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The diffusion model (Ratcliff, 1978) takes into account the reaction time distributions

of both correct and erroneous responses from binary decision tasks. This high degree

of information usage allows the estimation of different parameters mapping cognitive

components such as speed of information accumulation or decision bias. For three of

the four main parameters (drift rate, starting point, and non-decision time) trial-to-trial

variability is allowed. We investigated the influence of these variability parameters both

drawing on simulation studies and on data from an empirical test-retest study using

different optimization criteria and different trial numbers. Our results suggest that less

complex models (fixing intertrial variabilities of the drift rate and the starting point at zero)

can improve the estimation of the psychologically most interesting parameters (drift rate,

threshold separation, starting point, and non-decision time).
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The diffusion model (Ratcliff, 1978) is a popular mathematical model that recently attracted the
attention of researchers of diverse fields of psychology (see Voss et al., 2013, for a recent review;
see for example Brown and Heathcote, 2008, for another popular sequential sampling model).
The model provides information about the cognitive processes underlying binary decision tasks.
This becomes possible because the diffusion model parameters validly map specific latent cognitive
processes (e.g., speed of information accumulation, decision bias). Despite the increased popularity
of the diffusion model, there is a lack of research investigating how different model specifications
influence the quality of the parameter estimation (see Lerche et al., 2016, for an exception). In
particular, little to no information is available on the costs and benefits of model complexity.
While the basic diffusion model (Ratcliff, 1978) comprises only four parameters, Ratcliff and
Rouder (1998) and Ratcliff and Tuerlinckx (2002) suggested that it may be necessary to allow for
intertrial variability of parameter values, because psychological processes (such as expectations or
attention) will shift from trial to trial. This led to the inclusion of three so-called intertrial variability
parameters.

Since then, these additional parameters have been estimated in almost all published diffusion
model studies (e.g., Ratcliff et al., 2004b; Spaniol et al., 2008; Yap et al., 2012; Allen et al., 2014; van
Ravenzwaaij et al., 2014), even if trial numbers were small to moderate (e.g., Metin et al., 2013).
This might be problematic, because in this case the parameter estimation might become unstable.

The aim of the present article is to compare the performance of more parsimonious with
more complex models. In doing so, we do not question the theoretic rationale of the intertrial
variabilities. We are aware that in all applications there will be fluctuations in psychological
processes. Nonetheless, we argue that sometimes the available data might not suffice to get reliable
estimates for the full diffusion model. Thus, neglecting these fluctuations might lead to more
accurate and stable results.
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In the following sections, we first give a short introduction
to the diffusion model. Then, we elaborate on necessary choices
regarding estimation procedures and model specifications.
Finally, we present data from a simulation study (Study 1) and
from a test-retest study (Study 2).

PARAMETERS OF THE DIFFUSION MODEL

The diffusion model can be applied to binary decision tasks (e.g.,
lexical decision tasks [LDTs], or perceptual tasks such as color
discrimination). One central supposition is that information is
accumulated continuously and that this accumulation process
ends as soon as one of two thresholds is reached. Each
threshold is associated with one of the two responses of
the binary task (or, alternatively, with correct vs. erroneous
responses). Figure 1 shows an example of such a decision
process.

The four parameters of the basic diffusion model are the (1)
drift rate (ν), (2) threshold separation (a), (3) starting point
(z), and (4) non-decision time (t0). The drift rate ν informs
about the speed and direction of information accumulation.
Positive (negative) drift rates indicate an average slope of
information accumulation toward the upper (lower) threshold.
The absolute value of the drift rate is a measure of the
speed of information uptake with higher values indicating
faster accumulation. The drift rate can be interpreted as a
measure of subjective task difficulty: (absolute) drift rates
will be higher for easier tasks. The diffusion model assumes
that information uptake is a stochastic (i.e., noisy) process.
Thus, the process does not necessarily end at the same time

FIGURE 1 | Illustration of the diffusion model with three of its four main

parameters. The two thresholds that are associated with Response A (upper

threshold; correct response in this illustration) and Response B (lower

threshold; erroneous response) are separated by the distance a. The

accumulation of information starts at starting point z, which is here centered

between the thresholds. The mean drift rate (ν) is positive so that the upper

threshold is reached more often than the lower threshold. In two of the three

exemplary trials, the processes reach the upper threshold—resulting in one

fast and one very slow correct response—and in one trial, the process reaches

the lower threshold. The non-decisional component (t0) as well as the intertrial

variabilities (st0, sν, and szr ) are not depicted.

or at the same threshold, even if the same information is
available.

The threshold separation (a) represents the chosen response
criterion. Higher distances go along with longer information
uptake and fewer erroneous responses. While in Figure 1 the
process is assumed to start in the center between the two
thresholds, it might also start at a position closer to the upper
or lower threshold. If the starting point z (or, zr = z/a) is
located closer to one of two thresholds, less evidence needs
to be accumulated before the participant decides for this
option.

Finally, to the time taken by the decision process (illustrated
in Figure 1) adds the non-decision time t0. It includes the
duration of all processes that take place before (e.g., encoding
of information) and after (e.g., motoric response execution) the
decisional process. In most diffusion model studies one or more
of these four parameters are in the focus of the research questions.
Importantly, in several validation studies it was demonstrated
that these parameters are sensitive to specific experimental
manipulations, which supports the parameters’ validity (e.g.,
Voss et al., 2004; Wagenmakers et al., 2008a; Arnold et al.,
2015).

