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Abstract We investigate the merit of deriving an estimate of the basic reproduction
number R0 early in an outbreak of an (emerging) infection from estimates of the inci-
dence and generation interval only. We compare such estimates of R0 with estimates
incorporating additional model assumptions, and determine the circumstances under
which the different estimates are consistent. We show that one has to be careful when
using observed exponential growth rates to derive an estimate of R0, and we quantify
the discrepancies that arise.
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1 Introduction

The basic reproduction number R0 of an infectious agent is defined as the expected
number of secondary cases caused by one typical infected individual in a popula-
tion consisting of susceptibles only [3,6,7]. When an outbreak has started and the
approximation that the population is fully susceptible no longer holds, one generally
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refers to the effective reproduction number R. The value of R0 is, as a rule,
different for different infectious agents and depends among other things on the
characteristics of the population that the agent invades. Given this, it is not imme-
diate that one can adopt previously determined values or size ranges for a new out-
break, unless many of the complicated characteristics of, for example, population
composition and contact structure are comparable. For various reasons one can be
interested in the value of R0 or R early in an outbreak and during the outbreak.
Notably, under a homogeneous mixing assumption, the values give insight into the
extent of the control problem and a means of calculating how much control effort is
needed.

In recent years several new methods for estimating R0 from outbreak data have
been published, either as a general tool or for specific applications [4,9,11,17,21,24].
Some, like Wallinga and Teunis [24] do not need much data, but require knowledge
of the generation time distribution. Most of these methods, however, are data-hungry:
they either need contact information, use the whole outbreak time series (so are effec-
tively retrospective measures), or increase in accuracy as the time series becomes
longer. While several methods are promising many problems remain, and for vari-
ous reasons. For example, we do not observe infections we observe detections, i.e.
individuals (people, animals, farms, plants) exhibiting symptoms. There is then a pos-
sibly unknown incubation period distribution that convolutes the infection process
into the observed process. Detections are not necessarily in the order of infection.
Moreover, R0 is a generation-based concept [12], but generations are not observed—
a daily number of new detections is observed from possibly mixed generations. Early
in the outbreak stochastic influences play a large role. Also, heterogeneity between
individual infectivity and susceptibility and in contact pattern may cause the dis-
tribution of which R0 is the mean to be highly skewed (e.g. [16]). To make mat-
ters worse, we almost never have data from an uncontrolled situation - some control
measures, effective or not, often operate from the moment of detection of the index
case.

Despite advances, but in light of the problems encountered, many publications in
which R0 is estimated from outbreak data still depend on cumulative incidence and
generation interval only (see for example [5,8,14,18,26]). As a rule, the cumulative
incidence in outbreaks of an infectious disease is observed to initially grow approx-
imately exponentially with time (and hence the incidence grows exponentially too).
A frequently used approach is to fit an exponential function to the (cumulative) inci-
dence and to use the approximate relationship R0 ≈ erTG to estimate R0, where r is
the exponential growth rate and TG is the observed mean generation interval of the
epidemic. For rTG small the further approximation R0 ≈ 1+rTG is sometimes used.
Many of the problems mentioned above apply to these estimates. For example, the
‘real’ value of r is not observed, not only because of control measures in operation
but also due to the stochasticity in the early phase. In addition, the definition of the
generation interval is not always consistently used and the method presupposes that
the population is homogeneously mixing. Still, the method is easy and intuitive and
one can wonder in which circumstances it would be a ‘good’ approximation, and how
large discrepancies can be when these circumstances are not met. In this paper we
investigate these questions.
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2 Model-consistent estimation of R0

We now derive estimates of R0 based on specific models and compare these with
the previously mentioned approximations, which we denote R+

0 = erTG and R−
0 =

1 + rTG . We need to emphasise that R0 is independent of timescale, whereas TG

has dimension time and r has dimension time−1. We also need to emphasise that we
do not know r or TG , we assume that they have been estimated from data in some
way, for example by estimating the doubling time of the incidence, D, and writing
r = log(2)/D. We do not write r̂ or T̂G for these estimates, as this would result in far
too many hats in one paper.

