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Abstract 

In this research a new benchmark system is proposed for wind energy transmission 

systems. New model development, validation, and calibration methods for power transmission 

systems are proposed and implemented as well. First, a model reduction criteria is chosen based 

on electrical interconnection and geographical information. Model development is then done 

using reduction techniques on an operation model provided by a transmission operator based on 

the chosen criteria. Then model validation is performed using actual PMU synchrophasor 

measurements provided by a utility company. The model development and validation process 

ensures the accuracy of the developed model and makes for a realistic benchmark system for 

wind generation transmission systems. The new proposed model development and validation 

methods are generic and can be used to model any power transmission system for various 

simulation needs. Nevertheless, the accuracy of the benchmark model is constrained by the 

accuracy of the initial operational model. In this research, a new parameter estimation technique 

for determining the bus admittance matrix (Ybus) is also proposed to further calibrate power 

system models. Ybus estimation is done using recorded PMU synchrophasor measurements. The 

approach proposed in this research is based on recognizing that bus injection currents Ibus can be 

viewed as signals produced by a random process. In this manner, the corresponding bus voltages 

Vbus are also stochastic signals that are related through a cross-covariance matrix to the vector 

Ibus. Using estimation techniques developed for statistical signal processing, the cross-covariance 

matrix is shown to be Zbus. 
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I. Introduction 

In this chapter an introduction to the dissertation is given. It mainly discusses the need 

and motivation for the research performed. First it discusses the need for a benchmark model for 

wind energy systems. Then it discusses the motivation for new model development and 

validation methods. Then it introduces Synchrophasors and their potential impact on power 

systems. Finally an introduction about the Ybus parameter extraction method is presented.  

A. The need for a wind energy benchmark system 

The US department of energy estimates that wind energy could constitute 20% of total 

US electricity consumption by 2030 [1]. As wind turbine installations increase to achieve this 

vision, new technologies will need to be adopted in order to accommodate the increasing 

amounts of wind energy in the power system. This integration of large amounts of wind energy 

into the existing transmission grid should be done while maintaining reliability, power quality, 

and economical operation. Presently there is 30 GW of wind generation capacity installed in the 

Great Plains region of the United States [2]. Due to being located in low population areas, most 

of this wind generated electricity is transmitted eastward to major load centers. The main 

concern for system planners is that wind energy capacity might be brought online faster than the 

supporting infrastructure can be upgraded in order to maintain system reliability in accordance 

with relevant NERC requirements such as TPL-001-4 [3]. From an operational point of view, it 

would be beneficial for wind generation to not have transmission constraints such that it could be 

transmitted to distant major load centers. These limitations include transmission capacity and 

transient stability concerns. Solutions to such limitations might require upgrading the existing 

transmission configuration. This upgrade includes grid expansion and fully utilizing existing 
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lines and wind farms. Under consideration would be siting of new lines and adoption of new 

flexible ac transmission technologies (FACTS). Alternatively, HVDC transmission systems have 

been proposed as a solution to avoid congestion in adjacent EHV ac transmission networks. As 

an example, HVDC projects proposed by Clean Line Energy Partners are presently under review 

[4] that would provide a path of connecting wind generation in the central states directly to major 

load centers in the eastern US. 

A large portion of existing and proposed wind generation sites are located in sparsely 

populated areas with low population densities. In particular, in the central US, this region 

extends from northern Texas and eastern New Mexico northward through Minnesota. The 

transmission system includes a limited amount of 345 kV lines and was not historically intended 

to carry large amounts of electrical power. Until recently that has not been a concern due to this 

region having relatively few major load centers and the wind farm installations did not exceed 

the capabilities of the transmission system when accounting for 138/230 kV lines in addition to 

the 345 kV infrastructure. As the capacity for wind power increases, so does the concern over the 

limitation of the regional transmission system. In general, this presents a need to perform 

stability analysis of weakly-connected remotely located wind sources under a variety of 

contingencies. For example, power systems are prone to low frequency oscillation when weak 

ties or heavily loaded transmission lines are compensated with series capacitors [5]. 

It would be beneficial to have a wind energy benchmark system that captures such 

characteristics. The use of a realistic wind energy benchmark system increases the credibility of 

studies and technologies that are meant to accelerate and enable the increase of wind energy 

utilization. Industry professionals and policy makers can be more informed that the analytical 
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results are relevant and realistic when an appropriate benchmark system is used. A proposed 

wind power transmission benchmark system has been developed as part of this research. 

The proposed benchmark system is based on the transmission and generation grid in 

western Oklahoma. This region presently includes about 2955 MW of wind generation capacity. 

The proposed benchmark includes a reduced model of the surrounding region that includes 

southern Kansas, western Arkansas and dc-ties to ERCOT passing through southern Oklahoma. 

The proposed benchmark model is based on an operation model provided by a transmission 

operator. The model was provided in a PSS/E .raw file format. It was translated to the 

PowerWorldTM Simulator [6], then reduced. The approximate geographical layout of the reduced 

benchmark system is shown in Fig. 16. The model includes the major generating stations in the 

region and all 138 kV and above transmission lines. Parameters for transient stability analysis 

were also adapted from the MDWG PSS/E configuration. 

B. The need for new model development and validation methods 

Power system models are the foundation of power system simulations. Having an 

accurate power system model is very important as power system studies can only be reliable if 

accurate models are used. One of the uses for power system simulations is to perform planning 

studies. One of the needs for such study is to set power flow limits. Inaccurate models will lead 

to unrealistic results and therefore setting inappropriate limits. A good example of this scenario 

is the major disturbance that occurred in the western interconnection on July 2nd, 1996. When 

engineers tried to simulate the event using existing models at the time, they failed to reproduce 

the results. The models used were the same models used to set the operating power transfer 

limits. This led to a pessimistically conservative view of the power system model and simulation 
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results. The consequence of that was the derating of power transfer limits. Some transmission 

lines power flow limits were derated down to 65% of the original power flow limit [7]. The use 

of inaccurate models can lead to financially inefficient operation and/or insecure stability 

operation. 

Even though more frequent model validation would be beneficial, it is not currently 

practiced. The reasons for that is the lack of methods and tools to perform rapid model validation 

[8]. NERC recommends utilities to validate operation and planning models using synchrophasor 

data. To do this effectively power flow model development and validation needs to be improved, 

standardized and incorporate the use of synchrophasor data. The goal of the work done in this 

research is standardized model development and validation methods. 

C. Synchrophasors 

A phasor measurement unit (PMU) is “a device that produces synchronized phasor, 

frequency, and rate of change of frequency (ROCOF) estimates from analog voltage and/or 

current signals and a time synchronizing signal” [9]. A synchrophasor is a phasor calculated 

from data samples using a GPS time signal as the reference for the measurement. By employing 

synchrophasors, the calculation of phasors is done with respect to absolute time provided by a 

GPS time signal. Synchrophasors allow for system wide synchronized measurements, which has 

not been historically possible. Each set of data produced by the PMU containing a set of 

synchrophasor, frequency, and ROCOF is called a frame. As per IEEE standard C37.118.1 a 

PMU reports Frames at sub-multiples of the nominal power-line frequency. That is 60, 30, 20, 

15, 12, and 10 frames per second (FPS). 
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Real-time voltage and current measurements are taken using current transformers (CTs) 

and potential transformers (PTs). Those measurements are then sent to a PMU for processing and 

synchrophasors are produced. The reference for synchrophasors is an internally generated 60.000 

Hz cosine wave in each PMU. This internal reference is generated with its peak precisely aligned 

to the second based on the GPS time signal [10]. This is done with a precision on the order of the 

microsecond. 

PMUs come as standalone units or relays with built-n PMU functionality. PMU 

functionality has been provided by manufacturers as a standard feature since 2002 [10].  

Therefore in a given substation, it is more likely than not that enough PMUs are already installed 

for protection purposes. Due to the mass availability of PMU technologies, accuracy and high 

resolution of synchrophasor measurements, they are ideal for power system model validation. 

Actual synchrophasors obtained from a utility company were used to validate the proposed 

benchmark model. 

Electric power systems are continuously subjected to random disturbances. For example, 

during fault conditions such as a shorted line-to-ground fault, these disturbances can be very 

large. However, there are small fluctuations in load currents during normal operation due to the 

natural variability of operating electrical equipment throughout a large-scale electric power 

system. The net effect of all of these small load disturbances propagate throughout a 

transmission network and cause corresponding small variations in voltages in accordance with 

standard nodal analysis from electric circuit theory. If the load fluctuations are sufficiently large, 

then there will be automatic compensation to regulate voltages within acceptable ranges. 

However, the action of compensators such a tap-changing transformers and voltage regulators 

are relatively slow acting compared to the electrical behavior relating instantaneous bus voltages 
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and currents. The recent development and deployment of synchrophasors has enabled the 

measurement of small electrical variations throughout a large electric power system. This is in 

contrast to what was previously available with supervisory control and data acquisition 

technology (SCADA). 

