
Model Checking Transactional Memories ∗

Rachid Guerraoui Thomas A. Henzinger Barbara Jobstmann Vasu Singh

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
{rachid.guerraoui,tah,barbara.jobstmann,vasu.singh}@epfl.ch

Abstract
Model checking software transactional memories (STMs) is diffi-
cult because of the unbounded number, length, and delay of con-
current transactions and the unbounded size of the memory. We
show that, under certain conditions, the verification problem can
be reduced to a finite-state problem, and we illustrate the use of
the method by proving the correctness of several STMs, including
two-phase locking, DSTM, TL2, and optimistic concurrency con-
trol. The safety properties we consider include strict serializability
and opacity; the liveness properties include obstruction freedom,
livelock freedom, and wait freedom.

Our main contribution lies in the structure of the proofs, which
are largely automated and not restricted to the STMs mentioned
above. In a first step we show that every STM that enjoys certain
structural properties either violates a safety or livenessrequirement
on some program with two threads and two shared variables, or
satisfies the requirement on all programs. In the second stepwe
use a model checker to prove the requirement for the STM applied
to a most general program with two threads and two variables.In
the safety case, the model checker constructs a simulation relation
between two carefully constructed finite-state transitionsystems,
one representing the given STM applied to a most general program,
and the other representing a most liberal safe STM applied tothe
same program. In the liveness case, the model checker analyzes
fairness conditions on the given STM transition system.

Categories and Subject Descriptors D.1.3 [Programming tech-
niques]: Concurrent Programming; D.2.4 [Software engineering]:
Software/Program Verification

General Terms Languages, Verification

Keywords Transactional memories, Model checking

1. Introduction
With the advent of multi-core processors, there is a new urgency for
concurrent programming models that give the programmer theillu-
sion of sequentiality and the compiler maximal flexibility.A model
that has enjoyed particular recent success is software transactional
memory (STM), which allows the programmer to think in coarse-
grained code blocks that appear to be executed atomically and, at

∗ This research was supported by the Swiss National Science Foundation.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’08 June 7–13, 2008, Tucson, Arizona, USA.
Copyright c© 2008 ACM 978-1-59593-860-2/08/06. . . $5.00

the same time, minimally constrains the compiler. Inspiredby how
databases manage concurrency, transactional memory was first in-
troduced by Herlihy and Moss [HM93] in multi-processor design.
Later Shavit and Touitou [ST95] introduced STM, a software-based
variant of the concept, which enables a new way of looking at con-
current programming. An extensive overview of STM can be found
in [LR07]. In this paper, we consider the following STM algo-
rithms: two-phase locking, DSTM [HLMS03], TL2 [DSS06], and
optimistic concurrency control [KR81].

Precisely because STM algorithms encapsulate the difficulty of
handling concurrency, the potential of subtle errors is enormous.
This makes STM a ripe and important proving ground for for-
mal verification. While there have been initial steps in thisdirec-
tion [COP+07], the challenge remains daunting for several reasons.

First, there is no generally agreed upon formal notion of cor-
rectness for STM. Scott [Sco06] was the first to provide a formal
semantics for STM. However, his weakest correctness criterion re-
quires the order of commits to be preserved. Thus, the popular STM
algorithm TL2 [DSS06], which does not preserve the order of com-
mits, falls outside the semantic classification by Scott. Guerraoui
and Kapalka [GK08] discussed various alternatives to precisely
capture the safety aspect of STM and highlighted the subtle dif-
ferences with database transactions.

Second, while model checking is the verification technique
that is best equipped to find concurrency bugs, model checking
is severely handicapped by several sources of unbounded state in
STM: memory size, thread count, and transaction length cannot
be bounded, and neither can the delay until a transaction commits,
nor the number of times that a transaction aborts. As with relaxed
memory models, special care is needed in formulating a verification
problem that is both relevant and solvable, as some problemsabout
sequentializing concurrent systems are undecidable [AMP00].

Third, the specification of an STM universally quantifies over
all possible application programs, requiring the desired safety and
liveness conditionsfor all programs that are executed on the STM.
In this sense, STM verification resembles the problem of check-
ing that a processor implements an instruction set architecture,
where the executed programs are also universally quantified. In
both cases, the key is to define (and check) a suitable implemen-
tation relation [BD94]. While in processor verification, the imple-
mentation relation needs to handle pipelines and out-of-order exe-
cution, in STM, we need to handle aborted transactions.

We present in this paper a new technique for verifying STM
safety and liveness properties. Our technique addresses the three
issues above as follows.

First, the safety requirements we consider arestrict serializ-
ability [Pap79] andopacity[GK08]. (We consider a single-version
read/write restriction of the general notion of opacity.) Strict se-
rializability preserves the order of conflicting operations between
transactions, and the order of non-overlapping transactions. Opac-
ity ensures, in addition, that aborting transactions do notsee an
inconsistent state of the memory, which can be disastrous inSTMs

(due to infinite loops, or exceptions). We study opacity, because it
provides the programmer with the full sequentiality illusion and is
satisfied by most STM protocols that claim that illusion [LR07].
Strict serializability is considered here for pedagogicalreasons, as
it is intuitive and captures the main technical difficultiesbehind
verifying opacity. The liveness requirements we consider are the
standard notions ofobstruction freedom[HLM03], livelock free-
dom[AKH03], andwait freedom[Her91].

Second, we exploit the structural symmetries that are inherent in
STM algorithms to reduce the verification of unbounded STM state
spaces to a problem that involves only a small number of threads
and shared variables. Specifically, we show that every STM that en-
joys certain structural properties either violates any of the consid-
ered safety and liveness requirements on some program with two
threads and two shared variables, or satisfies the requirement on
all programs. The structural properties, which expect all threads to
be treated equally, are fulfilled by most transactional algorithms,
including for instance, two-phase locking, DSTM, TL2, and op-
timistic concurrency control. Similar techniques for reducing un-
bounded instances of model-checking tasks to small, characteristic
instances have been used for verifying protocols with an unbounded
number of identical processes [BCG89] and cache-coherencepro-
tocols [HQR99].

Third, and perhaps most importantly, we define two finite-state
transition systems that generate exactly the strictly serializable
(resp. opaque) executions of programs with two threads and two
shared variables. These transition systems can be viewed asmost
liberal reference STM algorithmsguaranteeing strict serializability
(resp. opacity). To our knowledge, the transition systems presented
in this paper provide the first finite-state representation of the lan-
guage of strictly serializable (resp. opaque) executions for trans-
actions that may abort. The finite size of the transition systems is
achieved by a careful choice of state, which encompasses forevery
thread a set of read variables (at most two), a set of written variables
(at most two), a set of variables not allowed to be read (at most two),
a set of variables not allowed to be written (at most two), anda set
of threads with overlapping, preceding transactions (at most 1). We
show that an STM algorithm is strictly serializable (resp. opaque)
iff for a specific, most general program with two threads and two
variables, all executions are permitted by the reference STM algo-
rithm. Then, instead of checking language containment between a
given STM algorithm and the reference algorithm, we check for
the existence of a simulation relation between both transition sys-
tems [Mil71]. The existence of a simulation relation is a commonly
used, efficient sufficient condition for language containment.

Putting all steps together, we reduce the problem of verifying
the safety of an STM algorithm, which is unbounded in many di-
mensions (memory size, thread count, transaction delay, etc.), to a
simulation check between two finite-state systems. For two-phase
locking, DSTM, TL2, and optimistic concurrency control, weob-
tain transition systems with up to 12,000 states, and the reference
transition systems have about 12,500 states. We implemented a
simulation checker that automatically verifies strict serializability
for optimistic concurrency control and opacity for two-phase lock-
ing, DSTM, and TL2 in less than 30 minutes. It should be noted
that the methodology is applicable to any other STM algorithms
that satisfy the structural properties. Our simulation checker finds
that correctness is not self-evident in many STM algorithms. For
example, we found an ambiguity in ordering of two particularop-
erations in the published TL2 algorithm [DSS06]. One of the order-
ings makes TL2 unsafe. In this case, the simulation check provides
as counterexample an execution that is not strictly serializable (and
thus not opaque). We therefore expect our verification tool to be
useful to STM designers when they develop or modify STM algo-
rithms.

On the liveness side, we prove again a structural reduction the-
orem to check the desired liveness requirement on the finite-state
transition system that results from a given STM algorithm applied
to a most general program with two threads and one variable. We
built a model checking tool to verify the different livenessproper-
ties. In the case of obstruction freedom, this amounts to checking
a Streett condition. The check goes through for DSTM. For two-
phase locking, TL2, and optimistic concurrency control, the model
checker automatically generates counterexamples to obstruction
freedom, as it does for DSTM and livelock freedom.

2. Safety in transactional memories
We introduce a few notions about transactions, and then formalize
the correctness of transactional memories.

Let V be a set{1, . . . , k} of k variables, and let C =
{commit} ∪ ({read, write} × V) be the set ofcommandson the
variablesV . Also, let Ĉ = C ∪ {abort}. Let T = {1, . . . , n}
be a set ofn threads. Let Ŝ = Ĉ × T be the set ofstatements.
Also, let S = C × T . A word w ∈ Ŝ∗ is a finite sequence of
statements. Given a wordw ∈ Ŝ∗, we define thethread projection
w|t of w on threadt ∈ T as the subsequence ofw consisting of all
statementss in w such thats ∈ Ĉ ×{t}. Given a thread projection
w|t = s0 . . . sm of a wordw on threadt, a statementsi is finishing
in w|t if it is a commit or an abort. A statementsi is initiating in
w|t if it is the first statement inw|t, or the previous statementsi−1

is a finishing statement.
Given a thread projectionw|t of a word w on threadt, a

consecutive subsequencex = s0 . . . sm of w|t is a transaction
of threadt in w if (i) s0 is initiating in w|t, and (ii) sm is either
finishing inw|t, or sm is the last statement inw|t, and (iii) no other
statement inx is finishing inw|t. The transactionx is committingin
w if sm is a commit. The transactionx is aborting in w if sm is an
abort. Otherwise, the transactionx is unfinishedin w. Given a word
w and two transactionsx andy in w (possibly of different threads),
we say thatx precedesy in w, written asx <w y, if the last
statement ofx occurs before the first statement ofy in w. A word
w is sequentialif for every pairx, y of transactions inw, either
x <w y or y <w x. We define a functioncom : Ŝ∗ → S∗ such
that for all wordsw ∈ Ŝ∗, the wordcom(w) is the subsequence of
w that consists of every statement inw that is part of a committing
transaction.

