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1. Introduction

Recall that a subset of Rn is called semi-algebraic if it can be represented
as a (finite) boolean combination of sets of the form {~α ∈ Rn : p(~α) = 0},
{~α ∈ Rn : q(~α) > 0} where p(~x), q(~x) are n-variable polynomials with real co-
efficients. A map from Rn to Rm is called semi-algebraic if its graph, considered
as a subset of Rn+m, is so. The geometry of such sets and maps (“semi-algebraic
geometry”) is now a widely studied and flourishing subject that owes much to the
foundational work in the 1930s of the logician Alfred Tarski. He proved ([11]) that
the image of a semi-algebraic set under a semi-algebraic map is semi-algebraic. (A
familiar simple instance: the image of {〈a, b, c, x〉 ∈ R4 : a 6= 0 and ax2 +bx+c = 0}
under the projection map R3×R→ R3 is {〈a, b, c〉 ∈ R3 : a 6= 0 and b2−4ac ≥ 0}.)
Tarski’s result implies that the class of semi-algebraic sets is closed under first-
order logical definability (where, as well as boolean operations, the quantifiers
“∃x ∈ R . . . ” and “∀x ∈ R . . . ” are allowed) and for this reason it is known to
logicians as “quantifier elimination for the ordered ring structure on R”. Immedi-
ate consequences are the facts that the closure, interior and boundary of a semi-
algebraic set are semi-algebraic. It is also the basis for many inductive arguments
in semi-algebraic geometry where a desired property of a given semi-algebraic set
is inferred from the same property of projections of the set into lower dimensions.
For example, the fact (due to Hironaka) that any bounded semi-algebraic set can
be triangulated is proved this way.

In the 1960s the analytic geometer  Lojasiewicz extended the above theory to
the analytic context ([8]). The definition of a semi-analytic subset of Rn is the
same as above except that for the basic sets the p(~x)’s and q(~x)’s are allowed to be
analytic functions and we only insist that the boolean representations work locally
around each point of Rn (allowing different representations around different points).
It is also necessary to restrict the maps to be proper (with semi-analytic graph).
With this restriction it is true that the image of a semi-analytic set, known as a
sub-analytic set, is semi-analytic provided that the target space is either R or R2.
Counterexamples have been known since the beginning of this century for maps to
Rm for m ≥ 3. (They are due to Osgood, see [8].) However, the situation was
clarified in 1968 by Gabrielov ([5]) who showed that the class of sub-analytic sets
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is closed under taking complements. Gabrielov’s theorem can be reformulated in
terms of logical definability as follows.

For each m and each analytic function f : U → R, where U is some open
neighbourhood of the closed box [0, 1]m in Rm, let f̃ : Rm → R be defined by

f̃(~x) =

{
f(~x) if ~x ∈ [0, 1]m,

0 if ~x ∈ Rm\[0, 1]m.

Let Lan denote the language extending that of ordered rings obtained by adding a
function symbol for each such function f̃ . Then Gabrielov’s theorem is readily seen
to be equivalent to the assertion that for each n, every subset of Rn which can be
defined by some logical formula of the language Lan can, in fact, be defined by an ex-
istential formula of Lan, that is, one of the form ∃y1, . . . , yr φ(x1, . . . , xn, y1, . . . , yr)
where the Lan-formula φ contains no occurrences of quantifiers. (Further, the class
of all such subsets which are bounded is exactly the class of bounded sub-analytic
subsets of Rn. At first sight it might seem that the former class is richer because the
projection map implicit in the existential quantification is not restricted to a com-
pact set. The fact that we do not obtain non-sub-analytic sets is due, of course, to
our original truncation of the analytic functions.) In this form Gabrielov’s theorem
was given a fairly straightforward treatment, based on the Weierstrass preparation
theorem and Tarski’s elimination theory, by Denef and van den Dries ([3]).

Thus, although we do not have full quantifier elimination for this local analytic
structure (together with the ordered ring structure) on R, we do have elimination
down to existential formulas. Such structures are called model complete, a term
introduced by Abraham Robinson. Actually, whether or not a structure is model
complete only depends on the theory of the structure, that is on the set of all
sentences of its language (a sentence is a formula without free variables) that are
true in the structure. More generally, if T is a consistent set of sentences of some
language L, then T is called model complete if for every formula ψ(~x) of L there is
an existential formula θ(~x) of L such that the sentence ∀~x(ψ(x)↔ θ(~x)) is a formal
consequence of T . Further, if θ(~x) can always be chosen to contain no occurrences
of quantifiers at all, then T is said to admit elimination of quantifiers.

To summarize the above discussion, then, let R = 〈R; +, ·,−, 0, 1, <〉 and Ran =

〈R;F〉 where F consists of all functions of the form f̃ as described above. Let T and
Tan denote the theories of these structures respectively. Then T admits elimination
of quantifiers (Tarski) and Tan is model complete (Gabrielov) but does not admit
elimination of quantifiers (Osgood).

My aim in this paper is to give two variations of Gabrielov’s theme. The first
is in response to the following natural question: when can the analytic functions
needed to describe the complement of a given sub-analytic set be chosen from the
ring generated by functions used to describe the given set? Or, in model theoretic
terms, for which subsets G of F is (the theory of) the structure 〈R;G〉 model
complete? I shall show that this is the case when G is a Pfaffian chain of functions.
Let me make this more precise.

Firstly, fix m, l ∈ N,m, l ≥ 1, and an open set U ⊆ Rm such that the closed box
[0, 1]m is contained in U . Let G1, . . . , Gl : U → R be analytic functions and suppose
that there exist polynomials pi,j ∈ R[z1, . . . , zm+i] (for i = 1, . . . , l, j = 1, . . . ,m)
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such that

∂Gi
∂xj

(~x) = pi,j(~x,G1(~x), . . . , Gi(~x)) (for all ~x ∈ U).(1)

The sequence G1, . . . , Gl is called a Pfaffian chain on U . Let F1, . . . , Fl be the
corresponding truncations. That is,

Fi(~x) =

{
Gi(~x) if ~x ∈ [0, 1]m,

0 if ~x ∈ Rm\[0, 1]m.
(2)

Now let C be any subset of R such that each coefficient of each pi,j is the value

of some term (without free variables) in the structure 〈R;F1, . . . , Fl; r〉r∈C . (For
example, we could take C to be the set of all such coefficients.) I denote this

structure by R̃ and its language and theory by L̃, T̃ , respectively.

Obviously L̃ is a sublanguage of Lan and every subset of Rn that can be defined

by a formula of L̃ can be defined by a formula, and hence an existential formula, of
Lan. I shall prove the following.

First Main Theorem. Every subset of Rn (for any n) that can be defined by some

formula of L̃ can be defined by an existential formula of L̃. That is, T̃ is model
complete.

Examples. (A) Take m = l = 1, U = R, G1(x1) = exp(x1), p1,1(z1, z2) = z2 and

C = ∅. Then the theorem tells us that the theory of the structure 〈R; exp � [0, 1]〉 is
model complete. Of course the convention (2) dictates that exp � [0, 1] is defined to
be 0 outside [0, 1]. If one prefers to have only functions that are analytic throughout
R (or Rm) in the basic language, then one can always invoke the following cosmetic
trick. Define e : R→ R, x→ exp((1 + x2)−1). Then the structures 〈R; exp � [0, 1]〉
and 〈R; e〉 are essentially the same, i.e. they have the same definable sets and, more
to the point, the same existentially definable sets. It follows that the theory of the
structure 〈R; e〉 is model complete.

(B) Sometimes the cosmetic trick comes for free. Take m = 1, l = 2, U = R,
G1(x1) = (1 + x2

1)−1, G2(x1) = tan−1(x1), p1,1(z1, z2) = 2z1z
2
2 , p2,1(z1, z2, z3) = z2

and C = ∅. Since the graph of the function G1 (or rather F1) is already definable in
R by a quantifier-free formula, the theorem implies that the theory of the structure
〈R; tan−1 � [0, 1]〉 is model complete. But in this case we have functional equations
at ±∞, namely

tan−1

(
1

x

)
=
π

2
− tan−1(x) for x > 0,

and

tan−1

(
1

x

)
= −π

2
− tan−1(x) for x < 0,

which, together with the equations

tan−1(−x) = − tan−1(x) and
π

2
= 2 tan−1(1),

clearly imply that the theory of the structure 〈R; tan−1〉 (with tan−1 unrestricted)
is model complete.
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(C) As far as I know the first result along these lines was obtained by van den
Dries ([15]) who showed that the theory of the structure

〈R; sin � [0, 1], exp � [0, 1]; r〉r∈R
is model complete. This also follows from the first main theorem by combining the
chains used in (A) and (B) and then invoking elementary trigonometric identities.
I leave the details to the reader. (The reason van den Dries actually needs the
sine function is that his proof uses complex power series methods and the required
model completeness is then deduced, by “taking real parts”, from a corresponding
result for complex exponentiation restricted to the unit disc. The key point in
this approach is that the complex analytic functions cropping up as coefficients in
the Weierstrass Preparation Theorem can be existentially defined from the initial
data (and, possibly, extra parameters—hence the choice C = R here)—a fact that,
interestingly, seems to be unknown in the case of the Preparation Theorem for real
analytic functions.)

Whether one uses analytic or model-theoretic terminology and methods, the
proofs of all the above results work because one only ever has to deal with analytic
functions restricted to compact subsets of their natural domains or, equivalently
(via the cosmetic trick), with total analytic functions that are also analytic at
infinity. The second result of this paper removes this restriction in one particular
case.

Second Main Theorem. The theory of the structure 〈R; exp〉, where exp is the
usual exponential function x 7→ ex with domain R, is model complete.

Thus, if we define a subset of Rn to be semi-EA (“semi-exponential-algebraic”)
if it can be represented as a boolean combination of sets of the form {~α ∈ Rn :
p(~α) = 0}, {~α ∈ Rn : q(~α) > 0}, where the p(~x)’s and q(~x)’s are exponential poly-
nomials (i.e. polynomials in x1, . . . , xn, ex1 , . . . , exn with real (or, more generally
(!), integer) coefficients), and a map from Rn to Rm to be semi-EA if its graph is so
(and we do not demand that the map be proper) and, finally, a set to be sub-EA if it
is the image of a semi-EA set under a semi-EA map, then the theorem is equivalent
to the assertion that the complement of a sub-EA set is a sub-EA set. This, as for
the semi-algebraic case, implies that the class of sub-EA sets is also closed under
taking closures, interiors and boundaries.

It is difficult to see how conventional analytic or differential geometric methods
could be used to establish this result because of the essential singularity of the
exponential function at infinity. The proof given here uses model-theoretic methods
to analyse large zeros of systems of exponential-algebraic equations.

Before giving a plan of the paper I should make a few remarks concerning effec-
tivity. For it was Tarski’s main purpose in his paper to show not only that every
formula of L is equivalent (modulo T ) to a quantifier-free formula, but also that the
latter could be found effectively from the former. From this he deduced that T is a
decidable theory, i.e. there exists an (explicitly given) algorithm to decide whether
or not an arbitrary sentence of L is true in R (hence the title of the paper). Tarski
asked whether this holds for 〈R; exp〉 and while this question was the motivation for
the work in this paper, I feel it would have obscured the arguments here had I paid
constant attention to effectivity considerations. Such problems will be discussed in
a forthcoming paper of A. J. Macintyre and the author, where they will be shown
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to be intimately linked with the conjecture of Schanuel in transcendental number
theory.

For an introduction to the general notion of model completeness I refer the
reader to [1]. Several equivalent formulations are mentioned there (and, in fact, the
definition I have given is not Robinson’s original one but one of these equivalents)
including the following: if T is a consistent set of sentences in a language L, then
T is model complete if and only if whenever A,B are models of T with A ⊆ B

(i.e. A is an L-substructure of B), then G is existentially closed in B. For the
theories involved in the two main theorems above (or, indeed, for the theory of
any structure expanding R by functions and constants) establishing the latter is
equivalent to showing that any finite set of equations (involving the basic functions
of the given language) with parameters from A is solvable in A provided that it is
solvable in B. This is how I shall go about proving the theorems.

The next section clarifies this approach and organizes the equations that we need
to solve into manageable form. After summarizing known finiteness theorems for
the solutions of such equations in section 3 I develop, in sections 4 and 5, a the-
ory of Noetherian rings of differentiable germs that works for arbitrary (possibly
nonstandard) models of suitable theories. (As an application we give a proof (see
5.3) of the theorem of Khovanskii stating that Pfaffian varieties have only finitely
many connected components.) Sections 6 and 7 are rather tedious. This is because
I need to develop some very elementary, but global, existence theorems from the
differential calculus that apply to, as above, arbitrary models of the theories under
consideration and this can only be accomplished, as far as I can see, by exhibiting
explicit definitions. Many algebraic manipulations (especially of Jacobian matri-
ces) are involved here, the details of which may be safely skipped without loss of
understanding of the main arguments.

For all the results of sections 2 to 7 (apart from 3.4 and 3.5) it is irrelevant
whether or not the basic functions are restricted to the closed unit box and so they
apply to the situations of both main theorems. I have, however, concentrated on
those structures to which the first theorem applies because the truncation actually
introduces extra difficulties (of a rather superficial nature). Hereafter the proofs
diverge because we need to confront the problem, briefly referred to above, of large
solutions of the equations under consideration. This is done in section 8 for the first
theorem, thus completing its proof. Sections 9 to 11 are devoted to the completion
of the proof of the second theorem. These may be read independently as I restate
the necessary results from earlier sections.

Tarski’s problem on the real exponential function has been the focus of papers
by many authors. Apart from those mentioned above I refer the reader to the
pioneering work of Dahn ([2]) and Wolter ([17]). For the crucial inequalities needed
in the proof of the model completeness of the structure 〈R; exp〉 can be viewed as
a generalization to many variables of the Dahn bounding theorem ([2]).

2. Towards the proof of the first main theorem

The symbols K̃, k̃ will denote L̃-structures with domains K, k respectively, al-
though I shall sometimes use K, k to denote the underlying fields or ordered fields.

If k̃ ⊆ K̃, then L̃k (respectively Lk) denotes the expansion of L̃ (respectively L)
obtained by adding a new constant symbol for each element of k. The correspond-

ing L̃k-expansion of K̃ will be denoted simply K̃+ when it is clear which k is
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intended. I shall also adopt the usual practice of not distinguishing notationally
between non-logical symbols of a language and their interpretation in a structure
under consideration. In particular, for i = 1, . . . , l, the symbol Fi, which was in-
troduced in section 1 as a particular function from Rm to R, will also denote the

corresponding function symbol of L̃ as well as the function from Km to K that the

function symbol is interpreted as in a given L̃-structure K̃.
Now for 1 ≤ i ≤ l, 1 ≤ j ≤ m and n ≥ 1, (1) and (2) imply

Fi is n-times differentiable on the open box (0, 1)m,(3)

and

∀~x ∈ (0, 1)m,
∂Fi
∂xj

= pi,j(~x, F1(~x), . . . , Fi(~x)).(4)

Clearly (3) and (4) can be expressed by sentences of L̃ (note the property of the

set C) and these sentences are therefore in T̃ . But there is no obvious way to express
the fact that Fi (restricted to (0, 1)m) has an analytic continuation (namely Gi)
to an open set containing the closed box [0, 1]m (namely U) such that (1) holds.
However, as the remarks following example (C) above were intended to suggest,
we must use this fact and, indeed, there are several consequences of it that are
first-order expressible and I need to mention one such here.

Let S ⊆ {1, . . . ,m} and suppose aj ∈ {0, 1} for j ∈ S. Define the functions
F ∗i : Rm → R by F ∗i (x1, . . . , xm) = Fi(x

′
1, . . . , x

′
m) where

x′j =

{
xj if j 6∈ S,
aj if j ∈ S.

Let

Jj =

{
(0, 1) if j 6∈ S,
R if j ∈ S.

Then (1) and (2) imply (with i, j, n as above)

F ∗i is n-times differentiable on the open set
m∏
j=1

Jj ,(5)

and

∀~x ∈
m∏
j=1

Jj ,
∂F ∗i
∂xj

(~x) =

{
Pi,j(x

′
1, . . . , x

′
m, F

∗
1 (~x), . . . , F ∗i (~x)), if j 6∈ S,

0 if j ∈ S,
(6)

and these facts are expressible by sentences of L̃ (which are therefore in T̃ ).
Now to prove the first main theorem it suffices, by remarks in section 1 (see [1]),

to show that if k̃, K̃ |= T̃ , k̃ ⊆ K̃ and χ is an existential sentence of L̃k such that

K̃+ |= χ, then k̃+ |= χ. We may also suppose here that χ has the form

∃x1, . . . , xr

n∧
s=1

τs = 0,

where each τs is either a term of Lk or else has the form Fi(xi1 , . . . , xim)− xim+1 .
This is because of standard logical equivalences and the facts that the formulas
x 6= y and x < y are equivalent in T to the formulas ∃z (y − x) · z − 1 = 0 and
∃z (y − x) · z2 − 1 = 0 respectively and that composite terms may be unravelled
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by introducing new variables (e.g. replace τ(σ) = 0 by ∃x (σ − x = 0 ∧ τ(x) = 0)).
Now notice also that the formula

Fi(y1, . . . , ym)− ym+1 = 0 ∧ yj ≥ 1

(the yi’s being variables or constants) where 1 ≤ j ≤ m and yj is a variable, is

equivalent in T̃ to the formula

(yj > 1 ∧ ym+1 = 0) ∨ (Fi(y1, . . . , ym)(yj/1)− ym+1 = 0 ∧ yj = 1),

and that a similar equivalence holds with “yj ≤ 0” in place of “yj ≥ 1”. Thus by
repeated use of all these equivalences we may suppose that χ actually has the form

∃x1, . . . , xr

n∧
s=1

χs(x1, . . . , xr),

where each χs(x1, . . . , xs) is either of the form τ(x1, . . . , xr) = 0 for some term
τ(x1, . . . , xr) of Lk (i.e. a polynomial in x1, . . . , xr over k) or of the form∧

j 6∈S
0 < xij < 1 ∧ Fi(x′i1 , . . . , x

′
im)− xim+1 = 0

for some S ⊆ {1, . . . ,m}, where 1 ≤ i1, . . . , im+1 ≤ r and where

x′ij =

{
xi+j for j 6∈ S,
0 or 1 for j ∈ S.

The proof of the first main theorem will be essentially by induction on the number
of χs’s of this second form that occur in χ although it is convenient first to pad out
the set of such χs’s. This the purpose of the following

2.1. Definition. Let n, r ∈ N.

(i) A sequence 〈σ1, . . . , σn〉 of terms of L̃ in the variables x1, . . . , xr is called an
(n, r)-sequence if
(a) for s = 1, . . . , n, σs has the form Fi(y1, . . . , ym) for some i = 1, . . . , l and

some y1, . . . , ym ∈ {0, 1, x1, . . . , xr}, and
(b) if 1 ≤ s ≤ n, 1 < i ≤ l and σs is Fi(y1, . . . , ym) (as in (a)), then s > 1

and for some t = 1, . . . , s− 1, σt is Fi−1(y1, . . . , ym).
(ii) Those variables actually occurring in some term of an (n, r)-sequence ~σ are

called ~σ-bounded.