Assume for simplicity that the population is mixing homogeneously. The incidence
of an emerging infection may be calculated from

i(t) = δ(t)+ S(t)

N

∞∫

0

A(τ )i(t − τ) dτ (1)

where δ(t), a unit spike, is the incidence of infection at time zero, the kernel A(τ ) is
the expected infectivity of an infected as a function of τ , the time since exposure to
infection [1,6,19]. The number in the population susceptible at time t is

S(t) = N −
t∫

0

i(u) du

For an emerging infection we assume the entire population to be susceptible at time
zero. If this is not the case, we take N to be the size of the susceptible population prior
to infection. As a first step towards developing a model, we specify the general form
of the kernel A(τ ). We write A(τ ) = R0 f (τ ), where R0 is the basic reproduction
number that we wish to estimate, and f (τ ) is the infectivity kernel, which is also the
probability distribution of the generation interval.

For an emerging infection we have little information about f . We may have
observations of the latent period (the time from exposure to infection to becoming
infectious, TE ); the incubation period (the time from exposure to infection to the onset
of symptoms) which we may in some cases assume to equal TE ; or the infectious
period TI . Given these we may wish to impose a particular form on the kernel, and
use our limited knowledge to estimate parameter values for the distribution. These
estimates may be revised as more information becomes available.

One quantity of interest is the mean generation interval of the epidemic, which is
taken here to be the mean time from an individual’s exposure to infection to exposing
others to infection (see [10], for an insightful exposition). We refer not to the time to
the first occurrence of a secondary infection, but to the average time to all secondary
infections. Alternatively, and equivalently, it can be defined as the expected duration
of the primary infection at the time that a secondary infection occurs (see [22]). The
mean generation interval may be determined from the formula
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TG =
∞∫

0

t f (t) dt (2)

Given a probability distribution for the generation interval, f (t), and an estimated
initial rate of exponential increase for the epidemic, r , we approximate the initial
stages of the epidemic by i(t) = ert with S(t) � N . Equation (1) then leads to a
model-consistent estimate of the basic reproduction number via the formula

R0

∞∫

0

e−r t f (t) dt = 1 (3)

(see [6]). If f (t) were a delta function, then Eqs. (2, 3) would lead to the estimate
R0 = R+

0 . For the SIR model, where f (t) = γ e−γ t , Eqs. (2, 3) lead to the estimate
R0 = R−

0 . We now compute R0 for three distribution functions which may be used as
kernels: those with a fixed, exponentially or trapezoidally distributed infectious period
(see Fig. 1). We refer to these as Rfix

0 , Rexp
0 and Rtrap

0 , respectively. We also compute
R0 for the model with latent and infectious periods that each have gamma distributions,
referred to as R(m,n)

0 . We have Rexp
0 = R(1,1)

0 and Rfix
0 = limm,n→∞ R(m,n)

0 .

2.1 Fixed infectious period

Given fixed latent and infectious periods, TE and TI respectively, and assuming f
constant when non-zero, we have f (τ ) = 1/TI for TE < τ < TE + TI and f (τ ) = 0
otherwise. For this distribution TG = TE + TI /2 and

R0 = Rfix
0 = r (TG − TE )

sinh r (TG − TE )
erTG (4)

R+
0 is useful as an estimator for Rfix

0 when the latent period may be regarded as
fixed and the infectious period is short relative to the timescale 1/r (rTI is small).
As sinh x > x whenever x > 0, and limx→0

sinh x
x = 1 we have Rfix

0 � R+
0 , and

limTE →TG Rfix
0 = R+

0 . Wallinga and Lipsitch [23] showed that R+
0 is an upper bound

on estimates of R0 for any distribution f (t).

2.2 Trapezoidal infection kernel

Consider the kernel

f (τ ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
TI

τ − τa
τb − τa

: τ ∈ (τa, τb)
1
TI

: τ ∈ (τb, τc)

1
TI

τd − τ
τd − τc

: τ ∈ (τc, τd)

0 : otherwise

(5)
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Model-consistent estimation of the basic reproduction number 807

Fig. 1 A selection of kernels, f (τ ) that may be used to model emerging infections: kernels due to fixed
and exponentially distributed latent and infectious periods are shown as dashed and dashed/dotted lines,
respectively; and the trapezium kernel is shown as a solid line. All kernels are scaled to have integral one. a
Kernels suitable for modelling influenza, with latent period TE = 1.6 days and infectious period TI = 4.0
days. b Kernels suitable for modelling SARS, with latent period TE = 5.5 days and infectious period
TI = 7.0 days