There are many differences between PMU technology and SCADA technology. SCADA 

systems have low resolution of 1 sample every 2-4 seconds. It only measures the magnitude of 

the quantity being measured, and measurements are not synchronized. The focus of SCADA 

systems is local monitoring and control. In contrast, synchrophasors have high resolution of 10-

60 samples per second. It measures both the magnitude and the phase of the measured quantity. 

And synchrophasor measurements as mentioned above are GPS time synchronized. The focus of 

synchrophasor measurements are for wide area monitoring and control. 

Synchrophasor technology has allowed for advancements in power systems operation, 

control, and modeling. More specifically, synchrophasors are used for modeling, generator 

performance monitoring, disturbance analysis, situational awareness for dispatchers and 

reliability coordinators, and real-time wide area controls design [11]. 

D. Model parameter extraction 

This research proposes a new parameter estimation technique for determining the bus 

admittance matrix Ybus of power transmission systems from recorded synchrophasor 

measurements. The Ybus (and the corresponding impedance matrix Zbus) is used in power-flow 

studies for system planning and expansion studies. The impedance matrix Zbus is also used for 

other purposes such as determining settings in protective relays. The approach described in this 

research is based on recognizing that bus injection currents Ibus can be viewed as signals 
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produced by a random process. In this manner, the corresponding bus voltages Vbus are also 

stochastic signals that are related through a cross-covariance matrix to the vector Ibus. Using 

estimation techniques developed for statistical signal processing, the cross-covariance matrix is 

shown to be Zbus. The increasing use of synchrophasors has enabled large-scale data collection of 

time synchronized bus injection currents and voltages. The new Zbus estimation method is 

applied to the IEEE 68 bus benchmark system to demonstrate the validity of the approach. The 

accuracy and convergence rate of the method is evaluated under conditions corresponding to 

wide-area synchrophasor data collection. The results indicate that the method is broadly 

applicable in determining Ybus and Zbus for electric power transmission systems equipped with 

synchrophasors data collection technology. 

Models of transmission networks are needed for a variety of purposes in designing and 

operating electric power systems. For steady-state analysis, power or load-flow analysis is 

performed to properly size and specify electric power system components such as transformers, 

capacitor banks, circuit switchers, and conductor sizing. The validity of load-flow analysis is 

predicated upon having accurate admittance and impedance values of the system under study. 

Likewise, for transient behavior during fault conditions is important to understand system 

admittances and impedances in order to properly determine protective relay settings. In each of 

these cases, there is a need for having accurate parameter values for the bus admittance Ybus and 

impedance Zbus matrices. 

The organization of the rest of this paper is as follows. The second chapter discusses 

power system modeling. The third chapter discusses synchrophasors in more detail. The fourth 

chapter discusses the model development method, including model reduction and the 

development method. The fifth chapter discusses the model validation method developed, 
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including a quantitative validation and a qualitative validation. The sixth chapter discusses the 

proposed benchmark model developed using the methods previously discussed. The seventh 

chapter discusses the proposed statistical parameter extraction method and the theoretical basis 

of the method. It also discusses the properties of synchrophasors and how they are used to 

perform the discussed statistical parameter extraction method. 
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II. Power System Modeling 

Power systems are large complex nonlinear systems that are composed of electrical and 

electro-mechanical components. Different studies are done regularly on power systems. These 

studies include load flow, transient stability, short circuit, optimal generation dispatch, and 

optimal power flow studies. Due to the complexity and nonlinearity of power systems, the main 

method to perform power system analysis is through simulations [12]. 

A power system model is composed of the network model and the power system 

operating conditions. The power system network model consists of a steady state power flow 

model and a transient stability model. Operating conditions mainly refer to generation levels. 

There are two main types of models currently in use by industry. Planning models and operation 

models. Operation models are used on a daily basis. They are used for analyzing the real-time 

state of systems such as real-time power flows and transfer limits. Planning models are used for 

planning and expansion studies set for the distant future. Historically, these models are 

developed separately by different groups within a utility company. 

Operational models do change from day to day and possibly from minute to minute. As 

breaker, disconnect switches, tap changers, etc., affects the network model. Operations models 

are mainly interested with power flow and steady state results.  As operational models represent 

the actual state of the system at specific times, they can be validated versus synchrophasor data. 

This possible because synchrophasor data represent actual measurements taken for the system. 

Planning models do not change as often as operation models do as they are intended for 

long term planning and they do not represent actual system operation. Planning models cannot be 

validated against synchrophasor data as they do not represent actual system operation at specific 
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times. Nevertheless, ideally the network model in planning models should be accurate and 

representative of the system to the furthest extent possible. Below is a description of steady state 

models and transient stability models.  

A. Steady State System Model 

A vector of bus current injections is referred to as Ibus. A vector of bus voltages is referred 

to as Vbus. Vbus and Ibus are related via (1) or alternatively by (2). 

(1)               

(2)               

Ybus is referred to as the admittance matrix. Ybus is a mathematical representation of the 

network power flow model. If Ibus and Vbus are known, Ybus can be solved analytically [13]. To 

solve for Ybus analytically, bus interconnection information is needed. The size of the Ybus matrix 

or actual power systems is on the order of thousands of buses. 

Due to the complexity of such systems, it is a common practice to use reduced power 

system models. Using reduced models, reduces the computation and time resources needed for 

power system analysis. As in most cases, analysis and studies are more interested in a particular 

area of interest rather than in the full system, justifying the use of reduced network models. For a 

reduced model a new Ybus will be developed. 
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B. Dynamic System Model 

The dynamic model of a power system consists of each subsystem and components along 

with the interconnection between these subsystems. The principle subsystems are generating 

stations and power sources. The interconnection is the transmission network connecting the 

power sources. The dynamic model for each subsystem consists of the models for each 

component [14]. Those power system components in each subsystem are the generators, the 

excitation system, and the power system stabilizers. The dynamic model of each of these 

components is a system of differential and algebraic equations (DAE) for vector valued functions 

of time. The following models in (3) - (12) used for each component and associated subsystems 

are derived in [14]. The PowerWorld implementation of the component models are shown in the 

block diagrams in Fig. 1 through Fig. 5. 

a. Synchronous Generators 

Generator models are well established in the literature [15]. A two axis machine model 

from [14] is used. Saturation is ignored and governor dynamics are neglected. The resulting set 

of DAE is as follows: 

(3) 
        (     )        

(4)           (       )        

where, 
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            (           )(          )         (          )(         )        (           )
        (          )(         )         (          )(         )    

and, 

          (          )⁄ {    (          )(         )      (          )(         )     
  [       (          )(         )      (          )(         )           ]}   
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                (           )       
(5)                     

(        ) {     (          )(         ) ((         )             )} 

(6)                           

(        ) {     (          )(         ) (     (         )        )} 

(7)                   ((         )        ) 

(8)                    ((         )        ) . 
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If subtransient reactances are neglected, then from the dynamic models for each 

component the following dynamic state-space model for each subsystem is derived.  

[  
   
     ̇   ̇    ̇      ̇      ̇      ̇    ̇  ]  

   
    

[  
   
   
   
   
                                                                    (     )                                        (   )       ]  

   
   
   
   

[  
   
                                ]  

   
  
 

 
[  
   
   
        (         )            (         )         (             )  

                    ]  
   
   
  
[        ] 

(9)  
[  
   
                      ]  

   
  [      ]  

[  
   
                       ]  

   
  [           ]. 
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b. Excitation  

IEEE standard exciter models DC1A and ST1A are used. Both models are supported by 

PowerWorld. The differential equations describing those exciters are given by (10) and (11) 

respectively.  

(10)             (                   ) 

where, 

                               
and, 

           (               [      ])     

(11)       (          )                 

The block diagram of the PowerWorld implementation of the IEEE DC1A exciter is given 

in Fig. 1 below. The block diagram of the PowerWorld implementation of the IEEE ST1A exciter 

is shown in Fig. 2 below.  
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Fig. 1. IEEE DC1A PowerWorld implementation. 

 

Fig. 2. IEEE exciter ST1A PowerWorld implementation. 
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c. Power System Stabilizers 

Power System Stabilizers are often used for improving the stability of electrical 

generators. A speed-sensitive stabilizing model STAB1 is used. The speed in per unit is used as 

the feedback signal to the PSS. The resulting dynamic equation is given in (12). 

(12)           (     ) (      )(      ) (      )(      )    

Fig. 3 below shows the block diagram of the PowerWorld implementation of the power 

system stabilizer. 

 

Fig. 3. PowerWorld implementation of the PSS. 

d. Wind Energy Plants 

Wind turbine modeling is somewhat different than synchronous machine models. For a 

synchronous machine power plant, the subsystem model includes the models for the machine, 

exciter, governor and stabilizer. For a wind energy power plant, the subsystem model includes 

the wind induction machine model, electrical model, mechanical model, pitch control model, and 

aerodynamic model. 

