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In the context of regression analysis it is known that the residual
cusum process may serve as a basis for the construction of various om-
nibus, smooth and directional goodness-of-fit tests. Since a deeper analysis
requires the decomposition of the cusums into their principal components
and this is difficult to obtain, we propose to replace this process by its
innovation martingale. It turns out that the resulting tests are (asymptot-
ically) distribution free under composite null models and may be readily
performed. A simulation study is included which indicates that the distri-
butional approximations already work for small to moderate sample sizes.

1. Introduction and main results. It is the purpose of the present pa-
per to provide some further methodology for model checks in regression. As
noted by Stute (1997), the cusum process of the residuals may serve as a
basis for various goodness-of-fit tests in this field. In particular, it was demon-
strated that for power investigations as well as for the derivation of smooth
and directional tests it is necessary to compute the principal components of
the residual cusum process. While this is possible in principle, some numerical
work is needed when it comes down to checking a model for a given data set.

In this paper we propose to replace the cusum process by its innovation
martingale. For this, note that the cusum process (in theory) admits a decom-
position into a martingale and a compensator. As will be shown, the martingale
part converges, for large sample size, to a Brownian motion in transformed
time. For the new processes, principal components are readily available and
no extra numerical work is needed so that smooth and directional tests, for
example, may be easily performed.

To be more specific, let �X�Y� be a random observation in some Euclidean
space R

d+1 such that the random variable Y has a finite expectation. To sim-
plify the notation, we shall assume throughout that X is univariate. Denote
with

m�x� = E�Y�X = x�
the regression function of Y with respect to X. We let

� = �m�·� θ�	 θ ∈ ��
denote a family of functions parameterized by some p-dimensional vector
θ ∈ � ⊂ R

p. Assuming that m belongs to � , the main emphasis in the lit-
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erature then has been on estimation of or testing hypotheses about the “true
parameter θ0” satisfying m = m�·� θ0�. For example, � may consist of all
functions

m�x� θ� = θ1g1�x� + · · · + θpgp�x�� θ = �θ1� � � � � θp�t�(1.1)

spanned by a given basis g1� � � � � gp and where t denotes transpose. Clearly,
each investigation of θ0 should be accompanied with a proper check whether
the (composite) model � , that is, the hypothesis

H0	 m ∈ �

is at all satisfied. Stute (1997) contains a fairly comprehensive list of references
on nonparametric model checks for regression. The main emphasis of that
paper was to point out that many goodness-of-fit tests could be based on the
cusum process of the residuals

R̃n�x� = n−1/2
n∑
i=1

1�Xi≤x��Yi −m�Xi� θn���(1.2)

Here �Xi�Yi�, 1 ≤ i ≤ n, is a sample of independent observations with the
same distribution as �X�Y�, and θn is, under H0, a square-root consistent
estimator of θ0. In a sense, R̃n is a marked empirical process, the marks being
given by the residuals obtained from fitting the data to the hypothetical model.
Among other things, it was shown in Stute (1997) that under mild regularity
assumptions on � and θn, the process R̃n has a Gaussian limit under H0.
Furthermore, the paper contains a principal component analysis of R̃n to the
effect, that:

(a) The power of the Cramér–von Mises test associated with R̃n could be in-
vestigated in detail.

(b) The local power of directional tests based on R̃n could be analyzed.
(c) One was able to derive Neyman smooth tests for regression when the hy-

pothesis is composite.
(d) Optimal Neyman-Pearson tests could be derived when the alternative is

specified.

As a conclusion we thus see that there is good reason to base model di-
agnostics on the cusum process of the residuals rather than the residuals
themselves, as is done in a noninferential way in many textbooks.

Unfortunately, as with many other nonparametric procedures involving es-
timated parameters, the processes R̃n and their limit are typically not distri-
bution free in that their distributions may depend on model characteristics,
the choice of θn or even the unknown parameter θ0. These facts seriously limit
the applicability of the procedures in goodness-of-fit testing, since, for exam-
ple, critical values will not be available from existing tables. Consider Durbin
(1973), who investigated the ordinary empirical process with estimated param-
eters rather than the residual cusum process. As a way out of this dilemma,
Khmaladze (1981), for univariateX’s, utilized an innovation process approach
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to construct a linear operator T such that the estimated empirical process
transformed by T is at least asymptotically distribution free. In the context
of regression, distributional feasibility may also be achieved by the Bootstrap;
see Stute, González Manteiga and Presedo Quindı̈mil (1998). As we have noted
above, however, it is not only the distributional character of the underlying
processes but their decomposition into principal components which enhances
the statistical applications and which makes our approach attractive.

