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Abstract Analysis of variance (ANOVA), the workhorse
analysis of experimental designs, consists of F'-tests of main
effects and interactions. Yet, testing, including traditional
ANOVA, has been recently critiqued on a number of the-
oretical and practical grounds. In light of these critiques,
model comparison and model selection serve as an attrac-
tive alternative. Model comparison differs from testing in
that one can support a null or nested model vis-a-vis a
more general alternative by penalizing more flexible mod-
els. We argue this ability to support more simple models
allows for more nuanced theoretical conclusions than pro-
vided by traditional ANOVA F-tests. We provide a model
comparison strategy and show how ANOVA models may be
reparameterized to better address substantive questions in
data analysis.

Keywords ANOVA - Statistical models - Interactions -
Model comparison - Order-restricted inference

Factorial designs and the associated analysis of variance
(ANOVA) and 7-tests are workhorses of experimental psy-
chology. Indeed, it is hard to overstate the popularity and
usefulness of these designs and analyses. Consequently,
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most experimental psychologists are exceedingly familiar
with these analyses. One would think given this popularity
and familiarity that there is little room for additional devel-
opment of the models and techniques underlying ANOVA.
Take two-way ANOVA as an example with factors of A and
B: The conventional approach is to perform three tests in
this case—a main effects test of A, B, and an interaction test
of A and B. How much more is there to say?

In the recent decades, statisticians and psychologists have
developed methods of model comparison that go beyond
traditional significance testing. In the model-comparison
perspective, models instantiate theoretical positions of inter-
est. If the models are judicious—that is, they capture the-
oretically important constraints—then model comparison
becomes a proxy for theory comparison.

Model comparison is often similar to testing, but there
is a key difference: Testing is asymmetric. One may reject
a nested or null model in favor of a more general model.
But the reverse does not hold—one cannot reject a more
general model for a nested one. Model comparison, in con-
trast, has no such asymmetry: Evidence for nested or general
models may be quantified. This ability to quantify evidence
for nested models changes inference in ANOVA. In the
two-way case, for example, instead of 3 tests, there are 8
different possible models formed by presence and absence
of each main effect and the interaction. Among these 8 there
are 28 possible dyadic model comparisons. The conven-
tional tests encompass three of the possible 28. What about
the others? We show here that understanding the full set
of models and their relations may lead to a more nuanced
understanding of the structure in data than may be provided
by the more conventional tests.

Before proceeding, it is helpful to provide context on
modeling itself. When one performs ANOVA, the various
models formed by the inclusion and exclusion of factors
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and their interactions presumably represent various posi-
tions of theoretical importance, and the differences between
the models represent critical theoretical differences. If the
models are good instantiations of the theoretical positions,

Considered

Not Considered
Implausible

then the inference from the models applies to the theo-
retical positions. This correspondence means that analysts
should judiciously choose models that are theoretically
interpretable. In this paper we show that these choices are
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Fig.1 Various model comparison strategies for ANOVA. a A compar-
ison between a null model and an effects model for one-way ANOVA.
b There are eight possible models for the two-way case. The lines
denote nesting relations among the models. ¢ Conventional ANOVA
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not so simple, and, perhaps surprisingly, common mod-
els and parameterizations in ANOVA may not be the best
choices for assessing main effects and interactions. In the
next section, we consider one-way designs where there is a
single question: did the factor have an effect. In this case,
models underlying testing and model comparison are the
same. Following this, we consider the two-factor case. The
models for testing and comparison diverge because the ones
used in testing do not, in our opinion, correspond well to the
theoretical questions typically asked.

The models in a one-way design

Consider a simple one-factor design where a factor A is
manipulated through some number of levels. For example,
we may assess the effect of the color of presented memo-
randa in a memory experiment. There are two models to be
considered: an effects model and a null model. The effects
model may be informally written as

Y =+ A + noise.

This informal equation may be read as, “the response Y
arises from the sum of a grand mean, the effect of the factor
A, and random noise.” More formal notation is possible, but
it is not needed here.! This model may be contrasted to a
null model:

Y = 1 + noise.

These two models are shown in Fig. 1A (top right) as
two ovals. In the figure, the grand mean and noise terms are
left out to reduce clutter and focus on the critical difference
between the models, the inclusion or exclusion of factor A.
The comparison of these models serves as an assessment of
the necessity of factor A in describing the data. We may also
refer to the null model in this context as instantiating the
constraint that the data are invariant to factor A.