For the machine dynamic model of wind energy plants in this benchmark, a second 

generation (type-2) wind turbine WT2G models is used for simplicity. The WT2G model is 

based on a standard induction machine model, and accounts for the rotor flux dynamics. This 

model along with supporting dynamic models mentioned above was developed through the 
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Western Electricity Coordinating Council (WECC) Modeling and Validation Work Group 

(MVWG) [16]. These WECC models were designed specifically for large transmission network 

planning studies including large numbers of generators, loads, and dynamic components [16]. 

They are designed to evaluate the transient performance of such systems, for example 

transmission level faults and transients, which make them suitable for a wind energy 

transmission benchmark system. 

In power system simulators, an analogy is made between wind machine models and 

synchronous machine models, between wind electrical models and exciter models, between wind 

pitch control models and stabilizer models, and also between wind aerodynamic models and 

stabilizers as well. 

The models developed by the WECC MVWG were developed as sets of compatible 

models. The WT2G wind machine model is compatible with WT2E Exciter model, the WT2T 

governor model, and the WT2P stabilizer model. Fig. 4 shows the block diagram for the WT2E 

exciter model used. Fig. 5 below show the block diagram for the stabilizer models used. 
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Fig. 4. WT2E exciter model. 

 

Fig. 5. WT2P stabilizer model. 
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III. Synchrophasors 

Actual synchrophasor data were provided by a utility company. Synchrophasors were 

provided for multiple events. An event represents recorded synchrophasor measurements for a 

particular duration at a particular time and particular date. Synchrophasor data was provided in a 

“.phasor” file format for each event. Those were provided with a “MakeCSV” utility that created 

a comma separated values file (.CSV file) for each event. Each event CSV file contained data 

frames for 268 terminal IDs at a sampling rate of 30 frames per second. Each frame is composed 

of the time stamp, terminal ID number, current magnitude, current angle, voltage magnitude, 

voltage angle, frequency, rate of change of frequency (ROCOF). 

The sizes of the resulting CSV files varied by the duration of the event. For some events, 

the resulting CSV file was about 3 million lines long. It was a challenge visualizing and 

processing synchrophasor data of such size.  Frames were reported by for all terminal IDs before 

a time step occurs. Table 1 below illustrates the formatting of the CSV files. 

Table 1. Synchrophasor data reporting format 

Time stamp 
(mm/dd/yyyy 

hh:mm:ss.000) 

Term ID I Mag 

(A) 

I Angle 

(Degrees) 

V Mag (V) V Angle 

(Degrees) 

F 

(Hz) 

DFDT 

(Hz/s) 

t1 1 *** *** *** *** *** *** 

t1 2 *** *** *** *** *** *** 

⁞ ⁞ *** *** *** *** *** *** 

t1 Term IDn *** *** *** *** *** *** 

t2 1 *** *** *** *** *** *** 

t2 2 *** *** *** *** *** *** 

⁞ ⁞ *** *** *** *** *** *** 

t2 Term IDn *** *** *** *** *** *** 

⁞ ⁞ *** *** *** *** *** *** 

tn Term IDn *** *** *** *** *** *** 
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To process this synchrophasor data, a python script was written to extract specific 

synchrophasor measurements (i.e. voltage) for specific terminal ID’s (i.e. Term ID X). The 

results were column vectors for specific synchrophasor measurements at specific terminal IDs. 

Each element corresponds to a time step. These column vectors were then processed in both 

Matlab and Excel, as will be discussed in the subsequent chapters for model validation and 

parameter extraction purposes. 

Another tool that was used to visualize and process the available synchrophasor data was 

“Power BI”. It is a business intelligence data analytics tool provided by Microsoft. Power BI was 

meant for big data analysis, where multiple tables are to be analyzed with existing relationships 

between tables. First CSV files were formatted as Excel tables, then those tables were imported 

to Power BI. The relationships between tables were defined, and a viewing platform was 

developed to visualize those synchrophasors. Fig. 6 below shows a snap shot for one for the 

viewing platforms of one of the events provided by a transmission operator. 
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Fig. 6. Synchrophasor viewing platform. 

Fig. 6 shows the location, current magnitude, voltage magnitude, and frequency for a 

particular event for all terminal IDs. Top left is the location, top right is the current magnitude, 

lower left is for the voltage magnitude, and lower left for the frequency. The platform is 

interactive, clicking on a particular term ID location will filter all other plots to only show that 

particular term ID measurements. 

More description about synchrophasor theory in general, and particular information about 

PMU terminals and synchrophasor data made available will be presented and discussed later 

where relevant in the validation and the Ybus estimation chapters. 
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IV. Model Development Method 

This chapter discusses the model development process. This includes the reduction 

technique used, and how this technique was used to develop the benchmark model. The model 

development process is intended to be generic. It can be applied using various criteria to different 

systems to develop various models for specific simulation needs. 

A. Power System Reduction 

As power transmission networks are large and complex so are power system transmission 

models. It is common practice in the power system field to use reduced power system models, 

which accurately captures the main features and details of the original system. Using reduced 

models reduces the computation and time resources needed for power system analysis. As in 

most cases, analysis and studies are more interested in a particular area of interest rather in the 

full system. Therefore the power system to be simplified or reduced is normally divided to two 

areas, an area of interest and an external area. There are many reduction methods that are well 

established in the literature. 

Power system reduction techniques can be classified in two major categories. Static 

power system reduction methods and dynamic power system reduction methods. Static methods 

are suitable for static analysis including power flow studies, system operation studies and 

planning studies. Dynamic methods are suitable for dynamic studies such as inter-area 

oscillations. 

The two most used dynamic reduction methods are the Balanced Truncation (BT), and 

Modal Truncation (MT) methods [17]. In modal truncation, certain dominant modes including 
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electromechanical modes are identified to be retained in the external system based on the time 

constants of the decaying transients. One of the short comings of this method is that it does not 

retain steady state values. This method is suitable for controller design and stability studies. In 

balanced truncation methods modes that are less controllable or observable are eliminated. 

Balanced truncation methods do not retain the external system modes accurately but provide a 

better frequency response approximation than modal truncation methods. 

The main static reduction methods include Dimo’s method, Kron reduction, Ward 

reduction, and Zhukov’s method. One way to check the validity of such methods is to compare 

the results of the full system and the reduced system. Many comparison studies have been 

performed on these methods [18]. One way of comparing those methods is to compare how 

closely the results of the reduced system follows the original system for each method. The Kron 

method is less accurate than other methods. The Ward method is the most accurate. Both, the 

Kron and the Ward methods are less complex than the other two methods. Zhukov’s method is 

accurate for small systems, but is not accurate for large systems. Dimo’s method is accurate for 

small load variations, but loses accuracy as load changes increase. The Ward reduction method 

has been selected for the purposes of this research due to its accuracy and compatibility with 

power system simulation software. 

The Ward reduction method was proposed in [19]. It is the most commonly used power 

system reduction technique. It is based on dividing the system into internal and external 

subsystems. The internal subsystem remains explicitly detailed. The external subsystem is 

equivalenced via Gaussian elimination. This is illustrated in Fig. 7 below. This method was 

proposed for power flow studies. It is not suitable for transient stability and contingency analysis 

as it does not model external area reactive power support. 
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Fig. 7. Ward reduction method subsystems. 

Even though a static reduction method is used, the reduced equivalent model is also 

suitable for transient stability studies. The goal of this task was to produce a benchmark model 

for wind energy systems. Therefore, the area of interest was selected to be the wind generation 

dense area of north-western Oklahoma. The further away we get from the area of interest the less 

detailed modeling is needed. The area of interest as defined in Chapter 6 is maintained fully 

detailed and is described explicitly. The rest of the network is considered an external network 

and is reduced. Since the wind energy area of interest is fully detailed including the transient 

stability models, it is a fair claim that this benchmark is suitable for realistic transient stability 

studies for wind energy systems. This benchmark model will not be suitable for transient 

stability studies for the actual transmission system as the Ward reduction method is only suitable 

for static analysis. To summarize, the resulting benchmark system is suitable for generic realistic 

wind energy transient stability studies. It is also suitable for static studies and planning purposes 

for the actual system. 
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B. Model Development Process.  

This section outlines the model reduction process used to develop the benchmark model. 

This process assumes a more detailed full system model is available and it is desired to reduce 

the system to obtain a simpler model for specific purposes. 

It is recommended to perform system reduction in three steps. Those are geographical 

reduction, substation reduction, and transmission system reduction sequentially as illustrated in 

Fig. 8 below. First, a geographical area of interest is selected based on the purpose of the 

benchmark model. The system is divided into internal buses and external buses based on the 

geographical selection. All buses within the area of interest and some of the surrounding area are 

to be considered the internal buses or “study system” buses. All other buses are considered 

external buses. After the study system bus selection is done, the Ward reduction method is 

implemented based on the “Study”/”external” system selection. The result is the first reduced 

version of the model. The resulting model contains all internal buses, and an equivalent of the 

external system. For a transmission level analysis a substation appears a single bus with 

interconnected elements. The second step is to reduce all substations left in the first reduced 

model. To do this, only the transmission level bus and the generator bus of each substation are 

considered the study system. Everything else within each substation is equivalenced. This results 

in the second reduced version of the model. Finally the system is reduced based on the 

transmission voltage level of interest based on the purpose of the model. All buses that meet the 

voltage level criteria are considered “study” buses, and all other buses are reduced. After the last 

reduction step is completed an inspection of the system is to be performed to ensure that the 

model includes all the intended details and none of the unintended details. Is also recommended 

to generate a one-line diagram of the system to visually inspect the system. Depending on the 
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results of the last reduction step, another iteration of reduction might be necessary to refine the 

model. 
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Fig. 8. Model development process. 
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V. Model Validation Method 

Now that the model development process has been established it will be used to develop 

the proposed wind energy benchmark model. The model then needs to be validated. 