Determining the innovation martingale requires constructing a transfor-
mation T such that TR̃n (approximately) is a martingale. In the limit it will
be a Brownian motion in transformed time. Since T depends on quantities
which in practice are unknown, it needs to be replaced by an empirical sub-
stitute Tn. As it will turn out, replacement of T by Tn will not change the
limit so that modulo a transformation in time, TnR̃n is in fact asymptotically
distribution free. Extensions to the multivariate case are possible in the spirit
of Khmaladze (1988).

This section will provide the main results of the paper. Section 2 presents
some simulation results for finite sample size, while proofs are deferred to
Section 3.

The distributional theory becomes much simpler if we replace the residuals
by the true errors. For this, define

Rn�x� = n−1/2
n∑
i=1

1�Xi≤x��Yi −m�Xi���

Assuming EY2 <∞, let

σ2�u� = Var�Y�X = u�
denote the conditional variance of Y given X = u, and put

ψ�x� =
∫ x
−∞
σ2�u�F�du� where X ∼ F�

Clearly, ψ is a nondecreasing nonnegative function. In the homoscedastic case,
σ2�u� ≡ σ2 is a constant, whence ψ�x� = σ2F�x�. Rn and R̃n are random
elements in the Skorohod spaceD�−∞�∞� endowed with the topology of weak
convergence. It is readily seen that

Cov�Rn�x1��Rn�x2�� = ψ�x1 ∧ x2��
that is, Rn has the same covariance structure as B ◦ ψ, with B denoting
a standard Brownian motion. Moreover, the finite-dimensional distributions
of Rn weakly converge to those of B ◦ ψ. An argument showing tightness,
compare Stute (1997), therefore yields

Rn → B ◦ ψ = R∞�(1.3)

For composite model checks, the function m needs to be replaced by its para-
metric fit mθn so that we come up with R̃n as defined in (1.2). Note that under
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H0 we have m =mθ0
and therefore

R̃n�x� = Rn�x� − n−1/2
n∑
i=1

1�Xi≤x��m�Xi� θn� −m�Xi� θ0���

We now state some regularity assumptions on θn and the model � under
which R̃n admits a weak limit.

(A) Under H0, that is, m =m�·� θ0� for some θ0 ∈ �, we have

n1/2�θn − θ0� = n−1/2
n∑
i=1

l�Xi�Yi� θ0� + oP�1��

where l is a vector-valued function such that:

(i) E�l�X�Y� θ0�� = 0;
(ii) L�θ0� = E�l�X�Y� θ0�lt�X�Y� θ0�� exists.

Assumption (B) is concerned with the regularity of � :

(B)(i) m�x� θ� is continuously differentiable with respect to θ in the interior
set of �. Put

g�x� θ� = gradθ�m�x� θ�� = �g1�x� θ�� � � � � gp�x� θ��t

and assume that

�B��ii� �gi�x� θ�� ≤M�x� for all θ ∈ � and 1 ≤ i ≤ p
for an F-integrable function M.

Set

G�x� θ� =
∫ x
−∞
g�u� θ�F�du��

Note that in the linear model (1.1), gi�x� θ� ≡ gi�x� does not depend on θ and
similarly for G�x� θ�. Under (B), condition (A) is satisfied for the least squares
estimator and (under further regularity assumptions) its robust modifications.
See, for example, Maronna and Yohai (1981).

Under (A) and (B), the second sum in R̃n�x� converges in distribution to
Gt�x�V, where V is a centered normal vector with covariance L�θ0� and
G�x� = G�x� θ0�. Corollary 1.3 in Stute (1997) asserts that an invariance
principle similar to (1.3) also holds for R̃n:

R̃n → B ◦ ψ−GtV ≡ R̃∞�

Note that typically V depends on B, since both components of R̃∞ are limits
of terms computed from the same set of data.

We now introduce scale invariant versions of Rn and R̃n, namely,

R0
n�x� = n−1/2

n∑
i=1

1�Xi≤x�σ
−1�Xi��Yi −m�Xi��
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and

R̃0
n�x� = n−1/2

n∑
i=1

1�Xi≤x�σ
−1�Xi��Yi −m�Xi� θn���

Replacing (B)(ii) by

�B��iii� σ−1�x��gi�x� θ�� ≤M�x� for all θ ∈ � and 1 ≤ i ≤ p�
we obtain

R0
n → B ◦ F = R0

∞

and

R̃0
n → B ◦ F−Gt0V0 = R̃0

∞�(1.4)

with

G0�x� = G0�x� θ0� =
∫ x
−∞
σ−1�u�g�u� θ0�F�du��

Note that the time transformation in the limiting process is now F rather
than ψ, so that the part involving the Brownian motion no longer depends
on σ .

The function G0 contains the main features of the underlying model:

1. The marginal d.f. F of the X’s.
2. The (local) structure of � , given in terms of g.
3. The (conditional) variances σ2�u� of the errors.