Ratcliff and Rouder (1998) suggest the inclusion of intertrial
variabilities for two parameters, namely for the drift rate (sν)
and the starting point (szr) (see also Laming, 1968, for an earlier
account on intertrial variability). An important advantage of
including these intertrial variability parameters in the model
is that they provide an explanation for differences in speed
of correct responses and errors. Specifically, if the drift rate
varies from trial to trial, the model predicts slower errors than
correct responses. Imagine trials with a drift rate that is higher
than the average drift rate. In this case, all responses (including
errors) are fast while the error rate is low. A drift rate that
is lower than the average, on the other hand, results in a
higher percentage of errors which are slow. Thus, the intertrial
variability of the drift causes the majority of errors to be
slow. A pattern of faster errors than correct responses can be
explained by intertrial variability of the starting point. A starting
point that is close to the lower (error) threshold increases the
number of errors and decreases the decision time for those.
If, on the other hand, the starting point is closer to the upper
threshold (associated with correct responses), errors are slow
but rare.

Later, a third variability parameter was included into the
model: the intertrial variability of the non-decision time (st0;
Ratcliff and Tuerlinckx, 2002). A high intertrial variability of
non-decision time accounts for a higher number of fast responses
(i.e., the skew of the predicted RT distribution is reduced).
Thereby, the model might also become less susceptible to the
impact of fast contaminants.With the three intertrial variabilities,
the diffusion model includes seven parameters (for a model with
one further parameter, see Voss et al., 2010).

In most diffusion model studies intertrial variabilities
are included not because they are important to answer a
psychological research question, but rather to improve model
fit and, possibly, to avoid a bias in the other parameters. In
the present article, we test whether excluding the intertrial
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parameters derogates the estimation of the four main diffusion
model parameters.

NECESSARY CHOICES IN ESTIMATION
PROCEDURES AND MODEL
SPECIFICATIONS

In the first decades after the introduction of the diffusion
model in 1978, the parameter estimation was restricted to
researchers with sound mathematical and programming skills.
Now, several user-friendly software solutions exist that enable
any researcher to apply a diffusion model to their data.
Amongst these programs are EZ (Wagenmakers et al., 2007,
2008b; Grasman et al., 2009), DMAT (Vandekerckhove and
Tuerlinckx, 2007, 2008), fast-dm (Voss and Voss, 2007, 2008;
Voss et al., 2015), and HDDM (Wiecki et al., 2013). Even if
these programs are easy to use, they require the users to make
several choices in terms of the parameter estimation procedure
(with the exception of EZ that works with closed-form equations
and offers fewer degrees of freedom in model definition).
One such choice regards the optimization criterion, another
the complexity of the model (i.e., the number of estimated
parameters).

Optimization Criterion
The diffusion model programs allow the choice between different
optimization criteria. Fast-dm-30 (Voss et al., 2015), for example,
allows the choice between Kolmogorov-Smirnov (KS), a chi-
square (CS) and a maximum likelihood (ML) based criterion.
These criteria differ in the degree of usage of information with
CS taking account of the least amount of information (RTs are
grouped into bins) and ML using data from each single trial. On
a continuum of information usage, with CS at the one end and
ML at the other, KS can be positioned somewhere in between
(see Voss et al., 2015, for a more detailed comparison of these
three criteria). Related to information usage is the performance
in parameter recovery. As a row of simulation studies by Lerche
et al. (2016) shows, ML performs best, followed by KS and
CS. The high efficiency of ML, however, comes with a cost:
in the presence of fast contaminants (i.e., data not resulting
from a diffusion process with the RTs situated at the lower tail
of the distribution), the estimates obtained with ML are often
severely biased. KS, on the other hand, turned out to be the least
influenced by these contaminants.

Model Complexity
Most diffusion model programs allow an estimation of all
seven parameters of the diffusion model. Furthermore, they also
offer the possibility of fixing one or more of the parameters
to a constant value, thereby specifying less complex models.
As already mentioned, the intertrial variabilities are usually
estimated not due to the theoretical interest in these parameters
(see Ratcliff, 2008; Starns and Ratcliff, 2012, for an exception),
but to avoid a biased estimation of the basic diffusion model
parameters.

However, several simulation studies show that these
parameters (especially, the variability of drift rate and starting
point) are estimated less accurately than the other parameters
(e.g., Vandekerckhove and Tuerlinckx, 2007; van Ravenzwaaij
and Oberauer, 2009; Lerche et al., 2016). This raises the question
of whether the inclusion of intertrial variability parameters
really improves the estimation of the other parameters. Based on
such findings, in some recent studies the intertrial variabilities
have been deliberately fixed. For example, Germar et al. (2014)
fixed all three intertrial variabilities at zero (see also Ratcliff
and Childers, 2015). Note that also in earlier work the intertrial
variabilities have sometimes been fixed at zero, because the
application of the EZ method does not allow to include these
parameters (e.g., Schmiedek et al., 2007; Wagenmakers et al.,
2007, 2008b; Grasman et al., 2009; van Ravenzwaaij et al., 2012;
Dutilh et al., 2013).