Synchrophasors are to be used for model validation. The model needs to be validated both 

qualitatively and quantitatively. Exact matches for flows should not be expected. As per NERC 

Model Validation Working Group recommendation modeled power flow should be within +/- 

10% of measured values [8]. NERC recommends the comparison of bus voltage angles wherever 

available [8]. Model validation has been done using actual PMU synchrophasor measurements 

provided by a utility company. 

A. Qualitative model validation 

Traditional phasor analysis in the frequency domain treats phasors as stationary vectors. 

The magnitude of those vectors is the magnitude of the sinusoidal signals under investigation. 

The angle of those vectors are the angles of the sinusoidal signals under investigation with 

respect to the angle of a reference signal. This reference signal in traditional power system 

analysis is chosen to be the voltage of the slack bus. Fig. 9 below illustrates the phasor angles of 

three arbitrary waveforms. If those phasors were to be in real-time, they would be rotating 

vectors. The rotation speed is the frequency of the signal under investigation. In most cases this 

frequency would be slightly variable and slightly off nominal frequency. Therefore the rotation 

of the voltage phasor is not at nominal frequency and not constant. 
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Fig. 9. Illustration of power system simulation voltage angles. 

Current and voltage synchrophasors are synchronized phasors. They are synchronized via 

a GPS signal. The reference for synchrophasors is an internally generated 60.000 Hz cosine wave 

in each PMU. This internal reference is generated with its peak precisely aligned to the second 

based on a GPS time signal. This is done with a precision on the order of the microsecond.  Fig. 

10 illustrates synchrophasor angle processing. 
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Fig. 10. Illustration of synchrophasor voltage angles. 

One effective method to validate the proposed benchmark model is to compare model 

simulation results to the actual power system synchrophasor measurements. One important 

quantity to compare is the voltage angle. Direct comparison of voltage angles between PMU 

voltage synchrophasor angles and simulation voltage angles is not valid as those angles have 

different references. The solution is to compare angle differences. This solves the issue of 

reference difference, and provides insight into power transfer. If the two buses, bus1 and bus2 are 

connected through a transmission line then the power transfer between bus one and two follows 

the relationship in (13). The angle difference (Ө1-Ө2) is referred to as the power angle, with 

maximum power transfer occurring at a 90o difference as can be seen in Fig. 11. Comparing the 

angle difference (Ө1-Ө2) from Fig. 9 to the angle difference (Ө1PMU-Ө2PMU) from Fig. 10 

illustrates the validity of the approach. 

 (13)   |  ||  |     (     ) 
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Fig. 11. Plot of power transfer dependence on power angle. 

Actual synchrophasor data provided by a utility company were used for system 

validation. Synchrophasors were provided in a “.phasor” file format for each event. Those were 

provided with a “MakeCSV” utility that created a comma separated values file (.CSV file) for 

each event. Each event CSV file contained data frames for 268 terminal IDs at a sampling rate of 

30 frames per second. Each frame is composed of the time stamp, terminal ID number, current 

magnitude, current angle, voltage magnitude, voltage angle, frequency, rate of change of 

frequency (ROCOF). 

Each terminal ID corresponds to a specific PMU. PMUs were named based on the type of 

synchrophasor it measures as follows: 
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 For lines: 

The terminal name is in the format of “from substation” – “to substation”.  The current 

synchrophasor is the current through the line, while voltage synchrophasor is the voltage at the 

“from-bus”. 

 For generators: 

The terminal name is in the format of “substation”-“generation unit number”.  

 For transformers: 

The terminal name is in the format of “substation”-“transformer number”. Parenthesis 

show where the measurement is coming from (kV-kV).   

As discussed above, the power angle is ideal for validation purposes. For that reason, 

transmission line PMUs were used for validation. Therefore, voltage angles needed to be 

extracted for validation. To process these synchrophasor data, a python script was written to 

extract voltage angles for specific terminal ID’s (i.e. Term ID X). The results were column 

vectors for voltage angles at specific system buses. Each element in the vector corresponding to a 

time step. These column vectors were then processed and plotted. To demonstrate, an example 

plot of voltage angle column vectors for the two buses across a 345 kV transmission line is 

shown in Fig. 12 below. 

Fig. 13 below illustrates an example of system frequency throughout the entire system as 

measured by the PMUs provided by a utility company. It can be observed that the system 

oscillates at an off-nominal frequency of an average of about 60.04 Hz. This causes the voltage 

synchrophasors to rotate at the same off-nominal frequency. The internally generated reference 

signal rotates at the nominal frequency of 60 Hz. The difference of frequency between the 
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reference signal and the actual voltage synchrophasors lead to a continuous increase in the phase 

angle. This effect can be observed in Fig. 12. The difference of frequency also leads to a 

wrapping effect where the voltage synchrophasors do an additional rotation every ~25 seconds 

(~1/0.04 s). This effect can be visually observed in Fig. 12 as well. It manifests in the jump from 

180o to -180o every ~25 seconds. 

 

Fig. 12. Synchrophasor voltage angles across the 345 kV line. 

(Ө1PMU-Ө2PMU) or in other word, the power angle of the 345 kV transmission line is 

plotted in Fig. 14 below. Some off-shoots of about 350o can be observed. Those off-shoots are 

due to the difference in phase angle. This causes the “wrapping effect” to occur at different times 

corresponding the phase angle difference. When eliminating the few off-shoot data points, a 

more meaningful plot is produced. A corrected plot of the power angle of the 345 kV 

transmission line is presented in Fig. 15 below. Another way to eliminate those shoot-offs is to 

use the identities in (14) and (15). If those identities are applied for those shoot-off data points, 
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that would yield a corrected graph. In other words cos (350o) = cos (-350o) = cos (360o-350o) = 

cos (10o). 

(14)     ( )      (  ) 

(15)     ( )      (       ) 

 

Fig. 13. System frequency from synchrophasor measurements. 
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Fig. 14. Raw synchrophasor calculated power angle. 

 

Fig. 15. Corrected synchrophasor power angle. 

The power angle result from Fig. 10 will then be compared to the simulated power angle 

from the reduced benchmark model as described in Fig. 4 for a qualitative validation. 
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B. Quantitative model validation 

Now that the model has been validated qualitatively, validation needs to be done 

quantitatively as well. An error function was derived to serve as a comparison metric between 

the simulated results and the measured results. The simulated results are the results of the 

benchmark model. The measured results are the PMU synchrophasor data. The main result of 

interest is the real power flow in the transmission line. Power flow from bus j to bus k through 

transmission line l is governed by (16). 

(16)          |  ||  || |    (   )  |  | | |     ( ). 

Where, 

(17)  ̅  | |    

is the impedance of transmission line l. 

(18)          . 

where, δj, and δk are the voltage angles at buses k and i respectively. Typically the resistance of 

the transmission line is much smaller than the reactance of the transmission line, thus the 

assumption can be made that 

(19) | |      

and, 

(20)      . 
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Under these approximations, (16) reduces to  

(21)     |  ||  |    (   ). 

For a small power angle δjk, (21) can be approximated as  

(22)     |  ||  |      . 

If voltage magnitudes are assumed to be constant at 1.0 per unit, real power flow can be 

simplified to follow (23), where Pjk is the real power flow between bus j and bus k, δj and δk are 

the voltage angles at buses j and k respectively, and Xjk is the reactance of transmission line l 

connecting buses j and k. From (23) and (18) power angles are directly proportional to real 

power flow, therefore they were used to estimate the error. 

(23)              

Simulated power angles and measured power angles were used to calculate the power 

angle error for each of the n transmission lines. Power angle errors were weighted according the 

participation factor in (24) and (25). The participation factor Ph represents the real power flow in 

transmission line h. Weighted power angles were then used to derive a normalized relative error 

for the entire system as in (26). It is worth noting that this is done for all transmission lines where 

a PMU synchrophasor measurement is available at both ends of the transmission line. 

(24)      ∑        

(25)        (   )∑    (   )     
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(26)   [  ∑ (                  )       ]  [   ∑            ]   

This relative error was then used to derive a measure of confidence σ as in (27). 

(27)       (   ) 

NERC recommends that the error in power flows be within +/- 10%. Therefore it is 

desired that the maximum error be within the 10% range. For that reason, a more representative 

error norm corresponding to NERC recommendations is the ∞-norm as described in (28). 