Model-comparison methods

In traditional tests, a dichotomous decision is made—either
the analyst rejects the null or fails to do so. The failure
to reject the null is not the same as accepting it, which is
not formally permitted. In model comparison, in contrast,
constrained models may be favored over a more general
alternative. The key is to penalize more general models
by their flexibility. Suppose we have two models that both

IThe grand mean p is a single free parameter. The term A denotes
the effects of Factor A, and it is a vector of parameters with one
parameter for each level of the factor. If these levels are assumed to
be fixed effects, then a sums-to-zero constraint may be placed on the
parameters yielding one fewer parameters than levels.

account for the data. The first model can only account for
the observed data and no other patterns. The second model
can account for the observed data and many other patterns
as well. The second model is more flexible because it can
account for more data patterns. Because the more flexi-
ble model can account for a wider variety of data patterns,
observing any one pattern is not so evidential. This con-
sideration, where models are penalized by their flexibility
is often called Occam’s razor, and it is a desirable rule-
of-thumb (Myung & Pitt, 1997). Using Occam’s razor, we
should favor the simpler constrained model which yields a
constrained prediction over the alternative model which is
compatible with more varied data patterns.

Our goal here is to show how consideration of mod-
els and model comparison changes how we may view
ANOVA. There are several different approaches for bal-
ancing fit and flexibility in model comparison including
the Akaike information criterion (AIC, Akaike, 1974), the
“corrected” Akaike information criterion (AICc, Burnham
& Anderson 2002), the Bayesian information criterion
(BIC, Schwartz, 1978), the deviance information criterion
(DIC, Spiegelhalter, Best, Carlin, & Linde, 2002), mini-
mum description length measures (MDL Grunwald, Myung,
& Pitt, 2005), and the Bayes factor (Jeffreys, 1961). Even
though there are several different approaches, the points we
make about models and model comparisons holds regardless
of which model-comparison method is used. As an aside, we
advocate for the Bayes factor (Rouder et al., 2009) because
it provides for a formal, rational assessment of evidence for
models. This advocacy, however, is tangential to the points
provided here which hold even if one does not appreciate
the Bayes factor.

Models for two-way designs

The advantages of a model comparison perspective are seen
in consideration of the two-way design. A bit of terminology
is helpful. The term factor refer to a manipulation; there are
two factors in a two-way design. The term covariate refers
to statistical variable. There are three covariates in a two-
way design: the main effect of A, the main effect of B, and
of the A B interaction. Each covariate may contain a number
of parameters depending on the number of levels.? The full
ANOVA model for this design is stated informally as

Y=u+ A+ B+ AB + noise,

2Let a and b denote the levels of factors A and B, respectively. Then,
there are a, b, and a x b parameters for the main effects of factors
A and B and the interaction, respectively. If A and B are treated as
fixed effects, then the imposition of the usual sums-to-zero constraints
yieldsa — 1,b — 1 and (@ — 1)(b — 1) parameters for the main effects
of factors A and B and the interaction, respectively.
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This full model occupies the top of a model hierarchy shown
in Fig. 1B. The bottom of the hierarchy is a null model.
Above the null model are the three models with a single
covariate: a model with the the main effect of A and no
other effects, a model with the main effect of B and no other
effects, and a model with the A B interaction and no other
effects. Above these three models are an additional three
models with any two of the three covariates. The lines in the
figure show the nesting relations among models.

The conventional ANOVA testing approach is shown in
Fig. 1C. It is a top-down strategy where the full model is
compared to models without a specific covariate. Evidence
for the missing covariate is inferred when the full model is
preferred to the model missing that covariate. For example,
there is evidence for A when the full model is preferred to
the submodel Y = u + B + AB + noise that excludes A.

The advantages of considering many models

Our main claim is that by considering all plausible models,
the analyst can make more theoretically detailed statements
about the structure of data. This claim is perhaps best illus-
trated by consideration of models that are not part of the
ANOVA testing approach. Take for example, the model
Y = p + A + noise. This model is comprised by an effect
of A and an invariance to B. These are both theoretically
appealing statements. Suppose Y is a free-recall score to
memorized words; A is the part-of-speech of the words, say
noun vs. verb, and B is the color of the words. These fac-
tors were chosen in fact to assess whether the recollection
process was driven by semantic information, in which case
part-of-speech should affect free recall, or by perceptual
information, in which case color should affect free recall.
The model instantiates the case that semantic information

Fig. 2 a An interaction without A
main effects for the price
offered for a pint of ice cream as
a function of sugar and fat
content. b The same dependency
across a continuum of levels.
From this panel it is clear that
the lack of main effects reflects
an implausibly fortuitous choice
of levels

O Low Sugar
@® High Sugar

Price Offered ($)
4
1

rather than perceptual information drives recollection. It is
a theoretically useful and important model.