Whereas Ratcliff and Rouder (1998) and Ratcliff and
Tuerlinckx (2002), who argued for the inclusion of intertrial
variabilities, typically used very high trial numbers (at least 1000
trials per participant), more recently the model has also been
applied to data sets with significantly smaller trial numbers
(e.g., with only 100, see Metin et al., 2013). This raises the
question of whether small data sets provide enough information
to estimate the full (seven-parameter) model. Lerche et al. (2016)
systematically investigated the number of trials that allow for
a precise estimation of the diffusion model parameters. They
simulated data sets both on the basis of a seven-parameter
model (i.e., with the assumption of intertrial variabilities) and
on the basis of more restricted models. For example, in a four-
parameter model the three intertrial variabilities were fixed at
zero both for the generation of data and for the reestimation
of parameters. The comparison of these models revealed that—
as expected—for more complex models higher trial numbers
are required. Besides, as Lerche et al. (2016) show, the required
number of trials also depends on the used optimization
criterion. The authors found that the three optimization criteria
KS, ML, and CS perform equally well for very high trial
numbers. However, for small and moderate trial numbers,
accuracy of estimates from CS based parameter search was
inacceptable.

The findings by Lerche et al. (2016) raise the issue of
whether less complex models (i.e., models with fixations)
also perform better when the true (data generating) model
is more complex (i.e., includes variabilities). A study by van
Ravenzwaaij et al. (2016) speaks in favor of this hypothesis.
The authors compared the performance of EZ (Wagenmakers
et al., 2007) with the performance of a diffusion model
estimation including all three intertrial variability parameters
(using Quantile Maximum Proportion Estimation, see Heathcote
et al., 2002). Interestingly, the power of between-group difference
detection for both drift rate and threshold separation was
higher for EZ than for the more complex model even if there
were substantial intertrial variabilities in the data generating
models. Thus, it seems that simpler models can outperformmore
complex models.

We further tackled this question in two studies, a simulation
study (Study 1) and a test-retest study (Study 2). In Study 1,
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the performance of the estimation procedure is measured by
deviations and correlations between the true and the recovered
parameter values. In Study 2, the estimation performance is
assessed by means of the correlations between the parameters of
two different sessions.

STUDY 1: SIMULATION STUDY

Study 1 is a simulation study in which we reanalyzed data sets of
the seven-parameter model from Lerche et al. (2016).

Method
Lerche et al. (2016) simulated data sets with different numbers of
trials and reestimated parameters in order to deduce guidelines
on requisite trial numbers. In Study 1, we reanalyzed a part of
their data sets, namely the data sets that were created on the
basis of the seven-parameter model (i.e., the model that includes
intertrial variabilities and a bias in the starting point; see also
Table 1). Here, we only briefly present their study design with
a focus on the differences between the two studies. Please refer
to Lerche et al. (2016) for more details on their simulation
procedure.

The authors constructed data sets for two different
experimental designs: a one-drift design and a two-drift design.
Whereas the one-drift design simulates choices between two
stimuli with the same absolute drift rate value, in the two-drift
design the drift rate for one stimulus is larger than for the other
stimulus (dz = 0.35). Accordingly, in the one-drift design, only
one drift rate was estimated. In the two-drift design, two drift
rates (with opposite signs) were estimated simultaneously. One-
thousand different parameter sets with random parameter values
were used for each experimental design. For each parameter

TABLE 1 | Parameter ranges (Study 1) and means and standard deviations

(Study 2) used for generation of parameter sets.

Parameter Study 1: ranges Study 2: M (SD)

Minimum Maximum Lexical decision

task

Recognition

memory task

a 0.5 2.0 1.42 (0.32) 1.60 (0.36)

ν −4.0 4.0 − −

ν0 –2.35 (1.0)a –4.01 (1.13) –3.07 (1.14)

ν1 2.00 (1.0)a 3.10 (1.11) 2.44 (1.20)

t0 0.2 0.5 0.48 (0.04) 0.61 (0.05)

zr 0.3 0.7 0.53 (0.06) 0.55 (0.08)

sν 0.0 1.0 1.34 (0.64) 1.41 (0.83)

st0 0.0 0.2 0.15 (0.05) 0.17 (0.08)

szr 0.0 0.5 0.37 (0.25) 0.15 (0.22)

Parameter sets of Study 1/Study 2 were created on the basis of a uniform

distribution/multivariate normal distribution, respectively. Fast-dm uses a diffusion

coefficient of 1. For comparison with parameters used in studies with diffusion coefficient

0.1 multiply a, ν, zr , sν, and szr by 0.1.
aThe drift rates in the two-drift design were created on the basis of a multivariate normal

distribution with the given means and standard deviations.

set seven data sets were created, using construct-samples1, with
different trial numbers (24—48—100—200—500—1000—5000).
Then, 4% of the simulated trials were randomly selected and
substituted for by either fast or slow contaminants, resulting
in three contamination conditions (no contaminants—fast
contaminants—slow contaminants). More specifically, in
the condition with fast contaminants, the responses of the
contaminant trials were set by chance to 0 or 1 (simulating
guesses) and the simulated RTs from these trials were substituted
for by RTs situated at the lower edge of the original distribution
(range: tmin − 100ms to tmin + 100 ms, with tmin = t0
− st0/2). In the condition with slow contaminants, only
the response times were replaced, using values lying 1.5–5
interquartile ranges above the third quartile of the original RT
distribution.