As we have pointed out in our introductory remarks, a detailed study of R̃0
∞

is difficult. Our strategy will therefore be to first transform R̃0
∞ into its martin-

gale part B ◦ F. In view of (1.4) it suffices to construct a linear transformation
T satisfying

TR0
∞ = R0

∞ in distribution(1.5)

and

T�Gt0V� ≡ 0�(1.6)

To explicitly obtain T, put g�u� = g�u� θ0� and set

A�x� =
∫ ∞

x
g�u�gt�u�σ−2�u�F�du��

a nonnegative definite p× p-matrix, ignoring its dependence on θ0 for a mo-
ment. Assuming that A�x� is nonsingular, we define

�Tf��x� = f�x� −
∫ x
−∞
σ−1�y�gt�y�A−1�y�

[∫ ∞

y
σ−1�z�g�z�f�dz�

]
F�dy��

We will apply T to functions f which are either of bounded variation or
Brownian motion B ◦ F. In the latter case, the inner integral needs to be
interpreted as a stochastic integral. Now, with the above T, it is not difficult
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to see that (1.6) is satisfied. Since T is a linear operator, TR0
∞ is a centered

Gaussian process. For (1.5), it thus remains to show that

Cov�TR0
∞�r��TR0

∞�s�� = F�r ∧ s��(1.7)

A proof of (1.7) will be deferred to Section 3 (Lemma 3.1). Altogether we thus
have the following result.

Theorem 1.1. Let R̃0
∞ be defined by (1.4) and assume that A�x� is non-

singular for all x. Then we have in distribution

TR̃0
∞ = TR0

∞ = R0
∞ = B ◦ F�(1.8)

To motivate the next result, we may expect that there exist finite sample
analogs of (1.5), (1.6) and (1.8). For this, recall

R0
n�x� = n−1/2

n∑
i=1

1�Xi≤x�σ
−1�Xi��Yi −m�Xi���

the scale invariant modification of Rn. We shall show that, under H0,

TR̃0
n = TR0

n + oP�1��(1.9)

This constitutes the finite sample analog of the first equation in (1.8). Fur-
thermore, the second equation suggests that

TR0
n → B ◦ F in distribution�(1.10)

Assertions (1.9) and (1.10) will be verified in Section 3 (Lemmas 3.2 and 3.3).
Together they yield the following theorem.

Theorem 1.2. Under (A) and (B), assume that A�x� is nonsingular for all
x. Then, under H0, we have

TR̃0
n → B ◦ F in distribution

in the Skorohod space D�−∞�−∞�.

Note that convergence in D�−∞�∞� means convergence in D�−∞� x0� for
each finite x0. See Pollard (1984). If A�x� is nonsingular only for a restricted
set of x’s, all processes likewise need to be restricted to proper subsets of the
real line. Further comments on why we have to restrict ourselves to finite x0
are postponed to the end of this section.

Theorem 1.2 is fine from a probabilistic viewpoint. For statistical applica-
tions such as goodness-of-fit testing, it is still inappropriate since both R̃0

n and
T involve unknown quantities like σ2�u�, θ0 and F. To apply our method to
a given set of data, the transformation T, for example, needs to be replaced
by an empirical analog Tn. We then need to show that the resulting processes
have the same limit as TR̃0

n. Actually, this will be achieved by showing that
their difference goes to zero in probability uniformly on compacta.
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In the homoscedastic case we simply have to replace R̃0
n by σ−1

n R̃n, where
σ2
n is the (normalized) residual sum of squares and similarly in T. In the

general heteroscedastic case, however, it is the function σ2�u� rather than the
constant σ2 which needs to be estimated from the data. In view of

σ2�u� = E�Y2�X = u� −m2�u��
any consistent nonparametric regression curve estimator may serve as an
empirical substitute for the conditional second moment. UnderH0, the second
part, m2�u�, may be estimated by m2�u� θn�. As it turns out, this procedure
works in principle, under some restrictive smoothness assumptions on σ2�u�.
A somewhat different approach which works under much weaker conditions
is the following: split the whole sample into two parts, �Xi�Yi�, 1 ≤ i ≤ n1,
and �Xi�Yi�, n1 +1 ≤ i ≤ n, where n1 → ∞ and n−n1 → ∞ as n→ ∞. Then
estimate σ2�u� from the first part, say by σ2

n1
�u�, and let the cusum process

be based on the second half. This leads to the two processes

R1
n�x� = �n− n1�−1/2

n∑
i=n1+1

1�Xi≤x�σ
−1
n1

�Xi��Yi −m�Xi��

and

R̃1
n�x� = �n− n1�−1/2

n∑
i=n1+1

1�Xi≤x�σ
−1
n1

�Xi��Yi −m�Xi� θn1
���

Finally, the transformation Tn is defined by

�Tnf��x� = f�x� −
∫ x
−∞
σ−1
n1

�y�gt�y� θn1
�A−1

n1
�y�

×
[∫ ∞

y
σ−1
n1

�z�g�z� θn1
�f�dz�

]
Fn1

�dy��
(1.11)