Clearly any (n, r)-sequence ~σ is also an (n, r′)-sequence for any r′ ≥ r (and
the set of ~σ-bounded variables is the same), and any initial segment of an (n, r)-
sequence is an (n′, r)-sequence for the appropriate n′ ≤ n. Further, any sequence
satisfying (i) (a) may be clearly rearranged and padded out to an (n′, r)-sequence

for some n′. Now let K̃ |= T̃ .

2.2. Definition. Suppose ~σ = 〈σ1, . . . , σn〉 is an (n, r)-sequence. The natural

domain of ~σ on K̃, denoted Dr(~σ, K̃), is defined to be
∏r
i=1 Ii where

Ii =

{
{x ∈ K : K̃ |= 0 < x < 1} if xi is ~σ-bounded,

K otherwise.

Clearly Dr(~σ, K̃) is a definable open (in the sense of K̃) subset of Kr.

Suppose now that k̃ |= T̃ and k̃ ⊆ K̃.
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2.3. Definition. I denote by Mr(k̃, K̃, ~σ), where ~σ is an (n, r)-sequence, the ring

of all those functions f : Dr(~σ, K̃) → K for which there exists a polynomial
p(X1, . . . , Xr, Y1, . . . , Yn) ∈ k[X1, . . . , Xr, Y1, . . . , Yn] such that

f(~α) = p(~α, σ1(~α), . . . , σn(~α)) for all ~α ∈ Dr(~σ, K̃),(7)

where ~σ = 〈σ1, . . . , σn〉.

The reductions preceding Definition 2.1 clearly imply

2.4. Lemma. In order to prove the main theorem it is sufficient to show that for

all k̃, K̃ |= T̃ with k̃ ⊆ K̃, all n, r ∈ N, all (n, r)-sequences ~σ, and all g1, . . . , gq ∈
Mr(k̃, K̃, ~σ), if g1, . . . , gq have a common zero in Dr(~σ, K̃), then they have one in

Dr(~σ, k̃). (Note that we clearly have Dr(~σ, k̃) ⊆ Dr(~σ, K̃).)

Of course our reductions show that the polynomials p of (7) representing the
gi’s of 2.4 may be taken to be either independent of the Yi’s or of the form Yi−Xj

(for some i = 1, . . . , n, j = 1, . . . , r). However, while this observation will play a
role later (in somewhat disguised form) it is much more convenient to work with
rings of functions, and I now want to establish some elementary properties of these
rings.

Fix, for the rest of this section, models k̃, K̃ of T̃ such that k̃ ⊆ K̃.
Suppose that n, r ∈ N and that ~σ = 〈σ1, . . . , σn〉 is an (n, r)-sequence. Let g ∈

Mr(k̃, K̃, ~σ). Then by (5) and the comments immediately following (6), g is a C∞

function onDr(~σ, K̃) in the sense of K̃. That is, for each q ∈ N, K̃ satisfies the usual
ε-δ definition for the existence of continuous qth partial derivatives of g at all points

of Dr(~σ, K̃). Further, it clearly follows from (6) and (i)(b) of Definition 2.1 that

these partial derivatives of g all lie inMr(k̃, K̃, ~σ). ThusMr(k̃, K̃, ~σ) is a differential

ring. It is also an integral domain. This is because Mr(R̃, R̃, ~σ) is certainly an
integral domain (since it is a ring of functions analytic on an open connected set) and

this fact clearly transfers to Mr(K̃, K̃, ~σ) (just represent elements of Mr(K̃, K̃, ~σ)

in the form (7) and quantify out the coefficients of p), which contains Mr(k̃, K̃, ~σ)
as a subring.

Suppose now that p, q ≤ r and 1 ≤ i1 < · · · < iq ≤ r. For g1, . . . , gp ∈
Mr(k̃, K̃, ~σ) consider the (Jacobian) matrix

∂g1

∂xi1
· · · ∂g1

∂xiq
...

...
∂gp
∂xi1

· · · ∂gp
∂xiq

 .

It is a matrix over Mr(k̃, K̃, ~σ) and I denote it by
∂(g1,...,gp)
∂(xi1 ,...,xiq ) . Note that if p = q,

then

det

(
∂(g1, . . . , gp)

∂(xi1 , . . . , xip)

)
∈Mr(k̃, K̃, ~σ).

If p = q = r, I write J(g1, . . . , gr) for det( ∂(g1,...,gr)
∂(x1,...,xr)

).

2.5. Definition. Suppose n, r ∈ N and let ~σ be an (n, r)-sequence. Then a point

P ∈ Kr is called (k̃, ~σ)-definable if there exist g1, . . . , gr ∈Mr(k̃, K̃, ~σ) such that

(i) P ∈ Dr(~σ, K̃),
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(ii) g1(P ) = · · · = gr(P ) = 0, and
(iii) J(g1, . . . , gr)(P ) 6= 0.

Examples. (D) Let r ∈ N. Note that the empty sequence, ∅, is a 〈0, r〉 sequence,

that Dr(∅, K̃) = Kr and that Mr(k̃, K̃,∅) may be identified with the polynomial
ring k[x1, . . . , xr ]. Now suppose P ∈ kr, say P = 〈p1, . . . , pr〉. For i = 1, . . . , r

define gi(x1, . . . , xr) = xi − pi. Then g1, . . . , gr ∈ Mr(k̃, K̃,∅), g1(P ) = · · · =

gr(P ) = 0 and J(g1, . . . , gr)(P ) = 1 6= 0. Hence P is a (k̃,∅)-definable point of

Kr. Conversely, suppose Q is a (k̃,∅)-definable point of Kr. Then elementary
algebra tells us that each coordinate of Q is algebraic over (the field) k. Since k is
algebraically closed in K (both being models of T ) it follows that Q ∈ kr.

(E) More generally, suppose n, r ∈ N and that ~σ = 〈σ1, . . . , σn〉 is an (n, r)-

sequence. Let s ≥ 1 and regard ~σ as an (n, r+s)-sequence. Then clearlyDr+s(~σ, K̃)

= Dr(~σ, K̃)×Ks (cf. 2.1(ii) and 2.2) and Mr+s(k̃, K̃, ~σ) may be identified with the

polynomial ring Mr(k̃, K̃, ~σ)[xr+1, . . . , xr+s] over the domain Mr(k̃, K̃, ~σ). Sup-

pose P ∈ Dr(~σ, K̃) and Q ∈ Ks and that 〈P,Q〉 is (k̃, ~σ)-definable. Then elemen-
tary algebra again tells us that each coordinate of Q is algebraic over the subfield
k(p1, . . . , pr, σ1(P ), . . . , σn(P )) of K (where P = 〈p1, . . . , pr〉).

Example (D) shows that a point of Kr is (k̃,∅)-definable if and only if it lies in
kr. In fact:

2.6. Main Lemma. For any n, r ∈ N and any (n, r)-sequence ~σ, every (k̃, ~σ)-
definable point of Kr lies in kr.

We shall also prove the following

2.7. Lemma. Let n, r ∈ N and let ~σ be an (n, r)-sequence. Suppose g ∈
Mr(k̃, K̃, ~σ) and g(P ) = 0 for some P ∈ Dr(~σ, K̃). Then for some s ∈ N there

exists Q0 ∈ Dr(~σ, K̃) and Q1 ∈ Ks such that g(Q0) = 0 and 〈Q0, Q1〉 is (k̃, ~σ)-
definable (cf. example (E) above).

Clearly the first main theorem follows from 2.4, 2.6 and 2.7 by taking the g of
2.7 to be

∑q
i=1 g

2
i with g1, . . . , gq as in 2.4.

It is convenient to split the main lemma into two statements, the proofs of which
are entirely different. They are:

2.8. Lemma. Suppose n, r ∈ N and that ~σ is an (n, r)-sequence. Suppose further

that for each s ≥ r and each (k̃, ~σ)-definable point 〈p1, . . . , ps〉 of Ks there is some

B ∈ k such that K̃ |=
∧s
i=1−B < pi < B. Then every (k̃, ~σ)-definable point of Kr

lies in kr.

2.9. Lemma. Suppose that n, r ∈ N and that ~σ′ = 〈σ1, . . . , σn, σn+1〉 is an (n +
1, r)-sequence. Let ~σ denote the (n, r)-sequence 〈σ1, . . . , σn〉. Suppose that for each

s ≥ r every (k̃, ~σ)-definable point of Ks lies in ks. Then for each s ≥ r and

each (k̃, ~σ′)-definable point 〈p1, . . . , ps〉 of Ks, there is some B ∈ k such that K̃ |=∧s
i=1−B < pi < B.

Clearly the main lemma follows by induction on n (for all values of r) from 2.8
and 2.9, the base step of the induction being provided by example (D).

We have now reduced the task of proving the first main theorem to that of proving
Lemmas 2.7, 2.8 and 2.9. In fact, 2.7 and 2.8 require only minor modifications of the
techniques developed in [16] but I prefer to deduce them from a general theory of
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Noetherian differential rings of definable functions which I shall develop in section 4.
I shall prove 2.7 and 2.8 in sections 5 and 7 respectively. These proofs do not depend
on the fact that the Fi’s have continuations to an open set containing [0, 1]m and
so we can deduce a modified model completeness result for unrestricted Pfaffian

functions in situations where 2.9 holds trivially (e.g. when K̃ is a cofinal extension

of k̃) and I conclude section 7 with such a result. Section 8 is devoted to a proof of
2.9 which needs van den Dries’s work on the model theory of finitely sub-analytic
sets ([13]). I shall also rely heavily throughout most of this paper on Khovanskii’s
work on Pfaffian functions ([6]). The exact results needed from these two papers
as well as some immediate corollaries are described in the next section.

3. Results of Khovanskii and van den Dries

3.1. Proposition (Khovanskii [6]). Suppose that h1, . . . , hl is any Pfaffian chain
of functions on Rm+n. Suppose further that g1, . . . , gm ∈ R[x1, . . . , xm+n, h1, . . . , hl]
(where xi : Rm+n → R denotes the ith projection function). Then there is a natural
number N such that for any Q ∈ Rn the set{

P ∈ Rm : g1(P,Q) = · · · = gm(P,Q) = 0 and

det

(
∂(g1, . . . , gm)

∂(x1, . . . , xm)

)
(P,Q) 6= 0

}
contains at most N elements.

The reader may have already observed that some such result has to be true if we
are to have any chance of proving 2.6. In fact we need a version of 3.1 where Rm+n is
replaced with sets of the form

∏m+n
i=1 Ji where each Ji is either R or (0, 1). That such

a modification holds can be seen by inspecting Khovanskii’s proof. Alternatively
we may argue as follows.

Suppose h1, . . . , hl is a Pfaffian chain on
∏m+n
i=1 Ji. Define the functions αi, βi :

Rm+n → R (for i = 1, . . . ,m+ n) by

αi(~x) =

{
1 if Ji = R,

1
π(1+x2

i )
if Ji = (0, 1),

βi(~x) =

{
xi if Ji = R,
1
2 + 1

π · tan−1(xi) if Ji = (0, 1).

Then clearly the map ~β : ~x 7→ 〈β1(~x), . . . , βm+n(~x)〉 is an analytic bijection from

Rm+n to
∏m+n
i=1 Ji so the functions hi ◦ ~β : Rm+n → R (for i = 1, . . . , l) are defined

and analytic throughout Rm+n. Further, by the chain rule (and see also example

B), the sequence α1, β1, . . . , αm+n, βm+n, h1 ◦ ~β, . . . , hl ◦ ~β is a Pfaffian chain on
Rm+n.

Let M denote the ring of functions (defined on
∏m+n
i=1 Ji) R[x1, . . . , xm+n,

h1, . . . , hl] and M∗ the ring of functions (defined on Rm+n) R[x1, . . . , xm+n, α1, . . . ,

αm+n, β1, . . . , βm+n, h1 ◦ ~β, . . . , hl ◦ ~β]. Suppose g1, . . . , gm ∈ M , P ∈
∏m
i=1 Ji,

Q ∈
∏m+n
i=m+1 Ji, g1(P,Q) = · · · = gm(P,Q) = 0 and det( ∂(g1,...,gm)

∂(x1,...,xm) )(P,Q) 6= 0.

Then clearly g1 ◦ ~β, . . . , gm ◦ ~β ∈M∗ and g1 ◦ ~β(P ′, Q′) = · · · = gm ◦ ~β(P ′, Q′) = 0
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where 〈P ′, Q′〉 = ~β−1(P,Q). Further, as an easy calculation using the chain rule
shows, we have

∂(g1 ◦ ~β, . . . , gm ◦ ~β)

∂(x1, . . . , xm)
(P ′, Q′) =

∂(g1, . . . , gm)

∂(x1, . . . , xm)
(P,Q)

× ∂(β1, . . . , βm)

∂(x1, . . . , xm)
(P ′, Q′).

(∗)

Now

det

(
∂(β1, . . . , βm)

∂(x1, . . . , xm)

)
(P ′, Q′) =

m∏
i=1

αi(P
′, Q′) 6= 0,

so the left hand side of (∗) has non-zero determinant. Since P ′ depends only on P
and Q′ only on Q we can now use 3.1 to conclude:

3.2. Corollary. Proposition 3.1 holds with
∏m+n
i=1 Ji in place of Rm+n where each

Ji is either R or (0, 1).

The fact that the upper bound N is independent of Q here can now be used to
transfer this result to the situation we are interested in. The easy formal details
required for the proof of the following result are left to the reader.

3.3. Corollary. Suppose n, r1, r2 ∈ N and that ~σ is an (n, r1 + r2)-sequence. Sup-

pose further that k̃, K̃ |= T̃ , k̃ ⊆ K̃, and that g1, . . . , gr1 ∈ Mr1+r2(k̃, K̃, ~σ). Then
there is N ∈ N such that for each Q ∈ Kr2 the set{

P ∈ Kr1 : 〈P,Q〉 ∈ Dr1+r2(~σ,K), g1(P,Q) = · · · = gr1(P,Q) = 0

and det

(
∂(g1, . . . , gr1)

∂(x1, . . . , xr1)

)
(P,Q) 6= 0

}
contains at most N elements.

I now turn to a result of van den Dries concerning sets and functions definable
in the structure Ran (cf. section 1). The result we need can be found in [13] where
it is formulated in terms of so-called “finitely sub-analytic sets”. Since these are
exactly the sets definable in Ran (see [3]) we may reformulate the result as follows

3.4. Proposition (van den Dries [13]). (i) Ran is 0-minimal (i.e. every subset of
R definable (with parameters) in Ran is a finite union of open intervals and points).

(ii) If e ∈ R and f : (e,∞) → R is any function definable (with parameters) in
Ran, then there exists d ≥ e such that on (d,∞) the function f may be represented
by a convergent Puiseux expansion:

f(x) =
∞∑
i=p

ai · x−i/q(∗)

where q ∈ N, q ≥ 1, p ∈ Z, ai ∈ R (for i ∈ Z, i ≥ p) and ap 6= 0 provided f is not
(eventually) identically zero.

Now, as pointed out in section 1, every subset of Rn (for any n) definable in the

structure R̃ is definable in Ran. Hence 3.4 holds with R̃ in place of Ran. I need the
following consequence of this fact.
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3.5. Corollary. Suppose K̃ |= T̃ , e ∈ K and g : (e,∞) → K is a K̃ definable
function which is not eventually identically zero. Then there is a rational number
s and a non-zero element a ∈ K such that g(x)xs → a as x→ ∞ (in the sense of

K̃).

Proof. Suppose φ(~b, x, y) defines the graph of g in K̃ where φ(~z, x, y) is an L̃-

formula. Let ψ(~z) be the L̃-formula

∃u(∀x > u ∃!y φ(~z, x, y) ∧ ∀x > u ∃w > x ¬φ(~z, w, 0)),

and note that K̃ |= ψ(~b).

Now suppose that ~α is a tuple of reals such that R̃ |= ψ(~α) and let f~α : (β,∞)→
R be the function defined by φ(~α, x, y) in R̃ (for suitable β ∈ R). By (3.4)(ii) f~α
may be represented in the form (∗) for sufficiently large x, and we clearly have
ap 6= 0 and f~α(x)xp/q → ap as x→∞.

Now by elementary real analysis the series (∗) may be differentiated term by
term to obtain the convergent representation

f ′~α(x) =
∞∑
i=p

− iai
q
x(−i/q)−1

(for sufficiently large x ∈ R), and we have that f ′~α(x)x(p/q)+1 → −papq as x→∞. It

follows that limx→∞−(f ′~α(x)x)/(f~α(x)) exists and equals p/q. By using the usual

ε-δ definition of derivatives and limits we may clearly write down an L̃-formula

χ(~z, y) expressing (in R̃) : “ψ(~z) and limx→∞−(f ′~z(x)x)/f~z(x) = y.” We have

shown that the L̃-formula ∃~z χ(~z, y) defines in R̃ a set of rationals, and since, by

the comments above, R̃ is a 0-minimal structure, it follows that this set is finite,

say {s1, . . . , sn}. We have also shown that the L̃-sentence expressing: “∀~z (ψ(~z)→∨n
i=1(limx→∞ f~z(x) · xsi exists and is non-zero))” is true in R̃, and hence in K̃.

Since K̃ |= ψ(~b) and f~b = g (eventually in K̃) the result follows.

4. Differentiable germs in arbitrary expansions of R

Throughout this section R denotes any expansion of the ordered field R, L its

language and T its theory. We employ conventions analogous to those set out at

the beginning of section 2 concerning models of T .

Let K |= T . As we have already seen many local notions from topology and

calculus can be immediately transferred from R to K and I will assume the reader
is familiar with this process. It should always be clear how (and where) these
notions are to be interpreted. The implicit function theorem, however, requires
some comment.

Suppose r,m ∈ N, r,m ≥ 1 and 〈P,Q〉 = 〈p1, . . . , pr, q1, . . . , qm〉 ∈ Kr+m.
Let U be a definable (i.e. K-definable with parameters) open neighbourhood of
〈P,Q〉 and suppose f1, . . . , fm : U → K are definable functions which are infin-
itely differentiable throughout U . Suppose further that 〈P,Q〉 is a non-singular
zero of f1, . . . , fm with respect to xr+1, . . . , xr+m. This means, by definition, that
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fi(P,Q) = 0 for i = 1, . . . ,m and that the determinant of the Jacobian matrix

∆ = ∆(x1, . . . , xr+m) =


∂f1

∂xr+1
. . . ∂f1

∂xr+m
...

...
∂fm
∂xr+1

. . . ∂fm
∂xr+m


does not vanish at 〈P,Q〉.

Now if K = R we can apply the implicit function theorem (see e.g. [4]) to obtain
open neighbourhoods V1 of P (in Kr) and V2 of Q (in Km) such that

4.1. V1 × V2 ⊆ U .

4.2. For each ~x ∈ V1 there is a unique point 〈y1, . . . , ym〉 = 〈y1(~x), . . . , ym(~x)〉 ∈ V2

such that fi(~x, ~y) = 0 for i = 1, . . . ,m, and this point satisfies J(~x, ~y) 6= 0.