For each condition (stimulus design × trial number
× contamination condition), Lerche et al. (2016) reestimated all
seven parameters and compared them with their true values (in
the remainder of this article termed “seven-parameter model”).
In the present study, we additionally use more parsimonious
models for parameter estimation. In particular, in the “five-
parameter model”, two of the intertrial variabilities (sν and szr)
were fixed at zero (i.e., we assumed that these two parameters
do not vary from trial to trial). We fixed these two intertrial
variabilities, because several studies have shown that they are
recovered poorly (e.g., van Ravenzwaaij and Oberauer, 2009).
The intertrial variability of the non-decision time, on the other
hand, is estimated better and could counteract the negative
influence of fast contaminants. Thus, this parameter was kept
in the model even if it is psychologically less interesting than
the main diffusion model parameters (a, ν, t0, zr). Furthermore,
we used a “four-parameter model” (i.e., the “basic” model)
with additional fixation of the intertrial variability of the non-
decision time (i.e., st0 = 0). Note that these fixations are always
false assumptions (“false fixations”), since the data generating
model included all three intertrial variabilities. Finally, we
estimated a “three-parameter model” in which we additionally
fixed the starting point to the center between the two thresholds
(i.e., zr = 0.5). For the parameter estimation, we used fast-
dm-30 (Voss et al., 2015) and estimated the parameters
with each of the three implemented optimization criteria
(i.e., KS, ML, and CS).

Our evaluation criteria are similar to those by Lerche et al.
(2016): We analyzed (1) correlations between the true and
the reestimated parameter values, (2) biases (i.e., deviations
between the true and the reestimated parameter values), and
(3) estimation precision (i.e., squared deviations between the
true and the reestimated parameter values). For criterion 1
and criterion 3 we additionally computed an average measure
across parameters. Specifically, for criterion 1, we calculated the
mean correlation over the four main diffusion model parameters
using Fisher’s Z-transformation2. The mean estimation precision

1Construct-samples is part of fast-dm and offers the possibility of constructing data

sets based on a diffusion process.
2In the three-parameter model, the mean was based on a, ν, and t0. In the two-

drift design, first the mean for the criterion performance of the two drift rates was

calculated.
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was calculated on the basis of the formula stated below. Most
importantly, differences between the estimated and the true
parameter values were computed and weighted against the best
possible accuracy that can be reached by each parameter. In
contrast to Lerche et al. (2016), we computed the mean based
on only the four basic diffusion model parameters (i.e., a, ν, t0,
and zr)

2,3.

mean estimation precision =
1

4
·

4
∑

k=1

[

estimatedk − truek

best possible accuracyk

]2

If the interest of the researcher lies in relationships between
the diffusion model parameters and external criteria, the
correlation criterion is of most relevance. A disadvantage of
correlation coefficients is that they can mask possible biases
in parameter estimation (e.g., if a parameter is systematically
over- or underestimated, still high correlation coefficients
result). The bias criterion tackles such systematical deviations
in parameter estimation. Finally, the estimation precision
criterion is the strictest criterion, since it takes into account
any inaccuracy in parameter estimation. This criterion is
of relevance if the diffusion model parameters are to be
used as diagnostic measures. Such a potential future use of
diffusion model parameters requires very accurate parameter
estimates.

Results
In Figure 2, results are presented for the one-drift design
for uncontaminated data. Figures 3, 4 show results for the
conditions of slow and fast contaminants, respectively. In
the left column, the 95% quantiles of the mean estimation
precision (criterion 3) are shown (thus, for most data sets,
the mean estimation precision is smaller than the values from
the figure). In the right column, mean correlation coefficients
(criterion 1) are depicted. Results are presented as a function of
number of trials, optimization criterion and model complexity4.
Additionally, Table 2 (for the one-drift design) and Table 3

(for the two-drift design) sum up which model (model with
3, 4, 5, or 7 parameters) shows the best performance in
terms of the correlations (first value), the mean bias across

3“Best possible accuracies” of the main diffusion model parameters: a − 0.054; ν

− 0.270; t0 − 0.032; zr − 0.035. These values are based on an optimal condition

of parameter estimation (5000 trials, no contaminants, ML estimation; for more

details, please refer to Lerche et al., 2016).
4Surprisingly, in some conditions, the estimation precision of KS decreased from

1000 to 5000 trials. This effect is based on a few models with very bad fit that

strongly influence the reported 95% quantiles. If medians are examined instead

of the 95% quantiles, the estimation precision—as expected—augments from 1000

to 5000 trials, or decreases only marginally. The KS-based search is more prone

to get stuck in local minima for larger data sets. Artificial local minima can arise

when calculation precision is too low. Exemplarily, we selected the ten data sets

that showed the worst performance in the condition with 5000 trials in the one-

drift model with no contaminants. We then reestimated parameters for these data

sets with the seven-parameter model with increased precision of calculation (the

fast-dm precision criterion was increased from 3 to 4). This improved parameter

estimation notably for the condition with 5000 trials. More specifically, the mean

across these ten data sets dropped to less than half, whereas there was less

improvement for the condition with 1000 trials. Accordingly, for higher trial

numbers, we recommend using higher precision settings in fast-dm.

data sets (second value) and the 95% quantiles of estimation
precision (third value) depending on the optimization criterion
(KS/ML/CS), type of contamination (none/fast/slow) and
number of trials. Note that in some conditions, several models
manifest almost identical performance and that in these tables
no information on the size of the differences between the models
is given.

One main finding is that in most conditions the seven-
parameter model does not provide the most accurate or unbiased
estimates, although this is the true model. For ML, the pattern
is quite consistent: in most cases, the five-parameter model
reveals the best results. For CS, the findings are similar: The
five-parameter model shows the best performance. In contrast
to the results from ML, the CS procedure more often gets best
results from the full seven-parameter model, even for smaller
trial numbers. Note, however, that for small trial numbers
the performance of CS is generally so poor for all models
that results cannot be reasonably interpreted. Therefore, we
generally do not recommend using CS for small trial numbers
(see also Lerche et al., 2016). For KS more often than for ML
and CS, models less complex than the five-parameter model
(i.e., the three- or four-parameter models) bring forth the best
results. Furthermore, here, more often than for ML and CS,
the seven-parameter model performs best. A comparison of the
different parameters reveals that for a and t0 the five-parameter
model and for v and zr the four-parameter model result in the
best recovery.