Here Fn1
is the empirical d.f. of Xn1+1� � � � �Xn, the estimator θn1

is computed
from �Xi�Yi�, n1 + 1 ≤ i ≤ n, and

An1
�y� =

∫ ∞

y
g�u� θn1

�gt�u� θn1
�σ−2
n1

�u�Fn1
�du��

The fact that the index n1 is used to indicate computation from the first part of
the sample in the case of σ2 and from the second part for the other quantities
should not cause any confusion. To demonstrate the effect of splitting the
data into two parts, note that conditionally on the first n1 data, R1

n is a sum
of independent centered processes with covariance function

Kn1
�r� s� =

∫ r∧s
−∞
σ2�u�/σ2

n1
�u�F�du��

We shall see that under appropriate conditions

sup
r�s

E�Kn1
�r� s� −F�r ∧ s�� → 0�(1.12)
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which together with the above-mentioned independence of the summands
yields

R1
n → B ◦ F in distribution�(1.13)

For (1.11) we recall that under no conditions other than square-integrability
of Y do there exist universally consistent estimators of σ2�u� satisfying

E

∫
�σ2
n1
�u� − σ2�u��F�du� → 0(1.14)

as n1 → ∞. Compare Stone (1977), Devroye and Wagner (1980), Spiegel-
man and Sacks (1980), or Stute (1994) who showed that nearest neighbor and
kernel-type estimators are universally consistent under broad assumptions on
the smoothing parameter.

For the convergence of Kn1
we need to assume that σ2�u� is bounded away

from zero:

σ2�u� ≥ a > 0 for some a.(1.15)

For theoretical purposes we also want to guarantee that the σ2
n1

are bounded
away from zero. This may be achieved without disturbing the uniform con-
sistency (1.13) by just taking the maximum of σ2

n1
and a very small positive

number. It is then easy to see that (1.13) implies (1.11). Therefore the inequal-
ity in Condition (B)(iii) is also satisfied if we replace σ2�u� by σ2

n1
�u�.

Theorem 1.3. Under the assumptions of Theorem 1.2, let (1.14) be satis-
fied. Let σ2

n1
be a universally consistent estimator of σ2 bounded away from

zero. Then, under H0,

TnR̃
1
n → B ◦ F in distribution in the space D�−∞�∞��

The process TnR̃1
n may be completely computed from a given set of data.

The assumptions in Theorem 1.3 are trivially satisfied for homoscedastic linear
models whenever g1� � � � � gp are F-integrable.

For small to moderate sample size n, the accuracy of the approximation in
Theorem 1.3 gets worse for large values of x. This is because for Tn we have
to replace A−1�x� by A−1

n �x�. These matrices are unbounded on the whole
real line and often not uniformly continuous in the underlying parameter θ.
Consequently the underlying processes may become, for given sample size n,
very unstable in the extreme right tails. Hence test statistics based on all of
TnR̃

1
n may not attain the given level. Consequently, for a given n, we have to

restrict TnR̃1
n to compact intervals �−∞� x0�.

In the next section we will report on several simulation results which are
designed to demonstrate, for finite sample size n, the accuracy of the distri-
butional approximations and the power of the tests. Both homoscedastic and
heteroscedastic models will be investigated. Power will be studied under fixed
and local alternatives. Of course a practical choice of x0 should depend on the
data. In our study we will consider for x0 the 99% quantile of the X-data.
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We shall first consider the Cramér–von Mises (CvM) test associated with
TnR̃

1
n. This is an omnibus test and not designed to detect any particular de-

viation from the null model. Therefore we shall also study linear statistics
based on TnR̃1

n. They constitute approximations to the Neyman–Pearson test
statistic when the alternative approaches the hypothetical model from a given
direction. Some robustness properties of this test will be addressed only briefly.