4.3. The functions yi : V1 → K (for i = 1, . . . ,m) are infinitely differentiable and
for each l = 1, . . . , r and ~x ∈ V1

∂y1

∂xl
...

∂ym
∂xl

 = −∆−1


∂f1

∂xl
...

∂fm
∂xl


where the right hand side is evaluated at the point 〈~x, y1(~x), . . . , ym(~x)〉.

We require 4.1–4.3 to hold for arbitrary K and that this is the case can be
argued as follows. Firstly, the existence of V1 and V2 satisfying 4.1 and 4.2 can
be guaranteed since we may suppose they are box neighbourhoods (i.e. of the form
{〈z1, . . . , zt〉 ∈ Kt : |αi − zi| < ε for i = 1, . . . , t} for some α1, . . . , αt, ε ∈ K
with ε > 0). Having fixed such V1 and V2 the uniqueness in 4.2 guarantees that
the yi’s are definable functions which, by transfer, are continuously differentiable
throughout V1 and satisfy the formula in 4.3. But this formula implies (simply by

arguing in K) that the yi’s are infinitely differentiable throughout V1.
I now turn to germs of differentiable definable functions in (an arbitrary given

model of T ) K.

4.4. Definition. Let n ∈ N, n ≥ 1.
(i) A neighbourhood system (n.s.) in Kn is a non-empty collection of non-empty,

definable open subsets of Kn which is closed under (finite) intersection.
(ii) For G a n.s. in Kn, D(n)(G)− denotes the set of all pairs 〈f, U〉 where U ∈ G

and f : U → K is an infinitely differentiable definable function.
(iii) For 〈f1, U1〉, 〈f2, U2〉 ∈ D(n)(G)−, 〈f1, U1〉 ∼ 〈f2, U2〉 means that there is

some U ∈ G with U ⊆ U1∩U2 such that f1(~x) = f2(~x) for all ~x ∈ U . This is clearly
an equivalence relation and the equivalence class of 〈f, U〉 (∈ D(n)(G)−) is denoted
[f, U ].

(iv) The set of equivalence classes, or germs, is denoted D(n)(G).
Clearly D(n)(G) is naturally a differential (unital) ring and I continue to write

∂
∂x1

, . . . , ∂
∂xn

for the obvious induced derivatives on D(n)(G).

4.5. Lemma. Let n ∈ N, n ≥ 1 and suppose G is a n.s. in Kn. Suppose further
that M is a subring of D(n)(G) closed under differentiation and that I is a finitely
generated ideal of M also closed under differentiation. Let {[g1, U1], . . . , [gs, Us]}
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be any finite set of generators for I and set Z = {P ∈
⋂s
i=1 Ui : gi(P ) = 0 for

i = 1, . . . , s}. Then for some U ∈ G, U ∩ Z is an open (definable) subset of Kn.

Proof. Since I is closed under differentiation and G under finite intersection there

exist U ∈ G and definable functions a
(r)
i,j (1 ≤ i, j ≤ s, 1 ≤ r ≤ n) such that

g1, . . . , gs and the a
(r)
i,j ’s all have domains containing U , are infinitely differentiable

throughout U , and satisfy the equations

∂gi
∂xr

=
s∑
j=1

a
(r)
i,j · gj (1 ≤ i ≤ s, 1 ≤ r ≤ n)(∗)

on U .
I claim that U ∩ Z is open in Kn. For suppose P = 〈p1, . . . , pn〉 ∈ U ∩ Z and

let U0 be an open box neighbourhood of P contained in U . It suffices to show that
each gi vanishes on U0 so suppose that this is not the case. Since each gi certainly
vanishes at P we can clearly find Q,S ∈ U0 such that gi(Q) = 0 for all i = 1, . . . , s
and gi(S) 6= 0 for some i = 1, . . . , s and such that Q and S differ in exactly one
coordinate, which we suppose for convenience is the first. Say Q = 〈q1, q2, . . . , qn〉
and S = 〈q′1, q2, . . . , qn〉 where q1 6= q′1. Let (a, b) be an open interval in K such
that q1, q

′
2 ∈ (a, b) and (a, b) × {〈q2, . . . , qn〉} ⊆ U0. For any definable function

f : U0 → K let f be the result of substituting qi for xi in f for i = 2, . . . , n. Then
by (∗) (for r = 1) we have g

′
1
...
g′s

 = A

g1
...
gs


for all x1 ∈ (a, b), where A is the matrix (a

(1)
i,j (x1))1≤i,j≤s and where ′ denotes d

dx1
.

We now transfer this situation to R (by quantifying out parameters) and obtain
a real interval (c, d), continuously differentiable functions hi, bi,j : (c, d) → R (for
1 ≤ i, j ≤ s) and points α, β ∈ (c, d) such that (setting B = (bi,j(x))1≤i,j≤s)h

′
1
...
h′s

 = B

h1

...
hs

 for all x ∈ (c, d),

hi(α) = 0 for all i = 1, . . . , s,

and

hi(β) 6= 0 for some i = 1, . . . , s.

The theory of linear differential equations (see e.g. [9], Theorem 11.4.1 and its
proof) now tells us that for all x ∈ (c, d)h1(x)

...
hs(x)

 = E(x)−1E(α)

h1(α)
...

hs(α)


for some s× s matrix E of functions on (c, d) which is invertible for all x ∈ (c, d).
Setting x = β here gives the required contradiction.
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4.6. Notation. For n ∈ N, n ≥ 1 and P ∈ Kn, GP denotes the set of all definable
open neighbourhoods of P . It is clearly a n.s. in Kn. Write D(n)(P )− and D(n)(P )
for D(n)(GP )− and D(n)(GP ) respectively. If g ∈ D(n)(P ), say g = [f, U ], g(P )
denotes the element f(P ) of K. It is clearly well defined. Finally, depending on

convenience, dP g or dP f denotes 〈 ∂f∂x1
(P ), . . . , ∂f∂xn (P )〉 considered as an element of

the K-vector space Kn.
I now wish to return to the situation of 4.1–4.3 to discuss some classical results

applied to the present context. So let r,m, P,Q, f1, . . . , fm, U be as in the discussion
of the implicit function theorem at the beginning of this section. Let n = r+m. De-
fine φ1, . . . , φn by φi(~x) = xi for i = 1, . . . , r, and φi(~x) = yi−r(~x) for i = r+1, . . . , n
(cf. 4.2, 4.3) where ~x = 〈x1, . . . , xr〉. These functions are defined and are infinitely
differentiable on a set in GP (namely V1) and hence determine germs in D(r)(P ).
Notice also that 〈φ1(P ), . . . , φn(P )〉 = 〈P,Q〉 so we have an induced mapping

ˆ: D(n)(P,Q)→ D(r)(P ) defined (on functions) by f̂(~x) = f(φ1(~x), . . . , φn(~x)), ~x ∈
W ′, where 〈f,W 〉 ∈ D(n)(P,Q)− and W ′ = {~x ∈ V1 : 〈φ1(~x), . . . , φn(~x)〉 ∈ W}.
(Clearly W ′ ∈ GP .) This mapping is clearly a (unital) ring homomorphism and its
kernel consists exactly of those germs [f,W ] such that f vanishes on V ∩Z for some
V ∈ GP,Q (with V ⊆ W ), where Z = {〈x1, . . . , xn〉 ∈ U : fi(x1, . . . , xn) = 0 for

i = 1, . . . ,m}. In particular [f̂i, U ] = 0 (in D(r)(P )) for i = 1, . . . ,m, so ∂f̂i
∂xj

= 0

(in D(r)(P )) for i = 1, . . . ,m and j = 1, . . . , r.

4.7. Lemma. With the above notation we have that for all g ∈ D(n)(P,Q), the
sequence of vectors dP,Qf1, . . . , dP,Qfm, dP,Qg is linearly independent over K if
and only if dP ĝ 6= 0 (in Kr).

Proof. Notice first that the sequence dP,Qf1, . . . , dP,Qfm is certainly linearly in-
dependent since J(P,Q) 6= 0 (cf. the discussion at the beginning of this section).
Write g = [fm+1,W ].

Suppose that
∑m+1
i=1 ai · dP,Qfi = 0 with not all the ai’s zero. Then am+1 6= 0.

By the chain rule

∂f̂i
∂xj

(P ) =
n∑
l=1

∂fi
∂xl

(P,Q) · ∂φl
∂xj

(P )(∗)

for j = 1, . . . , r, i = 1, . . . ,m + 1. Now by the remark before the lemma, our
assumption and (∗) we have

∂f̂m+1

∂xj
(P ) = a−1

m+1

m+1∑
i=1

ai
∂f̂i
∂xj

(P )

= a−1
m+1 ·

n∑
l=1

(
∂φl
∂xj

(P )
m+1∑
i=1

ai
∂fi
∂xl

(P,Q)

)
= 0

for j = 1, . . . , r, as required.
Suppose now that the sequence dP,Qf1, . . . , dP,Qfm+1 is linearly independent.

Let A denote the n×(m+1) matrix (over K) with columns dP,Qfi for 1 ≤ i ≤ m+1.
Then A determines a K-linear map from Kn onto Km+1 with kernel of dimension
n− (m+ 1) = r − 1. Moreover, by (∗) and the remark before the lemma〈

∂φ1

∂xj
(P ), . . . ,

∂φn
φxj

(P )

〉
A =

〈
0, . . . , 0,

∂f̂m+1

∂xj
(P )

〉
for j = 1, . . . , r.
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But the sequence of vectors 〈〈∂φ1

∂xj
(P ), . . . , ∂φn∂xj

(P )〉 : 1 ≤ j ≤ r〉 is linearly

independent (since ∂φi
∂xj

= δi,j for 1 ≤ i, j ≤ r), so not all of them are in Ker(A).

Thus ∂f̂m+1

∂xj
(P ) 6= 0 for some j = 1, . . . , r, as required.

4.8. Definition. Let n, s ∈ N, n ≥ 1. Suppose g1, . . . , gs are infinitely differen-
tiable definable functions with domains open in Kn. Then

V (g1, . . . , gs)
def
=

{
Q ∈

s⋂
i=1

dom(gi) : gi(Q) = 0 for i = 1, . . . , s

}
,

and

V ns(g1, . . . , gs)
def
= {Q ∈ V (g1, . . . , gs) : 〈dQgi : 1 ≤ i ≤ s〉 is linearly independent}.

(For s = 0, V = V ns = Kn.)
The following theorem will be used repeatedly throughout this paper.

4.9. Theorem. Let n ∈ N, n ≥ 1, P0 ∈ Kn, and suppose M is a Noetherian
(unital) subring of D(n)(P0) closed under differentiation. Let m ∈ N and suppose
[fi, Ui] ∈ M for i = 1, . . . ,m. Suppose further that P0 ∈ V ns(f1, . . . , fm). Then
one of the following is true:

(i) n = m, or
(ii) m < n and for any [h,W ] ∈ M with h(P0) = 0, h vanishes on U ∩

V ns(f1, . . . , fm) for some U ∈ GP0 (with U ⊆W ), or
(iii) m < n and for some [h,W ] ∈M , P0 ∈ V ns(f1, . . . , fm, h).

Proof. If m 6= n, then m < n since P0 ∈ V ns(f1, . . . , fm). Say r + m = n where
1 ≤ r ≤ n.

Now since 〈dP0fi : 1 ≤ i ≤ m〉 is linearly independent there exists an m-element

subset of {1, . . . , n}, S say, such that the matrix ( ∂fi∂xj
(P0))1≤i≤m,j∈S is non-singular.

There is no harm here in supposing that S = {r + 1, . . . , n}, so if we denote by λ
the function

〈x1, . . . , xn〉 7→ det

(
∂fi
∂xj

(x1, . . . , xn)

)
1≤i≤m,r+1≤j≤n

,

then clearly [λ, U0] ∈ M (for some U0 ∈ GP0) and [λ, U0] (= Λ, say) is invertible
in D(n)(P0). Let M∗ = M [Λ−1]. Now write P0 as 〈P,Q〉, where P ∈ Kr and
Q ∈ Km, and consider the map ˆ : D(n)(P,Q)→ D(r)(P ) described above. Clearly

M̂∗, the image of M∗ under ˆ, is a Noetherian (unital) subring of D(r)(P ) and is
closed under differentiation. This latter fact follows easily from the chain rule and
4.3 (this is why we consider M∗—the entries of ∆−1 (in 4.3) determine germs in

M∗, but not necessarily in M). Now let I denote the ideal {g ∈ M̂∗ : g(P ) = 0} of

M̂∗.
Case 1. I = {0}. Suppose [h,W ] ∈ M and h(P0) = 0. Let g = [h,W ]. Then

g(P0) = 0 so ĝ(P ) = 0, i.e. ĝ ∈ I. Hence ĝ = 0 in D(r)(P ). The conclusion of (ii)
in the statement of the theorem now follows from the comments before 4.7.

Case 2. I 6= {0}. Since I is finitely generated it clearly follows from 4.5 (with

G = GP ,M = M̂∗) that I is not closed under differentiation. Hence there is some
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g ∈M∗ such that ĝ ∈ I, i.e. ĝ(P ) = 0 so g(P0) = 0, and some i with 1 ≤ i ≤ r such
that

∂ĝ

∂xi
6∈ I, i.e.

∂ĝ

∂xi
(P ) 6= 0.

Now for some s ∈ N, Λs · g ∈M . Let f = Λs · g. Then f(P0) = 0 and, further,

∂f̂

∂xi
(P ) = (sΛ̂s−1 · ∂Λ̂

∂xi
· ĝ)(P ) +

(
Λ̂s · ∂ĝ

∂xi

)
(P )

= Λ̂s(P ) · ∂ĝ
∂xi

(P ) 6= 0.

Thus dP f̂ 6= 0 and hence, by 4.7, the conclusion of (iii) in the statement of the
theorem holds (with [h,W ] = f).

Before leaving this section I need to mention one more result that follows (either
directly, or by using 4.7) from the corresponding classical theorem in elementary
calculus. (It will be used in the next section to find “definable points” on the

zero sets of Pfaffian functions (cf. 2.7).) The easy details of the transfer (from R)
required for the proof are left to the reader.

4.10. Proposition. Suppose n, s, g1, . . . , gs are as in 4.8, s < n and P ∈
V ns(g1, . . . , gs). Let [g,W ] ∈ D(n)(P ) and suppose that for some U ∈ GP (with
U ⊆ W ∩

⋂s
i=1 dom(gi)) we have g(~x) ≥ g(P ) for all ~x ∈ U ∩ V ns(g1, . . . , gs)

(i.e. P is a local minimum of g on V ns(g1, . . . , gs)). Then the sequence of vectors
〈dP g1, . . . , dP gs, dP g〉 is linearly dependent.

5. Definable points on components and the proof of Lemma 2.7

I continue to use the notation of section 4. In particular, K denotes an arbitrary

model of T .
Fix n ∈ N, n ≥ 1, and let U be a definable open subset of Kn. Clearly {U} is

a n.s. in Kn and we may safely identify both D(n)({U})− and D(n)({U}) with the
differential unital ring of all definable, infinitely differentiable functions from U to
K, which we denote by D(n)(U). If P ∈ U , then clearly the map RP : D(n)(U)→
D(n)(P ) : f 7→ [f, U ] is a differential ring homomorphism which need be neither
injective nor surjective in general. It is, however, clearly injective on the unital
subring generated by the n projection functions (restricted to U) and I use the
usual notation, Z[x1, . . . , xn], for this subring and for its RP -image in D(n)(P ).

5.1. Theorem. With the above notation let M be a Noetherian subring of D(n)(U)
which contains Z[x1, . . . , xn] and which is closed under differentiation. Let f ∈ M
and suppose that S is a non-empty definable subset of V (f) which is both open in
V (f) (in the subspace topology) and closed in Kn. Then there exist f1, . . . , fn ∈M
such that S ∩ V ns(f1, . . . , fn) 6= ∅.

Proof. For each Q ∈ S let IQ be the ideal {g ∈ M : g(Q) = 0} of M . Since M
is Noetherian we may choose P ∈ S such that IP is maximal in {IQ : Q ∈ S}.
Let {g1, . . . , gN} be a finite generating set for IP and set g =

∑N
i=1 g

2
i . Then

P ∈ V (g) ∩ S and, further, we have

IQ = IP for any Q ∈ V (g) ∩ S.(∗)
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Now choose m maximal so that for some f1, . . . , fm ∈M , P ∈ V ns(f1, . . . , fm).
If m = n we are done, so suppose, for a contradiction, that m < n and fix such
f1, . . . , fm.

Claim 1. V (g) ∩ S ⊆ V ns(f1, . . . , fm).
Proof. Since P ∈ V ns(f1, . . . , fm) we have f1, . . . , fm ∈ IP and det(E) 6∈ IP

where E is some m×m submatrix of the m×n matrix with rows 〈 ∂fi∂x1
, . . . , ∂fi∂xn

〉 for

1 ≤ i ≤ m (note that det(E) ∈ M since M is closed under differentiation). Hence
by (∗) we have that for any Q ∈ V (g) ∩ S, f1, . . . , fm ∈ IQ and det(E) 6∈ IQ which
immediately implies that Q ∈ V ns(f1, . . . , fm), as required.

Claim 2. Let Q ∈ V (g) ∩ S and h ∈M . Then Q 6∈ V ns(f1, . . . , fm, h).
Proof. Suppose Q ∈ V ns(f1, . . . , fm, h). Then arguing as in the proof of Claim

1 we would have P ∈ V ns(f1, . . . , fm, h) which contradicts the maximality of m.
Claim 3. Let Q ∈ V (g)∩S. Then there exists W ∈ GQ (with W ⊆ U) such that

W ∩ V (g) ∩ S = W ∩ V ns(f1, . . . , fm).
Proof. Since g ∈ IP we have by (∗) that g(Q) = 0. Hence, by Claim 2 and

4.9 (applied to the image of M under the map RQ), there exists W ′ ∈ GQ (with
W ′ ⊆ U) such that g vanishes on W ′ ∩ V ns(f1, . . . , fm). It follows that every
element of IP , and in particular f , vanishes on W ′ ∩ V ns(f1, . . . , fm). Thus W ′ ∩
V ns(f1, . . . , fm) ⊆W ′ ∩V (g)∩V (f). But S is open in V (f) (by hypothesis) so for
some W ′′ ∈ GQ, W ′′ ∩S = W ′′ ∩V (f). Thus W ∩V ns(f1, . . . , fm) ⊆W ∩V (g)∩S
where W = W ′ ∩W ′′. Claim 3 now follows from Claim 1.