Discussion
Study 1 demonstrates that even if the three parameters a, v, and
t0 vary from trial to trial (and the starting point is not situated
centrally), the seven-parameter model does not always provide
the most accurate results.

For data sets with fast contaminants, Lerche et al. (2016)
(focusing on the mean precision criterion) showed that a KS
based parameter search generally recovers parameters better
than ML and CS. Interestingly, in the present analyses, ML and
CS show a good performance for data contaminated by fast
contaminants, if the five-parameter model is used (see Figure 4).
Thus, the inclusion of the intertrial variability of t0 seems to help
to counteract the negative influence of fast contaminants. For KS,
on the other hand, a similarly good performance is found for all
applied models.

To test the stability of our results, we conducted additional
analyses in which the parameter search started with other initial
values for the intertrial variabilities. The default initial values
of the intertrial variabilities incorporated in fast-dm are the
following: sν = 0.5; szr = 0.3; st0 = 0.2. In one of the additional
estimation series, we set all three intertrial variabilities to zero. In
another, we set them to the maximum values used for simulation
of data sets (see Table 1). Finally, in a third series of parameter
estimation, we set them to half of the maximum values. The
main results are very similar for all series of analyses in that the
seven-parameter model is mostly outperformed by less complex
models.

A caveat of our simulation study is that we made assumptions
about the proportion and type of contamination that might not
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FIGURE 2 | Scatter plot of 95% quantiles of mean estimation precision (left column) and mean correlation between true and reestimated parameters

(right column) for uncontaminated data sets in the one-drift design. On the basis of data sets with at least 4% of trials at each threshold. Quantiles exceeding

the mean estimation precision of 25 are not depicted.

accurately reflect the contamination of real data. We are also not
sure about the true range of intertrial variabilities in empirical
studies. Another way to analyze the performance of different
estimation procedures is provided by a test-retest study.

STUDY 2: TEST-RETEST STUDY

The main aim of Study 2 was to test whether the conclusions
from Study 1 also hold for empirical data. For this purpose,
we reanalyzed data from a test-retest study by Lerche and Voss
(2016).

Method
In Study 1 of Lerche and Voss (2016), 105 participants worked
at two sessions—separated by 1 week—on an LDT and a
Recognition Memory Task (with pictures as stimuli; RMT). As
in Study 1 we used fast-dm-30 and fitted the model using KS, ML,
and CS procedures. We also compared the four models differing
in complexity as introduced in Study 1. One response (“words” in
the LDT and “old pictures” in the RMT)was assigned to the upper
threshold, the other response (“non-words” and “new pictures”)
to the lower threshold. In each model, we estimated two drift
rates (for the different stimulus types). Both drift rates were
then combined to an overall measure of speed of information
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FIGURE 3 | Scatter plot of 95% quantiles of mean estimation precision (left column) and mean correlation between true and reestimated parameters

(right column) for data sets with slow contaminants in the one-drift design. On the basis of data sets with at least 4% of trials at each threshold. Quantiles

exceeding the mean estimation precision of 25 are not depicted.

accumulation, termed νtotal by computing the difference between
the drift for words (old pictures) and for non-words (new
pictures).

For each of the basic diffusion model parameters (a,
νtotal, t0, and zr) the Pearson correlation between the two
sessions was calculated5. To make results more accessible, as
in Study 1, the mean over these four coefficients (without zr
in the three-parameter model) was computed using Fisher’s

5Prior to the correlational analyses, we identified bivariate outliers with the

Mahalanobis distance (D2) and excluded participants with extremely high values

(p < 0.001) from the respective analysis (resulting in at most four excluded

participants).

Z-transformation (in the remainder of this article termed “mean
retest reliability”). Retest correlation coefficients were computed
not only for parameters estimated from the actual data (i.e., 200
trials from the RMT, and 400 trials from the LDT), but also
for parameters estimated from subsets of data with smaller trial
numbers (specifically, for the first 32, 48, 100, and 200 trials of
each participant).

Additionally, we wanted to test whether our main findings
from Study 1 hold for a different strategy of data simulation. The
parameter sets by Lerche et al. (2016) were created using uniform
distributions across value ranges typically observed in previous
diffusion model studies (only for the drift rates in the two-drift
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FIGURE 4 | Scatter plot of 95% quantiles of mean estimation precision (left column) and mean correlation between true and reestimated parameters

(right column) for data sets with fast contaminants in the one-drift design. On the basis of data sets with at least 4% of trials at each threshold. Quantiles

exceeding the mean estimation precision of 25 are not depicted.

design a multivariate normal distribution was used). Lerche and
Voss (2016), on the other hand, based their random parameter
sets on multivariate normal distributions defined by the means,
standard deviations and correlations of parameter estimates
from the data of the LDT and RMT (Table 1). Importantly,
as in the simulation study by Lerche et al. (2016), there were
substantial intertrial variabilities. Data sets were created using
different trial numbers (32—48—100—200—400—1000—5000)
and assuming equal parameter sets for both sessions (i.e., no state
influences). This allows an estimation of the maximum retest

reliability coefficients. Again, in contrast to Lerche and Voss
(2016), we estimated parameters using models with different
complexity.