2. A simulation study. In this section we will show that the asymptotic
results provide good approximations for small sample sizes. We first consider
the homoscedastic case. The constant σ2 has been estimated from the whole
sample by the normalized residual sum of squares

σ2
n = 1

n

n∑
i=1

�Yi −m�Xi� θn��2�

As a test we consider the Cramér–von Mises test associated with TnR̃n. Put

W2
n ≡W2

n�x0�

= σ−2
n

∫ x0

−∞
�TnR̃n�x��2Fn�dx� = σ−2

n n
−1

n∑
i=1

1�Xi≤x0��TnR̃n�Xi��2�

For a continuous F, Theorem 1.3 together with the continuous mapping the-
orem imply that, in distribution,

W2
n →

∫ x0

−∞
�B ◦ F�x��2F�dx�

=
∫ F�x0�

0
B2�u�du = F2�x0�

∫ 1

0
B2�u�du�

where the last equality follows from the scaling property of B. Thus to get an
asymptotically distribution free test statistic, we have to set

W̃2
n = σ−2

n F
−2
n �x0�

∫ x0

−∞
�TnR̃n�x��2Fn�dx��

From the above,

W̃2
n →

∫ 1

0
B2�u�du in distribution�

In our simulation study we let

� = �m�·� θ�	 m�x� θ� = θx�
be the family of linear functions through the origin. We generated n = 200
data �Xi�Yi� according to

Yi = 5Xi + aX2
i + εi� 1 ≤ i ≤ n�

Hence H0	 m ∈ � holds with θ0 = 5 if and only if a = 0. The regressor Xi
is uniformly distributed on the unit interval, while εi is taken independently
from a normal � �0� σ2� distribution. For x0 we always chose the 99% quantile
of theX-data. The preassigned significance levels were α = 0�05 and α = 0�01.



MODEL CHECKS FOR REGRESSION 1925

Table 1

Percentages of times H0 was rejected:
F = U�0�1�

W̃
2
n -test

� � 0�05 � � 0�01
a �2 (%) (%)

1 5.7% 1.5%
0 2 5.2% 0.8%

3 4.9% 0.8%

1 30.0% 12.7%
1 2 19.8% 7.5%

3 15.4% 4.5%

1 81.8% 58.8%
2 2 52.2% 28.8%

3 39.0% 18.6%

Various values for σ2 and a were considered. In each case we list the percent-
ages of times H0 was rejected. The asymptotic critical values for

∫
B2 were

taken from Shorack and Wellner [(1986), page 748]. All reported values are
based on 1000 replications of W̃2

n. Here and in the following, the computations
were done with MATLAB.

In Table 1, we see that under H0 the actual percentages of times H0 was
rejected is close to the nominal level. Under the alternative, of course, the
distribution of W̃2

n depends on the ingredients of the model, namely a, σ2 and
F. The power decreases as σ2 increases, while it gets larger with a. These
effects have been discussed in detail for the original process R̃n, from both
the theoretical and applied viewpoint, in Stute (1997). To further discuss the
role of F, and for forthcoming discussions, we investigate W̃2

n under the local
alternatives a = n−1/2. Table 2 exhibits the power of the W̃2

n-test when F is

Table 2

Percentages of times H0 was rejected:
F = U�0�1�, a = n−1/2

W̃
2
n -test

� � 0�05 � � 0�01
n �2 (%) (%)

1 6.6% 1.5%
50 2 6.3% 1.0%

3 5.7% 0.9%

1 6.5% 1.3%
100 2 5.2% 0.9%

3 5.2% 0.8%

1 6.2% 1.3%
200 2 5.3% 1.0%

3 5.1% 0.9%
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Table 3

Percentages of times H0 was rejected:
F = U�−2�2�, a = n−1/2

W̃
2
n -test

� � 0�05 � � 0�01
n �2 (%) (%)

1 27.5% 9.5%
50 2 15.9% 3.5%

3 11.9% 2.0%

1 26.1% 9.0%
100 2 15.6% 4.4%

3 12.1% 3.3%

1 24.5% 9.2%
200 2 16.5% 4.9%

3 12.1% 4.0%

again the uniform distribution on �0�1�, while in Table 3 the underlying F is
the uniform distribution on �−2�2�. In the first case, the power of the W̃2

n-test
is poor, since on the support of F, the unit interval (0,1), the true regression
function 5x+ n−1/2x2 is almost indistinguishable from 5x, particularly when
noise is inherent. In the second case, we also have information on �−2�0�.
Compared to �0�2� the two functions are now more apart resulting in a larger
power of the test.

Table 4 exhibits the results for a Crámer–von Mises test when the errors
are heteroscedastic. The model considered was

Yi = 5Xi + aX2
i +

(
1 + X

2
i

2

)
εi�

where εi ∼ � �0�1�. The total sample size was 2n. Half of the sample was
used for estimating the conditional variance. As an estimator we took the

Table 4

Percentages of times H0 was rejected:
F = U�0�1�; σ2�x� = 1 + x2/2

W̃
2
n -test

� � 0�05 � � 0�01
n a (%) (%)

0 4.3% 0.6%
100 1 9.0% 1.0%

2 16.4% 2.4%

0 5.6% 1.1%
200 1 11.3% 3.6%

2 27.2% 12.3%
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Nadaraya–Watson estimator with Gaussian kernel. The bandwidth was h =
cn−1/2 with c = 0�5. We only mention in passing that in the present context,
when it is not our primary goal to estimate σ2�x� but to use it as part of an
empirical integral, h’s of the order n−1/2 are preferable to the usual n−1/5 order
which traditionally occurs in curve estimation. See also Stute and González
Manteiga (1990) for related phenomena in the context of smoothed linear re-
gression estimators. For θn we took the weighted LSE.