A transactionx of a threadt writes to a variablev if x contains
a statement((write, v), t). A statements = ((read, v), t) in x is
a global readof a variablev if there is no statement((write, v), t)
befores in the transactionx. A transactionx of a threadt globally
reads a variablev if there exists a global read of variablev in
transactionx. A word w is transaction equivalentto a wordw′

if for every threadt ∈ T , we havew|t = w′|t. Note that two
transaction equivalent words have the same order of commands for
all threads.

2.1 Safety criteria

Conflict serializability [EGLT76] is a commonly used correctness
criterion for concurrent systems and, in particular, for transactional
systems. Conflict serializability allows us to omit the values of
read and write commands, since the consistency of the valuesfol-
lows from preserving the order of conflicts. In the context oftrans-
actional memories, a stronger property, called strict serializabil-
ity, is considered. Strict serializability preserves the order of non-
overlapping transactions too. We note that strict serializability does
not state any restrictions on the operations of the abortingtrans-
actions. In the scope of STMs, an even stronger notion of correct-
ness, referred to asopacity, has been suggested [HLMS03, GK08]
to avoid unexpected side effects, like infinite loops, or array bound

violations. Opacity requires that a word be strictly serializable, and
that even aborting transactions do not read inconsistent values.

Now, we formalize these correctness criteria. We start with
the notion of a conflict. Transactional memories use direct update
semantics (every transaction modifies the shared variablesin place
and restores them upon abort), or deferred update semantics(every
transaction modifies a local copy, and changes the shared copy
upon a commit). We choose to define conflicts under the deferred
update semantics. A statements1 of transactionx and a statement
s2 of transactiony (wherex is different fromy) conflictin a wordw
if (i) s1 is a global read of some variablev, ands2 is a commit, and
y writes tov, or (ii) s1 ands2 are both commits, andx andy write
to the same variablev. A wordw = s0 . . . sm is conflict equivalent
to a wordw′ if (i) w is transaction equivalent tow′, and (ii) for
every pairsi, sj of statements inw, if si andsj conflict andi < j,
thensi occurs beforesj in w′. Note that transaction equivalence
ensures that conflict equivalence is a symmetric relation, sincew′

is a permutation ofw.
A word w = s0 . . . sm is strictly equivalentto a wordw′ if (i)

w is conflict equivalent tow′, and (ii) for every pairx, y of trans-
actions inw, wherex is a committing or an aborting transaction, if
x <w y, then it is not the case thaty <w′ x. A word w ∈ Ŝ∗ is
strictly serializableif there exists a sequential wordw′ such thatw′

is strictly equivalent tocom(w). Furthermore, a wordw is opaque
if there exists a sequential wordw′ such thatw′ is strictly equiva-
lent tow. We note that given a wordw, if w is opaque, thenw is
strictly serializable. An infinite wordw ∈ Ŝω is strictly serializ-
able(resp.opaque) if every finite prefix ofw is strictly serializable
(resp. opaque).

Example. Consider a wordw = ((read, v1), t1), ((write, v1), t2),
((write, v2), t2), (commit, t2), ((read, v2), t1), (abort, t1). w has
two transactions: (i) an aborting transaction oft1, and (ii) a com-
mitting transaction oft2. The following pairs of statements conflict:
(((read, v1), t1),(commit, t2)) and (((read, v2), t1), (commit, t2)).
The wordw is strictly serializable becausecom(w) = ((write, v1),
t2), ((write, v2), t2), (commit, t2). On the other hand,w is not
opaque sincet1 reads the old value ofv1 (beforet2 commits) and
the new value ofv2 (committed byt2).

2.2 Transactional memories

We consider thread programs as our basic sequential unit of com-
putations. We express thread programs as infinite binary trees on
commands. This makes the representation independent of specific
control flow statements, such as exceptions for handling aborts of
transactions. For every command of a thread, we define two succes-
sor commands, one if the command is successfully executed, and
another if the command fails due to an abort of the transaction. Note
that this definition allows us to capture easily different retry mech-
anisms of TMs, e.g., retry the same transaction until it succeeds or
try another transaction after an abort. We use a set of threadpro-
grams to define a multithreaded program. Formally, athread pro-
gram θ on a setC of commands is a functionθ : B

∗ → C. We
write Θ for the set of thread programs. A(multithreaded) program
p on n threads andk variables is ann-tuplep = 〈θ1, . . . , θn〉 of
thread programs onC. Figure 1(a) shows an example program on
two threads and two variables. LetP n,k be the set of all programs
onn threads andk variables. LetP be the set of all programs.

We define a transactional memory as an abstract function that
takes as input a program, and produces a set of infinite words.
Formally, atransactional memory (TM)is a functionM : P →

2Ŝω

. A transactional memoryM ensures strict serializability (resp.
opacity) for all programs withn threads andk variablesif for every
programp ∈ P n,k , every wordw ∈ M(p) is strictly serializable
(resp. opaque). Moreover, a transactional memoryM ensures strict

(read, v1)

(read, v1) (write, v2)

0 1

(read, v1)

(write, v1)

(write, v1)

10 10

(commit)

(commit)

θ1 : θ2 :

(a) An example program on two threads
and two variables

Program

TM Algorithm

Scheduler

Execution

trace

CommandsResponse

(b) Interaction in
the model

Figure 1. Our framework of transactional memory

serializability(resp.opacity) if it ensures strict serializability (resp.
opacity) for all programs with an arbitrary number of threads and
variables.

3. Transactional memory algorithms
We use state transition systems to define TM. A TM algorithm is
a family of TM transition systems, one forn threads andk vari-
ables, for everyn andk. A TM transition system consists of a set
of states, an initial state, an extended set of commands depending
on the underlying TM, a pending function, and a transition rela-
tion between the states. The extended commands include the setC
of commands, and TM specific additional commands. For exam-
ple, a given TM may require that a thread locks a variable before
writing to the variable, or that a thread validates the variables read
in a transaction, before accessing a new variable. Every extended
command is assumed to execute atomically. The pending function
represents the pending command of a thread in a state, and ensures
that if a thread has not finished the execution of a particularcom-
mand, then no other command is executed by the thread.

A TM algorithm interacts with a program and a scheduler (see
Fig. 1(b)). The scheduler chooses a thread, which determines the
next command to be executed. The TM transition system decides
whether the command can be executed in a single atomic step, or
in several atomic steps (using additional extended commands), or
has to be aborted. The TM algorithm gives back to the program a
response. The response is⊥ if the TM algorithm needs additional
steps to complete the command, 0 if the TM algorithm needs to
abort the transaction, and 1 if the TM algorithm has completed
the command. Given a program, a scheduler, and a TM transition
system, we get a run. Projecting the run to the set of successful
statements (that is, aborts, and statements that get response 1) gives
a word inŜω. We describe the language of a TM transition system
as the set of words on̂Sω that it can produce for any program and
any scheduler.

Formally, aschedulerσ on T is a functionσ : N → T . We
define aTM algorithm A as a family ofTM transition systems
An,k = 〈Q, qinit , D, π, δ〉 for eachn andk, whereQ is a set of
states,qinit is the initial state,D is the set of extended commands
with C ⊆ D, the functionπ : Q × T → C ∪ {⊥} represents
the pending command in a state for a thread , andδ ⊆ Q × Ĉ ×
ŜD ×Resp×Q is the deterministic or non-deterministic transition
relation, wherêSD = (D ∪ {abort}) × T andResp = {⊥, 0, 1}.
The transition relationδ and the pending functionπ obey the
following rules:
1. For all threadst ∈ T , we haveπ(qinit , t) =⊥.
2. For all statesq, q′ ∈ Q such that there exists an incoming
transition(q, c, (d, t), r, q′) ∈ δ to q′, if r =⊥, thenπ(q′, t) = c,
otherwiseπ(q′, t) =⊥.
3. For all statesq, q′ ∈ Q such that there exists an incoming
transition(q, c, (d, t), r, q′) ∈ δ to q′, thenπ(q′, u) = π(q, u)
for all threadsu 6= t.

4. For all statesq and all threadst, if π(q, t) = c wherec 6=⊥, then
for all outgoing transitions(q, c1, (d, t), r, q′) ∈ δ from q, we have
c1 = c.
5. For all statesq and all threadst, if π(q, t) =⊥, then there
exists an outgoing transition(q, c, (d, t), r, q′ ∈ δ from q for every
commandc ∈ C.
6. For all q ∈ Q, for all transitions(q, c, (d, t), r, q′) ∈ δ, we have
d = abort if and only if r = 0.

Note that the rules above restrict the transition relation and
the pending functionπ such thatπ is unique. A commandc is
enabledin a stateq for threadt if π(q, t) ∈ {⊥, c} (i.e., either
no command is pending, orc itself is pending). In a deterministic
transition relationδ, a commandc is abort enabledin a state
q for threadt if c is enabled inq for threadt and there is no
transition(q, c, (d, t), r, q′) ∈ δ such thatd ∈ D. A transition
relation δ is deterministicif for all q ∈ Q and (c, t) ∈ S, if
(q, c, (d1, t), r1, q1) ∈ δ and(q, c, (d2, t), r2, q2) ∈ δ, thend1 =
d2, r1 = r2, andq1 = q2. Unless otherwise stated, TM transition
systems have deterministic transition relations. We shalluse non-
deterministic TM transition systems later to describe reference TM
algorithms.