In model comparison approaches, a numeric value is
placed on each model in the hierarchy. For example, if AIC
was the target comparison statistic, an AIC value would be
computed for each model. Suppose the model ¥ = u+ A+
noise is favored over all other models. This model is imme-
diately interpretable: The evidence for the effect of A is in
the comparison to the null; the evidence for the invariance
to B is in the comparison of Y = u + A 4+ B + noise. This
approach may be contrasted to a top-down testing approach
where the comparable statements are made when the full
model fits significantly better than the model missing the
main effect of A but not significantly better than models
with A+ B or A+ A B. The model-comparison and top-down
testing approaches will assuredly differ if for no other rea-
son that it is impossible to interpret the lack of significance
as evidence for an invariance. By adhering to Occam’s razor
and allowing preference for nested models, the model com-
parison approach offers a richer, more insightful view of the
structure in data.

Implausible models

Figure 1B shows eight models, but not all of them are theo-
retically interpretable. We show here that several should be
discarded a priori in most cases because they correspond
to positions that are a priori implausible in most experi-
mental settings. Statisticians routinely voice concern about
testing main effects in the presence of interactions because
the size and sign of the main effects depend on the levels
of the factors (Nelder, 1998; Venables, 2000). We have a
related concern about models with interactions but without
corresponding main effects. These models are implausible

10

Fat Content
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Fat Content
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because they seemingly rely on picking the exact levels so
that the true main effects perfectly cancel. To illustrate this
claim, consider an experiment to explore how much peo-
ple would be willing to pay for a pint of vanilla ice-cream
as a function of its sugar and fat content. Figure 2A shows
a hypothetical example. Here, the sugar and fat need to be
matched to maintain balance otherwise the ice-cream tastes
too sweet or too bland. As such, perhaps the lack of main
effects may seem plausible. To show that it is not, consider
Fig. 2B which shows a more complete view of the relation-
ship between sugar content, fat content, and value of the
pint of ice-cream. The inner most circle shows the highest
value, in this case above $6 a pint, and the successive rings
show lessening value. The balance comes from the positive
association, for each level of fat there is a balancing level
of sugar. The points, at values of $2.5 and $5, correspond to
the points in Fig. 2a. For the shown levels there are no main
effects. But, if the levels are chosen differently, then main
effects surely appear. That is, the lack of main effects here
results only for very carefully and precisely chosen levels,
and main effects appear otherwise. In application, we do not
have the information in Fig. 2b (otherwise, we would not
had to perform the experiment), and it seems implausible
that one could fortuitously choose levels to precisely cancel
out the main effects.

Because we find models with perfectly cancelling level
to be implausible, we discard all models where there is an
interaction without corresponding main effects. In the two-
factor case, the discarded models are shown in red in Fig. 1d.
Consider Y = u+ B+ A B+noise. It contains an interaction
involving A, the AB interaction, without a specification of
the main effect of A. The two other discarded models are
Y = u+ A+ AB +noise, which contains an A B interaction
without a main effect of B and Y = u + A B + noise, which
is missing main effects of both variables.

The consequence of these discards is that it takes stronger
patterns in data to evidence interactions. Interactions occur
only in the presence of main effects, and models with main
effects are more flexible than those without them. And with
this increased flexibility comes an increased penalty. Such a
consequence is desirable. Evidence for interactions should
not depend on assuming the levels are perfectly chosen so
that main effects cancel.

Plausible models for ordinal dependent measures

Experimental psychologists use a wide variety of dependent
measures. Some of these dependent measures are on a ratio
or interval scale, and examples include response times and
voltages. Other dependent measures are on an ordinal scale
where differences are not interpretable as a metric quan-
tity. An example of an ordinal measure includes confidence
ratings scales. Here differences between two ratings, say
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Fig. 3 Results from McCable et al.: a Sample means indicate the
plausibility of a main effect of day and an interaction between day
and reminder type. Error bars denote standard errors. b Bayes factor
model comparisons for the standard ANOVA parameterization. The
label “trace” refers to very small Bayes factor values on the order of
10~10. These values hold for models without a main effect of day. The
models colored in light yellow are considered while those colored in
red are discarded as implausible because they assume interactions that
perfectly cancel out main effects

between “1” and “2” on the scale, cannot be assumed to
be the same across the scale. For example the difference
between “1” and “2” may be psychologically different than
that between “2” and “3.” When differences between such
intervals are not constant, additivity is not a meaningful
concept, and models without interactions are difficult to
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Table 1 The usual parameterization of the 2-by-2 ANOVA model