Note that in the last example noise increases as we let x tend to 1. This
makes the problem of checking the validity ofH0 more difficult, since it is the
neighborhood of 1 where the deviation from the null model is largest but this
is blurred by increasing noise.

We now demonstrate how Theorem 1.3 may be utilized to derive optimal
tests for H0 versus

H1	 m�x� =m�x� θ0� + n−1/2r�x� for some θ0�

that is, the deviation from the null model is specified through a direction r.
Only the homoscedastic case is dealt with. As in our first example the test
statistic is based on σ−1

n TnR̃n and therefore asymptotically distribution-free
under H0 modulo the time transformation F. The alternative H1 is local as
we approach H0 at (the unknown) θ0 from the direction r at the rate n−1/2.
Again θn will be the least squares estimator.

For the original processes R̃n rather than TnR̃n, the distributional theory
was studied in detail in Section 2 of Stute (1997). In particular it was pointed
out there that under H1 the limit of R̃n equals, when σ2 = 1,

B ◦ F−GtV+
∫ •

−∞
r�u�F�du� −Gtv�

Here v is a deterministic vector depending on F, g and r. In view of (1.5) and
(1.6) the limit of TnR̃n under H1 becomes

B ◦ F+T
[∫ •

−∞
r�u�F�du�

]
�(2.1)

We thus see that, when applying the transformation T, the random part is
mapped into Brownian motion B ◦ F, while the deterministic part is replaced
by T�∫ •

rdF�.
Now, set

λj =
1

�j− 1
2�2π2

(2.2)

and

lj�t� =
√

2 sin
[(
j− 1

2

)
πt

]
� j = 1�2� � � � �(2.3)

the eigenvalues and eigenfunctions in the Karhunen–Loève decomposition of
B. Equation (2.1) differs from B only in a nonrandom shift. Consequently
(2.1) apart from a shift admits the same decomposition as B. As was pointed
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out in Stute (1997), the principal components play a crucial role for deriving
optimal tests for H0 versus H1. For the original processes, the computation
of the eigenvalues and eigenfunctions is not trivial at all and requires some
numerical work. One major advantage of our transformation approach is that
principal components of TnR̃n are given for free, namely by (2.2) and (2.3).
The Neyman–Pearson test for H0 versus H1 based on TnR̃n is defined as
follows. Let

s�x� = T
[∫ •

−∞
r�u�F�du�

]
�x�

be the function appearing in (2.1), and put

τj =
∫
s�x�lj�F�x��F�dx��

Furthermore, take

ρj =
∫
TR̃n�x�lj�F�x��F�dx��

The (approximate) Neyman–Pearson level α-test consists of rejecting H0 in
favor of H1 iff

S =
∞∑
j=1

τjρj

λjγ
≥ c1−α�

where c1−α is the 1 − α quantile of a standard normal distribution and

γ2 =
∞∑
j=1

τ2
j

λj
�

In practice we have to replace T by Tn and F by Fn leading to estimators τ̂j
and ρ̂j. Also the series needs to be truncated at some finite integer j0.

In order to stabilize ρ̂j, integration should again be restricted to �−∞� x0�
where x0 is the 99%-quantile of theX-data. To obtain a properly standardized
ρ̂j, we have to set

ρ̂j =
∫ x0

−∞
TnR̃n�x�lj

(
Fn�x�
p

)
Fn�dx�� p = 0�99�

Actually, since from the scaling property of the Brownian motion,

ρ̂j →
∫ p

0
B�u�lj

(
u

p

)
du = p3/2

∫ 1

0
B�u�lj�u�du�

our final test statistic is

Ŝ =
j0∑
j=1

τ̂jρ̂j

p3/2λj

/√√√√ j0∑
j=1

τ̂2
j

λj
�
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Table 5

Percentages of times H0 was rejected:
a = n−1/2; homoscedastic errors; F =

U�0�1�, j0 = 4

Ŝ-test

� � 0�05 � � 0�01
n �2 (%) (%)

1 5.4% 1.0%
50 2 5.4% 0.8%

3 4.9% 0.8%

1 6.3% 1.2%
100 2 6.0% 1.2%

3 5.4% 1.0%

1 6.4% 2.0%
200 2 6.2% 1.4%

3 5.6% 1.2%

Here Ŝ is asymptotically standard normal, large values of Ŝ being significant
for a deviation from H0 in favor of H1. Tables 5 and 6 present the (estimated)
local power of the Ŝ-test in the homoscedastic case with local alternatives.