Claim 4. S ∩ V (g) is closed in Kn.
Proof. This is immediate from the facts that S is closed in Kn (by hypothesis),

S ⊆ U and g is (defined and) continuous on the open set U .
Now let ~η = 〈η1, . . . , ηn〉 ∈ Zn. By Claim 4 there is a point Q ∈ S ∩ V (g) whose

distance from ~η is minimal (note also that S ∩ V (g) 6= ∅ since P ∈ S ∩ V (g)), i.e.
h(Q) ≤ h(~x) for all ~x ∈ S ∩ V (g), where h(x1, . . . , xn) =

∑n
i=1(xi − ηi)2. Note

that h (restricted to U) is an element of M since Z[x1, . . . , xn] ⊆ M . Further, by
Claim 3, Q is actually a local minimum of h on V ns(f1, . . . , fm), so by 4.10 the
sequence of vectors 〈dQf1, . . . , dQfm, dQh〉 is linearly dependent. Arguing as in the
proof of Claim 1 it follows that 〈dP f1, . . . , dP fm, dPh〉 is linearly dependent. Since
the sequence 〈dP f1, . . . , dP fm〉 is linearly independent it follows that dPh lies in
the subspace, call it X , of Kn spanned (over K) by dP f1, . . . , dP fm, for any ~η ∈ Z.
Write h = h~η. By an easy calculation, ~η = 1

2 (dPh~0− dPh~η). Hence Zn ⊆ X , which
is impossible since m < n.

5.2. Proof of 2.7. We shall apply 5.1 with R = R̃, T = T̃ and K̃ an arbitrary

model of T̃ (cf. the beginning of section 2). Let n, r ∈ N and suppose that ~σ is an

(n, r)-sequence. Let k̃ |= T̃ , k̃ ⊆ K̃, and set U = Dr(~σ, K̃) so that U is an open
definable subset of Kr (cf. 2.2). Further, by 2.3 and the comments between 2.4

and 2.5, Mr(k̃, K̃, ~σ) is a subring of D(r)(U) which is closed under differentiation.
It is also Noetherian, because it is finitely generated over the field k, and it clearly
contains Z[x1, . . . , xr] (in fact, k[x1, . . . , xr]) as a subring.

Now to prove 2.7, suppose g ∈Mr(k̃, K̃, ~σ) and g(P ) = 0 for some P ∈ U . If we
knew that V (g) were closed in Kr, then we could apply 5.1 directly (with n = r,

M = Mr(k̃, K̃, ~σ), U = Dr(~σ, K̃), f = g and S = V (g)) to obtain a (k̃, ~σ)-definable

point Q ∈ Dr(~σ, K̃) such that Q ∈ V (g), thus completing the proof of 2.7 (with
s = 0). Unfortunately, there is no reason to suppose that V (g) does not have limit
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points on the boundary of U . However, this problem can be easily overcome by
the standard geometric technique of pushing such points out to infinity. To do this
we regard ~σ as an (n, r + s)-sequence, where s = 2r, in the sense of example E of
section 2. Now for 1 ≤ i ≤ r define

gi(x1, . . . , xr+s) =

{
xi · xr+i − 1 if xi is ~σ-bounded,

xr+i − xi otherwise,

gr+i(x1, . . . , xr+s) =

{
(xi − 1)x2r+i − 1 if xi is ~σ-bounded,

x2r+i − xi otherwise.

Now set f = g2 +
∑2r
i=1 g

2
i and notice that if 〈p1, . . . , pr〉 ∈ V (g), then 〈p1, . . . , pr+s〉

∈ V (f) where pr+i = p2r+i = pi if xi is not ~σ-bounded, and pr+i = p−1
i , p2r+i =

(pi − 1)−1 if xi is ~σ-bounded (in which case we necessarily have that 0 < pi < 1).
Thus V (f) 6= ∅ and it is easy to see that V (f) is closed in Kr+s. We may therefore

argue as above (this time using 5.1 with n = r + s, M = Mr+s(k̃, K̃, ~σ), U =

Dr+s(~σ, K̃) = Dr(~σ, K̃)×Ks, and S = V (f)) to obtain the conclusion of 2.7.

Recall now Proposition 3.1. This states that 0-dimensional Pfaffian varieties are
uniformly finite. Khovanskii has proved a natural generalization of this fact for
arbitrary zero-sets of Pfaffian functions which turns out to follow from 3.1 and 5.1
using a simple model theoretic argument. Thus rather than simply quoting the
result it seems worthwhile to include the proof here.

5.3. Theorem (Khovanskii). Suppose that h1, . . . , hl is any Pfaffian chain of func-
tions on Rm+n. Let g ∈ R[x1, . . . , xm+n, h1, . . . , hl]. Then there is N ∈ N such that
for any Q ∈ Rn the set {P ∈ Rm : g(P,Q) = 0} has at most N components.

(A component of a set S ⊆ Rm is a set X ⊆ S such that X is clopen in (the
subspace) S. Clearly the collection of all components of S forms a Boolean algebra.)

Proof. Suppose the theorem is false. Then for each i ∈ N, there exist Q(i) ∈ Rn
and pairwise disjoint non-empty components, C

(i)
0 , . . . , C

(i)
i , of the set {P ∈ Rm :

g(P,Q(i)) = 0}.
Let L be any expansion of L that includes symbols for the functions h1, . . . , hl,

the set N, the map i → Q(i)(i ∈ N) and the (m + 2)-ary relation “P ∈ C
(i)
j ”.

Let R be the corresponding expansion of R and suppose K is a (2ℵ0)+-saturated

elementary extension of R. Let a be a nonstandard natural number in K. Then

(the K interpretations of) each C
(a)
i (for i ≤ a, K |= “i ∈ N”) is a non-empty

subset of Z
def
= {P ∈ Km : g(P,Q(a)) = 0} which is both open and closed in Z, and

hence also closed in Km. Suppose Q(a) = 〈q1, . . . , qn〉 and let

M = R[x1, . . . , xm, q1, . . . , qn, h1(x1, . . . , xm, Q
(a)), . . . , hl(x1, . . . , xm, Q

(a))].

Then M is a Noetherian ring of K-definable, infinitely differentiable functions on
Km which contains Z[x1, . . . , xm] and is closed under differentiation. Hence, by

5.1, for each i ≤ a (with K |= “i ∈ N”) there exist f
(i)
1 , . . . , f

(i)
m ∈ M such that

C
(a)
i ∩V ns(f

(i)
1 , . . . , f

(i)
m ) 6= ∅. But there are at most 2ℵ0 possibilities for f

(i)
1 , . . . , f

(i)
m

and, by 3.1, each V ns(f
(i)
1 , . . . , f

(i)
m ) is finite. However, the collection {C(a)

i : i ≤ a,
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K |= “i ∈ N”} consists of at least (2ℵ0)+ pairwise disjoint sets. This contradiction
proves the theorem.

5.4. Corollary. Let H1, . . . , Hl be a Pfaffian chain of functions on Rm (m ∈
R,m ≥ 1) and let R̃′ be the structure 〈R;H1, . . . , Hl; r〉r∈C (where C is any subset

of R) and L̃′ its language. Suppose that φ(x1, x2, . . . , xp) is an existential for-

mula of L̃′. Then there exists N ∈ N such that for all r2, . . . , rp ∈ R the set

{r1 ∈ R : R̃′ |= φ(r1, r2, . . . , rp)} is a union of at most N open intervals and N
points.

Proof. By the usual tricks (cf. section 2 before Definition 2.1) we may suppose that
φ(x1, . . . , xp) has the form ∃y1, . . . , yn f(x1, . . . , xp, y1, . . . , yn) = 0, where f is a

term of L̃′. Now it is easy to construct a Pfaffian chain of functions on Rp+n,
h1, . . . , hl′ say, such that f ∈ R[~x, ~y, h1, . . . , hl′ ]. Thus by 5.3 there exists N0 ∈ N
such that for all r2, . . . , rp ∈ R the set Z(r2, . . . , rp)

def
= {〈p, q1, . . . , qn〉 ∈ R1+n :

f(p, r2, . . . , rp, q1, . . . , qn) = 0} has at most N0 components. But then clearly this
is also true for π[Z(r2, . . . , rp)] where π : R1+n → R is the projection map onto the
first coordinate.

6. One dimensional varieties

In this section R denotes an expansion of R which is either of the form R̃ (as

described in section 1), or of the form R̃′ as described in the hypothesis of Corol-
lary 5.4. In the latter case the set C of distinguished elements should be chosen to
satisfy an analogous condition to the former case (cf. section 1, just after equation

(2)). Clearly all the definitions from section 2 can be applied to the R̃′-L̃′-T̃ ′-K̃ ′-
k̃′ case and are, in fact, somewhat less complicated. For example, there is no need

to allow y1, . . . , ym to be 0 or 1 in Definition 2.1 (i) (a), and Dr(~σ, K̃ ′) is simply

Kr for any (n, r)-sequence ~σ and K̃ ′ |= T̃ ′ (cf. Definition 2.2).
My aim in this section is to show that non-singular (space-) curves implicitly

defined by terms in models of T can be explicitly parameterized by finitely many
infinitely differentiable definable functions having open intervals for domains. I first
require the following combinatorial result.

6.1. Lemma. Let n,N ∈ N with n,N ≥ 1. Then there exist Q1, . . . , Qs ∈ Zn,
where s = n ·N2 + 1, with the property that for any field K of characteristic 0 and
any distinct elements P1, . . . , Pm ∈ Kn (where m ≤ N), there exists an i, 1 ≤ i ≤ s,
such that Qi ·P1, . . . , Qi ·Pm are distinct elements of K. (Here “·” denotes the usual
scalar product.)

Proof. Choose Q1, . . . , Qs ∈ Zn in general position, i.e. any n of them are linearly
independent over Q (and hence over any field of characteristic 0). Suppose, for a
contradiction, that there exist K, m (m ≤ N) and distinct P1, . . . , Pm ∈ Kn such
that for each i = 1, . . . , s, Qi ·Pαi = Qi ·Pβi for some αi, βi with 1 ≤ αi < βi ≤ m.
Since the map i → 〈αi, βi〉 has domain of size > n · N2 and range of size ≤ N2,
there exist α, β with 1 ≤ α < β ≤ m such that Qi · (Pα − Pβ) = 0 for n distinct
values of i. This contradicts the choice of the Qi’s since Pα − Pβ 6= 0.
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6.2. Theorem. Suppose n, r ∈ N, r ≥ 2, and that ~σ is an (n, r)-sequence. Let

k,K |= T with k ⊆ K and suppose that g1, . . . , gr−1 ∈Mr(k,K, ~σ). Let V = {P ∈
Dr(~σ,K) : g1(P ) = · · · = gr−1(P ) = 0} and suppose that

(a) V is a closed subset of Kr, and

(b) for all P ∈ V , det(∂(g1,...,gr−1)
∂(x2,...,xr)

)(P ) 6= 0 (cf. the notation described before

2.5).

Then there exists a finite set S of pairs 〈I, φ〉 such that

(i) for each 〈I, φ〉 ∈ S, I is an open interval in K and φ : I → Kr−1 is an
infinitely differentiable definable function;

(ii) for each 〈I, φ〉 ∈ S, if sup I ∈ K (i.e. sup I 6= ∞), then ‖φ(x)‖ → ∞ as
x → sup I (from below), where ‖ · ‖ denotes the usual norm on Kr−1, and
similarly for inf I;

(iii) V =
⋃
{graph(φ) : 〈I, φ〉 ∈ S} and the union is disjoint.

Proof. By 3.3 (or the analogous result in the case R = R̃′, which follows directly
from 3.1) and (b) it follows that there is some N ∈ N such that for each p1 ∈ K
the set Vp1 contains at most N elements, where Vp1 = {〈p2, . . . , pr〉 ∈ Kr−1 :
〈p1, . . . , pr〉 ∈ V }. Let s = (r − 1) · N2 + 1 and let Q1, . . . , Qs ∈ Zr−1 be as
in Lemma 6.1 (with n = r − 1). For each m = 1, . . . , N and i = 1, . . . , s set
Am,i = {p1 ∈ K : card(Vp1) = card(Qi · Vp1) = m}.

Now it is easy to see that each Am,i can be defined in K by a boolean combina-
tion of existential formulas (with parameters) and hence, either by the comments

following 3.5 (in the case R = R̃) or by 5.4 (in the case R = R̃′), it is a finite union
of open intervals and points. It clearly follows from this that there exist t ∈ N and
a1, . . . , at ∈ K such that (setting a0 = −∞, at+1 = +∞) :

a0 < a1 < · · · < at < at+1 and for each j = 0, . . . , t,

i = 1, . . . , s, m = 1, . . . , N and p, q ∈ (aj , aj+1),

p ∈ Am,i if and only if q ∈ Am,i.
(∗)

Now for p ∈ K letm(p) = card(Vp) and i(p) = the least i such that card(Qi·Vp) =
m(p). Then m(p) ≤ N and i(p) exists by the conclusion of 6.1. Further, it clearly
follows from (∗) that for each j = 0, . . . , t, if aj < p, q < aj+1, then m(p) = m(q)
and i(p) = i(q) so we may denote these numbers by mj and ij respectively. Hence
we may define functions φj,l : (aj , aj+1)→ Kr−1 (for those j = 0, . . . , t with mj ≥ 1
and l = 1, . . . ,mj) by

φj,l(x) = ~y ⇔ ∃~y(1), . . . , ∃~y(mj)(〈x, y(1)〉 ∈ V ∧ · · · ∧ 〈x, ~y(mj)〉 ∈ V
∧Qij · ~y(1) < · · · < Qij · ~y(mj) ∧ ~y = ~y(l)).

Now since the map Kr−1 → K : ~y → Qij ·~y is continuous it follows that each φj,l
coincides locally with a function given by the implicit function theorem for V (cf.
the discussion at the beginning of section 4) and hence is infinitely differentiable
on (aj , aj+1). We also clearly have that {〈p1, . . . , pr〉 ∈ V : aj < p1 < aj+1} =⋃
{graph(φj,l) : 1 ≤ l ≤ mj} where the union is disjoint.
Now suppose that j < t (so aj+1 6=∞) and 1 ≤ l ≤ mj . Then either ‖φj,l(x)‖ →

∞ as x → aj+1 (from below) or else there is some 〈p2, . . . , pr〉 ∈ Kr−1 such that

〈aj+1, p2, . . . , pr〉 is a limit point of graph(φj,l). For this is clear if K = R, and since
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only the continuity of φj,l is required the result may be transferred to a general K.
It follows from hypothesis (a) of the theorem that 〈aj+1, p2, . . . , pr〉 ∈ V (notice

that the fact that V is a closed subset of Dr(~σ,K) is not sufficient here) and hence,
by (b) and the implicit function theorem, there is an open box neighbourhood, U
say, of 〈p2, . . . , pr〉 in Kr−1, an ε ∈ K with aj < aj+1−ε < aj+1 < aj+1 +ε < aj+2,
and a K-definable infinitely differentiable function φ : (aj+1 − ε, aj+1 + ε) → U
such that φ(aj+1) = 〈p2, . . . , pr〉 and V ∩ ((aj+1 − ε, aj+1 + ε) × U) = graph(φ).
It must be the case that φ coincides with φj,l on (aj+1 − ε, aj+1) (because the set
{p ∈ (aj+1 − ε, aj+1) : φ(p) = φj,l(p)} is both open and closed in (aj+1 − ε, aj+1)
and is non-empty since (aj+1 − ε, aj+1) × U contains a point of graph(φj,l) which
is necessarily a point of V and hence of graph(φ)) and, indeed, that there exists l′

with 1 ≤ l′ ≤ mj+1 such that φ coincides with φj+1,l′ on (aj+1, aj+1 + ε). Thus
φj,l, φj+1,l′ , and {〈aj+1, p2, . . . , pr〉} may be glued together to form a definable,
infinitely differentiable function from (aj , aj+2) to Kr−1 whose graph is contained
in V . The theorem now follows by repeating this process until no further glueing
across the aj ’s is possible.

I shall refer to the set S given by 6.2 as a parameterization of V in K. Of

course, if V ∩ kr is also closed in kr, we may apply 6.2 with K = k and obtain

a parameterization, S′ say, of V ∩ kr in k but at the moment we cannot infer
any relationship between S and S′. The following lemma clarifies the situation
somewhat.

6.3. Lemma. Suppose that, in addition to the hypotheses of 6.2, every (k, ~σ)-
definable point of Kr ∩ V (cf. 2.5) lies in kr. Let K− = {α ∈ K : −β < α < β for
some β ∈ k} and suppose that α ∈ K−, P ∈ Kr−1, ‖P‖ ∈ K− and 〈α, P 〉 ∈ V .
Then there exist γ1, γ2, β1, β2, B1, B2 ∈ k with γ2 < γ1 < α < β1 < β2 and ‖P‖ <
B1 < B2, m ∈ N (m ≥ 1), and K-definable infinitely differentiable functions
φi : (γ2, β2)→ Kr−1 (for i = 1, . . . ,m) such that

(i) ‖φi(p)‖ < B1 for i = 1, . . . ,m and p ∈ (γ2, β2);
(ii) V ∩ ((γ2, β2)× {Q ∈ Kr−1 : ‖Q‖ < B2}) =

⋃m
i=1 graph(φi), and the union is

disjoint.

Further, if V ∩ kr is closed in kr, there exist k-definable infinitely differentiable
functions ψi : (γ2, β2)→ kr−1 (for i = 1, . . . ,m) such that (i) and (ii) hold with ψi

in place of φi where all notions are interpreted in k.

Remark. As I shall show below, it follows from the additional assumption on k and

K, and (b) of 6.2, that if 1 ≤ i ≤ m, p ∈ k and γ2 < p < β2, then φi(p) ∈ kr−1.
However, there is still no guarantee that the function φi � k is equal to some ψi′ ,

or even that it is k-definable.

Proof. With the notation of the proof of 6.2 choose m ∈ N such that there are
exactly m points Q ∈ Vα such that ‖Q‖ ∈ K−. Let P1, . . . , Pm be these points
and note that m ≥ 1 since P is one of them. Choose B ∈ k such that ‖Pi‖ < B
for i = 1, . . . ,m and let B′ ∈ k, B′ > B. Then certainly ‖Q‖ > B′ for all
Q ∈ Vα\{P1, . . . , Pm}. For each i = 1, . . . ,m let 〈Ii, φi〉 be the (unique) element of
S such that α ∈ Ii and φi(α) = Pi. This is possible by (iii) of 6.2. Now consider
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the (K-definable) set A+(= A+(B,B′)) given by:

A+ = {p ∈
m⋂
i=1

Ii : p ≥ α and for all q ∈ [α, p] and i = 1, . . . ,m,

‖φi(q)‖ < B, and φ1(q), . . . , φm(q) are the only

points Q ∈ Vq satisfying ‖Q‖ ≤ B′}.