Let p = 〈θ1, . . . , θn〉 be a program inP n,k . Let σ be a sched-
uler onn threads. Arun ρ = 〈q0, l0, (d0, t0), r0〉〈q1, l1, (d1, t1),
r1〉 . . . of a TM transition systemAn,k with schedulerσ on pro-
gram p is an infinite sequence of tuples of states, program lo-
cations, statements, and responses, wherelj = 〈l1j , . . . , l

n
j 〉 ∈

(B∗)n for all j ≥ 0 and the following hold: (i)q0 = qinit

and l0 = 〈ǫ, . . . , ǫ〉, (ii) for all j ≥ 0, there exists a transi-
tion (qj , cj , (dj , tj), rj , qj+1) ∈ δ such thattj = σ(j) and
cj = θtj (l

tj

j) and for all t ∈ T , we haveltj+1 = ltj if either
t 6= tj or rj =⊥, andltj+1 = ltj · rj otherwise. Given a sched-
uler and a program, there is exactly one run for a deterministic TM
transition systemAn,k , whereas there is at least one run for a non-
deterministic TM transition system. We say that a statementsj ∈ Ŝ
is successfulin the runρ = 〈q0, l0, s0, r0〉〈q1, l1, s1, r1〉 . . . if (i)
rj ∈ {0, 1}, or (ii) rk = 1 with j < k andrj+1 . . . rk−1 are all
equal to⊥. We define thelanguageL(An,k) of An,k as the set
of all infinite wordsw ∈ Ŝω such thatw is the sequence of all
successful statements in a run ofAn,k with some scheduler onn
threads, on some program onn threads andk variables. For a TM
algorithmA, we require that forn ≤ n′ andk ≤ k′, the language
L(An,k) ⊆ L(An′,k′

).
A TM algorithm A defines a transactional memoryM such

that for alln andk, for every programp in P n,k and every word
w ∈ Ŝω, we havew ∈ M(p) iff there exists a schedulerσ on
T and a corresponding runρ of An,k with σ on p such thatw
is the sequence of all successful statements inρ. It follows that
a TM defined by a TM algorithmA ensures strict serializability
(resp. opacity) for all programs withn threads andk variables iff
all words inL(An,k) are strictly serializable (resp. opaque).

In the following sections, we describe different transactional
memories as TM algorithms. To simplify the description, we view
a stateq of the corresponding TM transition systems as ann-tuple
〈q1 . . . qn〉, where each componentqt corresponds to a threadt and
is called thethread stateof t.

3.1 The sequential TM

To keep our first example simple, we describe a sequential TM.The
sequential TM executes the transactions sequentially (as ideally
suited for a uniprocessor). We define the sequential TMMseq using
a sequential TM algorithmAseq . The sequential TM transition
systemAn,k

seq for n threads andk variables is given by the tuple
〈Q, qinit , D, π, δ〉. The thread stateqt of threadt is in {T, F}.
If a threadt has an unfinished transaction in a stateq, then the

thread stateqt is T, and F otherwise. The initial stateqinit =
〈F, . . . , F〉. The set of extended commands isD = C. A transition
(q1, c, (d, t), r, q2) is in δ if c is enabled inq1 for threadt and one
of the following holds:
1. Read (resp. write). (i) c = (read, v) (resp.c = (write, v)) and
d = c andr = 1, and (ii) qu

1 = F for all u 6= t, and (iii) qt
2 = T

andqu
2 = qu

1 for all u 6= t. When a thread reads (resp. writes) a
variable, if the state of all other threads isF, then the state oft is
set toT.
2. Commit. (i) c = commit andd = c andr = 1, and (ii)qu

1 = F
for all u 6= t, and (iii) qt

2 = F andqu
2 = qu

1 for all u 6= t. When a
thread commits, if the state of all other threads isF, then the state
of t is set toF.

A transition(q1, c, (abort, t), 0, q2) is in δ if c is abort enabled
in q1 for threadt andq2 = q1.

3.2 The two-phase locking TM

Our second example of a TM algorithm is based on two-phase lock-
ing (2PL) protocol, commonly used in database transactions. Every
transaction locks the variables it reads or writes before accessing
them, and releases all acquired locks during the commit. A shared
lock is acquired for reading, and an exclusive lock is acquired for
writing. We define the 2PL TMM2PL using a 2PL TM algorithm
A2PL. The 2PL TM transition systemAn,k

2PL for n threads andk
variables is given by the tuple〈Q, qinit , D, π, δ〉. The thread state
qt of threadt is a pair〈rs, ws〉, wherers ⊆ V is the set of vari-
ables locked byt in shared mode, andws ⊆ V is the set of vari-
ables locked in exclusive mode. For every thread, the initial thread
state of threadt is qt

init = 〈∅, ∅〉. The set of extended commands is
D = C ∪ ({rlock, wlock}×V). A transition(q1, c, (d, t), r, q2) is
in δ if c is enabled inq1 for threadt and one of the following holds:
1. Read. (i) c = (read, v) and d = c and r = 1, and (ii)
v ∈ wst

1 ∪ rst
1, and (iii) q2 = q1. When a thread reads a variable

that already exists in the read set or the write set of the thread, then
the state does not change.
2. Write. (i) c = (write, v) andd = c andr = 1, and (ii)v ∈ wst

1,
and (iii) q2 = q1. When a thread writes to a variable that already
exists in the write set of the thread, then the state does not change.
3. Read Lock. (i) c = (read, v) andd = (rlock, v) andr =⊥,
and (ii) v /∈ rst

1 andv /∈ wsu
1 for all threadsu, and (iii) rst

2 =
rst

1 ∪ {v}, and (iv)qu
2 = qu

1 for all threadsu 6= t. When a threadt
readsv, andv is not in the read set oft, andv is not in the write set
of any thread, thenv is added to the read set oft.
4. Write Lock. (i) c = (write, v) andd = (wlock, v) andr =⊥,
and (ii)v /∈ wst

1 andv /∈ rsu
1 ∪wsu

1 for all threadsu 6= t, and (iii)
rst

2 = rst
1 ∪ {v}, and (iv)qu

2 = qu
1 for all threadsu 6= t. When a

thread writesv, andv is not in the write set oft, andv is not in the
read set or write set of any thread other thant, thenv is added to
the write set oft.
4. Commit. (i) c = commit andd = c andr = 1, and (ii)rst

2 = ∅,
andwst

2 = ∅, and (iii) for all threadsu 6= t, we havequ
2 = qu

1 .
When a thread commits, the read set and the write set are changed
to empty.

A transition(q1, c, (abort, t), 0, q2) is in δ if c is abort enabled
in q1 for threadt andrst

2 = ∅ andwst
2 = ∅, andqu

2 = qu
1 for all

threadsu 6= t.

3.3 The dynamic software transactional memory

Dynamic software transactional memory (DSTM) [HLMS03] is
one of the most popular STM algorithms. The algorithm exists
in several flavors. In this work, we focus on one of them, called
invisible read DSTM, where the transactions require ownership of
variables only for writing. The readers are not visible to the writers.
Upon reading, a transaction validates its read set in order to ensure
opacity. In our work, we ignore optimizations like early release

possible in DSTM. We model the situation of a transaction aborting
another transaction by allowing each transaction to set an abort
flag for other transactions, and requiring that a transaction aborts
whenever the abort flag is set for the thread. We define DSTM
TM Mdstm using a DSTM TM algorithmAdstm . The DSTM TM
transition systemAn,k

dstm for n threads andk variables is given by
〈Q, qinit , D, π, δ〉. A thread stateqt of threadt is defined as a 3-
tuple 〈status t, rst, ost〉, wherestatus t ∈ {aborted, validated,
invalid, finished} is the status of threadt, and rst ⊆ V is the
read set of threadt, andost ⊆ V is the ownership set of thread
t. For every thread, the initial thread state of threadt is qt

init =
〈finished, ∅, ∅〉. The set of extended commands isD = C ∪
({own}× V)∪ {validate}. A transition(q1, c, (d, t), r, q2) is in δ
if c is enabled inq1 for threadt and one of the following holds:
1. Local read. (i) c = (read, v) andd = c andr = 1, and (ii)
v ∈ ost

1 andstatus t
1 6= aborted, and (iii) q2 = q1. When a thread

readsv such that the read is not global, the state does not change.
2. Global read. (i) c = (read, v) andd = c andr = 1, and (ii)
v /∈ ost

1 andstatus t
1 = finished, and (iii) rst

2 = rst
2 ∪ {v} and

ost
2 = ost

1 andstatus t
2 = status t

1, and (iv)qu
2 = qu

1 for all threads
u 6= t. When a thread readsv globally, if the status of the thread is
finished, thenv is added to the read set of the thread.
3. Own. (i) c = (write, v) andd = (own, v) andr =⊥, and (ii)
status t

1 6= aborted, and (iii) rst
2 = rst

1 andost
2 = ost

1 ∪ {v}
andstatus t

2 = status t
1, and (iv) for all threadsu 6= t, if v ∈ osu

1 ,
thenstatusu

2 = aborted, andosu
2 = ∅, andrsu

2 = ∅, otherwise
statusu

2 = statusu
1 and osu

2 = osu
1 and rsu

2 = rsu
1 . When a

thread writes tov, if the status of the thread is notaborted, then
the variablev is added to the owned set of the thread, and if some
thread ownsv, then the status of that thread is set toaborted and
its read set and own set are set to empty.
4. Write. (i) c = (write, v) and d = c and r = 1, and (ii)
status t

1 6= aborted andv ∈ ost
1, and (iii) qu

2 = qu
1 for all u ∈ T .