(28) ‖     ‖         |      | 
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VI. Wind Energy Benchmark System 

A. Wind Energy Transmission Model Development 

The initial model from which the benchmark model was derived is a transmission 

operator operation model. The model is made up of 15814 buses. It includes 17204 transmission 

lines, and 2796 generators. The benchmark model is a reduced version of the aforementioned 

model. It is based on the transmission network of Oklahoma including the wind generation 

concentration in the surrounding region. Most of the conventional power plants are connected to 

transmission lines operating at 345 kV and above. Most wind generation plants are connected to 

the 138 kV and above transmission network. As this is intended to be a wind energy transmission 

benchmark model, it focuses on the wind generation concentrated in western Oklahoma. Most of 

this capacity is transmitted eastwards toward the major load centers. 

The initial model was provided by a transmission operator in a PSSE “.raw” format. This 

model was imported into the PowerWorld simulator, and then reduced via the Ward reduction 

method discussed above in the PowerWorld simulator to arrive at the benchmark model. Then 

the model was verified and validated using PMU synchrophasor measurements with help from 

Oklahoma Gas and Electric.  

As discussed above, the reduction is done in three steps. Those are geographical 

reduction, then substation reduction, then transmission system reduction. In each one of those 

steps, first the study system buses were selected based on the chosen criteria. Then the Ward 

reduction method was employed. 
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 The criteria for bus selection was based on the purpose of the benchmark model. As 

discussed above, the area of interest is western Oklahoma due to the purpose of the benchmark to 

serve as a wind energy benchmark model. This area was allocated as a “zone” code in the 

operational model used. The first reduction step was to reduce all buses external to the identified 

zone. Then, each substation in the system was reduced to a transmission level bus with 

connected generators, loads, and compensation. Then entire system was reduced again to 

maintain only transmission level voltage of interest of 138 kV and above. The transmission level 

voltage selection was based on the realization that wind generation in the Oklahoma operating 

region is connected to the 138 kV and above transmission network. The resulting system 

contained 96 buses, 180 transmission lines, and 11 generators. A geographical representation of 

the transmission network is presented in Fig. 16 below. 

 

Fig. 16. Geographical representation of the proposed benchmark model. 

Generator information for the reduced model are tabulated in Table 2 below. Load flow 

results are tabulated in Table 3. Load information are tabulated in Table 4. Line information are 
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tabulated in Table 5. Full simulation files of the benchmark model are available for download to 

the public at “grapes.uark.edu" in a “.raw” format. Next, load flow results are validated using 

PMU Synchrophasor measurements. 

Table 2. Proposed benchmark generator data. 

Bus Number Generation (MW) Generation (MVR) 

44 412 32.13 

45 393 -61.87 

48 4 1.31 

55 10 3.29 

57 14 4.6 

59 9 2.93 

67 42 11.82 

71 11 3.62 

72 47 6.87 

73 18 8.44 

96 7 2.3 

Table 3. Proposed benchmark bus data. 

Bus number Nominal Voltage (kV) Voltage (kV) Angle (o) 

1 138 140.361 -20.11 

2 138 140.004 -20.9 

3 138 140.884 -19.48 

4 138 141.879 -14.14 

5 138 141.181 -16.04 

6 138 141.226 -15.87 

7 138 141.035 -18.27 

8 138 141.075 -19.37 

9 138 141.05 -20.35 
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10 138 140.938 -19.98 

11 138 139.884 -21 

12 138 141.025 -16.84 

13 138 141.153 -19.25 

14 345 350.965 -16.36 

15 138 140.68 -20.41 

16 138 141.327 -19.25 

17 138 140.353 -21.08 

18 138 141.872 -14.14 

19 138 141.035 -18.13 

20 138 140.361 -18.4 

21 138 140.397 -18.39 

22 138 139.092 -19.56 

23 138 140.527 -18.34 

24 138 138.591 -20.71 

25 138 139.147 -19.86 

26 138 140.727 -18.07 

27 138 139.069 -19.97 

28 138 140.153 -21.18 

29 138 141.623 -18.66 

30 138 141.24 -20.9 

31 138 140.255 -21.87 

32 138 140.036 -19.37 

33 138 140.898 -21 

34 138 140.593 -21.56 

35 138 140.383 -21.41 

36 138 140.454 -20.99 

37 138 139.401 -23.67 

38 138 140.107 -19.99 
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39 138 141.905 -14.2 

40 138 141.875 -14.22 

41 138 142.14 -13.46 

42 345 348.45 -13.29 

43 138 138.084 -21.58 

44 22 22.222 -40.72 

45 20 19.99 -39.67 

46 345 348.974 -13.66 

47 138 140.781 -19.16 

48 34.5 35.247 -18.93 

49 138 141.422 -18.71 

50 345 351.852 -18.19 

51 138 139.725 -18.96 

52 138 138.435 -20.97 

53 138 140.004 -20.9 

54 138 140 -20.95 

55 34.5 35.5 -20.07 

56 138 141.522 -20.63 

57 34.5 35.146 -18.03 

58 138 140.016 -18.7 

59 34.5 35.091 -18.31 

60 138 139.918 -18.82 

61 138 141.291 -15.7 

62 138 140.666 -19.7 

63 345 355.05 -17.49 

64 138 141.358 -15.66 

65 138 141.36 -19.44 

66 345 355.35 -17.39 

67 34.5 35.93 -15.11 



44 

 

 

 

68 345 349.419 -22.25 

69 345 351.61 -16.3 

70 345 351.61 -16.3 

71 34.5 35.289 -15.68 

72 34.5 35.749 -12.43 

73 34.5 35.365 -15.31 

74 138 141.164 -19.16 

75 138 141.167 -19.16 

76 345 351.717 -16.39 

77 138 140.375 -18.73 

78 138 139.87 -19.17 

79 138 140.26 -21.9 

80 345 354.432 -17.91 

81 138 140.256 -21.87 

82 138 140.187 -18.89 

83 345 349.099 -13.56 

84 138 139.39 -19.4 

85 345 355.688 -17.5 

86 345 355.077 -17.49 

87 345 354.515 -17.92 

88 345 351.928 -18.19 

89 345 350.917 -18.1 

90 345 348.974 -13.66 

91 345 354.553 -17.92 

92 138 140.383 -20.07 

93 138 139.915 -21.01 

94 138 140.841 -21.03 

95 138 141.131 -20.85 

96 34.5 35.409 -20.33 
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Table 4. Proposed benchmark load data. 

Bus number Load (MW) Load (MVR) Load (MVA) 

1 4.61 0.6 4.65 

3 14.76 8.76 17.16 

7 20.6 1.8 20.68 

8 7.25 1.13 7.34 

10 4.21 0 4.21 

12 21.42 7.93 22.84 

16 8.61 1.49 8.74 

18 7.92 1.04 7.99 

19 2.68 0.35 2.7 

20 59.35 27.04 65.22 

21 12.54 5.89 13.85 

23 20.37 11.81 23.55 

26 2.39 0 2.39 

28 7.17 0 7.17 

30 4.86 0.28 4.87 

33 3.27 0 3.27 

34 0.65 0.09 0.66 

34 2.7 0.49 2.74 

35 2.65 0.49 2.69 

36 4.08 0.53 4.11 

38 7.19 5.02 8.77 

40 2.06 1.07 2.32 

44 0 0 0 

45 0 0 0 

48 0 0 0 

49 9.81 1.33 9.9 

52 2.49 0.17 2.5 
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55 0 0 0 

57 0 0 0 

59 0 0 0 

61 3.93 1.54 4.22 

62 0 0 0 

67 0 0 0 

71 0 0 0 

72 0 0 0 

73 0 0 0 

74 0.91 0.4 0.99 

78 10.49 5.33 11.77 

79 3.52 0.5 3.56 

93 10.7 4.23 11.51 

96 0 0 0 

 

Table 5. Proposed benchmark line information. 