Compared to Table 3 we see from Table 6 that there is a strong evidence
that the approximate Neyman–Pearson Test based on Ŝ outperforms the CvM
test. The values in Tables 2 and 5 are both close to the nominal level since on
�0�1�, with a = n−1/2, the alternative is very close to the null model.

Finally, we would like to mention that the test statistic becomes unstable if
in Ŝ the truncation parameter j0 is chosen too large. This is mainly because

Table 6

Percentages of times H0 was rejected:
a = n−1/2; homoscedastic errors; F =

U�−2�2�, j0 = 4

Ŝ-test

� � 0�05 � � 0�01
n �2 (%) (%)

1 38.2% 24.9%
50 2 24.1% 15.2%

3 19.1% 10.0%

1 40.2% 26.8%
100 2 21.6% 13.2%

3 18.0% 9.6%

1 44.1% 30.6%
200 2 23.4% 21.1%

3 16.0% 7.6%
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the weights λj tend to zero very rapidly, so that for larger j the summands are
too much upweighted if τ̂j and ρ̂j due to sampling errors do not match the true
Fourier coefficients sufficiently well. On the other extreme, the CvM statistic
W̃2
n has a series expansion in which the λj downweight the coefficients so

that high-frequency alternatives to the null model may not be detected. As a
compromise, one may base a test on a statistic

Ŝ0 =
j0∑
j=1

τ̂jρ̂j

p3/2λ
1/2
j

/√√√√ j0∑
j=1

τ̂2
j�

where the new weights λ1/2
j are chosen so as to standardize ρ̂j. As a conclu-

sion of our findings, we see that the residual cusums properly transformed
give rise to a process which may serve as a basis for various test statistics.
Asymptotically this process is distribution free modulo a transformation in
time. All involved quantities are linear or at most quadratic and easy to com-
pute. Asymptotic distributional theory provides satisfactory approximations
already for small to moderate sample size.

3. Proofs.

Lemma 3.1. We have

Cov�TR0
∞�r��TR0

∞�s�� = F�r ∧ s��(3.1)

that is, (1.7) and hence Theorem 1.1 hold.

Proof. Assume r ≤ s. By definition of T, the left-hand side of (3.1) equals

Cov�R0
∞�r��R0

∞�s��

− Cov
[
R0

∞�s��
∫ r
−∞
σ−1�y�gt�y�A−1�y�

∫ ∞

y
σ−1�z�g�z�R0

∞�dz�F�dy�
]

− Cov
[
R0

∞�r��
∫ s
−∞
σ−1�y�gt�y�A−1�y�

∫ ∞

y
σ−1�z�g�z�R0

∞�dz�F�dy�
]

+ Cov
[∫ r

−∞
σ−1�y�gt�y�A−1�y�

∫ ∞

y
σ−1�z�g�z�R0

∞�dz�F�dy��
∫ s
−∞
σ−1�y�gt�y�A−1�y�

∫ ∞

y
σ−1�z�g�z�R0

∞�dz�F�dy�
]
�

The first covariance equals F�r�. Upon using rules for stochastic integrals,
the second covariance is seen to become∫ r

−∞
σ−1�y�gt�y�A−1�y�

∫ s
y
σ−1�z�g�z�F�dz�F�dy��

Similarly, the third and fourth covariances equal∫ r
−∞
σ−1�y�gt�y�A−1�y�

∫ r
y
σ−1�z�g�z�F�dz�F�dy�
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and∫ r
−∞

∫ s
−∞
σ−1�y1�gt�y1�A−1�y1�A�y1 ∨ y2�A−1�y2�σ−1�y2�g�y2�F�dy2�F�dy1��

respectively. Summation and an application of the Fubini Theorem complete
the proof. ✷

Lemma 3.2. Under (A) and (B), we have in probability and uniformly on
compacta

TR̃0
n = TR0

n + oP�1��(3.2)

that is, (1.9) holds.

Proof. Recall that

TR̃0
n�x� = R̃0

n�x� −
∫ x
−∞
σ−1�y�gt�y�A−1�y�

×
[∫ ∞

y
σ−1�z�g�z�R̃0

n�dz�
]
F�dy�

(3.3)

and

TR0
n�x� = R0

n�x� −
∫ x
−∞
σ−1�y�gt�y�A−1�y�

×
[∫ ∞

y
σ−1�z�g�z�R0

n�dz�
]
F�dy��

(3.4)