When a thread writes tov, if the status is not aborted andv is in the
own set of the thread, then the state does not change.
5. Validate. (i) c = commit andd = validate and r =⊥, and
(ii) status t

1 = finished and status t
2 = validated, and (iii) for

all threadsu 6= t, we haversu
2 = rsu

1 andosu
2 = osu

1 , and if
rst

1 ∩ osu
1 6= ∅, thenstatusu

2 = aborted, elsestatusu
2 = status t

1.
When a threadt commits, if the status isfinished, then the status is
changed tovalidated, and for all threadsu whose own set intersects
with the read set oft, the status ofu is changed toaborted.
6. Commit. (i) c = commit and d = c and r = 1, and (ii)
status t

1 = validated, and (iii) ost
2 = ∅, and rst

2 = ∅ and
status t

2 = finished, and (iv) for all threadsu 6= t, we haversu
2 =

rsu
1 andosu

2 = osu
1 , and ifrsu

1 ∩ost
1 6= ∅, thenstatusu

2 = invalid,
elsestatusu

2 = statusu
1 . When a threadt commits, if the status is

validated, then the own set and read set oft are set to empty and
the status is set tofinished, and the status of threads, whose read
set intersects with the own set oft, is set toinvalid.

A transition (q1, c, (abort, t), 0, q2) is in δ if the commandc
is abort enabled inq1 for threadt, andstatus t

2 = finished, and
rst

2 = ∅ andost
2 = ∅, andqu

2 = qu
1 for all threadsu 6= t.

3.4 The TL2 transactional memory

Transactional locking 2 (TL2) [DSS06] is a TM that uses global
version numbers to ensure correctness. Version numbers allow ef-
ficient read set validation in a distributed setting. We model ver-
sion numbers using modified sets for each thread. When a trans-
action commits, it adds its write set to the modified set of ev-
ery thread with an unfinished transaction. We define the TL2 TM
MTL2 using the TL2 TM algorithm asATL2 . The TL2 TM tran-
sition systemAn,k

TL2 for n threads andk variables is given by the
tuple 〈Q, qinit , D, π, δ〉. A thread stateqt of t in the TL2 algo-
rithm is defined as a 5-tuple〈status t, rst,wst, lst,mst〉, where

status t ∈ {validated, finished}, rst ⊆ V is the read set,wst ⊆ V
is the write set,lst ⊆ V is the lock set, andmst ⊆ V is the
modified set. The initial thread stateqt

init = 〈finished, ∅, ∅, ∅, ∅〉
for all threadst ∈ T . The set of extended commands isD =
C ∪ ({lock} × V) ∪ {validate}. A transition(q1, c, (d, t), r, q2)
is in δ if c is enabled inq1 for t and one of the following holds:
1. Local read. (i) c = (read, v) andd = c andr = 1, and (ii)
v ∈ wst

1 andq2 = q1. When a thread readsv such that the read is
not global, the state does not change.
2. Global read. (i) c = (read, v) andd = c andr = 1, and (ii)
v /∈ wst

1 andv /∈ mst
1, and (iii) rst

2 = rst
1 ∪ {v} andlst

2 = lst
1

andwst
2 = wst

1 andmst
2 = mst

1 andstatus t
2 = status t

1, and (iv)
for all threadsu 6= t, we havequ

2 = qu
1 . When a thread readsv and

the read is global, if the variable is not in the modified set, thenv is
added to the read set.
3. Write. (i) c = (write, v) and d = c and r = 1, and (ii)
wst

2 = wst
1 ∪ {v} andlst

2 = lst
1 andrst

2 = rst
1 andmst

2 = mst
1

andstatus t
2 = status t

1, and (iv)qu
2 = qu

1 for all threadsu 6= t.
When a thread writes tov, the variablev is added to its write set.
4. Lock. (i) c = commit andd = (lock, v) andr =⊥, and (ii)
status t

1 = finished andv ∈ wst
1 and (iii) there is no threadu ∈ T

such thatv ∈ lsu
1 , and (iv) lst

2 = lst
1 ∪ {v} andrst

2 = rst
1 and

wst
2 = wst

1 andmst
2 = mst

1 andstatus t
2 = status t

1, and (v) for
all threadsu 6= t, we havequ

2 = qu
1 . When a threadt commits, if

the status isfinished andv is in the write set oft andv is not in the
lock set of any thread, thenv is added to the lock set oft.
5. Validate. (i) c = commit andd = validate andr =⊥, and (ii)
status t

1 = finished andrst
1 ∩ mst

1 = ∅ andwst
1 = lst

1 and for all
threadsu 6= t, we haverst

1∩lsu
1 = ∅, and (iii)status t

2 = validated
and lst

2 = lst
1 andrst

2 = rst
1 andwst

2 = wst
1 andmst

2 = mst
1,

and (iv) qu
2 = qu

1 for all threadsu 6= t When a thread commits,
if the status isfinished, and the read set does not intersect with the
modified set, and the write set is equal to the lock set, and theread
set does not intersect with the lock set of any other thread, then the
status is set tovalidated.
6. Commit. (i) c = commit and d = c and r = 1, and (ii)
status t

1 = validated, and (iii) rst
2 = lst

2 = wst
2 = mst

2 = ∅
andstatus t

2 = finished, and (iv) for all threadsu 6= t, we have
rsu

2 = rsu
1 and wsu

2 = wsu
1 and lsu

2 = lsu
1 and statusu

2 =
statusu

1 . (v) for all threadsu 6= t such thatrsu
1 ∪ wsu

1 6= ∅, we
havemsu

2 = msu
1 ∪ wst

1. When a threadt commits, if the status
is validated, then the status is changed tofinished, and the read,
write, lock, and modified sets are set to empty, and all variables
written by t are added to the modified sets of all threads that have
an unfinished transaction.

A transition (q1, c, (abort, t), 0, q2) is in δ if the commandc
is abort enabled inq1 for threadt, andstatus t

2 = finished, and
rst

2 = wst
2 = lst

2 = mst
2 = ∅, andqu

2 = qu
1 for all threadsu 6= t.

3.5 The optimistic concurrency control TM

We now discuss a common concurrency protocol used in databases.
It was proposed by Kung et al. [KR81], and is called optimistic
concurrency control (OCC). OCC executes the transactions of the
threads without any synchronization. Before committing, every
transaction chooses a sequence number and validates its read set.
Transactions commit in the order of sequence numbers, which
we model using precedence sets, similar to the way we modeled
version numbers using modified sets in the TL2 TM algorithm.

We define the OCC TMMocc using an OCC TM algorithm
Aocc. We refer to the OCC TM transition system withn threads
and k variables asAn,k

occ . The formal definition of the transition
system can be obtained from the original algorithm, as we didin
the previous examples.

Table 1 shows runs with different schedules on the program in
Figure 1(a), for each TM algorithm described above.

Table 1. Examples of runs and words in the language of different TM algorithms. Notation:r = read, w = write, c = commit, a = abort,
l = lock, o = own, v = validate, k = chklock, s = serialize. Command(c, t) is written asct.

TM Scheduler output The sequences0s1 . . . in the run ofL(A) The word for the run ofL(A)

seq 11122 . . . (r, 1)1, (w, 2)1, c1, (w, 1)2, c2 . . . (r, 1)1, (w, 2)1, c1, (w, 1)2, c2 . . .
112122 . . . (r, 1)1, (w, 2)1, a2, c1, (w, 1)2, c2 . . . (r, 1)1, (w, 2)1, a2, c1, (w, 1)2, c2 . . .

2PL 111112 . . . (l, 1)1, (r, 1)1, (l, 2)1, (w, 2)1, c1, (l, 2)2 . . . (r, 1)1, (w, 2)1, c1 . . .
1211112 . . . (l, 1)1, a2, (r, 1)1, (l, 2)1, (w, 1)1, c1, (l, 2)2 . . . a2, (r, 1)1, (w, 2)1, c1 . . .

dstm 12211112 . . . (r, 1)1, (o, 1)2, (w, 1)2, (o, 2)1, (w, 2)1, v1, c1, a2 . . . (r, 1)1, (w, 1)2, (w, 2)1, c1, a2 . . .
12222111 . . . (r, 1)1, (o, 1)2, (w, 1)2, , v2, c2, (o2)1, (w, 2)1, a1 . . . (r, 1)1, (w, 1)2, c2, (w, 2)1, a1 . . .

TL2 11211122212 . . . (r, 1)1, (w, 2)1, (w, 1)2, (l, 2)1, k1, v1, (l, 1)2, k2, v2, c1, c2 . . . (r, 1)1, (w, 2)1, (w, 1)2, c1, c2 . . .
112121222 . . . (r, 1)1, (w, 2)1, (w, 1)2, (l, 2)1, (l, 1)2, a1, k2, v2, c2 . . . (r, 1)1, (w, 2)1, (w, 1)2, a1, c2 . . .

occ 1211212 . . . (r, 1)1, (w, 1)2, (w, 2)1, s1, s2, c1, c2 . . . (r, 1)1, (w, 1)2, (w, 2)1, c1, c2 . . .
1221112 . . . (r, 1)1, (w, 1)2, s2, (w, 2)1, s1, a1, c2 . . . (r, 1)1, (w, 1)2, (w, 2)1, a1, c2 . . .

4. Reduction theorem for safety
We present a reduction theorem for strict serializability and opacity.
The theorem states that if a TM ensures strict serializability (resp.
opacity) for all programs on two threads and two variables, then the
TM ensures strict serializability (resp. opacity). The reduction the-
orem relies on certain structural properties of transactional mem-
ories. These properties are satisfied by all TMs that we discussed
in the previous section. For every property, we also give more de-
tails on why the mentioned TMs satisfy these properties. Note that
the properties are sufficient (and not necessary) conditions for the
reduction theorem to hold.

We define four structural properties for TMs. LetM be a trans-
actional memory. Letp be a program onn threads andk variables.
Let w be a finite prefix of a word inM(p).