This is a suitable approximation to an infectivity function where nobody is infectious
before τa time units or after τd time units post-exposure, maximum infectivity occurs
between τb and τc time units after exposure, and contact rates are constant. The dis-
tribution is consistent with a mean latent period of TE = τa+τb

2 , a mean infectious
period of TI = (τd + τc − τb − τa) /2 and a mean generation interval of

TG = TE + TI

2
+ (τd − τc)

2 − (τb − τa)
2

12 (τd + τc − τb − τa)
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Hence, if the trapezium is symmetric TG = TE + TI
2 , which is the same relationship as

that for the fixed infectious period. The basic reproduction number solves Rtrap
0 f̄ (r) =

1, where f̄ (s) is the Laplace transform of f (t) (see Appendix 1)

2.3 SEIR differential equation models

In an extended SEIR differential equation model the population of size N is made up
of S susceptibles, E that have been exposed to infection but are not yet infectious,
I infectious and R that have been infected and recovered. If the epidemic processes
have a much faster timescale than the demographic processes, we obtain the equations

d E1

dt
= β

S

N

n∑
j=1

I j − mνE1

for i = 2, . . . ,m
d Ei

dt
= mνEi−1 − mνEi

d I1

dt
= mνEm − nγ I1

for j = 2, . . . , n
d I j

dt
= nγ I j−1 − nγ I j

d R

dt
= nγ In (6)

The exposed and infectious classes have been subdivided E = ∑m
i=1 Ei and I =∑n

j=1 I j , respectively. The times spent in the exposed and infectious classes are gamma

distributed with means TE = 1
ν

and TI = 1
γ

, respectively, and R0 = β
γ

. The mean gen-

eration interval is TG = TE + n+1
2n TI (see Appendix 2). If the initial rate of exponential

increase of the epidemic is r , then

R(m,n)
0 =

2nr
n+1 (TG − TE )

(
1 + r

m TE
)m

1 −
(

1 + 2r
n+1 (TG − TE )

)−n

This result is derived in Appendix 2, where it is also shown that given values of r , TE

and TG , R(m,n)
0 is an increasing function of both m and n.

2.4 Exponentially distributed infectious period

The well-known SEIR differential equation model is the special case of Eqs. (6) with
m = n = 1. For this model the times spent in the exposed and infectious classes
are exponentially distributed with means TE = 1

ν
and TI = 1

γ
respectively, and the

appropriate kernel function in Eqs. (2, and 3) is

f (τ ) = γ ν

γ − ν

(
e−ντ − e−γ τ )
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(see [6]). The mean generation interval is TG = TE + TI , and given r we have

Rexp
0 = R(1,1)

0 = 1 + r

(
1

ν
+ 1

γ

)
+ r2

νγ
= 1 + rTG + r2TE (TG − TE ) (7)

The approximation R−
0 = 1 + rTG � Rexp

0 is appropriate for the SIR model, for
which ν → ∞, TE → 0 and TG → TI = 1

γ
. Hence R−

0 performs best as an estimate
when either the latent period TE or the infectious period TI is small compared to TG ,
and performs worst when they are equal.

3 Method and results

We assumed that we had estimated values of the initial rate of exponential increase of
infection incidence, r , the mean latent period, TE , and the mean generation interval,
TG . We then used Eqs. (4, and 7) to calculate model-based estimates of the basic repro-
duction number using the assumptions of a fixed or exponentially distributed infectious
period, leading to Rfix

0 and Rexp
0 , respectively. We did this for values of the ratio of the

latent period to the generation interval, TE/TG , in the range zero to 0.99. The values
of Rfix

0 and Rexp
0 are plotted as functions of TE/TG for rTG = 0.5, 1.0, 1.5, 2.0 in

Fig. 2, and compared with the values of the estimators R−
0 = 1+rTG and R+

0 = erTG

in those cases. When rTG = 0.5, 1.0, 1.5 or 2.0 we have R−
0 = 1.5, 2.0, 2.5 or 3.0

and R+
0 = 1.65, 2.72, 4.48 or 7.39, respectively.