By (i), (ii) and (iii) of 6.2, A+ has the form [α, β) where β ∈ K ∪ {∞} and
β > α. If β = ∞, let β1, β2 be any elements of k satisfying α < β1 < β2. This is
possible since α ∈ K−. If β ∈ K, I claim that β ∈ k. For certainly β ∈

⋂m
i=1 Ii

since otherwise we clearly contradict (i) and (ii) of 6.2. It follows that there is

some Q ∈ Vβ such that either ‖Q‖ = B or ‖Q‖ = B′. Define g : Dr(~σ,K) → K
by g(x1, . . . , xr) =

∑r
i=2 x

2
i − B2 (in the former case) or

∑r
i=2 x

2
i − (B′)2 (in the

latter case). Then g ∈ Mr(k,K, ~σ) and g vanishes at the point 〈β,Q〉 but does
not vanish on V ∩ W for any open neighbourhood W of 〈β,Q〉. It now follows

from 4.9 (with n = r, P0 = 〈β,Q〉, M = {[f,Dr(~σ,K)] : f ∈ Mr(k̃, K̃, ~σ)} and

{f1, . . . , fm} = {g1, . . . , gr−1}) that 〈β,Q〉 is a (k, ~σ)-definable point of Kr ∩V and
hence lies in kr. This proves the claim. Now let β1 = β and choose B1, B2 ∈ k
such that B < B1 < B2 < B′. Then A+(B1, B2) = [α, β′) for some β′ ∈ k ∪ {∞}
and clearly β′ > β1. If β′ ∈ k set β2 = β′. If β′ = ∞ set β2 = β1 + 1. By the
definition of A+ we now have that (i) and (ii) hold with α in place of γ2. However,
the elements γ1, γ2 of k can be obtained by a similar argument by considering A−

(where “p ≥ α”, “[α, p]” are replaced by “p ≤ α”, “[p, α]” in the definition of A+)
with the same B,B′, B1, B2.

To establish the last part of the lemma first observe that the result mentioned
in the remark follows from 4.9 since if 〈p,Q〉 ∈ V and p ∈ k, then the function

Dr(~σ,K) → K : 〈x1, . . . , xr〉 → x1 − p is in Mr(k,K, ~σ), vanishes at 〈p,Q〉, but
certainly does not vanish locally on V at 〈p,Q〉. Hence, since V has a quantifier-free
definition (with parameters in k), it follows from (i) and (ii) that for each p ∈ k
with γ2 < p < β2 there are exactly m points Q ∈ kr−1 such that k |= (〈p,Q〉 ∈
V ∧ ‖Q‖ < B2), and each such point satisfies ‖Q‖ < B1. Let Q1, . . . , Qm be these

points for the choice p = γ2+β2

2 . Now let S′ be a parameterization of V in k and for

i = 1, . . . ,m choose (the unique) 〈I ′i , ψi〉 ∈ S′ such that ψi(
γ2+β2

2 ) = Qi. Then since
each map x 7→ ‖ψi(x)‖ is continuous on (γ2, β2)∩I ′i , it follows from the intermediate

value theorem (interpreted in k) that it takes no value ≥ B1. In particular (by (ii)
of 6.2) (γ2, β2) ⊆ I ′i. This proves the lemma.

7. The proof of Lemma 2.8

I shall in fact prove 2.8 for both the T̃ and T̃ ′ situation, so let R, T etc. be
as described at the beginning of section 6. The proof is by induction on n. The
base step is provided by example (D) of section 2. For the induction step suppose

n, r ∈ N, K |= T , k |= T , k ⊆ K and that 〈~σ, σn+1〉 is an (n+ 1, r)-sequence (where
~σ is an (n, r)-sequence) such that

for all s ≥ r, every (k, 〈~σ, σn+1〉)-definable

point of Ks lies in (K−)s.
(8)
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(Here, K− is as defined in the statement of Lemma 6.3.)
Now suppose s ≥ r. Since every ~σ-bounded variable (cf. 2.1 (ii)) is also 〈~σ, σn+1〉-

bounded we have that Ds(〈~σ, σn+1〉,K) ⊆ Ds(~σ,K). Further, if g ∈ Ms(k,K, ~σ),

then g � Ds(〈~σ, σn+1〉,K) ∈ Ms(k,K, 〈~σ, σn+1〉) and there will be no harm in

identifying Ms(k,K, ~σ) with its image in Ms(k,K, 〈~σ, σn+1〉) under this restriction

mapping. (Similar remarks apply with K replaced everywhere by k.) Clearly our
inductive hypothesis and (8) imply

for all s ≥ r and P ∈ Ks, if P is

(k, ~σ)-definable and P ∈ Ds(〈~σ, σn+1〉,K), then P ∈ ks.
(9)

Now let Q be any (k, 〈~σ, σn+1〉)-definable point of Kr. We must show that
Q ∈ kr.

Now, by definition, there exist g1, . . . , gr ∈Mr(k,K, 〈~σ, σn+1〉) such that

g1(Q) = · · · = gr(Q) = 0,(10)

and

det

(
∂(g1, . . . , gr)

∂(x1, . . . , xr)

)
(Q) 6= 0.(11)

Further,

Q ∈ Dr(〈~σ, σn+1〉,K).(12)

I shall now deduce that Q ∈ kr under several extra assumptions on the sequence
of functions g1, . . . , gr. These will be justified later. For the moment, set V = {P ∈
Kr : g1(P ) = · · · = gr−1(P ) = 0} (we may clearly suppose that r ≥ 2), and assume
that

g1, . . . , gr−1 ∈Mr(k,K, ~σ);(13)

V is a closed subset of Kr and V ∩ kr is a closed subset of kr;(14)

V ⊆ Dr(〈~σ, σn+1〉,K);(15)

det

(
∂(g1, . . . , gr−1)

∂(x2, . . . , xr)

)
(P ) 6= 0 for all P ∈ V ;(16)

for all P ∈ V, if gr(P ) = 0 then det

(
∂(g1, . . . , gr)

∂(x1, . . . , xr)

)
(P ) < 0.(17)

Now notice that all the hypotheses of 6.3 are satisfied. (The fact that every
(k, ~σ)-definable point of Kr ∩ V lies in kr follows from (15) and (9).) Further,

since Q is (k, 〈~σ, σn+1〉)-definable, we have Q ∈ (K−)r by (8). Hence we may
apply 6.3 with α = q1 and P = 〈q2, . . . , qr〉 (where Q = 〈q1, . . . , qr〉) to obtain
γ1, γ2, β1, β2, B1, B2 ∈ k, φi : (γ2, β2) → Kr−1 and ψi : (γ2, β2) ∩ k → kr−1 (for
i = 1, . . . ,m) satisfying the conclusions of that lemma.

Now let φ be any one of the φi’s. Notice that for t ∈ (γ2, β2) we have 〈t, φ(t)〉 ∈ V
and hence (by (15)) 〈t, φ(t)〉 ∈ Dr(〈~σ, σn+1〉,K). Therefore we may define, for any
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g ∈Mr(k,K, 〈~σ, σn+1〉), a function g : (γ2, β2)→ K by g(t) = g(t, φ(t)). Clearly g

is K-definable and infinitely differentiable. Its first derivative is given by

dg

dt
(t) =

∂g

∂x1
(t) +

r∑
i=2

∂g

∂xi
(t) · dφ

(i)

dt
(t),

where φ(t) = 〈φ(2)(t), . . . , φ(r)(t)〉. Of course this formula holds for g = g1, . . . , gr−1,
which are identically zero, and I leave the reader to perform the linear algebra re-

quired to eliminate the dφ(i)

dt (t) terms and arrive at

dg

dt
(t) = (−1)r+1J(t) · J1(t)−1 for all t ∈ (γ2, β2),(18)

where

J(x1, . . . , xr) = det

(
∂(g1, . . . , gr−1, g)

∂(x1, . . . , xr)

)
and

J1(x1, . . . , xr) = det

(
∂(g1, . . . , gr−1)

∂(x2, . . . , xr)

)
.

(Notice that (18) makes sense since J, J1 ∈ Mr(k,K, 〈~σ, σn+1〉) and, by (16),
J1(t) 6= 0 for all t ∈ (γ2, β2).)

I shall now assume that r is even and leave the reader to make the obvious
modifications to the argument for the case of r odd.

7.1. Claim. (i) If p ∈ (γ2, β2) and gr(p) = 0, then dgr
dt (p) has the same sign as

J1(p).
(ii) gr has at most one zero.

Proof. (i) By (17) J(p) < 0, where J is defined as in (18) with g = gr. Thus (i)
now follows immediately from (18) and the fact that r is even.

(ii) Note that, by (16), J1 is non-zero throughout (γ2, β2) and hence has constant

sign on (γ2, β2). It follows from (i) that dgr
dt (p1) and dgr

dt (p2) have the same (non-

zero) sign whenever gr(p1) = gr(p2) = 0. This is impossible (by transfer from R)
unless gr has at most one zero.

Now notice that (13)–(17) all hold with k in place of K and V ∩ kr in place
of V . This is because each of these statements actually implies the corresponding

statement for k and V ∩ kr. Hence the discussion above holds good in k if we take
φ to be one of the ψi’s.

Now for any g ∈ Mr(k,K, 〈σ, σn+1〉), let g(φi; ·) be the (K-definable) function
from {t ∈ K : γ2 < t < β2} to K obtained as above with φ = φi and let g(ψi; ·) be
the (k-definable) function from {t ∈ k : γ2 < t < β2} to k obtained with φ = ψi
(note that γ2, β2 ∈ k). We complete the proof of 2.8 (under the extra assumptions)
as follows.

Let i0 be the (unique) number such that 1 ≤ i0 ≤ m and φi0(q1) = 〈q2, . . . , qr〉.
Suppose that J1(φi0 ; q1) > 0. (The proof is similar if J1(φi0 ; q1) < 0.) Let S =
{i : 1 ≤ i ≤ m and J1(φi; q1) > 0}. Then, just as in the proof of 7.1, it follows from
(16) that J1(φi; t) > 0 for all i ∈ S and all t ∈ (γ2, β2) and that J1(φi; t) < 0 for
all i ∈ {1, . . . ,m}\S and all t ∈ (γ2, β2). In particular J1(φi; γ1) > 0 for i ∈ S and
J1(φi; γ1) < 0 for i ∈ {1, . . . ,m}\S. It now follows from 6.3 (and the remark there)
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that there is a subset, S′ say, of {1, . . . ,m} such that {ψi(γ1) : i ∈ S′} = {φi(γ1) :
i ∈ S}, and hence that J1(ψi; t) > 0 (respectively < 0) for all i ∈ S′ (respectively

i ∈ {1, . . . ,m}\S′) and t ∈ (γ2, β2) ∩ k. Now k is a substructure of K so we clearly
have (again using 6.3) that for all t ∈ (γ2, β2)∩ k, {ψi(t) : i ∈ S′} = {φi(t) : i ∈ S}.
Now choose γ3, β3 ∈ k such that γ2 < γ3 < γ1 and β1 < β3 < β2 and such that
for no i = 1, . . . ,m does either gr(φi; ·) or gr(ψi; ·) have a zero at γ3 or β3. This is
possible since there are at most a finite number of points to be avoided. By 7.1 (and

its version for k) it clearly follows that if i ∈ S (respectively i ∈ S′), then gr(φi; ·)
has a zero in (γ3, β3) (respectively, gr(ψi; ·) has one in (γ3, β3) ∩ k) if and only if
gr(φi; γ3) < 0 and gr(φi;β3) > 0 (respectively gr(ψi; γ3) < 0 and gr(ψi;β3) > 0).
Hence

card{i ∈ S : ∃t ∈ (γ3, β3) gr(φi; t) = 0}
= card{i ∈ S : gr(φi; γ3) < 0} − card{i ∈ S : gr(φi;β3) < 0}

and

card{i ∈ S′ : ∃t ∈ (γ3, β3) ∩ k gr(ψi; t) = 0}
= card{i ∈ S′ : gr(ψi; γ3) < 0} − card{i ∈ S′ : gr(ψi;β3) < 0}.

However, by 6.3 (and the fact that k ⊆ K) the two right hand sides here are equal.
It now follows (again using 6.3) that every point P = 〈p1, . . . , pr〉 ∈ Kr satisfying
P ∈ V , gr(P ) = 0, J1(P ) > 0, γ3 < p1 < β3 and ‖〈p2, . . . , pr〉‖ < B1 actually lies
in kr. But Q is such a point!

I must now show why (13)–(17) may be assumed. So suppose that g1, . . . , gr and
Q satisfy (10)–(12). I shall modify 〈~σ, σn+1〉 (to 〈~σ′, σ′n+1〉) so that (8) and (9) are

still satisfied, and produce h1, . . . , hs ∈ Ms(k,K, 〈~σ′, σ′n+1〉) for some s ≥ r) and
a point Q′ ∈ Ks such that (10)–(17) are satisfied with h1, . . . , hs, Q

′ in place of
g1, . . . , gr, Q. Further, q1, . . . , qr will occur amongst the coordinates of Q′. This is
clearly sufficient. The new functions and point will be produced in several stages
but to avoid a proliferation of notation I shall revert to the original notation (i.e.
g1, . . . , gr, Q) at the end of the justification of each stage. The conditions (10)–(12)
will be satisfied at each stage.

Stage 1. We may assume that for each 〈~σ, σn+1〉-bounded variable x, there are
variables y, z such that both x · y2− 1 and (1−x) · z2− 1 occur amongst g1, . . . , gr.

Justification. Suppose that xi is 〈~σ, σn+1〉-bounded (where 1 ≤ i ≤ r). De-

fine gr+1, gr+2 ∈ Mr+2(k,K, 〈~σ, σn+1〉) by gr+1(x1, . . . , xr+1) = xi · x2
r+1 − 1,

gr+2(x1, . . . , xr+2) = (1 − xi) · x2
r+2 − 1. Then, since 0 < qi < 1 (because of

(12)), we may set qr+1 = +q
− 1

2
i and qr+2 = +(1− qi)−

1
2 so that (10) and (12) are

clearly satisfied for g1, . . . , gr+2, 〈Q, qr+1, qr+2〉. Further, as a simple calculation
shows,

det

(
∂(g1, . . . , gr+2)

∂(x1, . . . , xr+2)

)
(Q, qr+1, qr+2) = det

(
∂(g1, . . . , gr)

∂(x1, . . . , xr)

)
(Q) · 4 · q

1
2
i · (1− qi)

1
2

and the right hand side is non-zero by (11) (for g1, . . . , gr, Q). Hence (11) holds for
the new system.

Stage 2. We may assume that g1, . . . , gr−1 ∈ Mr(k,K, ~σ) and that gr has the
form σn+1(x1, . . . , xr)−xe, where xe is not 〈~σ, σn+1〉-bounded (and hence does not
actually occur in the term σn+1(x1, . . . , xr)).
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Justification. By definition of Mr(k,K, 〈~σ, σn+1〉) there exist h1, . . . , hr ∈
Mr(k,K, ~σ)[xr+1] (= Mr+1(k,K, ~σ)) such that

gi(x1, . . . , xr) = hi(x1, . . . , xr , σn+1(x1, . . . , xr))

for i = 1, . . . , r. Let qr+1 = σn+1(q1, . . . , qr), Q
′ = 〈Q, qr+1〉 and hr+1(x1, . . . , xr+1)

= σn+1(x1, . . . , xr) − xr+1. Clearly (10) and (12) are satisfied for h1, . . . , hr+1, Q
′

as well as stage 1 and stage 2. For (11), consider the matrix ∂(h1,...,hr+1)
∂(x1,...,xr+1) (Q′). For

each i = 1, . . . , r, multiply row r + 1 by ∂hi
∂xr+1

(Q′) and add the result to row i. By

the chain rule, the resulting matrix has determinant − det( ∂(g1,...,gr)
∂(x1,...,xr)

)(Q) which is

non-zero by (the old) (11).

Stage 3. We may assume that for all P ∈ Dr(〈~σ, σn+1〉,K), if gi(P ) = 0 for

i = 1, . . . , r − 1, then det(∂(g1,...,gr−1)
∂(x2,...,xr)

)(P ) 6= 0.

Justification. By (11) there is some i (1 ≤ i ≤ r) such that

det

(
∂(g1, . . . , gr−1)

∂(x1, . . . , xi−1, xi+1, . . . , xr)

)
(Q) 6= 0.

By relabelling the variables we may suppose that i = 1. (Note that for every
n, r ∈ N, the notion of an (n, r)-sequence is invariant under permutation of vari-
ables. Further, the definable points for the permuted sequence are just coordinate
permutations of definable points for the original sequence. Thus (8) and (9) are
still true for the permuted sequence. Clearly so are (10)–(12) and stages 1 and 2
for the corresponding transformation of g1, . . . , gr and Q.)

Now let

h(x1, . . . , xr+1) = xr+1 · det

(
∂(g1, . . . , gr−1)

∂(x2, . . . , xr)

)
(x1, . . . , xr)− 1,

and set

qr+1 = det

(
∂(g1, . . . , gr−1)

∂(x2, . . . , xr)

)
(Q)−1, Q′ = 〈Q, qr+1〉.

Then g1, . . . , gr−1, h, gr and Q′ still satisfy stages 1 and 2 and also, clearly, (10) and
(12). For (11), a simple calculation shows that

det

(
∂(g1, . . . , gr−1, h, gr)

∂(x1, . . . , xr+1)

)
(Q′) = − det

(
∂(g1, . . . , gr)

∂(x1, . . . , xr)

)
(Q) · q−1

r+1

which is non-zero by (the old) (11).

Finally, to see that stage 3 is satisfied suppose that P ∈ Dr+1(〈~σ, σn+1〉,K) and
that g1(P ) = · · · = gr−1(P ) = h(P ) = 0. Say P = 〈p1, . . . , pr+1〉. Since h(P ) = 0

we have pr+1 6= 0 and routine calculation gives det(∂(g1,...,gr−1,h)
∂(x2,...,xr+1) )(P ) = p−2

r+1 6= 0,

as required.

Stage 4. We may assume that for all P ∈ Dr(〈~σ, σn+1〉,K), if gi(P ) = 0 for

i = 1, . . . , r, then det( ∂(g1,...,gr)
∂(x1,...,xr)

)(P ) < 0.

Justification. As in the proof of stage 2, there is some h ∈ Mr(k,K, ~σ)[z] such
that

det

(
∂(g1, . . . , gr)

∂(x1, . . . , xr)

)
(x1, . . . , xr) = h(x1, . . . , xr , σn+1(x1, . . . , xr)).(∗)
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Define H ∈Mr+1(k,K, ~σ) by H(x1, . . . , xr+1) = xr+1 · h(x1, . . . , xr, xe)− 1 where
e is as given by stage 2 (so 1 ≤ e ≤ r). Now since gr(q1, . . . , qr) = 0, i.e.