P1. Transaction projection.Aborting and unfinished transactions
can influence other transactions only by forcing them to abort.
Thus, removing all aborting transactions and some of the unfin-
ished transactions do not change the response of the TM to the
remaining statements. Formally, letX be the set of transactions in
w. We define thetransaction projectionof w on X ′ ⊆ X as the
subsequence ofw that contains every statement of all transactions
in X ′. The propertyP1 states that the transaction projection ofw
onX ′, whereX ′ contains all committing transactions, no aborting
transactions, and any subset of the unfinished transactionsin w, is
in M(p′) for some programp′. For instance, a TM satisfiesP1 if
for every threadt: (i) whenever a statement of an aborting or unfin-
ished transaction of threadt changes the state of another threadu,
thenu cannot commit, and (ii) upon an abort, the state oft is reset
to the initial thread state oft.

P2. Thread symmetry.For non-overlapping transactions, the TM
is oblivious to the identity of the thread executing the transaction.
The propertyP2 states that if (i)w have no aborting transactions,
and (ii) there exist two threadsu andt such that for all committing
transactionsx of u andy of v in the wordw, eitherx <w y or
y <w x, then the wordw′ obtained by renaming all transactions of
threadu to be from threadt is a finite prefix of a word inM(p′) for
some programp′ on n − 1 threads andk variables. For instance,
a TM satisfiesP2 if (i) the thread state is set to the initial thread
state upon a commit, and (ii) the transition relation is identical for
all threads.

P3. Variable projection.If a transaction can commit, then removing
all statements that involve some particular variables doesnot cause
the transaction to abort. We define thevariable projectionof w on
V ′ ⊆ V as the subsequence ofw that contains all commit and
abort statements, and all read and write statements to variables in
V ′. The propertyP3 states that ifw has no aborting transactions,

then for allV ′ ⊆ V , the variable projection ofw onV ′ is inM(p′),
wherep′ is obtained by removing all read and write statements to
variables inV \ V ′ from all thread programs inp. For instance, a
TM satisfiesP3 if reading or writing a variable does not remove a
conflict on other variables. All TMs we know of satisfyP3 as they
track every variable accessed by every thread independently.

P4. Monotonicity. If a word is allowed by the TM, then more
sequential forms of the word are also allowed. Formally, letF ⊆
S∗ be the set of opaque (resp. strict serializable) words with exactly
one unfinished transaction. We define a functionseq : F → 2F

such that ifw2 ∈ seq(w1) and y is the unfinished transaction
in w1, then (i) com(w2) is sequential and strictly equivalent to
com(w′

1), and (ii) all statements ofy in w′
1 occur inw2 in some

order such that order of all conflicts of global reads iny with other
transactions inw′

1 is preserved, wherew′
1 is obtained fromw1 by

adding for every transactionx that commits beforey in w, a write
of an auxiliary variablevxy to x, and a read ofvxy to y. (These
variables are introduced to maintain the order of transactions.) The
monotonicity property for opacity (resp. strict serializability) states
that if w = w′ · s, wherew′ ∈ F , ands is not an abort, ands
is a statement of the unfinished transaction inw′, then for every
word w2 ∈ seq(w′), the wordw2 · s is a finite prefix of a word
in M(p′) for some programp′. For instance, a TM satisfiesP4 if
it is unfinished commutative and commit commutative. A TM is
unfinished commutativeif for all words wp, wq, ws ∈ S∗, if the
word wp · wq · s · ws is a finite prefix of a word inM(p), where
s is a global read and no statement inwq conflicts with s, then
wp ·s·wq ·ws is a finite prefix of a word inM(p′) for some program
p′. A TM is commit commutativeif for all wordswp, wq, ws ∈ S∗,
if wp · wq · s · ws is a finite prefix of a word inM(p), wheres is
a commit of some transactionx and no statement inwq conflicts
with s, then the wordwp · x · w′

q · ws is a finite prefix of a word
in M(p′) for some programp′, wherew′

q is the word obtained
by removing transactionx from wq . The idea is that with these
commutativity rules, an interleaved word can be made sequential.
The TMs, 2PL, DSTM, TL2 and OCC are unfinished commutative
and commit commutative, and thus satisfy monotonicity.

Theorem 1. If a TM M ensures strict serializability (resp. opacity)
for all programs on two threads and two variables, and satisfies the
propertiesP1, P2, P3, andP4 for opacity (resp. strict serializabil-
ity), thenM ensures strict serializability (resp. opacity).

Proof. We prove the theorem for strict serializability. A similar
proof holds for opacity. The proof is by contradiction. Letp be
a program inP n,k . Let w be a word inM(p) such thatw is
not strictly serializable. Letwp be the longest finite prefix ofw
such thatwp is strictly serializable and letw1 = wp · s, where

s = (c, t) is a statement of transactionx. Let X be the set of
committed transactions inwp. By propertyP1, there exists a word
w2 generated by projectingw1 to X ∪ {x} such thatw2 is a finite
prefix of a word inM(p2) for some programp2. We note that
w2 = w′

p · s andw′
p is strictly serializable andw2 is not strictly

serializable. So, using propertyP4 for strict serializability, there
exists a wordw′′

p ∈ seq(w′
p) such that the wordw3 = w′′

p · s is
a finite prefix of a word inM(p2). In w3 only one transaction,x,
does not execute sequentially. Using propertyP2, we rename the
threads for the transactions inw3. We let all transactions exceptx
to be executed by threadu. Let this renaming give wordw4. We
note that the last statement ofx is acommit. As w4 is not strictly
serializable, we know (by the definition of conflict) that oneof the
following holds: (i)s1 = ((read, v1), t) ands2 = ((read, v2), t)
are global reads of transactionx such that some transactiony of
threadu writes tov1 and some transactiony′ of u with y′ = y
or y <w4

y′ writes tov2 and both commit betweens1 and s2,
(note thaty andy′ cannot overlap due to the structure ofw4,) or (ii)
s1 = ((read, v1), t) is a global read of transactionx such that some
transactiony of threadu writes tov1 and commits afters1, and
there is a committing transactiony′ with y′ = y or y <w4

y′ which
has a command(read, v2) or (write, v2), andx also writes tov2.
(Note thatv1 may be same asv2). Let w5 be a variable projection
of w4 on {v1, v2}. We know thatw5 is a finite prefix of a word
in M(p5) for some programp5 on two threads and two variables,
by propertyP3. Also, we note thatw5 is not strictly serializable.
As M ensures strict serializability for all programs on two threads
and two variables, we get a contradiction. Thus, there is no such
programp5. This leads us to a contradiction. �

5. The reference TM algorithms
To verify the safety properties of a transactional memory, we take
the following approach. We construct a reference TM algorithm
for strict serializability (RSS TM algorithm), whose language is
exactly the set of all strictly serializable words. Similarly, we con-
struct a reference TM algorithm for opacity (RO TM algorithm),
whose language is exactly the set of all opaque words. Then,
we show that a given TM defined by a TM algorithmA ensures
strict serializability (resp. opacity) iff for alln andk, all words in
L(An,k) are in the language of the RSS (resp. RO) TM transition
system forn threads andk variables. If the given TM satisfies the
structural properties presented in the previous section, it is suffi-
cient to check that all words inL(A2,2) are in the language of the
RSS (resp. RO) TM transition system for 2 threads and 2 variables.

The key insight that makes our technique work is that the ref-
erence TM algorithms for strict serializability and opacity for two
threads and two variables can be defined asfinite-statetransition
systems. This is not obvious, as threads may be delayed arbitrarily,
transactions may contain arbitrarily many statements and may be
aborted arbitrarily often. We present the RSS TM transitionsystem
first, because it provides the basis for defining the RO TM transi-
tion system. Suitable finite-state reference TM transitionsystems
can also be defined for stronger notions of safety, such as theno-
tions described by Scott [Sco06], by modifying the semantics of
conflict.

5.1 The reference TM algorithm for strict serializability

The classical approach to checking whether a word is strictly se-
rializable is to construct a directed graphG = (V, E), called the
conflict graph [Pap79], of the committing transactions in the word.
The conflict graph captures the precedence of the committingtrans-
actions based on the conflicts. Given a wordw = s0s1 . . ., the
transactions inw form the setV of vertices in the conflict graph.
There exists an edge from a vertexv1 to a vertexv2 if v2 commits
or aborts beforev1 starts, or a statementsi of v1 conflicts with a

statementsj of v2 andi > j. The conflict graphG is acyclic iff the
wordw is strictly serializable. We note that the size of this construc-
tion is unbounded. The following parameterized word illustrates
the point:wm =((read, v1), t1), (((write, v1), t2), (commit, t2))m,
(commit, t1). The number of vertices in the conflict graph ofwm

is m + 1. Thus, we cannot aim to create a finite transition system
for the RSS TM algorithm using conflict graphs. We give a first
finite state representation for the language of strictly serializable
words, when transactions may abort. The idea of maximal serializ-
ability was also addressed earlier [FR85] for a bounded number of
non-aborting transactions with a bounded number of statements per
transaction. The idea was built upon a notion of transitive conflicts,
which does not hold when transactions may abort.

The key idea to get around the problem of infinite states is to
maintain sets calledprohibited read and write setsfor every thread.
These sets allow to handle unbounded delay between transactions,
as committing transactions store the required informationin the sets
of other threads. Once a transaction commits or aborts, we need not
remember it (unlike conflict graphs). Thus, we need to store infor-
mation of at most one transaction per thread. The RSS TM tran-
sition system is based on the following observation:Every com-
mitting transaction serializes at some point during its execution.
The RSS TM transition system makes a non-deterministic guess of
when a transaction serializes. Depending upon the guess, the tran-
sition system checks upon the commit of a transaction, whether the
commit can be executed, or it needs to abort.