Line Number R X B 

1 0.03036 0.08257 0.01964 

2 0.00125 0.0034 0.00081 

3 0.00085 0.00899 0.00273 

4 0.01063 0.02892 0.00687 

5 0.00002 0.00004 0.00001 

6 0.00134 0.01419 0.00431 

7 0.0001 0.0005 0 

8 0.00144 0.0051 0.00139 

9 0.0009 0.00963 0.00287 

10 0.00205 0.02199 0.00656 

11 0.00054 0.0062 0.00159 
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12 0.00483 0.0289 0.00756 

13 0.00684 0.06426 0.02664 

14 0.00985 0.05878 0.0155 

15 0.00812 0.04827 0.01291 

16 0.00045 0.00256 0.00075 

17 0.00442 0.02624 0.00709 

18 0.0045 0.02535 0.00755 

19 0.00797 0.04503 0.01333 

20 0.00243 0.01407 0.00451 

21 0.00229 0.01186 0.00608 

22 0.01003 0.05962 0.01603 

23 0.00233 0.02185 0.36537 

24 0.0011 0.01031 0.17229 

25 0.00304 0.01799 0.00487 

26 0.00544 0.03062 0.00908 

27 0.00199 0.01124 0.00333 

28 0.00161 0.00911 0.0027 

29 0.00354 0.01317 0.00328 

30 0.0064 0.01741 0.00414 

31 0.00492 0.0527 0.01572 

32 0.00026 0.00148 0.00044 

34 0.00243 0.01374 0.00407 

35 0.00065 0.00368 0.00109 

36 0.00842 0.0313 0.00782 

37 0.00409 0.02332 0.00666 

38 0.00434 0.01616 0.00403 

39 0.00163 0.00605 0.00151 

40 0.01251 0.04655 0.01161 

41 0.00065 0.00241 0.0006 
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42 0.00338 0.03561 0.01099 

43 0.00399 0.02331 0.00649 

44 0.00899 0.02436 0.00583 

45 0.05152 0.11279 0.02577 

46 0.00004 0.00024 0.00007 

47 0.03712 0.12614 0.03751 

48 0.00151 0.01078 0.00775 

49 0.00302 0.02417 0.014 

50 0.02392 0.05206 0.01202 

51 0.02169 0.08073 0.02013 

52 0.01372 0.07524 0.02347 

53 0.00775 0.04597 0.01244 

54 0.01006 0.05959 0.01617 

55 0.0114 0.06525 0.01879 

56 0.00452 0.01622 0.00433 

57 0.00092 0.00989 0.00295 

58 0.00088 0.01495 0.26665 

59 0.00389 0.01447 0.00361 

60 0 0.00004 0.00066 

61 0.00145 0.0251 0.4252 

62 0.00279 0.04603 0.8323 

63 0.00294 0.04657 0.91318 

64 0.00294 0.04657 0.91318 

65 0.00054 0.0049 0.08712 

66 0.0034 0.0338 0.0115 

67 0.00527 0.02888 0.009 

68 0.00053 0.00296 0.00091 

69 0.00185 0.01045 0.00309 

70 0.00587 0.02087 0.00567 
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71 0.0101 0.02737 0.00655 

72 0.00862 0.02335 0.00559 

73 0.00054 0.00454 0.09258 

74 0.00156 0.01419 0.2527 

75 0.00032 0.00294 0.05227 

76 0 0.00002 0.00032 

77 0.0011 0.01035 0.1731 

78 0.00067 0.00399 0.00108 

79 0.00761 0.04358 0.01242 

80 0.00211 0.01214 0.00345 

81 0.00223 0.01228 0.00387 

82 0.00023 0.00222 0.0482 

83 0.01282 0.07313 0.02092 

84 0.00034 0.00581 0.10355 

85 0.00025 0.00247 0.0836 

86 0.00893 0.05049 0.01497 
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B. Wind Energy Transmission Model Validation 

a. Qualitative model validation 

Qualitative validation was performed on the developed wind energy system as described 

in chapter 5. The power angle results as demonstrated in Fig. 15 is compared to the simulated 

power angle from the reduced benchmark model as described in Fig. 9. For a more rigorous 

validation, the same validation process was done for various transmission lines in the system for 

various events. Each event representing different operating conditions for the model. Table 6 

below tabulates the simulated power angles and the measured synchrophasor processed power 

angles for transmission lines in the wind generation region of benchmark model. Fig. 17 through 

Fig. 20 shows the processed power angle of four different lines in the wind generation region. 

 

Fig. 17. Measured power angle of transmission line 2. 
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Fig. 18. Measured power angle of transmission line 3. 

 

Fig. 19. Measured power angle of transmission line 4. 
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Fig. 20. Measured power angle of transmission line 6. 

Table 6. Measured vs. simulated power angles (o). 

 
Model PMU 

Line number From bus To bus Power angle Power angle 

2 -12.16 -16.08 3.92 3.836 

3 -12.16 -9.79 -2.37 -2.216 

4 -12.16 -11.29 -0.87 -0.785 

6 -18.48 -11.29 -7.19 -6.398 

b. Quantitative model validation 

Now that the model has been developed and validated qualitatively, quantitative 

validation needs to be done as well. The quantitative model validation method discussed in 

chapter 5 is used for that purpose. For a rigorous validation, validation was done using various 

transmission lines and under various operating conditions. All transmission lines of 138 kV and 

above where a synchrophasor measurement is available were used in the validation process. 

Various events were used for validation. The use of various operating conditions (events) in the 
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validation process ensures the validity of the model under different conditions.  The results 

discussed in (23) through (28) are tabulated in Table 7 through Table 9 for the various events 

used. For the first event, the normalized error Ɛ was 1.97%, well within NERC recommendation 

[8]. The confidence measure σ was 98%. The error values of the other events can be viewed in 

Table 7 through Table 9. 
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Table 7 Quantitative validation results for first event. 

h            (o)       (o) Error Error2    Error2*           

2 4.50 4.60 0.10 0.01 0.09 0.00 21.17 

3 -5.54 -5.64 -0.10 0.01 0.11 0.00 31.84 

4 1.87 2.39 0.52 0.27 0.05 0.01 5.69 

6 -16.41 -15.86 0.55 0.30 0.32 0.10 251.63 

7 0.63 0.25 -0.38 0.14 0.01 0.00 0.06 

8 2.01 1.61 -0.40 0.16 0.03 0.01 2.59 

9 -0.03 -0.23 -0.20 0.04 0.00 0.00 0.05 

10 0.31 0.87 0.56 0.32 0.02 0.01 0.76 

12 -1.32 -0.74 0.58 0.34 0.01 0.01 0.54 

13 2.20 2.30 0.10 0.01 0.05 0.00 5.28 

14 -2.29 -2.09 0.20 0.04 0.04 0.00 4.37 

15 -0.78 -0.58 0.20 0.04 0.01 0.00 0.33 

16 4.52 4.78 0.26 0.07 0.10 0.01 22.84 

17 -0.63 -0.25 0.38 0.14 0.01 0.00 0.06 

18 4.35 4.59 0.24 0.06 0.09 0.01 21.06 

19 -1.21 -1.17 0.04 0.00 0.02 0.00 1.37 

24 1.16 0.91 -0.25 0.06 0.02 0.00 0.82 

28 0.79 0.87 0.08 0.01 0.02 0.00 0.75 

∑ 0.14 371.20 

∑/n 0.01 20.62 √∑   0.09 4.54 

Ɛ 1.97% 

σ 98.03% 
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Table 8.Quantitative validation results for second event. 

h            (o)       (o) Error Error2    Error2*           

2 3.920 3.836 -0.084 0.007 0.005 0.000 14.718 

3 -2.370 -2.216 0.154 0.024 0.016 0.000 4.911 

4 -0.870 -0.785 0.085 0.007 0.005 0.000 0.617 

6 -7.190 -6.398 0.792 0.627 0.430 0.270 40.940 

7 1.010 1.310 0.300 0.090 0.062 0.006 1.716 

8 -0.780 -0.823 -0.043 0.002 0.001 0.000 0.677 

9 -0.370 -0.178 0.192 0.037 0.025 0.001 0.032 

10 3.060 2.623 -0.437 0.191 0.131 0.025 6.881 

12 2.270 1.794 -0.476 0.227 0.156 0.035 3.217 

13 0.450 0.301 -0.149 0.022 0.015 0.000 0.091 

14 -2.170 -2.317 -0.147 0.022 0.015 0.000 5.370 

15 0.310 0.430 0.120 0.014 0.010 0.000 0.185 

16 2.450 2.435 -0.015 0.000 0.000 0.000 5.928 

17 -1.010 -1.310 -0.300 0.090 0.062 0.006 1.716 

18 4.250 4.366 0.116 0.013 0.009 0.000 19.061 

19 -0.010 0.202 0.212 0.045 0.031 0.001 0.041 

24 -0.100 -0.270 -0.170 0.029 0.020 0.001 0.073 

28 1.230 1.134 -0.096 0.009 0.006 0.000 1.285 

∑ 0.346 107.457 

∑/n 0.019 5.970 √∑   0.139 2.443 

Ɛ 5.67% 

σ 94.33% 
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Table 9.Quantitative validation results for third event. 