The results shown in Fig. 2 illustrate that for fixed values of r , TE and TG , the values
of R−

0 and R+
0 are lower and upper bounds, respectively for both Rexp

0 and Rfix
0 . In

Sects. (2.1 and 2.4) it was shown that Rfix
0 � R+

0 and R−
0 � Rexp

0 , respectively. It is

proved in Appendix 2 that R(m,n)
0 is an increasing function of both m and n. Putting

these results together we obtain the inequality

R−
0 � Rexp

0 � R(m,n)
0 < Rfix

0 � R+
0 (8)

where m and n are any finite positive integers.
Table 1 was constructed to illustrate the results that may be obtained for some

specific infections. Parameters were chosen from the literature to be representative of
influenza [20], severe acute respiratory syndrome (SARS) [19], smallpox [1] and foot
and mouth disease (FMD) [11]. For each infection a trapezium distribution was con-
structed for f (τ ), and used together with an estimate of R0 to calculate an estimate
of the initial exponential increase, r . The function f (τ ) was also used to calculate
values for the mean generation interval TG , the mean latent period TE and the mean
infectious period TI .

If these values of r , TG and TE had been estimated from data, and then R0 had been
estimated by R−

0 , R+
0 , Rfix

0 , Rexp
0 or Rtrap

0 , the estimates presented in Table 1 would

have resulted. By construction, the estimated value of Rtrap
0 then corresponds to the

assumed value of R0. Hence Table 1 must be regarded as a comparison of estimates
that may be made; the relative values are important rather than the absolute values.
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Fig. 2 Estimates of the basic reproduction number R0 as a function of the ratio of the latent period to the
mean generation interval, TE/TG . The solid plots are a,b fixed infectious period: Rfix

0 with rTG = 0.5
(lower), rTG = 1.5 (upper); and rTG = 1.0 (lower), rTG = 2.0 (upper) respectively, and c,d exponentially
distributed infectious period: Rexp

0 with rTG = 0.5 (lower), rTG = 1.5 (upper); and rTG = 1.0 (lower),
rTG = 2.0 (upper), respectively. The horizontal dotted and dashed lines indicate the corresponding values
of R−

0 = 1 + rTG and R+
0 = erTG , respectively

Table 1 Estimates of R0 that could be made for emerging infections

Infection r TG TE TI R−
0 R+

0 Rfix
0 Rexp

0 Rtrap
0

Influenza 0.198 3.65 1.60 4.10 1.72 2.06 2.00 1.85 2.00

SARS 0.134 9.00 5.50 7.00 2.21 3.34 3.22 2.55 3.20

Smallpox 0.0576 20.5 15.0 11.0 2.18 3.26 3.20 2.45 3.20

FMD 0.165 6.00 2.00 8.00 1.99 2.70 2.51 2.21 2.50

The initial rate of exponential increase (r day−1), mean generation interval (TG days), mean latent period
(TE days) and mean infectious period (TI days) that could be observed for epidemics of influenza, SARS,
smallpox; and for foot and mouth disease (FMD) spreading between farms; together with the corresponding
estimates of the basic reproduction number made using the approximations R−

0 = 1+rTG and R+
0 = erTG ,

or assuming a rectangular, exponential or trapeziodal distribution for the infectious period, leading to Rfix
0 ,

Rexp
0 and Rtrap

0 , respectively
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4 Conclusions and discussion

We have derived and discussed model-consistent methods for estimating the basic
reproduction number (R0) for an infectious disease from the initial rate of expo-
nential growth of incidence of infection (r) at the beginning of an epidemic. These
methods can only be applied to incidence data from the period where it is reasonable
to assume that the whole population may be regarded as susceptible (S(t) � N ).

Among the first pieces of information obtained for an emerging infection are obser-
vations of the latent and infectious periods. These may be used as estimates to construct
a rectangular kernel for an integral equation model, or to derive rate parameters for
a differential equation model. Examples of infectivity kernels with the same latent
and infectious periods are shown in Fig. 1. These kernels appear to be quite differ-
ent, with the exponential kernel allowing some transmission of infection from time
zero, and exhibiting a long infection tail. These features can lead to disparities in the
results from modelling exercises. The transmission at early times mitigates against the
success of control methods based on contact tracing, or any other method with inher-
ent delays. The tail can lead to transmission appearing to continue in the model long
after control measures should have eliminated the infection. The trapezoidal kernels
also shown in Fig. 1 allow for some variability in the fixed and latent periods to be
incorporated in the model. For example, the kernel shown as suitable for modelling
influenza (Fig. 1a) is consistent with a latent period uniformly distributed between 1.2
and 2.0 days, and an infectious period of 4.0 days. The kernel shown as suitable for
modelling SARS (Fig. 1b) is consistent with nobody being infectious before 4 days,
everybody infectious by 7 days, everybody still infectious at 11 days and nobody infec-
tious after 14 days; with the proportion infectious at intermediate times determined by
linear interpolation. As well as allowing for some variability, the trapezoidal kernel
has the advantage over the rectangular one that it is a continuous function, and this
avoids problems with numerical schemes that do not allow discontinuities. Of course,
if further information is available, then other distributions may be more appropriate.