Formally, we define theRSS TM algorithmAss as a fam-
ily of RSS TM transition systems. TheRSS TM transition sys-
tem An,k

ss for n threads andk variables is given by the tuple
〈Q, qinit , D, π, δ〉. The thread stateqt is a 6-tuple of the form
〈Status t, rst,wst, prst, pwst, Predst〉, whereStatus t ∈ {started,
invalid, serialized, finished} is the status function,rst ⊆ V is the
read set,wst ⊆ V is the write set,prst ⊆ V is the prohibited
read set,pwst ⊆ V is the prohibited write set, andPredst ⊆ T
is the predecessor set for threadt. If v ∈ prst (resp.v ∈ pwst),
then the status of the threadt is set toinvalid if t globally reads
(resp. writes to)v. If u ∈ Predst, then the unfinished transaction
of u has to commit before the unfinished transaction oft. The ini-
tial thread stateqt

init is 〈finished, ∅, ∅, ∅, ∅, ∅〉. The set of extended
commands isD = C∪{serialize}. The transition relationδ is non-
deterministic. A transition(q1, c, (d, t), r, q2) is in δ if c is enabled
in q1 for threadt and one of the following holds.
1. Local read. (i) c = (read, v) andd = c andr = 1, and (ii)
v ∈ wst

1, and (iii) q2 = q1. When a thread readsv, if the read is
not global, then the state remains unchanged.
2. Global read. (i) c = (read, v) andd = c andr = 1, and (ii)
v /∈ wst

1, and (iii) if status t
1 = finished, thenstatus t

2 = started,
else ifstatus t

1 = serialized andv ∈ prst
1, thenstatus t

2 = invalid,
elsestatus t

2 = status t
1, and (iv)rst

2 = rst
1 ∪ {v} andwst

2 = wst
1

andprst
2 = prst

1 andpwst
2 = pwst

1 andPredst
2 = Preds t

1, and
(v) for all threadsu 6= t, we havequ

2 = qu
1 . When a threadt readsv

globally,v is added to the read set, and if the status oft is finished,
then the status oft is changed tostarted, else if the status oft is
serialized andv is in the prohibited read set, then the status oft is
changed toinvalid.
3. Write. (i) c = (write, v) and d = c and r = 1, and (ii) if
status t

1 = finished, thenstatus t
2 = started, else if status t

1 =
serialized andv ∈ pwst

1, thenstatus t
2 = invalid, elsestatus t

2 =
status t

1, and (iii) wst
2 = wst

1 ∪ {v} andrst
2 = rst

1 andprst
2 =

prst
1 andpwst

2 = pwst
1 andPredst

2 = Predst
1, and (iv) for all

threadsu 6= t, we havequ
2 = qu

1 When a threadt writes tov, the
variablev is added to the write set, and if the status oft is finished,
then the status oft is changed tostarted, else if the status oft is
serialized andv is in the prohibited write set, then the status oft is
changed toinvalid.

(r, v)2

(w, v)1

s2

s1

c2

c1

C4

s1

s2

c2

c1

C3

(w, v)2
s1

C2

s2
(r, v)1

(w, v)2

c1

s2

c2

s1

(r, v)1
c1

C1

(w, v)1

(w, v)2

c2

Figure 2. We use the same notation as in Table 1. The commits
inside ovals are disallowed by the RSS algorithm. Each condition
shows various cases. The arrows represent different possible posi-
tions for a command to occur in a given condition.

4. Serialize. (i) d = serialize and r =⊥, and (ii) status t
1 =

started, and (iii) status t
2 = serialized andrst

2 = rst
1 andwst

2 =
wst

1 andprst
2 = prst

1 andpwst
2 = pwst

1 andPredst
2 = {u ∈

T | Statusu
1 = serialized}, and (iv) for all threadsu 6= t, we have

qu
2 = qu

1 . Upon any command of threadt, if the current status oft
is started and if the threadt chooses to serialize, then the status of
t is set toserialized, and every thread whose status isserialized is
added to the predecessor set oft.
5. Commit. (i) c = commit and d = c and r = 1, and (ii)
status t

1 ∈ {serialized, finished}, and (iii) status t
2 = finished

and rst
2 = wst

2 = prst
2 = pwst

2 = Predst
2 = ∅, and (iv) for

all threadsu 6= t, we haversu
2 = rsu

1 and wsu
2 = wsu

1 and
Predsu

2 = Predsu
1 \ {t}, and (v) for all threadsu 6= t, if u ∈

Predst
1, thenprsu

2 = prsu
1 ∪wst

1 andpwsu
2 = pwsu

1 ∪ rst
1 ∪wst

1,
elseprsu

2 = prsu
1 and pwsu

2 = pwsu
1 , and (vi) for all threads

u ∈ Preds t
1, setstatusu

2 = invalid if wsu
1 ∩ (wst

1 ∪ rst
1) 6= ∅, and

statusu
2 = statusu

1 otherwise, and (vii) for all threadsu /∈ Preds t
1

andu 6= t, setstatusu
2 = invalid if wst

1 ∩ rsu
1 6= ∅, andstatusu

2 =
statusu

1 otherwise. When a threadt commits, if the current status of
t is serialized orfinished, then the following happen: The status oft
is set tofinished. For every predecessor threadu of t, all variables
in the write set oft are added to the prohibited read set and the
prohibited write set ofu, and all variables in the read set oft are
added to the prohibited write set ofu. For all predecessor threadsu
of t such that the write set ofu intersects with the read set or write
set oft, the status ofu is set toinvalid. For all threadsu that are
not predecessors oft such that the read set ofu intersects with the
write set oft, the status ofu is set toinvalid.

For every stateq1 ∈ Q, a transition(q1, c, (abort, t), 0, q2) is in
δ if c ∈ C is enabled inq1 for threadt, andrst

2 = wst
2 = prst

2 =
pwst

2 = Predst
2 = ∅, andstatus t

2 = finished, andqu
2 = qu

1 for all
threadsu 6= t.

Note that the non-determinism in the transition relation comes
from theserialize command, and the fact thatabort is allowed in
every state where a command is enabled.

Theorem 2. Given a wordw on n threads andk variables, the
wordw is strictly serializable if and only ifw ∈ L(An,k

ss).

Proof.Consider a runρ of An,k
ss . Letw1 be an arbitrary finite prefix

of the sequence of all successful statements inρ, and letX be the
set of finished transactions inw1. Let w′ be the sequential word
such thatw′ is transaction equivalent tow and x <w′ y if the
serialize command of transactionx comes before that of transaction
y in ρ (Note that every non-empty transaction has theserialize
command exactly once.) Then,com(w′) is strictly equivalent to
com(w1) if for every transactionx ∈ X, either the transactionx
does not commit inw1, or one of the following conditions holds for
x (graphically shown in Figure 2):
C1. There exists a transactiony such thatx serializes beforey and
y writes to a variablev and commits, and thenx globally readsv.
C2. There exists a transactiony such thatx serializes beforey and
x writes tov andy readsv beforex commits, andy commits.
C3. There exists a transactiony such thatx serializes beforey and
bothx andy write to a variablev, andy commits beforex does.

C4. There exists a transactiony such thatx serializes aftery andy
writes tov andx readsv beforey commits, and theny commits.

The RSS TM transition systemAn,k
ss guarantees by construc-

tion, that a transactionx does not commit iff one of the conditions,
C1–C4 holds. Hence, every word inL(An,k

ss) is strictly serializable.
Conversely, letw be strictly serializable. Consider an arbitrary

finite prefix w2 of w. As w2 is strictly serializable, there is a
sequential wordw′ such thatcom(w′) is strictly equivalent to
com(w2). Let the committing transactions in the sequential word
w′ be given by the sequencex1x2 . . . of transactions. Consider a
runρ of the RSS TM transition systemAn,k

ss such thatw2 is a finite
prefix of all successful statements ofρ, and for all i and j such
that i < j, the transactionxi serializes beforexj in ρ. The run
ρ exists because (i) the RSS TM transition system guesses every
possible serialization for every transaction during its execution, and
(ii) given thatw2 is strictly serializable, there is no transactionx in
the sequencex1x2 . . . that satisfies any of the conditionsC1–C4,
and commits inw2. Thus, the wordw is in the languageL(An,k

ss).
�

5.2 The reference TM algorithm for opacity

Apart from the requirements of the above mentioned reference TM
algorithm for strict serializability, opacity requires that even global
reads of aborting transactions observe consistent values.It turns
out that we can obtain a finite-state representation of the ROTM
transition system by slightly modifying our RSS TM transition
system.

The RO TM transition system is based on the following obser-
vation: Every committing and aborting transaction should serial-
ize at some point during its execution. Like the RSS TM transition
system, the RO TM transition system makes a non-deterministic
guess of when a transaction serializes. In this case, the transition
system checks upon every global read and every commit of a trans-
action, whether the command can be executed or the transaction
needs to be aborted. The formalism forRO TM algorithmAop and
the RO TM transition systemAn,k

op is identical to that of the RSS
TM algorithm and the RSS TM transition system. The only differ-
ence comes in the transition relationδ, on a global read, and on
a serialize command. We obtain the transition relation forAn,k

op by
replacing rules 2 and 4 of that ofAn,k

ss by the rules 2a and 4a below.
2a. Global read. (i) c = (read, v) and d = c and r = 1,

and (ii) v 6∈ wst
1 and v 6∈ prst

1, and (iii) rst
2 = rst

1 ∪ {v}
and wst

2 = wst
1 and prst

2 = prst
1 and pwst

2 = pwst
1 and

Predst
2 = Predst

1, and (iv) if status t
1 = finished, thenstatus t

2 =
started, elsestatus t

2 = status t
1, and (v) for all threadsu 6= t,

if statusu
1 = serialized and t /∈ Predsu

1 and v ∈ wsu
1 , then

statusu
2 = invalid, else statusu

2 = statusu
1 , and (vi) for all

threadsu 6= t, if statusu
1 = serialized and t /∈ Predsu

1 , then
pwsu

2 = pwsu
1 ∪ {v}, elsepwsu

2 = pwsu
1 , and (vii)prsu

2 = prsu
1

andrsu
2 = rsu

1 andwsu
2 = wsu

1 andPredsu
2 = Predsu

1 for all
threadsu 6= t. When a threadt readsv globally, if v is not in the
prohibited read set, then the following happen:v is added to the
read set. If the status oft is finished, then it is changed tostarted.
For every other threadu with statusserialized such thatt is not a
predecessor ofu, the variablev is added to the prohibited write set
of u, and if v is in the write set ofu, then the status ofu is set to
invalid.