Results
In Figure 5, the retest reliabilities are presented for the four main
diffusion model parameters for both LDT and RMT as a function
of model complexity (estimations are based on the complete
data, i.e., 400 and 200 trials for LDT and RMT, respectively).
Again, applying the full seven-parameter model does not result
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TABLE 2 | Model superiority for the one-drift design, depending on the type of contamination, the method, the parameter, and the number of trials.

Method Parameter Number of trials

24 48 100 200 500 1000 5000

None KS a 4/4/3 7/3/3 7/3/3 3/4/4 7/4/7 7/4/7 4/4/7

ν 3/7/3 4/7/3 4/7/4 4/7/4 4/7/4 4/7/4 4/7/4

t0 4/4/4 7/5/3 7/5/5 4/5/7 4/5/7 4/5/5 4/5/5

zr 7/4/4 4/4/4 4/4/4 7/4/4 7/4/7 7/4/7 4/4/4

ML a 3/3/3 3/3/3 5/5/5 5/5/5 5/7/5 5/7/5 7/7/7

ν 4/4/3 4/5/4 4/4/4 5/4/5 5/4/5 5/4/5 7/7/7

t0 3/4/4 3/5/5 5/5/5 5/5/5 5/5/5 5/5/5 5/7/7

zr 4/7/4 5/4/4 5/5/5 5/4/5 5/4/5 5/5/5 5/7/7

CS a 7/7/7 7/5/7 7/5/5 5/5/5 5/3/5 5/3/5 7/7/7

ν 3/5/5 4/5/5 5/3/5 5/4/5 5/5/5 5/7/5 7/7/7

t0 7/5/7 7/5/5 7/5/5 5/5/5 5/5/5 5/5/5 5/7/5

zr 7/7/7 7/4/7 7/4/7 5/4/5 5/4/7 5/4/5 5/4/7

Slow KS a 7/5/3 7/7/3 7/4/3 5/4/7 7/4/7 7/3/7 4/3/7

ν 3/7/3 4/4/4 4/7/4 4/4/4 7/7/7 4/7/4 4/7/4

t0 7/5/7 7/5/5 4/7/7 4/7/5 7/7/7 7/7/7 5/7/7

zr 7/4/4 5/4/7 5/4/7 7/4/7 7/4/7 7/4/7 7/4/7

ML a 5/5/5 5/5/5 5/5/5 5/5/5 5/5/5 5/5/5 5/5/5

ν 4/4/4 4/4/4 4/4/5 5/4/5 5/4/5 5/4/5 5/4/5

t0 7/7/7 5/7/7 5/7/7 5/7/7 5/7/5 5/7/5 5/7/5

zr 5/4/4 5/4/5 5/5/5 5/5/5 5/5/5 5/5/5 5/5/5

CS a 7/7/7 7/5/5 5/5/5 5/5/5 5/5/5 5/5/5 5/5/5

ν 3/5/7 4/5/5 5/4/4 4/5/4 5/5/5 5/4/5 5/4/5

t0 7/5/7 7/5/7 5/5/5 5/7/5 5/7/7 5/7/5 5/7/5

zr 7/4/7 7/4/7 5/4/7 5/5/5 5/7/5 5/5/5 5/7/5

Fast KS a 4/3/3 4/3/3 4/3/3 3/3/3 4/3/3 3/3/5 4/3/5

ν 3/7/3 4/4/4 4/7/4 4/7/4 7/7/4 4/7/4 4/7/4

t0 7/5/7 3/5/4 7/7/7 4/7/5 4/7/7 4/7/7 4/7/7

zr 4/4/4 4/4/4 4/4/4 4/4/4 4/4/4 4/4/4 4/4/4

ML a 3/5/3 5/5/5 5/5/5 5/5/5 5/5/5 5/5/5 5/5/5

ν 4/7/3 4/7/4 4/7/4 5/4/4 5/4/4 5/4/4 5/4/4

t0 4/5/4 4/5/5 5/7/5 5/7/5 5/7/5 5/7/5 5/7/5

zr 4/7/4 5/4/4 5/5/5 5/4/5 5/5/5 5/4/5 5/5/5

CS a 7/5/7 7/5/5 7/5/5 5/5/3 5/5/5 5/5/5 5/5/5

ν 3/7/5 3/4/5 5/7/4 5/7/4 5/7/5 5/7/5 5/7/7

t0 7/5/7 7/5/7 5/5/5 4/5/5 5/7/5 5/7/5 5/7/5

zr 4/4/4 4/4/4 4/4/4 4/4/4 5/5/5 5/4/5 5/7/5

The first value is based on the correlation criterion, the second on the bias criterion, and the third on the estimation precision criterion. In the five-parameter model, the intertrial variabilities

sν and szr are fixed at zero, in the four-parameter model additionally the intertrial variability st0 is fixed at zero and in the three-parameter model also the starting point zr is fixed (zr =

0.5). For conditions with 95% quantiles of parameter estimation precision (weighted against the best possible accuracy) exceeding 25, values are depicted in gray. On the basis of data

sets with at least 4% of trials at each threshold.

in the highest correlations; retest-reliability is higher for less
complex models. Whereas, for non-decision time and starting
point retest reliabilities for all models are similar, there are larger
differences for drift rate and threshold separation. Notable is the
poor estimation of drift rates from the seven-parameter model

for estimations based on ML or CS. For ML and CS, the five-
parameter shows the best performance, whereas for KS, the even
more restricted four-parameter model mostly outperforms the
other models. Figure 6 shows the influence of the number of
trials on retest reliability. Mean reliability coefficients are shown
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TABLE 3 | Model Superiority for the two-drift design, depending on the type of contamination, the method, the parameter, and the number of trials.

