+ reset(id) . AbortStartup(attempts=0)

+ bit . (timer < 3 * CYCLE_length)
-> ColdstartJoin(timer + 1)
<> enter_operation(id) . NormalOperation()

);

% When a startup attempt is aborted, the MAC is stopped and the StartupPrepare
% state is entered again.
state AbortStartup() =
(

decode(id, CAS) . AbortStartup()
+ sum id’: Sender .

decode(id, FRAME_HEADER(id’)) .
AbortStartup()

+ sum id’: Sender .
decode(id, FRAME(id’)) .
AbortStartup()

+ reset(id) . AbortStartup(attempts=0)

36



+ macStop . abort(id) . Controller()
);

% During normal operation, there is no more controlling behaviour of the POC.
% We must however actively ignore bit and decode actions to avoid deadlock.
state NormalOperation() =

bit . NormalOperation()
+ sum s: Symbol . decode(id, s) . NormalOperation()
+ reset(id) . AbortStartup(attempts=0);

% When startup failed (i.e., the node ran out of startup attempts), this is
% signalled by a startup_failed action. The other actions are there to avoid
% deadlocks in the model.
state Failed() =

bit . Failed()
+ sum s: Symbol . decode(id, s) . Failed()
+ reset(id) . AbortStartup(attempts=0)
+ startup_failed(id) . Failed();

};

% An absent node is modelled explicitly to be able to reuse this specification
% for two-node scenarios without having to change the number of parallel
% components.
proc AbsentNode(id: Sender) =

wait|bit|bit . AbsentNode()
+ sum s: Signal . get(id, s) . AbsentNode()
+ put(id, NONE) . AbsentNode();

% A normal node consists of a CODEC, a MAC and a POC that starts immediately.
proc NormalNode(id: Sender) =

allow({wait|bit|bit, Encode|bit, get, put, Decode, Is_idle, macCAS|macCAS,
macStart|macStart, macStop|macStop, enter_operation, startup_failed,
abort, init_sched, reset, attempt_startup},

comm({encode|encode->Encode, decode|decode->Decode,
is_idle|is_idle->Is_idle},

CODEC(id) || Controller(id, 0) || MAC(id, 0, false)
));

% A delayed node consists of a CODEC, a MAC and a POC that starts operation
% after a bounded initial delay.
proc DelayedNode(id: Sender) =

allow({wait|bit|bit, Encode|bit, get, put, Decode, Is_idle, macCAS|macCAS,
macStart|macStart, macStop|macStop, enter_operation, startup_failed,
abort, init_sched, reset, attempt_startup},

comm({encode|encode->Encode, decode|decode->Decode,
is_idle|is_idle->Is_idle},

CODEC(id) || DelayedController(id) || MAC(id, 0, false)
));

37



% If a resetting node is present, then this process controls when it may be
% reset. For larger statespaces, this process can be changed to restrict the
% frequency with which a node can be reset.
proc Resetter =

reset(reset_node) . Resetter()
+ bit . Resetter();

% The system consists of three nodes. Each node is of type Absent, Normal or
% Delayed. The bus|... multi-actions form the clock tick barrier, all other
% actions are either a result of communication between subcomponents, or actions
% that signal relevant events such as failure to start up.
init

allow({Get, Put,
bus|Encode|Encode|Encode|bit|bit|bit ,
bus|Encode|Encode|wait|bit|bit|bit |bit,
bus|Encode|wait|wait|bit|bit|bit |bit|bit,
bus|wait|wait|wait|bit|bit|bit |bit|bit|bit,
Decode, Is_idle, init_sched,
macCAS|macCAS, macStart|macStart, macStop|macStop,
enter_operation, startup_failed, abort, Reset, attempt_startup},

comm({get|get’->Get, put|put’->Put, reset|reset->Reset},

38



Science Reports Department of Mathematics and Computer Science 
 Technische Universiteit Eindhoven 
 
If you want to receive reports, send an email to: wsinsan@tue.nl  (we cannot guarantee the availability of the 
requested reports). 
 