Exclusion Mortality Mean
Monday w—a—pF+y w—a+p—vy n—o
Friday wt+o—B—y wto+B+y u+ o
Mean uw—B nw+B 2

interpret because the constraint is unjustifiable. As a conse-
quence, the effect of a factor is best assessed by considering
whether it enters in full or not at all.

Experimental psychologists often consider proportions,
say the proportion of one type of response or another, as
the dependent measure of interest. There are hundreds of
studies that test interactions among factors for this measure.
By our reckoning, these types of contrasts need additional
care because the meaning of a difference in a proportion is
dependent on the value of the proportion itself. For example,
small differences for small valued proportions, say those
around .05 have a different meaning than those around mod-
erately valued ones, say around .5. In this context, it is dif-
ficult to interpret the contrast between a main effects model
and a full model, because the meaning of the main effects
model is unclear. Hence, in our opinion, claims of interac-
tions should be avoided. Instead, researchers should limit
themselves to describing whether a factor has an effect with-
out discriminating between main effects and interactions.
To implement this limit, we do not use main-effects models
in our model-comparison analyses when using ordinal data.
This additional discard is shown in Fig. le.

An example of model comparison

To illustrate the model comparison approach we take an
example from McCabe et al. (submitted). Their goal was to
assess the effect of reminding people of their own mortality
on their attitudes toward alcohol consumption. The control
condition was the attitudes when asked to consider a situ-
ation where they felt socially excluded, and the difference
in attitudes served as a measure of effect. The experiment
was motivated by a psychological theory, terror manage-
ment theory (Greenberg et al., 1986), that describes how
our recognition of our mortality affects our thoughts, behav-
ior, and actions. According to this theory, thoughts about
death causes people to cling more tightly to social norms.
Drinking alcohol is part of the normative cultural script for
Fridays (a leisure day) but not for Mondays (a work day).
Consequently, McCabe et al. hypothesized that the mortal-
ity reminder might produce more positive attitudes toward
drinking alcohol on Fridays than on Mondays. An interac-
tion effect between the day of assessment and the presence
of the a morality reminder was hypothesized.

@ Springer

Cell means are plotted in Fig. 3a. As can be seen, there
seems to be a healthy interaction, and indeed, the con-
ventional statistics reveal no main effect of the mortality
reminder (F (1, 156) = 2.28, p ~ .13), an unmistakable
main effect of day (F(1,56) = 57.9, p ~ 107!!), and
an interaction between the two (F(1,56) = 5.28, p =~
.023). By conventional interpretation, the interaction seems
supported.

We illustrate the effect of discarding implausible mod-
els with model comparison by Bayes factors. The points we
make are about the strategy of model comparisons rather
than about Bayes factors, and they hold broadly across
model comparison measures that appropriately penalize
complexity. The Bayes factor model comparison statistics
are shown in Fig. 3b.3 We took the model Y = u~+D++noise,
on the lower left, as the standard and compared all models to
it. Consequently, it has a value of 1.0 in the figure. Models
without the main effect of day fared poorly in comparison;
the Bayes factor values for these models is on the order of
10719 (one in 10 billion), which is denoted in the figure
as “trace” values. If we temporarily (and wrongly) consider
all models, the best model is Y = u + D + DR + noise,
which has a Bayes-factor value of 2.2 compared to the stan-
dard model Y = u 4+ D + noise. The interpretation here is
that the data are about twice as likely under the model with
the interaction than without, and that Bayesians may update
their odds in favor of the interaction by a factor of 2.2.

The above interpretation, however, rests on a perfect-
balance assumption: the upward effect of the mortality cue
presented on Friday is balanced exactly by mirror downward
effect of the same cue presented on Monday. To dispense
with this unwarranted assumption, we compare the Bayes
factor of the most favored interpretable model with an inter-
action, Y = u + D + R + DR + noise to the most favored
model without it, Y = p + D. This Bayes factor is 1.07
in value, which is equivocal. What happened is straightfor-
ward: The interpretable interaction model, Y = pu + D +
R + DR + noise, is more flexible than the discarded model,
Y = u+ D + DR + noise. Hence, it is penalized more
and this increased penalty accounts for the attenuation of
evidence.