Figure 2 compares estimates of the basic reproduction number based on fixed
(Fig. 2a, b) and exponentially distributed (Fig. 2c, d) infectious periods, Rfix

0 and Rexp
0 ,

respectively, with the estimates based only on mean generation interval, R−
0 = 1+rTG

and R+
0 = erTG . The estimate R−

0 is inaccurate whenever rTG is not small. Using the
fixed infectious period model, R+

0 approximates Rfix
0 when TE/TG is near to one, that

is when the infection has a long latent period and a short infectious period. The esti-
mate R−

0 is an approximation to Rexp
0 if either the latent period or infectious period

are very short, but R+
0 is never a good estimator for Rexp

0 and it’s use is therefore
inconsistent with an SEIR model.

The estimates of R0 derived in this paper have the ordering R−
0 � Rexp

0 �
R(m,n)

0 < Rfix
0 � R+

0 . This inequality establishes that, given the same values of
r , TE and TI , R−

0 provides a closer estimate for Rexp
0 than for Rfix

0 , and R+
0 provides

a closer estimate for Rfix
0 than for Rexp

0 . Even though results derived from the gamma

distributed kernel, R(m,n)
0 , are not displayed in Fig. 2, we have established that Rfix

0 and

Rexp
0 are upper and lower bounds respectively for R(m,n)

0 . Note that for the model with
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a fixed infectious period, TG = TE + TI /2, but for the model with an exponentially
distributed infectious period, TG = TE + TI . The inequality, and the results presented
in Fig. 2 are derived on the assumption that TE and TG are the same in both models;
TI is defined consistently with the model, and hence differs between models. This is
in contrast to the distributions presented in Fig. 1, which have the same latent and
infectious periods, TE and TI , and hence different mean generation intervals TG .

Table 1 shows results that could be obtained when estimating R0 for emerging infec-
tions, with parameters suitable for these infections. The parameter values indicated for
each infection should be regarded as sensible values rather than exact estimates, and
the results are presented to indicate the relevance of Fig. 2. For all four examples there
is close agreement between Rfix

0 and Rtrap
0 . This is not surprising for the influenza

example where the trapezium kernel has steep sides (Fig. 1a), but also applies for
examples such as SARS (Fig. 1b). The results in Table 1 confirm that if rTG is small,
hence R−

0 is close to one, then R−
0 may be used as an estimator for Rexp

0 when an
exponential model is appropriate. If a model with a fixed infectious period is more
appropriate then R+

0 is a better estimate for Rfix
0 , especially when TE/TG is closer

to one: compare for example the relative values of R+
0 and Rfix

0 for smallpox where
TE/TG = 0.73 and FMD where TE/TG = 0.33.

Recently other estimation methods have been suggested as improvements on R−
0

and R+
0 . Wearing et al. [25] compared estimates based on Rexp

0 with results obtained
using gamma-distributed infection kernels. Lloyd [15] found similar results for models
of within-host virus dynamics. Heffernan and Wahl [13] also examined the problem,
and provided correction factors for estimates of R0 based on both the mean and vari-
ance of observed transition times. Wallinga and Lipsitch [23] used a similar approach to
ours, and derived estimates of R0 for a selection of infectivity kernels f (t), including
those derived from a gamma-distributed infectious period but only with TE = 0. They
also considered the case where f (t) is a Normal distribution; if employed though
this distribution should be truncated to avoid the possibility of negative generation
intervals.

Even though we selected a number of particular kernels for our study, and these
cover a reasonable range of first choices, our method is applicable to all biologically
sensible kernels. When estimating kernels from data, one should be careful. Estimates
made early in an epidemic are likely to be based on household studies, and may
be truncated due to local saturation of contacts. In addition, it is unclear how valid
such estimates are when extrapolated to the wider community with multiple levels of
mixing.