 
In this series appeared (from 2009): 
 
 
 
09/01 Wil M.P. van der Aalst, Kees M. van Hee, Compositional Service Trees 
 Peter Massuthe, Natalia Sidorova and 
 Jan Martijn van der Werf 
 
09/02 P.J.l. Cuijpers, F.A.J. Koenders, Queue merge: a Binary Operator for Modeling Queueing Behavior 
 M.G.P. Pustjens, B.A.G. Senders, 
 P.J.A. van Tilburg, P. Verduin 
 
09/03 Maarten G. Meulen, Frank P.M. Stappers  Breadth-Bounded Model Checking 
 and Tim A.C. Willemse 
 
09/04 Muhammad Atif and MohammadReza Formal Specification and Analysis of Accelerated Heartbeat Protocols 
 Mousavi 
 
09/05 Michael Franssen Placeholder Calculus for First-Order logic 
 
09/06 Daniel Trivellato, Fred Spiessens, POLIPO: Policies & OntoLogies for the Interoperability, Portability, 
 Nicola Zannone and Sandro Etalle and autOnomy 
 
09/07 Marco Zapletal, Wil M.P. van der Aalst, Pattern-based Analysis of Windows Workflow 
 Nick Russell, Philipp Liegl and 
 Hannes Werthner 
 
09/08 Mike Holenderski, Reinder J. Bril Swift mode changes in memory constrained real-time systems 
 and Johan J. Lukkien 
 
09/09 Dragan Bošnački, Aad Mathijssen and Behavioural analysis of an I²C Linux Driver 
 Yaroslav S. Usenko 
 
09/10 Ugur Keskin In-Vehicle Communication Networks: A Literature Survey 
 
09/11 Bas Ploeger Analysis of ACS using mCRL2 
 
09/12 Wolfgang Boehmer, Christoph Brandt Evaluation of a Business Continuity Plan using Process Algebra 
 and Jan Friso Groote and Modal Logic 
 
09/13 Luca Aceto, Anna Ingolfsdottir, A Rule Format for Unit Elements 
 MohammadReza Mousavi and 
 Michel A. Reniers 
 
09/14 Maja Pešić,  Dragan Bošnački and Enacting Declarative Languages using LTL: Avoiding Errors and 
 Wil M.P. van der Aalst Improving Performance 
 
09/15 MohammadReza Mousavi and Proceedings of Formal Methods 2009 Doctoral Symposium 
 Emil Sekerinski, Editors 
 
09/16 Muhammad Atif Formal Analysis of Consensus Protocols in Asynchronous Distributed 
  Systems 
 
09/17 Jeroen Keiren and Tim A.C. Willemse Bisimulation Minimisations for Boolean Equation Systems 
 
09/18 Kees van Hee, Jan Hidders, On-the-fly Auditing of Business Processes 
 Geert-Jan Houben, Jan Paredaens, 
 Philippe Thiran 
 
 
10/01 Ammar Osaiweran, Marcel Boosten, Analytical Software Design: Introduction and Industrial Experience Report 
 MohammadReza Mousavi 
 
10/02 F.E.J. Kruseman Aretz Design and correctness proof of an emulation of the floating-point operations 
  of the Electrologica X8. A case study 

mailto:wsinsan@tue.nl


10/03 Luca Aceto, Matteo Cimini, Anna On Rule Formats for Zero and Unit Elements 
 Ingolfsdottir, MohammadReza 
 Mousavi and Michel A. Reniers 
 
10/04 Hamid Reza Asaadi, Ramtin Khosravi, Towards Model-Based Testing of Electronic Funds Transfer Systems 
 MohammadReza Mousavi, Neda Noroozi 
 
10/05 Reinder J. Bril, Uğur Keskin, Schedulability analysis of synchronization protocols based on overrun without 
 Moris Behnam, Thomas Nolte payback for hierarchical scheduling frameworks revisited 
 
10/06 Zvezdan Protić Locally unique labeling of model elements for state-based model differences 
 
10/07 C.G.U. Okwudire and R.J. Bril Converting existing analysis to the EDP resource model 
 
10/08 Muhammed Atif, Sjoerd Cranen, Reconstruction and verification of group membership protocols 
 MohammadReza Mousavi 
 
10/09 Sjoerd Cranen, Jan Friso Groote, A linear translation from LTL to the first-order modal µ-calculus 
 Michel Reniers 
 
10/10 Mike Holenderski, Wim Cools Extending an Open-source Real-time Operating System with Hierarchical  
 Reinder J. Bril, Johan J. Lukkien Scheduling 
 
10/11 Eric van Wyk and Steffen Zschaler 1st Doctoral Symposium of the International Conference on Software Language  
  Engineering (SLE) 
 