σn+1(q1, . . . , qr) = qe, it follows from (∗) that h(q1, . . . , qr, qe) = det
(
∂(g1,...,gr)
∂(x2,...,xr)

)
(Q)

which is non-zero by (11). Hence we may set qr+1 = h(q1, . . . , qr, qe)
−1 and

Q′ = 〈Q, qr+1〉 so that (10), (12), stages 1 and 2 are clearly satisfied for the sys-
tem g1, . . . , gr−1, H, gr, Q

′. To see that stage 4 (and hence (11)) are also satisfied,

suppose that 〈p1, . . . , pr+1〉 = P ∈ Dr+1(〈~σ, σn+1〉,K) and that g1(P ) = · · · =
gr−1(P ) = H(P ) = gr(P ) = 0. Then by routine calculation we obtain

det

(
∂(g1, . . . , gr−1, H, gr)

∂(x1, . . . , xr+1)

)
(P ) = − det

(
∂(g1, . . . , gr−1, gr, H)

∂(x1, . . . , xr+1)

)
(P )

= − det

(
∂(g1, . . . , gr)

∂(x1, . . . , xr)

)
(p1, . . . , pr) · h(p1, . . . , pr, pe)

= −h(p1, . . . , pr, pe)
2

(by (∗) and the fact that gr(p1, . . . , pr) = 0). Since H(P ) = 0, h(p1, . . . , pr, pe) 6= 0
so the conclusion of stage 4 follows. Finally, stage 3 is still satisfied because if

P = 〈p1, . . . , pr+1〉 is any point in Dr+1(〈~σ, σn+1〉,K) such that g1(P ) = · · · =
gr−1(P ) = H(P ) = 0, then

det

(
∂(g1, . . . , gr−1, H)

∂(x2, . . . , xr+1)

)
(P )

= det

(
∂(g1, . . . , gr−1)

∂(x2, . . . , xr)

)
(p1, . . . , pr) · h(p1, . . . , pr, pe)

which is non-zero by (the old) stage 3 and the fact that H(P ) = 0.
The proof of Lemma 2.8 is now complete, for (13) follows from stage 2, (14) and

(15) from stage 1, (16) from stage 3 and (17) from stage 4. Further, (8)–(12) were
preserved throughout.

I shall prove Lemma 2.9 for the T̃ situation (and hence complete the proof of the
first main theorem) in the next section. I conclude this section, however, with the

best result I know for the unrestricted (T̃ ′) case. The proof follows immediately

from 2.8 (for the T̃ ′ situation) and 2.7 (the proof of which—given in 5.2—clearly

also works (in fact, more smoothly) for the T̃ ′-situation).

7.2. Theorem. Let H1, . . . , Hl be a Pfaffian chain of functions on Rm (m ∈
N, m ≥ 1) and let R̃′ be the structure 〈R;H1, . . . , Hl; r〉r∈C where the set C is

chosen as at the beginning of section 6. Let k̃′, K̃ ′ |= T̃ ′, k̃′ ⊆ K̃ ′, and suppose that

for all n, r ∈ N and all (n, r)-sequences ~σ, every (k̃′, ~σ)-definable point 〈p1, . . . , pr〉
of (K ′)r satisfies −B < pi < B (i = 1, . . . , r) for some B ∈ k′. (In particular,

this is satisfied if K̃ ′ is a cofinal extension of k̃′.) Then for any existential formula

φ(x1, . . . , xe) of L̃′, and any a1, . . . , ae ∈ k′ we have k̃′ |= φ(a1, . . . , ae) if and only

if K̃ ′ |= φ(a1, . . . , ae).

8. The proof of Lemma 2.9

In this section I revert to the T̃ -situation of section 1. The proof of 2.9 that I

shall give here does not work for the T̃ ′-situation because it relies heavily on 3.5 and

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MODEL COMPLETENESS RESULTS FOR EXPANSIONS 1079

I know of no analogue of this result for this situation. (I say “analogue” because 3.5

as it stands obviously fails for, e.g., T̃ ′ = Theory(〈R, exp〉) with exp unrestricted.)

So suppose K̃, k̃ |= T̃ , k̃ ⊆ K̃ and n, r ∈ N. Let ~σ = 〈σ1, . . . , σn〉 be an (n, r)-

sequence and suppose that for each s ≥ r every (k̃, ~σ)-definable point of Ks lies
in ks. Suppose σn+1 is such that 〈~σ, σn+1〉 is an (n + 1, r)-sequence. It is clearly

sufficient to show that every (k̃, 〈~σ, σn+1〉)-definable point ofKr lies in (K−)r where,
as before, K− = {α ∈ K : −β < α < β for some β ∈ k}.

Let Q = 〈q1, . . . , qr〉 be a (k̃, 〈~σ, σn+1〉)-definable point of Kr. Then, by applying
the stages described in the previous section, we may assume that (r ≥ 2 and) there

are functions g1, . . . , gr ∈Mr(k̃, K̃, 〈~σ, σn+1〉) such that:

g1, . . . , gr−1 ∈Mr(k̃, K̃, ~σ);(19)

gr has the form σn+1(x1, . . . , xr)− xe,
where xe is not 〈~σ, σn+1〉-bounded;

(20)

gi(Q) = 0 for i = 1, . . . , r and det

(
∂(g1, . . . , gr)

∂(x1, . . . , xr)

)
(Q) 6= 0;(21)

and, setting V = {P ∈ Dr(~σ, K̃) : gi(P ) = 0 for i = 1, . . . , r − 1} :

V ⊆ Dr(〈~σ, σn+1〉, K̃) and V (respectively V ∩ kr)
is a closed subset of Kr (respectively kr);

(22)

for all P ∈ V, det

(
∂(g1, . . . , gr−1)

∂(x2, . . . , xr)

)
(P ) 6= 0;(23)

for all P ∈ V, if gr(P ) = 0 then det

(
∂(g1, . . . , gr)

∂(x1, . . . , xr)

)
(P ) 6= 0.(24)

The hypothesis of 2.9 may now be strengthened as follows.

8.1. Claim. Suppose χ(x1, . . . , xr) is a formula of L (the language of ordered
rings) possibly containing parameters from k. Suppose further that for some

〈p1, . . . , pr〉 ∈ V , K̃ |= χ(p1, . . . , pr). Then for some 〈p1, . . . , pr〉 ∈ V ∩ kr,
k̃ |= χ(p1, . . . , pr).

Proof. By quantifier elimination and the usual tricks we may suppose that
χ(x1, . . . , xr) has the form ∃xr+1, . . . , ∃xr+t ρ(x1, . . . , xr+t) = 0 where ρ is a poly-

nomial with coefficients in k. Let g = ρ2 +
∑r−1
i=1 g

2
i . Then g ∈ Mr+t(k̃, K̃, ~σ) (by

(19)) and g(P ) = 0 for some P ∈ Dr+t(~σ, K̃). Hence by 2.7 there is some 〈P, P ′〉 ∈
D(r+t)+s(~σ, K̃) (for some s ∈ N) such that g(P ) = 0 and 〈P, P ′〉 is (k̃, ~σ)-definable.
By the hypothesis of 2.9, 〈P, P ′〉 ∈ k(r+t)+s. Clearly if P = 〈p1, . . . , pr+t〉, then
〈p1, . . . , pr〉 satisfies the conclusion of the claim.

I now suppose, for a contradiction, that Q 6∈ (I−)r.

8.2. Claim. q1 6∈ k.
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Proof. Suppose q1 ∈ k. Let h(x1, . . . , xr) = x1 − q1. Then h ∈ Mr(k̃, K̃, ~σ),
h(Q) = g1(Q) = · · · = gr−1(Q) = 0 and

det

(
∂(h, g1, . . . , gr−1)

∂(x1, . . . , xr)

)
(Q) = det

(
∂(g1, . . . , gr−1)

∂(x2, . . . , xr)

)
(Q) 6= 0

(by (23)). Thus Q is a (k̃, ~σ)-definable point of Kr and so lies in kr(⊆ (K−)r)—a
contradiction.

Now by (19), (22), (23) and 6.2 (see also the comments following the proof of

6.2) there exists a parameterization, {〈Ij , ψj〉 : 1 ≤ j ≤ N} say, of V ∩ kr in k̃.
(Note, by the way, that V ∩ kr 6= ∅ by 8.1.) Let Ij = (aj , bj) where aj ∈ k ∪ (−∞},
bj ∈ k ∪ {+∞} for j = 1, . . . , N .

8.3. Claim. Either q1 6∈ K−, or else there is some j = 1, . . . , N such that either
0 < q1 − aj < α or 0 < bj − q1 < α for all α ∈ k with α > 0.

Proof. Suppose q1 ∈ K−. Now we must have aj < q1 < bj for some j = 1, . . . , N ,
for otherwise we could find a, b ∈ k with a < q1 < b such that no 〈p1, . . . , pr〉 ∈ V ∩kr
satisfies the formula a < x1 < b, and this contradicts 8.1. Let a = max{aj : 1 ≤
j ≤ N and aj < q1 < bj} and b = min{bj : 1 ≤ j ≤ N and aj < q1 < bj}. Suppose,
for a contradiction, that there is some α ∈ k, α > 0 such that q1 − a > α and
b− q1 > α. Then a < a + α < q1 < b− α < b so clearly [a + α, b− α] ⊆ Ij for all
j such that aj < q1 < bj . (In the case a = −∞, replace a+ α by any element of k
which is less than q1. This is possible since q1 ∈ K−. Proceed similarly if b =∞.)

Now since each ψj is continuous, there is some B ∈ k such that ‖ψj(t)‖ < B for
all j such that aj < q1 < bj and for all t ∈ k with a + α ≤ t ≤ b − α. Now let
c = max({a+α}∪{bj : bj < q1}) and d = min({b−α}∪{aj : aj > q1}). Then by 8.2
(and 6.2), there is no 〈p1, . . . , pr〉 ∈ V ∩ kr with c < p1 < d and ‖〈p2, . . . , pr〉‖ ≥ B.
This contradicts 8.1 since Q is such a point in V .

I now claim that in addition to (19)–(24) we may assume that:

q1 > α for all α ∈ k.(25)

For if this is not already the case, then by 8.3 we have (for some a, b ∈ k) either
(a) q1 < α for all α ∈ k, or (b) 0 < q1 − a < α for all α ∈ k, α > 0, or (c)

0 < b− q1 < α for all α ∈ k, α > 0. Define h ∈Mr+1(k̃, K̃, ~σ) by

h(x1, . . . , xr+1) =


x1 + xr+1 in case (a),

xr+1(x1 − a)− 1 in case (b),

xr+1(b− x1)− 1 in case (c).

In all cases there is a unique qr+1 ∈ K such that 〈Q, qr+1〉 (= Q′, say) satisfies
g1(Q′) = · · · = gr−1(Q′) = h(Q′) = gr(Q

′) = 0, and clearly qr+1 > α for all
α ∈ k. Further, by immediate inspection or routine calculation, (19)–(22) and (24)
all hold for the system g1, . . . , gr−1, h, gr, Q

′. Actually, (23) holds too, but more
relevant for present purposes is the fact (again proved by direct calculation) that if

P ∈ Kr+1 and g1(P ) = · · · = gr−1(P ) = h(P ) = 0, then det(∂(g1,...,gr−1,h)
∂(x1,...,xr)

)(P ) 6= 0.

Now relabel variables (as in the justification of stage (3) in section 7) so that xr+1

becomes x1. Then (19)–(25) are satisfied for the new system, and we revert to the
original notation.
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8.4. Claim. There exists a finite subset S of k, an element B of k and a positive
rational number θ such that:

(i) 0 ≤ α ≤ 1 for all α ∈ S;
(ii) for any 〈p1, . . . , pr〉 ∈ Kr with p1 > B and 〈p1, . . . , pr〉 ∈ V , and any i

such that the variable xi is 〈~σ, σn+1〉-bounded, there exists a ∈ S such that

|pi − a| < p−θ1 .

Proof. By 8.1 it is sufficient to prove this claim with K replaced by k in (ii), so we

work in k̃. Let S be a parameterization of V ∩kr in k̃ and suppose 〈I, ψ〉 ∈ S is such
that I is unbounded to the right. Say ψ = 〈ψ2, . . . , ψr〉. Suppose that the variable
xi is 〈~σ, σn+1〉-bounded. Then by (22) and (25), 2 ≤ i ≤ r and 0 < ψi(t) < 1 for all

t ∈ I. It clearly follows from 3.5 (with K̃ = k̃, g = ψi) that ψi(t) → ai as t → ∞
for some ai ∈ k with 0 ≤ ai ≤ 1. Further, by applying 3.5 again with g = ψi − ai,
there exists a positive rational, θi say, such that |ψi(t)−ai| < t−θi for all sufficiently
large t ∈ k. The claim now follows since there are only finitely many possibilities
for 〈I, ψ〉 and i.

8.5. Claim. There exists a positive integer µ and an element B′ of k such that for
any 〈p1, . . . , pr〉 ∈ V ∩ kr with p1 > B′ we have |gr(p1, . . . , pr)| > p−µ1 .

Proof. By (24) and 3.3, gr has only finitely many zeros on V ∩ kr. The claim
now follows from 3.5 by an argument similar to that of 8.4. (Consider g(t) =
gr(t, ψ2(t), . . . , ψr(t)).)

Of course we would be done if we could show that 8.5 remained true with V in
place of V ∩kr. To achieve this we shall approximate gr by a polynomial (uniformly

in both K̃ and k̃) and apply 8.1.
By (20), gr(x1, . . . , xr) has the form σn+1(x1, . . . , xr) − xe, and by 2.1,

σn+1(x1, . . . , xr) has the form Fi(y1, . . . , ym) for some i = 1, . . . , l and some y1, . . . ,
ym ∈ {0, 1, x1, . . . , xr}. Now (working in R) consider the function Gi : U → R
(cf. section 1). Recall that U is an open set containing [0, 1]m, Gi is C∞ (in fact
analytic) on U and Gi � [0, 1]m = Fi � [0, 1]m. From now on I write F,G for Fi, Gi
respectively.

Since [0, 1]m is compact, there exists a positive rational number ε such that for

each P ∈ [0, 1]m, Bε(P ) (
def
= the open Euclidean ball in Rm with centre P and

radius ε) is contained in U . We may further assume that G and all its derivatives
are bounded (though not necessarily uniformly) on

⋃
{Bε(P ) : P ∈ [0, 1]m}. Now

by Taylor’s theorem with Lagrange’s form of the remainder, we have

G(p1 + t1, . . . , pm + tm) =
λ∑
i=0

 1

i!

 m∑
j=1

tj
∂

∂xj

i

G

 (P ) + Rλ,(26)

for all P = 〈p1, . . . , pm〉 ∈ [0, 1]m, 〈t1, . . . , tm〉 ∈ Bε(0) and λ ∈ N, where

Rλ =

 1

(λ+ 1)!

 m∑
j=1

tj
∂

∂xj

λ+1

G

 (P ′)(27)

for some P ′ ∈ Bε(P ).
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By our boundedness assumption on G it follows that for all λ ∈ N, there exists
Cλ ∈ N such that for all 〈t1, . . . , tm〉 ∈ Bε(0),

|Rλ| < Cλ · (max{|ti| : 1 ≤ i ≤ m)})λ+1.(28)

Now by (1), (2) (see the beginning of section 1) and (26), (28) it follows that
for all λ ∈ N and all monomials π(x1, . . . , xm) of degree ≤ λ, there exist terms

τλπ (x1, . . . , xm) of L̃ such that for all P = 〈p1, . . . , pm〉 ∈ [0, 1]m and 〈t1, . . . , tm〉 ∈
Bε(0) with 〈p1 + t1, . . . , pm + tm〉 ∈ Bε(P ) ∩ [0, 1]m, we have

|λ!F (p1 + t1, . . . , pm + tm)−
(λ)∑
π

τλπ (P ) · π(t1, . . . , tm)|

< λ!Cλ(max{|ti| : 1 ≤ i < m})λ+1

(29)

where the summation is over the monomials of degree ≤ λ.

I now want to apply (29) in K̃ (and k̃). Recall that σn+1(x1, . . . , xr) has the
form F (y1, . . . , ym) for some y1, . . . , ym ∈ {0, 1, x1, . . . , xr}. I therefore define, for
each 〈p1, . . . , pr〉 ∈ Kr and i = 1, . . . ,m,

p′i =


0 if yi = 0,

1 if yi = 1,

pj if yi = xj .

Thus, if 〈p1, . . . , pr〉 ∈ Dr(〈~σ, σn+1〉, K̃) (in particular, if 〈p1, . . . , pr〉 ∈ V—see
(22)), then 0 ≤ p′i ≤ 1 for i = 1, . . . ,m and σn+1(p1, . . . , pr) = F (p′1, . . . , p

′
m).

Now let S, θ,B be as in 8.4, µ,B′ as in 8.5, and let λ0 be an integer greater than
µ+1
θ .
Consider the point Q ∈ Kr. Then Q ∈ V and q1 > B (by (25)) so we may define

ai (for i = 1, . . . ,m) as the unique a ∈ S∪{0, 1} such that |q′i−a| < q−θ1 . Note that
ai ∈ k and 0 ≤ ai ≤ 1 for i = 1, . . . ,m. Further, 〈q′1−a1, . . . , q

′
m−am〉 ∈ Bε(0) (since

0 ≤ q−θ1 < ε, ε, θ being positive rationals) and 〈q′1, . . . , q′m〉 ∈ Bε(〈a1, . . . , am〉) ∩
[0, 1]m. Also, gr(Q) = 0 so F (q′1, . . . , q

′
m) = qe. Hence, by (29) applied in K̃, we

obtain:∣∣∣∣∣∣λ0!qe −
(λ0)∑
π

τλ0
π (a1, . . . , am) · π(q′1 − a1, . . . , q

′
m − am)

∣∣∣∣∣∣ < λ0!Cλ0 · q
−θ(λ0+1)
1 .(30)

We also clearly have

q1 > max(B′, 2Cλ, ε
−θ−1

)(31)

and

|q′i − ai| < q−θ1 , for i = 1, . . . ,m.(32)

Now since k̃ ⊆ K̃, all the τλ0
π (a1, . . . , am)’s are elements of k (and the evaluation

of the term is absolute between K̃ and k̃). We may therefore express the conjunction
of (30), (31) and (32) as χ(q1, . . . , qr), where χ(x1, . . . , xr) is a formula of L with

parameters in k. It follows from 8.1 that (30), (31) and (32) hold in k̃ for some

〈p1, . . . , pr〉 ∈ V ∩ kr in place of 〈q1, . . . , qr〉. However, we may also apply (29) in k̃
with pi = ai and ti = p′i − ai. (Note that 〈t1, . . . , tm〉 ∈ Bε(0) by the new (31) and
(32), and 〈a1 + t1, . . . , am + tm〉 ∈ Bε(〈a1, . . . , am〉)∩ [0, 1]m since 〈p1, . . . , pr〉 ∈ V ,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MODEL COMPLETENESS RESULTS FOR EXPANSIONS 1083

where all these notions are being interpreted in k̃.) Combining this with the new
(30) (and using the new (32)) gives:

|F (p′1, . . . , p
′
m)− pe| < 2Cλ · p−θ(λ0+1)

1

< 2Cλ · p−µ−1
1 (by choice of λ0)

< p−µ1 (by the new (31)),

i.e. |gr(p1, . . . , pr)| < p−µ1 is true in k̃. Since p1 > B′ (by the new (31)), this
contradicts 8.5 and establishes 2.9.

The proof of the first main theorem is now complete.

9. Towards the proof of the second main theorem

Recall that this states that the theory of the structure 〈R; exp〉 is model com-
plete. Here, exp denotes the exponential function x 7→ ex defined for all x ∈ R
and, as before, R denotes the ordered field of real numbers (in the language of
ordered rings). Let us denote the theory and language of 〈R; exp〉 by Texp and Lexp

respectively. Then, by the brief discussion of model completeness in section 1, we
must show that if k,K |= Texp and k is a substructure of K, then any existential
sentence with parameters in k which is true in K is also true in k.