We must be careful in attempting to draw conclusions from our analysis. As a new
infection emerges the appropriate model is speculative, and in any situation there is
no such thing as the correct model. For example, in the context of pandemic influenza,
Ferguson et al. [8] had TG = 2.6 and TE = 1.48 days, and estimated R0 ≈ R−

0 ,
obtaining values in the range 1 − 2. Their model was more complex than those dis-
cussed here, but we have seen that for low values of rTG , R−

0 provides a reasonable
estimate. Mills et al. [18] used an SEIR model, and estimated R from Rexp

0 which is
consistent with their model. Our approach is to advocate using an estimate of R0 that
is consistent with the model used to evaluate control strategies.
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Appendices

Appendix 1: The derivation of Rtrap
0

To find the Laplace transform of the trapezoidal distribution (5), define the functions

φ(τa, τb, s) =
τb∫

τa

e−sτ dτ = e−sτa − e−sτb

s

and

ψ(τa, τb, s) =
τb∫

τa

τe−sτ dτ = e−sτa − e−sτb

s2 + τae−sτa − τbe−rτb

s

Then, given an estimated value of r , the basic reproduction number solves

Rtrap
0

TI

(
ψ(τa, τb, r)− τaφ(τa, τb, r)

τb − τa
+ φ(τb, τc, r)

+τdφ(τc, τd , r)− ψ(τc, τd , r)

τd − τc

)
= 1

Appendix 2: The proof of inequality (8)

For the extended SEIR model (6)the probability that an individual infected at time zero
is in one of the infected classes (Ei or I j ) at time t is found by solving the differential
equations with β = 0, E1(0) = 1, Ei (0) = 0 for i = 2, . . . ,m and I j (0) = 0 for
j = 1, . . . , n. In the Laplace transform domain the solutions are

Ēi (s) = (mν)i−1

(s + mν)i
Ī j (s) = (mν)m

(s + mν)m
(nγ ) j−1

(s + nγ ) j

The probability that an individual infected at time zero has become infectious or has
ceased to be infectious by time t is h(t) or g(t) respectively, where

h̄(s) = (mν)m

s (s + mν)m
ḡ(s) = (mν)m (nγ )n

s (s + mν)m (s + nγ )n
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Back-transforming,

h(t) = Fm,ν(t) g(t) =
t∫

0

d Fm,ν(x)

dx
Fn,γ (t − x) dx

where

Fm,ν(t) = P(m,mνt) = 1

(m − 1)!
mνt∫

0

xm−1e−x dx

is a regularized incomplete gamma function (see 6.5.1, [2]). The infectivity kernel has
Laplace transform

f̄ (s) = γ
(
h̄(s)− ḡ(s)

)

= γ (mν)m

s (s + mν)m

(
1 − (nγ )n

(s + nγ )n

)

The generation interval is given by the formula

TG =
∞∫

0

t f (t) dt = − lim
s→0

d f̄

ds
= 1

ν
+ n + 1

2nγ

If the initial rate of exponential increase of the epidemic is r , then R(m,n)
0 f̄ (r) = 1,

hence

R(m,n)
0 =

r
γ

(
1 + r

mν

)m

1 −
(

1 + r
nγ

)−n

This result may be found in Wearing et al. [25]. The function
(
1 + x

m

)m is positive
for positive x , and increases monotonically from 1 + x to ex as m increases from 1
to ∞. Hence, given values of r , ν and γ , R(m,n)

0 is an increasing function of m, but a
decreasing function of n. However, substituting 1

ν
= TE and 1

γ
= 2n

n+1 (TG − TE ) we
obtain

R(m,n)
0 =

2nr
n+1 (TG − TE )

(
1 + r

m TE
)m

1 −
(

1 + 2r
n+1 (TG − TE )

)−n

The function

fn(x) =
nx

n+1

1 −
(

1 + x
n+1

)−n
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is positive for positive x , and increases monotonically from 1+ x
2 to xex

ex −1 as n increases
from 1 to∞. The proof is a straightforward but tedious manipulation of expressions: we
multiply the numerator and denominator of the expression for fn(x) by (1+x/(n+1))n

and then show that fn+1(x)
fn(x)

> 1 for n ≥ 1 and x > 0. Hence, given values of r , TE

and TG , R(m,n)
0 is an increasing function of both m and n. In the limit as m and n

tend to infinity, R(m,n)
0 tends to Rfix

0 . Hence for all positive finite integers m and n,

Rexp
0 � R(m,n)

0 < Rfix
0 , completing the proof of inequality (8).
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