h            (o)       (o) Error Error2    Error2*           

2 5.97 6.12 -0.15 0.02 0.11 0.0024 35.68 

3 -3.60 -3.68 0.08 0.01 0.07 0.0004 12.97 

4 0.03 0.1 -0.07 0.01 0.00 0.0000 0.00 

6 -9.43 -8.81 -0.62 0.38 0.18 0.0673 88.83 

7 1.59 1.61 -0.02 0.00 0.03 0.0000 2.52 

8 -4.02 -3.85 -0.17 0.03 0.08 0.0022 16.15 

9 -0.57 -0.7 0.13 0.02 0.01 0.0002 0.33 

10 5.49 5.76 -0.27 0.07 0.10 0.0073 30.19 

12 3.03 3.26 -0.23 0.05 0.06 0.0030 9.18 

13 0.89 -0.15 1.04 1.09 0.02 0.0183 0.80 

14 -4.62 -4.81 0.19 0.03 0.09 0.0030 21.38 

15 3.04 2.62 0.42 0.18 0.06 0.0103 9.26 

16 0.06 -1.84 1.90 3.62 0.00 0.0044 0.00 

17 -1.59 -1.61 0.02 0.00 0.03 0.0000 2.52 

18 3.72 3.62 0.10 0.01 0.07 0.0007 13.84 

19 1.95 0 1.95 3.81 0.04 0.1402 3.81 

24 0.85 1.09 -0.24 0.06 0.02 0.0009 0.72 

28 2.50 2.49 0.01 0.00 0.05 0.0000 6.24 

∑ 0.26 254.44 

∑/n 0.01 14.14 √∑   0.12 3.76 

Ɛ 3.20% 

σ 96.80% 
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For more rigorousness, the model was also validated for actual real and reactive power 

flow through the lines. The metrics discussed in (23) through (28) are tabulated in Table 10 and 

Table 11 below for real and reactive power respectively. The normalized error Ɛ was 1.5%, well 

within NERC recommendation. The confidence measure σ was 98.5%.  For reactive power the 

normalized error Ɛ was 21%. This large error is due to the poor performance of the Ward 

reduction method in modeling external area reactive power support. 
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Table 10. Quantitative validation for power flows of the first event. 

h PMU (MW) Benchmark (MW) Error Error2    Error2*   PMU (MW)2 

2 172.51 176.09 -3.58 12.82 0.06 0.77 29759.67 

3 228.81 209.30 19.51 380.57 0.08 30.17 52353.14 

4 168.00 134.17 33.83 1144.46 0.06 66.61 28223.93 

6 836.87 797.01 39.86 1588.47 0.22 357.03 700344.01 

7 149.61 140.66 8.95 80.05 0.05 4.15 22382.32 

8 266.26 269.24 -2.98 8.85 0.09 0.82 70896.97 

9 24.39 19.29 5.10 26.05 0.01 0.22 595.08 

10 23.12 18.04 5.08 25.81 0.01 0.21 534.56 

12 103.44 108.16 -4.72 22.31 0.04 0.80 10699.06 

13 387.71 387.68 0.03 0.00 0.13 0.00 150316.16 

14 145.84 143.00 2.84 8.07 0.05 0.41 21269.48 

15 134.63 138.73 -4.10 16.78 0.05 0.78 18126.33 

16 451.32 457.56 -6.24 38.95 0.16 6.09 203688.66 

18 229.04 225.48 3.56 12.68 0.08 1.01 52460.02 

19 93.30 56.25 37.05 1372.67 0.03 44.37 8704.81 

24 158.08 163.61 -5.53 30.54 0.05 1.67 24990.48 

28 150.38 142.83 7.55 57.05 0.05 2.97 22615.05 

∑ 481.87 1417959.74 

∑/n 28.35 83409.40 √∑   5.32 288.81 

Ɛ 1.84% 

σ 98.16% 
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Table 11. Quantitative validation for reactive power flows of the first event. 

h 
PMU 

(MVAR) 

Benchmark 

(MVAR) 
Error Error2    Error2*   PMU (MVAR)2 

2 -39.21 -24.59 -14.62 213.68 0.05 10.75 1537.24 

3 46.40 -34.84 81.24 6599.19 0.06 392.73 2152.53 

4 -21.12 -23.84 2.72 7.38 0.03 0.20 446.18 

6 39.12 42.04 -2.92 8.51 0.05 0.43 1530.55 

7 -37.65 -115.20 77.55 6013.58 0.05 290.44 1417.73 

8 -34.29 -37.58 3.29 10.85 0.04 0.48 1175.53 

9 62.12 36.94 25.18 634.15 0.08 50.53 3859.17 

1

0 
8.03 -28.59 36.62 1341.15 0.01 13.82 64.51 

1

2 
-59.26 -29.40 -29.86 891.64 0.08 67.78 3511.79 

1

3 
-44.93 -52.64 7.71 59.42 0.06 3.42 2018.82 

1

4 
-19.14 -58.61 39.47 1558.08 0.02 38.25 366.24 

1

5 
29.73 24.51 5.22 27.27 0.04 1.04 884.00 

1

6 
-45.56 16.17 -61.73 3810.03 0.06 222.64 2075.29 

1

8 
-84.88 -55.88 -29.00 841.15 0.11 91.58 7205.05 

1
9 

-90.03 -61.83 -28.20 795.07 0.12 91.81 8104.86 

2

4 
-58.73 -80.19 21.46 460.68 0.08 34.70 3448.80 

2
8 

-59.40 28.43 -87.83 7714.51 0.08 587.82 3528.63 

∑ 1898.42 43326.93 

∑/n 111.67 2548.64 √∑   10.57 50.48 

Ɛ 20.93% 

σ 79.07% 
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VII. Ybus Estimation 

Even though the proposed model development and validation methods are generic and 

can be used on any power system to create benchmark models for various simulation needs, the 

resulting benchmark model is only as accurate as the original operations model used. In this 

research a new parameter estimation technique is proposed to determine the bus admittance 

matrix. 

A vector of bus current injections is referred to as Ibus. A vector of bus voltages is referred 

to as Vbus. Vbus and Ibus are related via (29). 

(29)               

Ybus is referred to as the admittance matrix. If Ibus and Vbus are known, Ybus can be solved 

for analytically. To solve for Ybus analytically, bus interconnection information is needed. 

In this research the Ibus and Vbus are formulated from synchrophasors, and then are used to 

estimate Ybus statistically. For this proposed statistical estimation technique, no Ybus 

interconnection information is needed. Instead, interconnection information is inherently 

extracted with the Ybus algorithm. 

The proposed parameter estimation technique determines the bus admittance matrix Ybus 

for power transmission systems from recorded synchrophasor measurements. The approach 

described in this research is based on recognizing that measurements of bus injection currents Ibus 

could be viewed as signals produced by a random process. In this manner, the corresponding bus 

voltages Vbus are also stochastic signals that are related through a cross-covariance matrix to the 

vector Ibus. Using estimation techniques developed for statistical signal processing, the cross-
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covariance matrix is shown to be Zbus. The increasing use of synchrophasors has enabled large-

scale data collection of time synchronized bus injection currents and voltages. The new Zbus 

estimation method is applied to the IEEE 68-bus benchmark system to demonstrate the validity 

of the approach. The accuracy and convergence rate of the method is evaluated under conditions 

corresponding to wide-area synchrophasor data collection. The results indicate that the method is 

broadly applicable to determining Ybus and Zbus for electric power transmission and systems 

equipped with synchrophasors data collection technology. After demonstrating the validity of the 

approach, it is used on the proposed benchmark model using available synchrophasor data. 

Research done previously in this area requires the prior knowledge of the electrical 

interconnection as well as full availability of PMU measurements. This method does not depend 

on prior knowledge of the electrical interconnection between the buses. It extracts the electrical 

interconnection and the parameters of the network model in the form of Ybus. It also does not 

require full availability of PMU measurements at each bus in the system. It estimates the partial 

Ybus based on the available PMUs. 

In this chapter the formulation of bus current injection from synchrophasor measurements 

is discussed first. Then, the statistical properties of synchrophasors are investigated. After that, a 

discussion of the proposed statistical method and the theoretical basis of the method is presented. 

This chapter also discusses finding the functional relationship through finding the cross- 

covariance matrix. It also discusses applying said theory to power transmission systems and 

extracting the Ybus. Then, it discusses the Matlab implementation of the method, validation and 

its accuracy. Then a test case is performed using the IEEE 68-bus benchmark system. 
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A. Ibus Formulation from Synchrophasor Measurements 

For the purposes of the Ybus estimation method proposed, both Vbus and Ibus are needed. 

Vbus is a column matrix of the voltage phasor at each bus in the system. Ibus is another column 

matrix for the current injection at each bus in the system. Power system buses are classified as 

PQ buses or PV buses. PQ buses represent load buses, while PV buses represent generator buses. 

It is standard practice in power system analysis to treat loads as negative power generation. 

When loads are treated as negative generations, they can be lumped with any generators at a 

local bus. This new equivalent lumped generator injects a current Ii into the bus. Current 

injections are combined to formulate the current injection column matrix Ibus. Therefore current 

injections can be computed by adding all currents of all loads and generators taking into 

consideration their respective polarity. Another approach is to add all branch currents connected 

to a bus excluding load and generator currents. 

Current is a through quantity, meaning it is defined through a branch. Current injections 

are quantities defined at a bus. Current synchrophasors represent branch currents [20]. If enough 

PMUs are installed, they can be used to compute the current injection from synchrophasor 

measurements depending on their placement within a substation. PMUs come as standalone units 

or relays with built-in PMU functionality. PMU functionality has been provided by 

manufacturers as a standard feature since 2002.  Therefore in a given substation, it is more likely 

than not that enough PMUs are already installed for protection purposes. 

For a transmission network study, a substation is reduced to a bus with connected 

components via equivalencing methods. For both PV and PQ buses alike, adding synchrophasors 
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for all generators and loads or adding all line synchrophasors will produce the current injection at 

that bus. 