Let us fix k,K |= Texp with k a substructure of K for the rest of this sec-
tion. Henceforth, I shall not distinguish notationally between structures and their
domains, nor between terms of a language and their interpretations in given struc-
tures.

Now consider Theorem 7.2 in the case m = l = 1, C = ∅, H1 = exp, K̃ ′ = K and
k̃′ = k. This result tells us that it is sufficient to show that whenever n ∈ N and
f1, . . . , fn ∈ k[x1, . . . , xn, exp(x1), . . . , exp(xn)] then there exists b ∈ k such that if
~α = 〈α1, . . . , αn〉 ∈ Kn satisfies f1(~α) = · · · = fn(~α) = 0 and J(f1, . . . , fn)(~α) 6= 0
(where, as before, J(f1, . . . , fn) denotes the determinant of the Jacobian matrix

( ∂fi∂xj
)1≤i,j≤n), then |αi| < b for i = 1, . . . , n.

(This reduction of the problem of proving the model completeness of 〈R; exp〉
was already established in [16] (Theorem 2).)

We shall prove this by induction on the number of exponentials actually occurring
in f1, . . . , fn. However, in eliminating an exponential we shall introduce new vari-
ables and their exponentials but in such a way that only values of the new variables
lying between 0 and 1 will be relevant. This will cause no problems at the base step
of the induction because of the model completeness of the structure 〈R; exp � [0, 1]〉
(which follows from the first main theorem—see section 1, example (A)). Now it
turns out to be technically more convenient to avoid the use of truncated functions,
so I define the function e (in any model of Texp) by e(x) = exp((1 + x2)−1) (see
section 1, example (A) again). We are thus led to the following

9.1. Definition. Let n ∈ N, s ⊆ {1, . . . , n}. Then Ms
n denotes the ring of func-

tions from Kn to K generated (as a ring) over k (considered as a field of constant
functions) by xi, (1 + x2

i )
−1, e(xi) (for i = 1, . . . , n) and exp(xi) (for i ∈ s).

Notice that, for any n ∈ N and s ⊆ {1, . . . , n}, Ms
n is a Noetherian ring of

K-definable, C∞ (in the sense of K) functions from Kn to K. Further, Ms
n is

closed under differentiation and so, in particular, for any f1, . . . , fn ∈ Ms
n we have
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J(f1, . . . , fn) ∈Ms
n. The results of sections 4 and 5 are therefore applicable and we

summarize them now in a form suitable for application here.

9.2. Proposition. Let n ∈ N, s ⊆ {1, . . . , n}.
(i) Suppose f ∈ Ms

n, ~α ∈ Kn and f(~α) = 0. Then there exist f1, . . . , fn ∈ Ms
n

and ~β ∈ Kn such that f(~β) = f1(~β) = · · · = fn(~β) = 0 and J(f1, . . . , fn)(~β) 6=
0.

(ii) If, in (i), ~α is an isolated zero of f , then we may take ~β = ~α.
(iii) Let f1, . . . , fn ∈ Ms

n. Then there are only finitely many ~γ ∈ Kn such that
f1(~γ) = · · · = fn(~γ) = 0 and J(f1, . . . , fn)(~γ) 6= 0.

Proof. For (i) apply Theorem 5.1 with T = Texp, K = K, M = Ms
n, U = Kn and

S = {~γ ∈ Kn : f(~γ) = 0}(= V (f)).

For (ii) apply Theorem 4.9 (with T = Texp, K = K, P0 = ~α andM = {[g � U,U ] :
U an open neighbourhood of ~α in Kn and g ∈Ms

n}) repeatedly for m = 0, . . . , n−1.
We must eventually find f1, . . . , fn ∈ Ms

n such that ~α ∈ V ns(f1, . . . , fn) because
otherwise we would have (ii) of Theorem 4.9 holding for some f1, . . . , fm with m < n
and, in particular, for [h,W ] = [f,Kn]. But this contradicts the implicit function
theorem applied in K (see the beginning of section 4) and the fact that ~α is an
isolated zero of f .

Finally, note that the sequence (1 + x2
1)−1, . . . , (1 + x2

n)−1, e(x1), . . . , e(xn),
exp(xi1), . . . , exp(xim) (where s = {i1, . . . , im}) is a Pfaffian chain on Rn. State-
ment (iii) follows upon transferring Theorem 3.1 to K.

Let us now assume that the second main theorem is false. By the discussion
above it follows that there exists m ∈ N such that:

for some n ∈ N, n ≥ m, there exist ~α = 〈α1, . . . , αn〉 ∈ Kn,

l ∈ {1, . . . , n} and s ⊆ {1, . . . , n} with card(s) = m such that for some

f1, . . . , fn ∈Ms
n, f1(~α) = · · · = fn(~α) = 0 6= J(f1, . . . , fn)(~α). Further,

|αl| > b for all b ∈ k, and if m > 0, then l ∈ s.

(∗)m

(Of course, the comments above imply that we could take n = m and s =
{1, . . . , n} here, but, as already mentioned, the point is that we shall be reducing
m at the expense of extra variables and e-terms.)

Choose m minimal such that (∗)m holds. I first claim that m > 0. For consider
the structure with the same domain and ordered ring structure as K, but with exp
replaced by e. Call the resulting structure K ′ and proceed similarly to obtain k′

from k. Clearly k′ is a substructure of K ′ and they are both models of the complete
theory of the structure 〈R;x 7→ exp((1 +x2)−1)〉. But by example (A) of section 1,
this theory is model complete. This contradicts (∗)0 and 9.2 (iii).

Now for our minimal (non-zero) m, choose n, ~α, l, s and f1, . . . , fn witnessing
(∗)m. In the final section of this paper I shall establish (independently of all as-
sumptions being made here) a property of elements of models of Texp and their
exponentials which implies the following:

9.3. There exist integers ni (for i ∈ s), not all zero, and c ∈ k such that 0 <
c+

∑
i∈s niαi < 1.

Assuming 9.3, note that since |αl| > b for all b ∈ k, we cannot have ni = 0 for
all i ∈ s\{l}. Suppose, for convenience, that 1 ∈ s, n1 6= 0, and 1 6= l. We may
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assume that n1 > 0 for if n1 < 0 simply replace ni by −ni (for i ∈ s) and c by
1− c in 9.3. Now set αn+1 = exp(α1) and choose αn+2 ∈ K so that αn+2 > 0 and
(1 + α2

n+2)−1 = c+
∑
i∈s niαi. This is possible since K, as a field, is real closed.

Now let gi(x1, . . . , xn+1) be the result of replacing exp(x1) by xn+1 in

fi(x1, . . . , xn). Then gi ∈ M
s\{1}
n+1 and clearly 〈α1, . . . , αn+2〉 is a solution of the

following system of equations:

Λ(x1, . . . , xn+2) :



g1(x1, . . . , xn+1) = 0,
...

gn(x1, . . . , xn+1) = 0,

(1 + x2
n+2)−1 − c−

∑
i∈s nixi = 0,

xn1
n+1 · exp(c) ·

∏
j∈s+ exp(xj)

nj

−e(xn+2) ·
∏
j∈s− exp(xj)

−nj = 0,

where s± = {j ∈ s : j > 1 and ±nj > 0} (respectively). (The last equation is
obtained by exponentiating the previous one, substituting xn+1 for exp(x1) and
rearranging. An empty product is interpreted as 1.)

Now by 9.2 (iii) there exists a K-definable open neighbourhood, U say, of
〈α1, . . . , αn〉 (in Kn) such that 〈α1, . . . , αn〉 is the only solution of f1(x1, . . . , xn) =
· · · = fn(x1, . . . , xn) = 0 6= J(f1, . . . , fn)(x1, . . . , xn) in U . Since

J(f1, . . . , fn)(α1, . . . , αn) 6= 0

we may actually suppose that 〈α1, . . . , αn〉 is the only solution of f1(x1, . . . , xn) =
· · · = fn(x1, . . . , xn) = 0 in U . I now claim that 〈α1, . . . , αn+2〉 is the only solution
of the system Λ(x1, . . . , xn+2) lying in the open subset U × K+ × K+ of Kn+2

(where K+ = {a ∈ K : a > 0}). For suppose that 〈β1, . . . , βn+2〉 is such a
solution. Since βn+1 > 0 and n1 6= 0 the last two equations force βn+1 = exp(β1).
The first n equations now force fi(β1, . . . , βn) = 0 for i = 1, . . . , n and hence,
since 〈β1, . . . , βn〉 ∈ U , βi = αi for i = 1, . . . , n. Further, βn+1 = exp(β1) =
exp(α1) = αn+1. Finally, the penultimate equation and the condition βn+2 > 0
force βn+2 = αn+2.

Now let f be the sum of the squares of the n + 2 functions appearing in

Λ(x1, . . . , xn+2). Then f ∈Ms\{1}
n+2 (note that c, exp(c) ∈ k) and we have shown that

〈α1, . . . , αn+2〉 is an isolated zero of f . By 9.2 (ii) it follows that there exist

h1, . . . , hn+2 ∈ Ms\{1}
n+2 such that h1(α1, . . . , αn+2) = · · · = hn+2(α1, . . . , αn+2) =

0 6= J(h1, . . . , hn+2)(α1, . . . , αn+2). Since l ∈ s\{1}, this implies that (∗)m−1 holds
which contradicts the minimality of m and establishes the second main theorem
modulo 9.3.

10. Smooth 0-minimal theories

We touched on the notion of 0-minimality in section 2 where it was needed to
establish asymptotic formulas for definable functions in structures covered by the
first main theorem. We now require a deeper asymptotic analysis and I must assume
that the reader is familiar with the basic general properties of 0-minimal structures.
These can be found in the foundational papers [10] and [7]. (See also [15] for more
recent developments.)

For this section let R̃ be any 0-minimal expansion of the real ordered field R
and let T̃ denote the complete theory of R̃. Then T̃ admits definable Skolem
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functions and the closure of {0} under these functions in any model K of T̃ is an

Archimedean-ordered elementary substructure of K (because T̃ is complete and has
an Archimedean ordered model).

Suppose that K |= T̃ , k � K (i.e. k is an elementary substructure of K) and
n ∈ N.

I shall say that a function from Kn to K or a subset of Kn is k-definable if it is

definable by a formula of the language of T̃ possibly involving parameters from k.

Consider now the following condition on T̃ :

(S1) For any K |= T̃ and any K-definable function f : K → K, there exists N ∈ N
such that |f(x)| ≤ xN for all sufficiently large x ∈ K.

10.1. Theorem. Suppose T̃ satisfies (S1). Let K |= T̃ and suppose that R is a
convex subring of K. Let I be the (convex ) ideal of R consisting of those elements
of R which are not invertible in R (i.e. I is the unique maximal ideal of R). Then
there exists k0 � K such that k0 ⊆ R and such that for each a ∈ R, k0 ∩ (a + I)
contains exactly one element, i.e. k0 splits R.

Proof. Clearly the set S = {k : k � K and k ⊆ R} satisfies the hypotheses of
Zorn’s lemma (S is nonempty since it contains the Skolem closure of {0} in K).

Let k0 be a maximal element of S. Then k0 � K (so k0 |= T̃ ), k0 ⊆ R and clearly,
since k0 is a field, k0 ∩ (a+ I) contains at most one element for each a ∈ R.

I claim that for all a ∈ R there exists α ∈ k0 such that α > a. For suppose

a is a counterexample. Since T̃ has definable Skolem functions the set {f(a) : f :
K → K, f a k0-definable function} is the domain of an elementary substructure
of K (containing k0) which, by the maximality of k0, contains an element greater
than every element of R. Suppose f(a) is such an element (where f : K → K
is k0-definable). By (S1) there is an element b ∈ k0 and N ∈ N such that k0 |=
∀x > b(|f(x)| ≤ xN ). Since k0 � K and a > b we have |f(a)| ≤ aN (in K),
contradicting the fact that R is a subring of K.

Now suppose that a ∈ R and that k0 ∩ (a + I) = ∅. It is again sufficient (for a
contradiction) to show that f(a) ∈ R for any k0-definable function f : K → K. So
let f be such a function. By a result of [10] there are elements a1 < a2 < · · · < an
of k0 such that (setting a0 = −∞, an+1 = +∞) f is (weakly) monotonic (in k0, and
hence in K) on each open interval (ai, ai+1) for i = 0, . . . , n. Thus, by the claim
above, there exist b, c ∈ k0 with b < a < c and f (weakly) monotonic on (b, c).
Since k0 ∩ (a+ I) = ∅ we have c− a, a− b > β for all β ∈ I, and hence (c− a)−1,
(a− b)−1 ∈ R. By the claim there exists d ∈ k0 such that d > (c− a)−1, (a− b)−1.
But then d−1 ∈ k0 and b < b + d−1 < a < c − d−1 < c. It follows that f(a)
lies between the elements f(b + d−1), f(c − d−1) of k0 and hence f(a) ∈ R, as
required.

Let K |= T̃ . For any subset A of K denote by C`(A) the closure of A (in K)

under the Skolem functions of T̃ . The set A is said to generate K if C`(A) = K,
and is called independent if a 6∈ C`(A\{a}) for each a ∈ A. An independent set
that generates K is called a basis for K. It was shown in [10] that this notion of
independence has the exchange property, and hence any independent subset of K
can be extended to a basis for K and all bases for K have the same cardinality.
The cardinality of any basis for K is denoted dim(K).
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If k � K, then all the above remarks apply “over k”, i.e. to the notion of closure
under k-definable functions. I denote by dimk(K) the cardinality of any basis for K
over k. If k0 � k1 � K it is easy to verify that dimk0(K) = dimk0(k1) + dimk1(K)
provided that dimk0(K) is finite.

I now introduce another notion of dimension for models of T̃ . Indeed, let K be
any real-closed ordered field. Recall that an element a of K is called finite if |a| < n
for some n ∈ N, and infinitesimal if |a| < 1

n for all n ∈ N\{0}. The set Fin(K) of
finite elements of K forms a convex subring of K with unique maximal ideal µ(K),
the set of infinitesimals. Further, the set Fin(K)\µ(K) is a multiplicative subgroup
of K\{0}, and I call the quotient of the latter by the former the value group of K
and denote it by V (K). It is usual to write V (K) as an additive group and as
such it can be ordered by setting a/(Fin(K)\µ(K)) > 0 if and only if a ∈ µ(K).
Further, V (K) is a divisible group (since mth roots of positive elements exist in
K for all m ∈ N\{0}) and is therefore an ordered Q-vector space. I denote its
dimension over Q by valdim(K).

The map νK : K → V (K) ∪ {∞}, extending the natural map K\{0} → V (K)
by setting νK(0) = ∞, is called the valuation map of K. It is easy to verify the
following (where we set ∞ > α for all α ∈ V (K) and ∞+ α = α+∞ =∞ for all
α ∈ V (K) ∪ {∞}) :

(v1) νK(x · y) = νK(x) + νK(y) for all x, y ∈ K;
(v2) νK(x + y) ≥ min(νK(x), νK(y)) for all x, y ∈ K, with equality if νK(x) 6=

νK(y);
(v3) for all x ∈ K, νK(x) ≥ 0 if and only if x ∈ Fin(K), and νK(x) > 0 if and

only if x ∈ µ(K).

My present aim is to formulate a condition on T̃ that guarantees (if T̃ also

satisfies (S1)) that valdim(K) ≤ dim(K) for all models K of T̃ for which dim(K)

is finite. Notice that this inequality is satisfied if T̃ is just the theory of real-closed

ordered fields (i.e. R̃ = R). For in this case dim(K) is the transcendence degree (over
Q) of K and it is easy to check that if α1, . . . , αn ∈ K and p(α1, . . . , αn) = 0 for
some non-trivial polynomial p with rational coefficients, then νK(α1), . . . , νK(αn)
are linearly dependent over Q.

Consider the following condition on T̃ :

(S2) For any formula φ(x1, . . . , xn) of the language of T̃ there are m, p ∈ N and
C∞ functions Fi : Rn+m → R (for i = 1, . . . , p), which are definable without

parameters in R̃, and are such that

R̃ |= ∀~x
(
φ(~x)↔ ∃~y

(
‖~y‖ ≤ 1 ∧

p∨
i=1

(Ni(~y) ∧ Fi(~x, ~y) = 0

))
,

where, if ~y = y1, . . . , ym, ‖~y‖ = max{|yi| : i = 1, . . . ,m} and Ni(~y) is a
formula of the form

∧
j∈si yj 6= 0 for some si ⊆ {1, . . . ,m}.

10.2. Definition. If T̃ satisfies (S1) and (S2) (and T̃ is the complete theory of a

0-minimal expansion R̃ of R), then T̃ is called smooth.

10.3. Theorem. Suppose T̃ is smooth and K |= T̃ . If dim(K) is finite, then
valdim(K) ≤ dim(K).
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Proof. The proof is by induction on dim(K).
If K is Archimedean (i.e. µ(K) = {0}), then valdim(K) = 0 so the result is clear.

Notice that this covers the case dim(K) = 0 (by the remarks at the beginning of
this section), so suppose that dim(K) = n > 0 and µ(K) 6= {0}.

By an argument similar to the one used in the claim in the proof of 10.1, there
is some a0 ∈ µ(K) with a0 > 0 such that for all b ∈ K with b > 0 we have am0 < b

for some m ∈ N. Let R = {b ∈ K : |b| < a
−1/m
0 for all m ∈ N\{0}}. Then R is a

convex subring of K and its maximal ideal, I say, is Archimedean in the sense that
for all a, b ∈ I\{0}, there is some m ∈ N such that |b|m < |a|.

By 10.1 we may choose k � K such that k splits R. Since k 6= K we have
dim(k) < n. Say dim(i) = n− r (where r ∈ N\{0}) and choose c1, . . . , cr ∈ K such
that {c1, . . . , cr} is a basis for K over k. We may suppose that c1, . . . , cr ∈ I since
if ci 6∈ R then we may replace ci by c−1

i , and if ci ∈ R we may replace ci by the
unique η ∈ I such that ci + η ∈ k (using the splitting property of k).

Now let k∗ be the algebraic closure of the field k(c1, . . . , cr) in K. Then clearly
νK [k∗] is a subspace of V (K) and by an argument similar to the one discussed
before the formulation of (S2) we have dimQ νK [k∗] ≤ dimQ νK [k] + r (where dimQ
means Q-vector space dimension here). However, clearly νK [k] ∼= V (k) (as Q-vector
spaces) so dimQ νK [k∗] ≤ valdim(k) + r which, by the inductive hypothesis, implies
dimQ νK [k∗] ≤ dim(k) + r = n. Hence it is sufficient to show that νK maps k∗\{0}
surjectively onto V (K).