4a. Serialize. (i) d = serialize andr =⊥, and (ii) status t
1 =

started, and (iii) if there exists a threadu 6= t such thatstatusu
1 =

started andrsu
1 ∩wst

1 6= ∅, thenstatus t
2 = invalid, elsestatus t

2 =
serialized, and (iv)pwst

2 = pwst
1 ∪ V ′ whereV ′ = {v ∈ V |

v ∈ rsu
1 for some threadu 6= t with statusu

1 = started},
and (v) rst

2 = rst
1 and wst

2 = wst
1 and prst

2 = prst
1 and

Predst
2 = {u ∈ T | statusu

1 = serialized}, and (vi) for all
threadsu 6= t, if statusu

1 = serialized and wsu
1 ∩ rst

1 6= ∅,

Table 2. Time for simulation checking for TM algorithms on a
quad dual core 2.8 GHz server with 16 GB RAM. In case simu-
lation holds, we writeYES followed by the time required for the
simulation. Otherwise, we writeNO followed by the counterex-
ample produced, followed by the time required to prove that no
simulation exists, followed by the time required to find the coun-
terexample. A ‘*’ for the search for simulation relation means that
it does not complete in 2 hours, and we try to find a counterexam-
ple.

TM tran-
sition
system
A2,2

Number
of
states

A2,2
≺ A

2,2
ss A2,2

≺ A
2,2
op

seq 3 YES, 0.8s YES, 0.7s
2PL 99 YES, 13s YES, 8s
dstm 944 YES, 127s YES, 82s
TL2 11840 YES, 1647s YES, 1438s
occ 4480 YES, 765s NO, w1, 567s,4s

TL2 modified 17520 NO, w2, *, 9s NO, w2, *, 8s
ss 12346 — —
op 9202 — —

Counterexample

w1 (w, 1)2, (r, 1)1, c2, (r, 1)1
w2 (w, 2)1, (w, 1)2, (r, 2)2, (r, 1)1, c2, c1

thenstatusu
2 = invalid, elsestatusu

2 = statusu
1 , and (vii) for all

threadsu 6= t, if statusu
1 = serialized, thenpwsu

2 = pwsu
1 ∪ rst

1,
elsepwsu

2 = pwsu
1 , and (viii) prsu

2 = prsu
1 andrsu

2 = rsu
1 and

wsu
2 = wsu

1 andPredsu
2 = Predsu

1 for all threadsu 6= t. Upon
any command of threadt, if the current status oft is started, and if
the thread chooses to serialize, then the following happen:If there
is a threadu with statusstarted such that the read set ofu intersects
with the write set oft, then the status oft is set toinvalid, else the
status oft is set toserialized. All variables in read sets of threads
with statusstarted are added to the prohibited write set oft. All
threads with statusserialized are added to the predecessor set oft.
For every other threadu, if the status ofu is serialized and the write
set ofu intersects with the read set oft, then the status ofu is set
to invalid. For every threadu with statusserialized, the read set of
t is added to the prohibited write set ofu.

Theorem 3. Given a wordw on n threads andk variables, the
wordw is opaque if and only ifw ∈ L(An,k

op).

5.3 Implementation and simulation checking

A TM defined by a TM algorithmA ensures strict serializability
(resp. opacity) iffL(A2,2) ⊆ L(A2,2

ss) (resp.L(A2,2) ⊆ L(A2,2
op)).

As checking language inclusion is PSPACE-hard, we use the com-
mon technique of checking for the existence of a simulation rela-
tion between both transition systems. The existence of a simulation
relation is a sufficient condition for language inclusion. We write
A2,2

1 ≺ A2,2
2 to denote that there exists a simulation relation be-

tweenA2,2
1 and A2,2

2 . For a TM M defined by a TM algorithm
A which satisfies the structural properties of the reduction theo-
rem (Theorem 1),M ensures strict serializability (resp. opacity) if
A2,2 ≺ A2,2

ss (resp.A2,2 ≺ A2,2
op).

We built an automatic verification tool in C for checking the
existence of simulation relations using the quadratic algorithm by
Henzinger et al. [HHK95]. The tool is conceived as a platform
for the automatic verification of TMs that satisfy the structural
properties. We mention that simulation checking requires extra
technical care in this scenario due to different extended alphabets
in different TMs. The tool takes as input two TM algorithmsA1

andA2, and checks whetherA2,2
1 ≺ A2,2

2 . If the tool fails to find

a simulation relation, it attempts to return a finite counterexample
w ∈ Ŝ∗ such thatw is a prefix of some word inL(A2,2

1), and
w is not a prefix of any word inL(A2,2

2). In certain cases, it is
possible that although language inclusion holds, the tool cannot
find a simulation relation. Thus, our decision procedure is sound but
not complete. For all TM transition systems we considered, our tool
terminates after finding a simulation relation, or a counterexample.

The results of our simulation checks are presented in Table 2.
Our results demonstrate that all TMs discussed in Section 3 —
sequential, 2PL, DSTM, and TL2 TM— are simulated by both ref-
erence TM transition systems. As for the OCC TM, it is simulated
by the RSS TM transition system, but not by the RO TM transi-
tion system. The tool gives a counterexample in the latter case. Our
results establish the following theorem.

Theorem 4. The sequential TM, two-phase locking, DSTM, and
TL2 ensure opacity. The optimistic concurrency control ensures
strict serializability, but not opacity.

Our tool discovered a subtle point in TL2. In the description
of the published TL2 algorithm, we found the order of two oper-
ations, validating the read set (rvalidate), and checking whether a
variable in the read set is locked (chklock), ambiguous. We mod-
eled these operations as two separate atomic operations, such that
thatchklock happens afterrvalidate, to obtain a modified TL2 TM
algorithm. The tool found that the modified TL2 TM algorithm is
not simulated by the RSS TM transition system, and the tool pro-
vided a counterexample. Thus, we conclude that the modified TL2
TM does not ensure strictly serializability, and thus does not en-
sure opacity. In the published TL2 algorithm, the authors maintain
the version number and the lock bit of every variable in the same
memory word. This ensures that the two operationschklock and
rvalidate execute atomically, and thus they can be executed in any
order. So, our experiments discover that the correctness ofTL2 is
based on the subtle fact that either the version number and the lock
bit have to be accessed atomically, orrvalidate has to occur after
chklock.

6. Verifying liveness
We define two different notions of liveness, obstruction freedom
and livelock freedom, as discussed in the transactional memory
literature. A third notion, wait freedom [Her91], implies livelock
freedom. Since we will show that none of our example TMs satisfy
livelock freedom, they do not satisfy wait freedom either.

A word w ∈ Ŝω is obstruction free[HLM03] if for all threadst,
if the word w has an infinite number of aborts oft, thenw has
an infinite number of commits oft or there are infinitely many
statements of some threadu 6= t. Formally,w is obstruction freeif
V

t∈T (�♦(abort, t) → �♦((commit, t)∨
W

c∈Ĉ,u∈T\{t}(c, u))).
This is a Streett condition.

A word w ∈ Ŝω is livelock free[AKH03] if the word has an infinite
number of commits, or there is a threadt such thatt has infinitely
many statements and finitely many aborts inw. Formally, w is
livelock freeif �♦(

W

t∈T
(commit, t))∨

W

t∈T
(�♦(

W

c∈C
(c, t))∧

♦�¬(abort, t)). Note that livelock freedom implies obstruction
freedom.

A TM M ensures obstruction freedom (resp. livelock freedom)
for all programs withn threads andk variablesif for every pro-
gram p ∈ P n,k , every wordw ∈ M(p) is obstruction free
(resp. livelock free).M ensures obstruction freedom (resp. live-
lock freedom)if M ensures obstruction freedom (resp. livelock
freedom) for all programs with an arbitrary number of threads and
variables. We use the formalism of TM algorithms to verify live-
ness properties of TMs. We define aloop l in a TM transition sys-

tem An,k as a finite words0 . . . sm such that there exists a run
〈q0, l0, s0, r0〉 . . . 〈qm, lm, sm, rm〉 of An,k such thatq0 = qm.

Note that every wordw that is not obstruction free violates at
least one of the conjuncts of the Streett condition stated above.
Each conjunct (Streett pair) corresponds to one thread. A word w
can violate the condition for threadt, only if w has from some
point on only statements oft. Note that in this casew trivially
satisfies the Streett pairs for other threads. This fact allows us to
use a simple model checking procedure, even though obstruction
freedom is formally a Streett condition.

In particular, a TM defined by a TM algorithmA ensures ob-
struction freedom for all programs withn threads andk variables
iff there is no loopl in An,k such that all statements inl are from
the same thread, andl contains no commit, andl contains an abort.
Similarly, a TM ensures livelock freedom for all programs with n
threads andk variables iff there is no loopl in An,k suchl contains
no commit, and every thread that has a statement inl, has an abort
in l.