10/12 Pre-Proceedings 3rd International Software Language Engineering Conference 
 
10/13 Faisal Kamiran, Toon Calders and Discrimination Aware Decision Tree Learning 
 Mykola Pechenizkiy 
 
10/14 J.F. Groote, T.W.D.M. Kouters and Specification Guidelines to avoid the State Space Explosion Problem 
 A.A.H. Osaiweran 
 
10/15 Daniel Trivellato, Nicola Zannone and GEM: a Distributed Goal Evaluation Algorithm for Trust Management 
 Sandro Etalle 
 
10/16 L. Aceto, M. Cimini, A.Ingolfsdottir, Rule Formats for Distributivity 
 M.R. Mousavi and M. A. Reniers 
 
10/17 L. Aceto, A. Birgisson, A. Ingolfsdottir, Decompositional Reasoning about the History of Parallel Processes 
 and M.R. Mousavi 
 
10/18 P.D. Mosses, M.R. Mousavi and Robustness os Behavioral Equivalence on Open Terms 
 M.A. Reniers 
 
10/19 Harsh Beohar and Pieter Cuijpers Desynchronisability of (partial) closed loop systems 
 
 
11/01 Kees M. van Hee, Natalia Sidorova Refinement of Synchronizable Places with Multi-workflow Nets -  
 and Jan Martijn van der Werf Weak termination preserved! 
 
11/02 M.F. van Amstel, M.G.J. van den Brand Using a DSL and Fine-grained Model Transformations to Explore the boundaries of 
 and L.J.P. Engelen Model Verification  
 
11/03 H.R. Mahrooghi and M.R. Mousavi Reconciling Operational and Epistemic Approaches to the Formal Analysis of  
  Crypto-Based Security Protocols 
 
11/04 J.F. Groote, A.A.H. Osaiweran and Benefits of Applying Formal Methods to Industrial Control Software 
 J.H. Wesselius  
 
11/05 Jan Friso Groote and Jan Lanik Semantics, bisimulation and congruence results for a general stochastic  
  process operator 
 
11/06 P.J.L. Cuijpers Moore-Smith theory for Uniform Spaces through Asymptotic Equivalence 
 
11/07 F.P.M. Stappers, M.A. Reniers and Transforming SOS Specifications to Linear Processes 
 S. Weber 
 
11/08 Debjyoti Bera, Kees M. van Hee, Michiel A Component Framework where Port Compatibility Implies Weak Termination 
 van Osch and Jan Martijn van der Werf 
 
11/09 Tseesuren Batsuuri, Reinder J. Bril and Model, analysis, and improvements for inter-vehicle communication  
 Johan Lukkien using one-hop periodic broadcasting based on the 802.11p protocol 



11/10 Neda Noroozi, Ramtin Khosravi,  Synchronizing Asynchronous Conformance Testing 
 MohammadReza Mousavi  
 and Tim A.C. Willemse 
 
11/11 Jeroen J.A. Keiren and Michel A. Reniers Type checking mCRL2 
 
11/12 Muhammad Atif, MohammadReza  Formal Verification of Unreliable Failure Detectors in Partially 
 Mousavi and Ammar Osaiweran Synchronous Systems 
 
11/13 J.F. Groote, A.A.H. Osaiweran and Experience report on developing the Front-end Client unit  
 J.H. Wesselius under the control of formal methods 
 
11/14 J.F. Groote, A.A.H. Osaiweran and Ananlyzing a Controller of a Power Distribution Unit 
 J.H. Wesselius Using Formal Methods 
 
11/15 John Businge, Alexander Serebrenik Eclipse API Usage: The Good and The Bad 
 and Mark van den Brand 
 
11/16 J.F. Groote, A.A.H. Osaiweran, Investigating the Effects of Designing Control Software 
 M.T.W. Schuts and J.H. Wesselius using Push and Poll Strategies 
 
11/17 M.F. van Amstel, A. Serebrenik Visualizing Traceability in Model Transformation Compositions 
 And M.G.J. van den Brand 
 
11/18 F.P.M. Stappers, M.A. Reniers, Dogfooding the Structural Operational Semantics of mCRL2 
 J.F. Groote and S. Weber 
 
 
12/01 S. Cranen Model checking the FlexRay startup phase 


	Blanco
	CSR-12-01
	Model checking the FlexRay startup phase

	PUBL.LS4csr 2009 tm