Fix some finite x0. Under (A) and (B), we get uniformly in x ≤ x0,

R̃0
n�x� = R0

n�x� −Gt0�x�n1/2�θn − θ0� + oP�1��
The two integrals in (3.3) and (3.4) differ by

n−1/2
n∑
i=1

∫ x
−∞
σ−1�y�gt�y�A−1�y�1�y�∞��Xi�σ−2�Xi�g�Xi�

× �m�Xi� θn� −m�Xi� θ0��F�dy��
which is easily seen to be equal to∫ x
−∞
σ−1�y�gt�y�A−1�y�

∫ ∞

y
σ−2�z�g�z�gt�z�F�dz�F�dy�n1/2�θn − θ0� + oP�1��

By definition ofA, the last double integral equals Gt0�x�, however, so that (3.2)
holds at least pointwise in x. Uniformity is obtained by applying a standard
Glivenko–Cantelli argument. First, it suffices to consider real-valued g’s only.
Decompose all involved functions into their positive and negative parts so that
the resulting sums and integrals are monotone in x. Together with the SLLN,
uniformity in convergence is then obtained along classical lines, namely by
reducing the sup over all x to a sup over a properly chosen finite grid. ✷
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Lemma 3.3. Under (A) and (B), we have

TR0
n → B ◦ F in distribution�

that is, (1.10) holds.

Proof. TR0
n is a sum of i.i.d. processes. Tightness may be shown by stan-

dard arguments. Convergence of the finite-dimensional distributions follows
from the multivariate CLT. Specification of the covariance structure is similar
to the proof of Lemma 3.1.

For the proof of Theorem 1.3 we shall make use of Lemma 3.1 of Chang
(1990), which is (properly re-)stated here just for the sake of reference.

Lemma 3.4. Let V be a relatively compact subset of D�−∞� x0�. Then with
probability 1

∫ t
−∞
v�x��Fn�dx� −F�dx�� → 0 as n→ ∞�

uniformly in t ≤ x0 and v ∈ V.

We shall apply Lemma 3.4 within the following context: with Fn1
rather

than Fn, let �αn� be a sequence of stochastic processes which are uniformly
tight, that is, for a given ε > 0 there exists a compact set V such that αn ∈ V
with probability at least 1−ε. Apply Lemma 3.4 with this V and observe that
αn /∈ V with small probability to finally get, uniformly in t,

∫ t
−∞
αn�x��Fn1

�dx� −F�dx�� → 0 in probability�(3.5)

The above integrals appear as remainder terms when expanding TnR̃1
n as a

sum of independent processes to which an invariance principle applies.

Proof of Theorem 1.3. First, similarly to the proof of Lemma 3.2, we ob-
tain, upon using the fact that σn1

is bounded away from zero, that

TnR̃
1
n = TnR1

n + oP�1��

uniformly in x ≤ x0. Secondly, note that

∫ x
−∞
σ−1
n1

�y�gt�y� θn1
�A−1

n1
�y�

∫ ∞

y
σ−1
n1

�z�g�z� θn1
�R1

n�dz�Fn1
�dy�

−
∫ x
−∞
σ−1
n1

�y�gt�y�A−1�y�
∫ ∞

y
σ−1
n1

�z�g�z�R1
n�dz�F�dy�
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=
∫ x
−∞
σ−1
n1

�y�gt�y�A−1�y�
∫ ∞

y
σ−1
n1

�z�g�z�R1
n�dz��Fn1

�dy� −F�dy��(3.6)

+
∫ x
−∞

[
σ−1
n1

�y�gt�y� θn1
�A−1

n1
�y�

∫ ∞

y
σ−1
n1

�z�g�z� θn1
�R1

n�dz�(3.7)

− σ−1
n1

�y�gt�y�A−1�y�
∫ ∞

y
σ−1
n1

�z�g�z�R1
n�dz�

]
Fn1

�dy�

Putting

αn�y� = σ−1
n1

�y�gt�y�A−1�y�
∫ ∞

y
σ−1
n1

�z�g�z�R1
n�dz��

it is not difficult to see that along with (1.12) and the boundedness of σn1

the sequence �αn� is tight. Hence Lemma 3.4, respectively, (3.5) applies. We
conclude that (3.6) tends to zero uniformly in x ≤ x0.

From assumption (B) and the boundedness of σ−1
n1

, we obtain that the pro-
cesses βn defined by

βn�x� θ� =
∫ x
−∞
σ−1
n1

�y�gt�y� θ�A−1
n1
�y� θ�

∫ ∞

y
σ−1
n1

�z�g�z� θ�R1
n�dz�Fn1

�dy�

are uniformly tight and continuous in θ. But θn1
→ θ0 in probability so that

the integral in (3.7) tends to zero in probability as n and n1 → ∞.
Altogether we see that up to a negligible error,

TnR
1
n = TR1

n�

where in the above T, σ has to be replaced by σn1
. Now mimic the proof of

Theorem 1.2 to complete the proof of Theorem 1.3. ✷
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