6.1 Reduction theorem for liveness

As we did for safety, we state a reduction theorem that provesthat
it is sufficient to verify liveness of a TM on programs with two
threads and one variable to generalize the result to all programs.
For this purpose, we describe two more structural properties of
TMs. These properties are again satisfied by all TMs that we have
discussed. Letw = w1 · w2 be an infinite word such thatw is
in M(p) for some programp, and no unfinished transaction inw1

has a statement inw2, and all statements inw2 are from the same
thread, and there is no commit command inw2. For i ∈ {1, 2}, let
Vi be the variables accessed inwi.
P5. Transaction projection.A thread t running in isolation (no
interleaved step from other threads) shall abort repeatedly only if
it conflicts with some unfinished transaction. As the number of
threads is finite, and a thread can have at most one unfinished
transaction, there are infinitely many aborts oft due to a particular
thread. The propertyP5 states that (i) the wordw′

1 · w2 is in
M(p′) for some programp′, wherew′

1 is obtained by taking the
transaction projection ofw1 on non-aborting transactions, and (ii)
if w1 has no aborting transactions andw2 reads or writes only one
variable, then there exists a wordw′ = w′′

1 ·w2 ∈ M(p), wherew′′
1

is obtained by projectingw1 to transactions of some threadt that
has statements inw1. For instance, a TM satisfiesP5 if the state
of a thread is reset to the initial state upon an abort command, and
every variable accessed by every thread is tracked independently.
P6. Variable projection.A threadt running in isolation shall abort
repeatedly only if some commands corresponding to some vari-
ables are not allowed. As the number of variables is finite, there are
infinitely many aborts oft due to a particular variable. The prop-
ertyP6 states that (i) there exists a wordw1 ·w

′
2 ∈ M(p′) for some

programp′, wherew′
2 is the variable projection ofw2 on {v} for

some variablev ∈ V2, and (ii) if w1 has no aborting transactions,
then the wordw′ = w′

1 · w2 is in M(p′) for some programp′,
wherew′

1 is the variable projection ofw1 on V2. For instance, a
TM satisfiesP6 if the TM tracks every variable accessed by every
thread independently.

Theorem 5. If a TM M satisfies propertiesP5 andP6, andM
ensures obstruction freedom for two threads and one variable, then
M ensures obstruction freedom.

Proof.Let w ∈ M(p) be a word on arbitrary number of threads and
variables such thatw is not obstruction free. Asw is not obstruction
free, it can be written in the formw1 · w2 as required by the
propertiesP5 andP6. We can then use these properties to obtain a
wordw′ on two threads and one variable such thatw′ ∈ M(p′) for
some programp′. �

Table 3. Results of model checking liveness on a dual core
2.66GHz desktop PC with 2 GB RAM. The notation is similar to
Table 2. The time denotes the time required to prove a liveness
property or find a counterexample. The counterexamples obtained
are of the forma · bω. We write the looping partb here.

TM algorithm Obstruction freedom Livelock freedom

seq NO, w1, 0.1s NO, w1, 0.1s
2PL NO, w1, 0.1s NO, w1, 0.1s
dstm YES, 2s NO, w2, 0.2s
TL2 NO, w1, 0.4s NO, w1, 0.4s
occ NO, w3, 0.7s NO, w3, 0.7s

Counterexamples

w1 a1

w2 a1, (r, 1)1, (o, 1)1, a2, (o, 1)2
w3 s1, a1

6.2 Model checking liveness

We built a verification tool to check obstruction freedom andlive-
lock freedom properties for transaction memories defined byTM
algorithms. To check obstruction freedom, our tool tries tofind a
loop l in the TM transition system such that all statements inl are
from the same thread, andl has no commit, andl has an abort. If
the tool finds such a loop, the loop is a counterexample to obstruc-
tion freedom. If the tool does not find a loop, we know that the TM
ensures obstruction freedom. Similarly, to check livelockfreedom,
our tool tries to find a loopl in the TM transition system such that
there is no commit inl, and every thread that has a statement inl,
has an abort inl.

In this way, our tool provides a platform for TM designers to
check which liveness properties are ensured by their TMs. Ifthe
liveness property fails, then the tool provides feedback inthe form
of a run that represents a counterexample. Our results are shown in
Table 3. The next theorem follows.

Theorem 6. DSTM ensures obstruction freedom and does not en-
sure livelock freedom. Sequential TM, two phase-locking, TL2,
and optimistic concurrency control do not ensure obstruction free-
dom.

7. Related Work
There has been recent independent work on the formal verification
of STM algorithms [COP+07]. Cohen et al. model checked STMs
applied to programs with a small number of threads and variables
against the strong safety criteria of Scott [Sco06]. They donot offer
a reduction theorem and do not consider liveness properties.

Our construction of the reference TM algorithms is related to
the work of Fle and Roucairol [FR85]. They investigated the set
of concurrent traces that are generated by a finite set of iterating
transactions. They proved that the language consisting of all traces
that are conflict equivalent to a sequential trace is regular. Their
results cannot be applied in the presence of aborting transactions,
as they require the transitivity of conflicts, which does nothold
when transactions may abort.

There has been much research on the formal verification of
relaxed memory models and cache-coherence protocols for modern
multi-processors, e.g., [HQR99, Qad03, GYS04, BAM07]. In this
work, the semantics of a shared memory is generally given by a
memory consistency model, which defines the possible outcomes
of executing a concurrent program. Since our approach specifically
targets STM, we use a deferred update semantics rather than a
memory consistency model.

8. Conclusion
We presented a new technique for verifying STM safety and live-
ness properties. The cornerstones of our technique are a finite-state
representation for the languages of strictly serializableand opaque
executions, and an automated verification tool for STMs. Our
method applies to all STM protocols that satisfy certain structural
properties, and we successfully verified opacity for 2PL, DSTM,
and TL2, and the obstruction freedom of DSTM.

Currently, our framework does not apply when transactions help
each other. For instance, we cannot model Fraser’s STM [FH07]
where threads help each other in order to ensure livelock free-
dom. For efficient performance during contention, many STM pro-
tocols rely on a contention manager, like thePolite or Karmacon-
tention manager of Scherer and Scott [SS05]. In this work, we
do not handle some of these contention managers. We plan to ex-
tend our work by modeling different contention managers as non-
deterministic transition systems. Also, our liveness properties cap-
ture deterministic notions. It will be interesting to account for prob-
abilistic means to deal with contention, such as random exponential
backoff.

We also assumed that the commands in the extended alphabet,
like read, write, validate, commit, executed atomically. So, STM
algorithms have to guarantee this level of atomicity to ensure cor-
rectness using our methodology. Currently we are extendingour
work to reason about correctness if the lower level primitives are
not atomic.

References
[AKH03] J. H. Anderson, Y. Kim, and T. Herman. Shared-memorymu-

tual exclusion: Major research trends since 1986.Distributed
Computing, pages 75–110, 2003.

[AMP00] R. Alur, K. L. McMillan, and D. Peled. Model-checking of
correctness conditions for concurrent objects.Information
and Computation, pages 167–188, 2000.

[BAM07] S. Burckhardt, R. Alur, and M. M. K. Martin. Checkfence:
checking consistency of concurrent data types on relaxed
memory models. InPLDI, pages 12–21, 2007.

[BCG89] M. C. Browne, E. M. Clarke, and O. Grumberg. Reasoning
about networks with many identical finite state processes.
Information and Computation, pages 13–31, 1989.

[BD94] J. R. Burch and D. L. Dill. Automatic verification of pipelined
microprocessors control. InCAV, pages 68–80. Springer,
1994.

[COP+07] A. Cohen, J. O’Leary, A. Pnueli, M. R. Tuttle, and L. Zuck.
Verifying correctness of transactional memories. InFMCAD,
pages 37–44, 2007.

[DSS06] D. Dice, O. Shalev, and N. Shavit. Transactional locking II.
In DISC, pages 194–208. Springer, 2006.

[EGLT76] K. P. Eswaran, J. Gray, R. A. Lorie, and I. L. Traiger. The
notions of consistency and predicate locks in a database
system.Communications of the ACM, pages 624–633, 1976.

[FH07] K. Fraser and T. Harris. Concurrent programming without
locks. ACM Transactions on Computer Systems, 2007.

[FR85] M. Flé and G. Roucairol. Maximal serializability ofiterated
transactions. Theoretical Computer Science, pages 1–16,
1985.

[GK08] R. Guerraoui and M. Kapalka. On the correctness of
transactional memory. InPPoPP, pages 175–184, 2008.

[GYS04] G. Gopalakrishnan, Y. Yang, and H. Sivaraj. QB or NotQB:
An efficient execution verification tool for memory orderings.
In CAV, pages 401–413. Springer, 2004.

[Her91] M. Herlihy. Wait-free synchronization.ACM Transactions on
Programming Languages and Systems, pages 124–149, 1991.

[HHK95] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke.
Computing simulations on finite and infinite graphs. InFOCS,
pages 453–462, 1995.

[HLM03] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free
synchronization: Double-ended queues as an example. In
ICDCS, pages 522–529. IEEE Computer Society, 2003.

[HLMS03] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer.
Software transactional memory for dynamic-sized data
structures. InPODC, pages 92–101, 2003.

[HM93] M. Herlihy and J. E. B. Moss. Transactional memory:
Architectural support for lock-free data structures. InISCA,
pages 289–300. ACM Press, 1993.

[HQR99] T. A. Henzinger, S. Qadeer, and S. K. Rajamani. Verifying
sequential consistency on shared-memory multiprocessor
systems. InCAV, pages 301–315. Springer, 1999.

[KR81] H. T. Kung and J. T. Robinson. On optimistic methods for
concurrency control.ACM Transactions on Database Systems,
pages 213–226, 1981.

[LR07] J. R. Larus and R. Rajwar.Transactional Memory. Synthesis
Lectures on Computer Architecture. Morgan & Claypool,
2007.

[Mil71] R. Milner. An algebraic definition of simulation between
programs. InIJCAI, pages 481–489. William Kaufmann,
1971.

[Pap79] C. H. Papadimitriou. The serializability of concurrent database
updates.Journal of the ACM, pages 631–653, 1979.

[Qad03] S. Qadeer. Verifying sequential consistency on shared-
memory multiprocessors by model checking.IEEE Trans-
actions on Parallel and Distributed Systems, pages 730–741,
2003.

[Sco06] M. L. Scott. Sequential specification of transactional memory
semantics. InTRANSACT, 2006.

[SS05] W. N. Scherer and M. L. Scott. Advanced contention
management for dynamic software transactional memory.
In PODC, pages 240–248, 2005.

[ST95] N. Shavit and D. Touitou. Software transactional memory. In
PODC, pages 204–213, 1995.