Let d ∈ K\{0}. We must show that there is some α ∈ k∗ such that νK(α) =
νK(d). Since νK(−β) = νK(β) and νK(β−1) = −νK(β) for any β ∈ K\{0}, and
νK(β) ∈ νK [k] for any β ∈ R\I (as k splits R), we may suppose that d > 0 and
d ∈ I. Let f : Kr → K be a k-definable function such that f(c1, . . . , cr) = d.

By (S2) there exists a k-definable, C∞ (in the sense ofK) function F : Kr+1+m →
K (for some m ∈ N) and s ⊆ {1, . . . ,m} such that:

for all x ∈ K, f(c1, . . . , cr) = x if and only if there exist

b1, . . . , bm ∈ K with bi 6= 0 for i ∈ s, and |bi| ≤ 1 for i = 1, . . . ,m

such that F (c1, . . . , cr, x, b1, . . . , bm) = 0.

(33)

(In applying (S2) I have replaced the parameters from k occurring in the for-
mula defining he graph of f by variables, to obtain φ(~z, x1, . . . , xr, x) say, and then
taken F to be that Fi for which the corresponding disjunct holds in K when these
parameters are replaced for ~z in φ, and xi is set to ci for i = 1, . . . , r and x is set
to d.)

Now fix β1, . . . , βm ∈ K such that βi 6= 0 for i ∈ s, |βi| ≤ 1 for i = 1, . . . ,m, and
F (c1, . . . , cr, d, β1, . . . , βm) = 0. Since β1, . . . , βm ∈ R we may choose (uniquely)
β0

1 , . . . , β
0
m ∈ k such that βi − β0

i ∈ I for i = 1, . . . ,m (using the splitting property
of k). Further, by the Archimedean property of I we may choose N ∈ N so large
that |βi| > |c1|N for i ∈ s. (We cannot have c1 = 0 since c1 occurs in a basis for K
over k.)

Let A = {〈x1, . . . , xm〉 ∈ Km : |c1|N ≤ |xi| for i ∈ s, |xi| ≤ 1 for i = 1, . . . ,m}.
Consider the function

h : K1+m → K : 〈x, x1, . . . , xm〉 7→ |F (c1, . . . , cr, x, x1, . . . , xm)|.

Since (in the sense of K) h is continuous, it must achieve its minimum on any
closed, bounded, K-definable subset of K1+m. Let γ be the minimum of h on
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([0, 1]\(d2 ,
3d
2 )) × A. By (33) and the preceding remark we have that γ > 0, so we

may choose N ′ ∈ N so large that γ > |c1|N
′
. Then clearly:

for all α ∈ [0, 1] and 〈β′1, . . . , β′m〉 ∈ A,
if |F (c1, . . . , cr, α, β

′
1, . . . , β

′
m)| ≤ |c1|N

′
,

then
d

2
< α <

3d

2
and hence νK(α) = νK(d).

(34)

Now let λ ∈ N and consider the Taylor expansion to degree λ of the function
F : Kr+1+m → K, with Lagrange’s form of the remainder, about the point

~ω = 〈0, . . . , 0︸ ︷︷ ︸
r+1

, β0
1 , . . . , β

0
m〉(∈ kr+1+m).

This clearly provides us with (by either transferring the classical result from R̃
to K, or else by just proving Taylor’s theorem in K) a polynomial

ρλ(y1, . . . , yr, x, x1, . . . , xm)

with coefficients in k and an element Bλ ∈ k (Bλ > 0) such that:

for all t ∈ K with 1 > t > 0, and all

~z ∈ Kr+1+m with ‖~z − ~ω‖ < t, |F (~z)− ρλ(~z)| < Bλ · tλ+1.
(35)

Let t0 = 2 ·max(|c1|, . . . , |cr|, d, |β1−β0
1 |, . . . , |βm−β0

m|). Then t0 ∈ I and t0 > 0,
so we may choose λ0 ∈ N so large that:

tλ0+1
0 < (2Bλ0)−1 · |c1|N

′
.(36)

Now setting λ = λ0, t = t0 and ~z = 〈c1, . . . , cr, d, β1, . . . , βm〉 in (35), and then
using (36), gives:

|ρ(c1, . . . , cr, d, β1, . . . , βm)| < 1
2 · |c1|

N ′ , where ρ = ρλ0 .(37)

We also clearly have:

〈d, β1, . . . , βm〉 ∈ [0, 1]×A(38)

and

‖〈c1, . . . , cr, d, β1, . . . , βm〉 − ~ω‖ < ((2Bλ0)−1 · |c1|N
′
)(λ0+1)−1

.(39)

Now (37), (38) and (39) can be expressed in the language of ordered rings and
can be viewed as conditions on the point 〈d, β1, . . . , βm〉 with parameters in k∗ (=
the algebraic closure of the field k(c1, . . . , cr) in K). Since k∗ is an elementary
substructure of K for the language of ordered rings (both being real-closed ordered
fields) it follows that there are α, β′1, . . . , β

′
m ∈ k∗ such that:

|ρ(c1, . . . , cr, α, β
′
1, . . . , β

′
m)| < 1

2 · |c1|
N ′ ,(40)

〈α, β′1, . . . , β′m〉 ∈ [0, 1]×A,(41)

and

‖〈c1, . . . , cr, α, β′1, . . . , β′m〉 − ~ω‖ < ((2Bλ0)−1 · |c1|N
′
)(λ0+1)−1

.(42)
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Now by (42), we may apply (35) with λ = λ0, t = ((2Bλ0)−1 · |c1|N
′
)(λ0+1)−1

and ~z = 〈c1, . . . , cr, α, β′1, . . . , β′m〉 which, together with (40) gives:

|F (c1, . . . , cr, α, β
′
1, . . . , β

′
m)| < |c1|N

′
.(43)

The required conclusion now follows from (43), (41) and (34).

Suppose K |= T̃ and k � K. Then νK [k\{0}] is a Q-vector subspace of V (K)
(because k is certainly a real-closed ordered subfield of K) and I denote the dimen-
sion of V (K) over νK [k\{0}] by valdimk(K).

I require the following generalization of 3.4.

10.4. Theorem. Suppose T̃ is smooth, K |= T̃ , k � K and that dimk(K) is finite.
Then valdimk(K) ≤ dimk(K).

Proof. It is clearly sufficient to consider the case dimk(K) = 1, so let a be a
generator for K over k. Suppose, for a contradiction, that valdimk(K) ≥ 2. Then
there exist k-definable functions f, g : K → K such that νK(f(a)), νK(g(a)) are
Q-linearly independent over νK [k\{0}].

Now consider the structure 〈K,P 〉, where P is the unary relation on K inter-
preted as (the domain of) k. Let 〈∗K, ∗P 〉 be an ℵ0-saturated elementary extension
of 〈K,P 〉. Let ∗k be the elementary substructure of ∗K with domain ∗P . Then
∗k is certainly ℵ0-saturated. I claim that ν∗k(f(a)), ν∗k(g(a)) are Q-linearly in-
dependent over ν∗k[∗k\{0}]. For suppose not. Then for some p, q ∈ Q not both
zero, and some b ∈ ∗k\{0} we have pν∗k(f(a)) + qν∗k(g(a)) + ν∗k(b) = 0. This
implies that i−1 < |f(a)|p · |g(a)|q · |b| < i for some i ∈ N\{0}. Since a ∈ K and
〈K,P 〉 � 〈∗K, ∗P 〉 it follows that there is some b′ ∈ k\{0} such that

i−1 < |f(a)|p · |g(a)|q · |b′| < i,

which contradicts the fact that νK(f(a)), νK(g(a)) are Q-linearly independent over
νK [k\{0}].

This shows that we may suppose that k is ℵ0-saturated (by taking k = ∗k and
K to be the elementary substructure of ∗K generated over ∗k by a).

Now let k0 be an elementary substructure of k such that dim(k0) is finite and
such that f, g are both k0-definable. Consider the following set of formulas over k :

Θ(x) : {|f(x)|p · |g(x)|q · |b| ≤ i−1 ∨ |f(x)|p · |g(x)|q · |b| ≥ i :

i ∈ N\{0}, p, q ∈ Q, not both zero, b ∈ k0\{0}}.

Clearly Θ(x) is realised in K by a and hence Θ(x) is finitely satisfiable in k.
Further, since dim(k0) is finite, Θ(x) can be rewritten so that it contains only finitely
many parameters from k0 (namely, the elements of a basis) and hence from k. Thus
Θ(x) is realized in k, by a1 say. Let k1 be the elementary substructure of k generated
over k0 by a1. Then clearly dim(k1) = dim(k0)+1 and valdim(k1) ≥ valdim(k0)+2
(since νk1(f(a1)), νk1(g(a1)) are Q-linearly independent over νk1 [k0\{0}] by the
definition of Θ(x)). But we may repeat this argument with k1 in place of k0 and,
indeed, continue to do so to obtain, for each l ∈ N, an elementary substructure, kl
say, of k such that dim(kl) = dim(k0) + l and valdim(kl) ≥ valdim(k0) + 2l. But
this contradicts 10.4 when l = dim(k0) + 1.

Before applying 10.4 to the situation of section 9, I require the following result
on ordered Q-vector spaces.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MODEL COMPLETENESS RESULTS FOR EXPANSIONS 1091

10.5. Lemma. Let V be an ordered Q-vector space and U a subspace of V such that
V has dimension n (∈ N) over U . Then there exists a basis 0 < v1 < v2 < · · · < vn
for V over U such that if v is any element of V with v > u for all u ∈ U and if
v = (

∑n
i=1 qivi + u0) (where q1, . . . , qn ∈ Q, u0 ∈ U), then |v| > q · vj for some

positive q ∈ Q where j = max{i : qi 6= 0}.

Proof. Let U be the convex closure of U in V . The result is trivial if U = V .
Otherwise, simply observe that there exists l ∈ N, with 1 ≤ l ≤ n, and Archmidean-
ordered Q-vector spaces A1, . . . , Al such that V is isomorphic (as an ordered Q-
vector space) to U ×A1 × · · · ×Al with reverse lexicographic ordering.

11. Bounding the solutions to exponential-polynomial equations

and the completion of the proof of the second main theorem

Recall from section 9 that Lexp and Texp denote the language and theory of the

structure 〈R; exp〉, respectively. I denote by Le and Te the language and theory of
the structure 〈R; e; 〉, where e : R→ R : x 7→ exp((1 + x2)−1).

11.1. Theorem. The theory Te is smooth and model complete.

Proof. That Te is model complete follows from the first main theorem (see example
(A) of section 1), and 0-minimality and condition (S1) follow from results in [13]
(see also Corollary 3.5). For (S2), consider the function

e∗ : R→ R : x 7→ exp(x2 · (1 + x2)−1)

and note that e(x−1) = e∗(x) for all x ∈ R\{0}. It follows that e∗ is definable
in 〈R; e〉 without parameters. Notice also that e and e∗ are both C∞ throughout
R. Now let φ(x1, . . . , xn) be any formula of Le. It easily follows from the model
completeness of Te that there is a polynomial ρ ∈ Z[z1, . . . , z2m+2n] (for some
m ∈ N) such that

〈R; e〉 |= ∀x1, . . . , xn (φ(x1, . . . , xn)↔
∃y1, . . . , ym ρ(y1, . . . , ym, e(y1), . . . , e(ym),

x1, . . . , xn, e(x1), . . . , e(xn)) = 0).

(∗)

Condition (S2) now follows by considering, for each s ⊆ {1, . . . ,m}, the result
of replacing yj by y−1

j and e(yj) by e∗(yj) (for each j ∈ s) in the function on the

right hand side of (∗), and then multiplying by a suitably high power of
∏
j∈s yj

to obtain a C∞ function (on R), Fs say. Thus, in the notation of (S2), p is 2m,
Ni(~y) is

∧
j∈si yj 6= 0 and Fi is Fsi , where {si : i < 2m} is an enumeration of all

the subsets of {1, . . . ,m}.

Suppose now that k and K are models of Texp with k ⊆ K. Clearly, k,K
determine models of Te with the same underlying ordered field and I denote these
(“restricted”) models by k′,K ′ respectively. Certainly k′ ⊆ K ′ so k′ � K ′ by the
model completeness of Te (Theorem 11.1).

Now suppose that k∗ is any model of Te such that k′ ⊆ k∗ ⊆ K ′. Then for each
a ∈ k∗, exp(a) is an element of (the domain of) K which may or may not lie in
k∗. Let E(k∗) = {a ∈ k∗ : exp(a) ∈ k∗}. Clearly E(k∗) is a Q-vector subspace of
the additive group of k∗ (because k∗ is a real-closed ordered field and hence closed
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under taking rational powers of positive elements) and contains the additive group
of k as a subspace. It also contains Fin(k∗) as a subspace because if a ∈ Fin(k∗),
then there exist m ∈ Z and b ∈ k∗ such that m

1+b2 = a, and then exp(a) = e(b)m,

and e(b)m ∈ k∗.

11.2. Lemma. In the above situation, suppose that dimk′(k
∗) = n (as models of

Te), where n ∈ N. Suppose further that E(k∗) is at least n dimensional over its
subspace k + Fin(k∗). Then for each a ∈ E(k∗) there is some b ∈ k such that
|a| < b.

Proof. Suppose not. Let U = k + Fin(k∗) and choose some subspace V of E(k∗)
such that U ⊆ V , V is exactly n-dimensional over U , and such that V contains an
element α with α > b for all b ∈ k. Clearly this implies that α > b for all b ∈ U .

Let 0 < v1 < · · · < vn be a basis for V over U as given by Lemma 10.5. Let j
be minimal such that vj > b for all b ∈ U .

Now consider the elements νK(exp(v1)), . . . , νK(exp(vn)) of the value group
V (K) of K. I claim that they are linearly independent over νK [k\{0}]. For if not
there exist q1, . . . , qn ∈ Q, not all zero, and c ∈ k\{0} such that c exp(

∑n
i=1 qivi) ∈

Fin(K)\µ(K) (using (v1) and (v3) of section 10). Clearly we may suppose that
c > 0, so c = exp(d) for some d ∈ k (since k |= Texp). We thus have
exp(d +

∑n
i=1 qivi) ∈ Fin(K)\µ(K) which, by standard properties of the expo-

nential function, implies that d+
∑n
i=1 qivi ∈ Fin(K), and hence d +

∑n
i=1 qivi ∈

Fin(k∗). But this contradicts the linear independence of v1, . . . , vn over U .
Now by Theorems 10.4 and 11.1 and the hypothesis that dimk′(k

∗) = n it
follows that valdimk′(k

∗) ≤ n and hence that νK(exp(v1)), . . . , νK(exp(vn)) span
νK [k∗\{0}] over νK [k\{0}] (note that exp(v1), . . . , exp(vn) ∈ k∗). In particular

νK(vj) = νK(c) +
n∑
i=1

piνK(exp(vi))

for some c ∈ k\{0} and p1, . . . , pn ∈ Q. Again, we may suppose that c = exp(d)
for some d ∈ k and hence, νK(vj) = νK(exp(d+

∑n
i=1 pivi)). By (v3) of section 10,

this implies that
vj
N < exp(d +

∑n
i=1 pivi) < Nvj for some N ∈ N\{0}. Now the

left hand inequality here implies that d +
∑n
i=1 pivi > 0 (since certainly

vj
N > 1).

Further, if pj = pj+1 = · · · = pn = 0 we would have 0 < d+
∑n
i=1 pivi < b for some

b ∈ k and hence
vj
N < exp(b), which contradicts the choice of vj since N ·exp(b) ∈ k.

Thus pi 6= 0 for some i = j, . . . , n and so, by the choice of vi, . . . , vn, there exists
q ∈ Q with q > 0 such that d +

∑n
i=1 pivi > qvj (see Lemma 10.5). But, by the

right hand inequality above, this implies that Nvj > exp(qvj). However, this is
absurd since certainly vj > r for all r ∈ N.

I now complete the proof of the main theorem. Recall from section 2 that we
must consider the following situation:

We are given n,m ∈ N with n ≥ m > 0, ~α = 〈α1, . . . , αn〉 ∈ Kn, l ∈ {1, . . . , n},
s ⊆ {1, . . . , n} with |s| = m, l ∈ s, and f1, . . . , fn ∈ Ms

n (cf. Definition 2.1) such
that f1(~α) = · · · = fn(~α) = 0 and J(f1, . . . , fn)(~α) 6= 0. Further, |αl| > b for all
b ∈ k.

We must establish 9.3, for which it is clearly sufficient to show that α1, . . . , αn
are Q-linearly dependent over the subspace k+Fin(K) of (the Q-vector space) K.
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To do this, consider the submodel, k∗ say, of K ′ generated over k′ by {αi : 1 ≤
i ≤ n} ∪ {exp(αi) : i ∈ s} using the Skolem functions of Te. Then k∗ |= Te and
k′ ⊆ k∗ ⊆ K ′. Obviously we have dimk′(k

∗) ≤ n+m. I claim that, in fact, we have
dimk′(k

∗) ≤ m. Granted this claim, it follows from 11.2 that E(k∗) has dimension
at most m− 1 over k+Fin(k∗) (because αl ∈ E(k∗)). But {αi : i ∈ s} ⊆ E(k∗) so
{αi : i ∈ s} is a Q-linearly dependent set over k + Fin(k∗). A fortiori, α1, . . . , αn
are Q-linearly dependent over k + Fin(K). To prove the claim let us suppose, for
convenience, that s = {1, . . . ,m}. Set αn+i = exp(αi) for i = 1, . . . ,m.

Now for 1 ≤ i ≤ n, pick gi ∈ M∅n[xn+1, . . . , xn+m] such that gi(x1, . . . , xn,
exp(x1), . . . , exp(xm)) ≡ fi(x1, . . . , xm), and set gn+i(x1, . . . , xn+m) = exp(xi) −
xn+i for 1 ≤ i ≤ m. Then clearly 〈α1, . . . , αn+m〉 is a solution to the system
gi(x1, . . . , xn+m) = 0 (1 ≤ i ≤ n + m). It is also easy to show, using the chain
rule, elementary matrix algebra and the fact that J(f1, . . . , fn)(α1, . . . , αn) 6= 0,

that J(g1, . . . , gn+m)(α1, . . . , αn+m) 6= 0. It follows that the row vectors 〈∂g1

∂xi
: 1 ≤

i ≤ n + m〉, . . . , 〈∂gn∂xi
: 1 ≤ i ≤ n + m〉 evaluated at 〈α1, . . . , αn+m〉 are linearly

independent over K and hence that there exists a subset u ⊆ {1, . . . , n+m} of size
n such that the matrix (

∂gi
∂xj

)
1≤i≤n
j∈u

is non-singular when evaluated at 〈α1, . . . , αn+m〉. Now notice that g1, . . . , gn are
k′-definable functions (i.e. they are Le-definable with parameters in k) so it clearly
follows from Proposition 9.2(iii) (with s = ∅) that for each j ∈ u, αj is k′-definable
from {αi : 1 ≤ i ≤ n + m, i 6∈ u}. Thus the submodel of K ′ generated over k′ by
{αi : 1 ≤ i ≤ n + m, i 6∈ u} contains α1, . . . , αn+m and is therefore equal to k∗.
Thus dimk′(k

∗) ≤ m as required.
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