3Bayes factors described in Rouder et al. (2012) were computed with
the anovaBF function in the BayesFactor package for R (Morey and
Rouder, 2015). Default values of .5 on the scale of effect sizes were
used.
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Table 2 The cornerstone parameterization of the 2-by-2 ANOVA model

Exclusion Mortality Mean
Monday m w+a w+g
Friday n+ B ptot+p+y nt+s+p+5
Mean n+t pta+b p+g+8+2

Reparameterizing the ANOVA model

In the preceding development, we showed how models with
interactions but without main effects are implausible, and
we provided an example where discarding them had a sub-
stantive effect on the conclusion. The critical problem is the
perfect-balance assumption. Here we construct a model that
captures the notion of an interaction without being too flex-
ible and without making the perfect balance assumption.
To arrive at this model, we first explore the conventional
parameterization of the ANOVA model. Then we reparam-
eterize so that main effects have subtly different meaning.
With this alternative parameterization it is possible to have
interactions without main effects while not committing to
perfect balance.

The usual parameterization of ANOVA is shown in
Table 1, and it is presented in the context of the McCabe
example for concreteness. The grand mean is denoted by .,
the main effect of day is denoted by «, the main effect of the
reminder is denoted by §, and the interaction is denoted by
y . Note the symmetry that each effect is present in all cells.
The alternative parameterization, called the cornerstone
parameterization, is shown in Table 2. In this parameter-
ization, one condition—in our case the social-exclusion-
reminder-on-Monday condition—serves as a baseline or
cornerstone. All effects are measured relative to it.

Here, 1 serves as a baseline parameter rather than a grand
mean. Although « and § are main effects, they are measured
relative to baseline rather than to the grand mean. And y,
the interaction, is the deviation from additivity as manifest
in a single cell.

Parameters in the usual and cornerstone parameteriza-
tions have different meanings. The cornerstone parame-
terization appears inconvenient because main effects are
relative to only one condition rather than marginal across
several conditions. Moreover, the marginal means across
rows and columns include all parameters. The key bene-
fit of this parameterization is that interactions may occur
without main effects and, importantly, without a perfect bal-
ance assumption. If both main effects are zero, the resulting
data pattern is that three cells have the same value while the
fourth has a different one. Such a pattern is plausible; for
example, it would describe plant growth where one factor
is whether water is provided or not and the other factor is
whether sunlight was provided or night. Plants grow only

with some sunlight and water. Importantly, there is no per-
fectly opposing balance conditions when the main effects
are zero.

The cornerstone parameterizations strike us as particu-
larly appropriate when the theoretical question of interest is
limited to the interaction because the main effects describe
only the effect at one level. It is well-suited to McCabe et
al.’s analysis because in this study there is no specific the-
oretical question about the main effects of day or type of
reminder. Here, the theoretical question is about the over-
additive interaction, or a positive value of y. The assessment
of y may be made regardless of the values of o and S. To
assess the McCabe et al. claim, we computed the Bayes fac-
tors between a model with y = 0 (additive effects) and
one with ¥ > 0 (over additive interaction).* The Bayes
factor is 9.2 in favor of the interaction, indicating evi-
dence for the hypothesis that mortality reminders lead to
more positive attitudes toward drinking alcohol on Fridays
than on Mondays. This Bayes factor, from a more targeted
and thoughtful modeling implementation, best captures the
theoretically important structure in the data.

Summary

From the model-comparison perspective, positions of theo-
retical importance are instantiated as models. These models
are then compared and the evidence from the comparison
is a proxy for evidence for competing theoretical positions.
The benefit of modeling, as is shown here, is that one can
tailor the model precisely to match the theories under con-
sideration, providing inference with more resolution than
is possible with the off-the-shelf ANOVA procedures. Judi-
cious modeling is assuredly a path to a more fruitful,
insightful, accurate, and productive psychological science.

Author Note Email: rouderj@missouri.edu, Web: pcl.missouri.edu;
Twitter: @JeffRouder. This research was supported by National Sci-
ence Foundation grants BCS-1240359 and SES-102408.

4Bayes factors were computed with the nWayAOV function in the
BayesFactor package. This function allows the analyst to set the
design matrix, which was constructed to encode the alternative param-
eterization. Default values of .5 on the scale of effect sizes were
used.
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