Method Parameter Number of trials

24 48 100 200 500 1000 5000

None KS a 4/4/4 7/4/4 7/7/7 7/4/5 7/4/7 7/5/7 7/7/7

ν 4/3/4 4/3/4 4/5/4 7/3/4 7/3/5 5/3/5 7/7/4

t0 4/4/4 7/5/4 7/5/4 5/7/7 5/7/7 7/7/7 7/7/7

zr 7/4/4 7/4/4 7/4/4 7/7/7 7/7/7 7/7/7 7/4/7

ML a 7/5/5 7/5/5 5/5/5 5/5/5 5/5/5 5/7/7 7/7/7

ν 4/4/4 4/4/4 4/5/4 5/5/5 5/5/5 5/7/5 7/7/7

t0 4/5/4 5/5/5 5/5/5 5/5/5 5/7/5 5/7/7 7/7/7

zr 4/4/4 4/7/4 5/7/4 5/5/5 5/7/5 5/5/7 7/7/7

CS a 5/5/7 7/5/5 5/5/5 5/5/5 7/5/5 5/7/7 7/7/7

ν 3/4/3 3/5/3 4/5/5 5/3/5 5/5/5 5/7/5 7/7/7

t0 7/5/5 7/5/7 5/5/5 5/5/5 5/5/5 5/7/5 7/7/7

zr 4/4/4 7/7/4 7/7/4 7/7/5 7/7/7 7/4/7 7/5/7

Slow KS a 4/4/4 7/7/4 7/7/4 7/4/7 5/7/7 5/7/7 5/4/7

ν 4/3/4 4/5/4 4/5/4 7/7/5 5/7/7 7/7/7 7/7/7

t0 4/4/4 7/5/5 4/7/7 7/7/7 7/7/7 7/7/7 7/7/7

zr 7/4/4 7/4/4 7/4/7 7/4/7 7/4/7 7/4/7 7/4/7

ML a 4/5/5 5/5/5 7/5/5 5/5/5 5/5/5 5/5/7 5/5/7

ν 3/4/3 3/5/3 5/5/5 5/7/5 5/7/5 5/7/5 5/7/7

t0 7/5/7 7/7/7 5/7/7 5/7/7 5/7/7 5/7/7 5/7/7

zr 7/7/7 5/5/7 5/7/5 5/7/7 5/5/5 5/7/5 5/7/5

CS a 7/5/4 7/5/5 5/5/5 5/5/5 5/5/5 5/5/5 5/5/4

ν 4/3/3 3/5/3 4/5/5 5/3/5 5/5/5 5/5/5 5/5/5

t0 7/5/7 7/5/7 7/5/7 5/7/7 5/7/7 7/7/7 7/7/7

zr 4/7/4 7/7/4 7/5/7 5/5/7 7/5/7 7/7/7 7/7/7

Fast KS a 4/5/4 7/5/5 7/5/5 7/5/4 4/5/4 5/4/5 5/4/4

ν 7/5/4 7/7/4 5/7/5 7/7/7 5/7/7 5/7/7 5/7/7

t0 4/4/4 7/7/7 4/7/7 4/7/7 5/5/5 5/5/5 5/5/5

zr 4/4/4 7/7/4 5/4/4 5/7/4 5/7/5 5/7/5 7/4/7

ML a 5/5/5 5/5/5 5/5/5 5/5/5 5/5/5 7/5/5 7/5/5

ν 3/5/3 4/5/4 4/5/4 4/7/5 5/7/5 5/7/7 5/7/7

t0 4/5/4 5/5/5 5/7/5 5/7/5 5/7/7 5/7/7 7/7/7

zr 4/7/4 5/4/4 7/7/4 7/4/5 5/4/5 7/4/7 7/4/7

CS a 7/5/5 7/5/5 5/5/5 5/5/5 5/5/5 5/5/3 7/4/7

ν 3/3/3 3/5/3 4/4/5 5/3/5 4/7/5 7/7/7 7/7/7

t0 7/5/5 7/7/7 5/7/5 5/7/5 5/7/7 5/7/7 7/7/7

zr 4/5/4 7/5/4 7/7/7 7/4/7 7/7/7 7/7/7 7/7/7

The first value is based on the correlation criterion, the second on the bias criterion, and the third on the estimation precision criterion. In the five-parameter model, the intertrial variabilities

sν and szr are fixed at zero, in the four-parameter model additionally the intertrial variability st0 is fixed at zero and in the three-parameter model also the starting point zr is fixed (zr =

0.5). For conditions with 95% quantiles of parameter estimation precision (weighted against the best possible accuracy) exceeding 25, values are depicted in gray. On the basis of data

sets with at least 4% of trials at each threshold.

both for the empirical data sets (depicted in black) and the
data sets that were simulated on the basis of the parameter
ranges observed in the empirical data (depicted in gray). Most
importantly, for neither the empirical nor the simulated data does
the seven-parameter model show the highest retest correlations.
It is noteworthy that for CS and ML, even in the condition with

1000 trials, the seven-parameter model be still worse than the
other models6.

6Note that we also analyzed the Associative Priming Task presented in Lerche

and Voss (2016; Study 2) using models with different complexity. We found very

similar results in that the seven-parameter model did not show the highest retest

reliabilities.
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FIGURE 5 | Retest reliability depending on model complexity and method.

Discussion
The main findings from Study 2 are in line with those from Study
1 in that the seven-parameter model does not always show the
best performance (here, in terms of the test-retest correlation

coefficients). In fact, it is mostly outperformed by less complex

models such as the five-parameter model. In the simulation
study—which was based on the multivariate distributions of

estimated parameters—a similar pattern emerged. This suggests
that themain findings do not depend on the particular simulation
strategy of Study 1.

Interestingly, using the CS or ML criterion, only at 5000
trials does the seven-parameter model catch up with the more
restricted models. Note that sometimes CS has been used for data

sets with such high trial numbers. In these studies, the use of a
seven-parameter model is justified. Our results, however, suggest
that it would be equally effective to use a more restricted model.
In addition, it would be more efficient, since the time needed for
parameter estimation is prolonged when models with intertrial
variabilities are estimated. For smaller trial numbers, on the other
hand, the use of the seven-parameter model can lead to worse
parameter estimates than the use of more restricted models.

GENERAL DISCUSSION

In recent years, an increase in the number of researchers
interested in the diffusion model and a higher variability
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FIGURE 6 | Mean retest reliability depending on model complexity, method, type of data (empirical vs. simulated), and number of trials.

regarding the addressed research topics and experimental designs
is evident. For example, while in the past the diffusion model
has almost exclusively been used for data sets with very
large trial numbers (even >1000; e.g., Ratcliff et al., 2004a;
Wagenmakers et al., 2008a; Leite and Ratcliff, 2011), more
recently, it has also often been employed for studies with small
to moderate trial numbers (e.g., Klauer et al., 2007; Boywitt and
Rummel, 2012; Karalunas et al., 2012; Karalunas and Huang-
Pollock, 2013; Metin et al., 2013; Pe et al., 2013; Arnold et al.,
2015).

Usually, complex models (i.e., with all seven distinct diffusion
model parameters and, additionally, parameters varying between
several conditions) are used. This has been done even if the
number of trials is essentially smaller (e.g., 100 trials, see
Metin et al., 2013) than in the studies that originally argued
for the inclusion of intertrial variabilities (Ratcliff and Rouder,
1998; Ratcliff and Tuerlinckx, 2002). Especially for small to
moderate trial numbers, the choices of model complexity and
of optimization criteria for parameter estimation are crucial.
Therefore, a systematic comparison of different estimation
procedures and a spreading of this knowledge is important
in order to support a reasonable use of the diffusion model.
With the studies reported here we make a step in this
direction.

With two diverse approaches, we analyzed the influence of
the model complexity on the accuracy of parameter estimation.
We were particularly interested in the influence of the intertrial
variabilities (Ratcliff and Rouder, 1998; Ratcliff and Tuerlinckx,
2002) that have proven to be more difficult to estimate than
the other diffusion model parameters (e.g., van Ravenzwaaij and
Oberauer, 2009). In Study 1, we reanalyzed data sets from a
simulation study by Lerche et al. (2016). The data sets were
created assuming the presence of intertrial variabilities and a

starting point of the diffusion process that was allowed to differ
from the center between the thresholds. In Study 2, data from
a test-retest study and a further simulation study by Lerche and
Voss (2016) were analyzed. While in Study 1 deviations and
correlations between the true and the recovered parameter values
served as the performance measures, in Study 2 we examined the
retest reliability coefficients. In both studies, the parameters were
estimated using differently complex models.

Our results for both the simulated and the empirical data
sets indicate that the most complex model (the “full” model
comprising all seven parameters) is often not the best choice.
A five-parameter model (with fixation of sν and szr to zero)
generally provides accurate estimates, especially when the
maximum likelihood (ML) or the chi-square (CS) criterion is
applied. For ML and CS, an additional fixation of st0 is not
advisable, since these two criteria are sensitive to the presence of
fast contaminants (see also Lerche et al., 2016) and st0 helps to
counteract the negative influence of this type of contamination.
Thus, keeping st0 in the model can help to reach better estimation
of the psychologically most interesting parameters (a, ν, t0, and
zr). For Kolmogorov-Smirnov (KS)—a criterion that is generally
less sensitive to fast contaminants—the even less complex four-
parameter model (i.e., the basic diffusion model with all intertrial
variabilities fixed at zero) often provides the most accurate
results.

Note that our results are in line with recent findings by van
Ravenzwaaij et al. (2016). In their study, a model with fixed
intertrial variabilities had a higher power to detect differences
between conditions than amodel including intertrial variabilities.
Specifically, results from the EZ approach (Wagenmakers et al.,
2007)—which fixes the starting point at the center between
the two thresholds and the intertrial variabilities at zero—
were compared to the application of a full diffusion model
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analysis. Even if the data were generated based on a full
diffusion model, EZ outperformed the full diffusion model both
for detection of drift rate and threshold separation differences.
For non-decision time, the efficiency of both procedures was
similar.

For future research, it would be interesting to analyze further
experimental paradigms using test-retest studies. Besides, one
could use different fixation strategies (e.g., instead of fixation at
zero, the intertrial variabilities could be fixed at values typically
observed in previous studies). To sum up, our results generally
speak in favor of the use of less complex models. Thus, if the
diffusion model is applied to get accurate estimates of cognitive
processes (mapped by a, ν, t0, or zr), a less complex model will
often supply more reliable estimates. In particular, it is helpful to
fix the intertrial variabilities of starting point and drift rate (szr
and sν) at zero.
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