To demonstrate, the IEEE 68-bus benchmark system with flows superimposed is shown 

in Fig. 21 below [21]. Bus 17 is a PV bus, adding the current flows of generator 13 and that of 

the local load will yield the current injection. Similarly adding the current flow through the two 

transmission lines connecting bus 17 to buses 43 and 36 will also yield the current injection. For 

a PQ bus such as bus 46, a similar approach can be used. The current of the local load represents 

the current injection, or alternatively adding the current through each of the lines connecting bus 

46 to buses 49 and 38 will also yield the current injection. Both approaches are valid. The reason 

for outlining both is that the selection of which one to use will depend on the availability of 

PMUs and synchrophasor measurements. 

 

Fig. 21. IEEE 68-bus benchmark system. 
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A typical substation contain many relays for protection purposes. An actual substation 

design of a 69 kV gas turbine generation substation provided by an electric utility is presented in 

Fig. 22. It is a simple two bus generation substation. It contains three generation units at 13.8 kV, 

a 13.8/69 kV step up delta-wye transformer, and two outgoing lines. It also contains many 

instrumentation transformers, relays, and various protective equipment. A simplified bus 

diagram of this substation is shown in Fig. 23 below. This simplified bus diagram was obtained 

through the removal of all unused instrumentation transformers, disconnect switches, and 

communication capacitive transformers. The Schweitzer PMU-capable relays are represented 

with the blue blocks on the diagram. Those are SEL-587, SEL-351, and SEL 321. By looking at 

the placement of the current transformers connected to those relays, we can see that branch 

currents can be measured for all three generators, the load and the outgoing transmission lines. 

The injected current can be computed by adding the three generator currents and the load current 

or by adding the outgoing line currents. It is mainly a matter of activating the PMU feature of 

these relays and setting up the data and communication infrastructure to handle synchrophasor 

processing and storage. It is worth noting that for a transmission level system study, this entire 

substation represented by Fig. 22 is reduced to single bus with three generators, a load, and two 

transmission lines connected to it. This entire substation is one PV bus. 
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Fig. 22. Example substation design. 
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Fig. 23. Simplified substation layout. 

B. Statistical Properties of Synchrophasors 

This is a statistical Ybus estimation approach based on random signal processing methods 

using current and voltage synchrophasors. Therefore it is necessary to understand the statistical 

properties and probability distribution of actual synchrophasor data. 

Actual synchrophasor data provided by a utility company were analyzed. 

Synchrophasor’s “.phasor” files were converted to “.CSV” files. Those “.CSV” files were then 

process using a python script that was written to extract specific synchrophasor measurements 

(i.e. voltage) for specific terminal ID’s (i.e. Term ID X). The results were column vectors for 

specific synchrophasor measurements at specific terminal IDs. Each element corresponding to a 

time step. 

These resulting column vectors were then processed in Matlab. They were analyzed as 

random signals to gain a better understanding of them, to later use in simulations. Fig. 24 

through Fig. 27 below illustrates the cumulative probability function of the current magnitude, 
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current angle, voltage magnitude, and voltage angle of the analyzed synchrophasors. It can be 

observed that under steady state conditions, synchrophasor measurements follow a normal 

probability distribution. 

 

Fig. 24. Cumulative probability function for voltage magnitude data. 
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Fig. 25. Cumulative probability function for voltage angle data. 

 

Fig. 26. Cumulative probability function for current magnitude data. 
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Fig. 27. Cumulative probability function for current angle data. 

C. Finding the Functional Relationship through Correlation 

The proposed method of estimating the Zbus matrix is based on estimating the cross-

correlation between the Ibus and Vbus values when interpreted as random vectors. For purposes of 

this research, it is assumed that time synchronized phasor measurements at time tk of the column 

vectors Ibus(tk) and Vbus(tk) are available from synchrophasor measurements and are made 

available for post-processing. The columns of Ibus and Vbus are of dimension N, where N is the 

number of buses or nodes for the system under consideration. In a typical application, N could be 

on the order of hundreds to thousands of elements. Based on the results presented in the previous 

section, the statistics of the elements of Ibus and Vbus are normally distributed. That is, the 

statistical characteristics of Ibus and Vbus are adequately described by their first and second 

moments and do not change over short time intervals (i.e. a stationary process). It is assumed that 
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Zbus is a symmetric positive definite matrix. Data matrices are defined by concatenating a 

sequence of M bus measurements, 

(30)       [    (  )      (  )], 

(31)       [    (  )      (  )] 

The dimensions of the data matrices are N-rows by M-columns. The data value at time tk 

is the kth column of the respective data matrix and is denoted by     ( )   and     ( ). The estimated 

mean value of the data matrices are computed as 

(32)   ̅     ∑      ( )       

(33)  ̅      ∑      ( )       

In order to estimate the cross-covariance between the injection currents and bus voltages, 

the mean values are subtracted from the respective data matrices: 

(34)   ( )       ( )    ̅   

(35)   ( )       ( )   ̅    

where bus injection current and bus voltage column data elements are each normalized in 

order to scale to units of ohms needed for the impedance matrix Zbus. The following variances are 

defined: 

(36)      ∑ (     ( )    ̅  )      

(37)      ∑ (     ( )      )      
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with variance normalized data values for the ith bus defined with respect to the variance 

estimated at each bus: 

(38)   ̅( )( )     ( )   ( )( )
. 

(39)  ̅ ( )( )     ( )   ( )( )
. 

The impedance matrix is then estimated from the variance-normalized zero-mean data as 

(40)  ̂       ∑  ̅ ( )  ̅( )       

and the estimated admittance matrix is found by inverting the impendence matrix, 

(41)  ̂     ̂      

A representative Matlab m-file script is provided in the Appendix as an example of 

estimating an impedance matrix from normally distributed random current injection and bus 

voltage measurements. 

D. Implementation 

The Ybus estimation method was further evaluated under various system conditions. The 

evaluation was primarily applied to the IEEE 68-bus benchmark system that was developed for 

analyzing power system stability [21]. But it was prudent to show that this method works for a 

variety of systems. Therefore this method was also applied to randomly generated systems to 

ensure its validity for a wide range of systems. 
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a. Randomly Generated Ybus systems 

A flow chart describing the process which was followed in the Ybus estimation is 

presented in Fig. 28. 

 

Fig. 28. Ybus estimation process. 

If the number of samples is sufficiently large enough, then the Ybus estimation method is 

expected to yield accurate results. Since this method in estimating the Ybus is based on a statistical 

cross-correlation matrix estimation, a similar approach is used for accuracy calculations. A 

statistical method was used to determine how large of a sample is needed to yield a sufficiently 

accurate result. In this approach, multiple cases were simulated using the Ybus estimation method. 

The accuracy of the estimated Ybus was assessed by comparing it to the known Ybus that was used 

in generating the injection currents and bus voltage data. Each case corresponds to an estimation 

of the Ybus using a certain number of Ibus and Vbus samples. For each case the number of samples 

was changed to compute the dependence of the accuracy of this method on the number of 
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samples used. Each case was repeated one hundred times to statistically compute the expected 

accuracy of using this method. The error index used here is defined as the norm of the estimated 

Zbus minus the actual Zbus divided by the norm of the actual Zbus as described by (42). 

(42)     ‖ ̂        ‖‖    ‖ 

The closer the error index is to zero, the more accurate the estimated Zbus is. An accuracy 

norm was also used. The accuracy used follows (36). A detailed flow chart is presented in Fig. 

29 to show the process that was followed. 

(37) accuracy  ‖ ̂   ‖‖    ‖ 
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Fig. 29. Ybus estimation error calculation flow chart. 
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Fig. 30 shows the accuracy of the method for each case. Each case corresponds to a 

number of samples used. The number of samples is on the x-axis, while the accuracy of the 

estimate is on the y-axis. As can be seen, the accuracy of the method increased as the number of 

samples increased. It is concluded that the Ybus estimation method produced sufficiently accurate 

results to within one percent of the true value when 500 samples or more were used. From the 

previous synchrophasor discussion, Ibus and Vbus samples are produced for each frame. Therefore 

using 500 samples corresponds to using 500 synchrophasor frames. Given that data frames are 

produced at a rate of 30 frames per second per the IEEE C37.118 synchrophasor standard, then 

using 500 samples corresponds to an acquisition duration of 16.67 seconds of recorded 

synchrophasor data. 

 

Fig. 30. Max error vs. number of samples for randomly generated systems. 

Each case was evaluated 100 times. The accuracy was plotted once for each time the case 

was repeated. Over repeated cases this yields a vertical line corresponding to the range over 
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multiple values per case. The plot in Fig. 31 shows the accuracy range for each case. This plot 

indicates a series of parallel lines perpendicular to the x-axis that shows the range of accuracy 

values over the 100 sample evaluations. As the case number increases, the number of used 

samples increases. It can be seen that as the number of used samples increase, the accuracy index 

range narrows down to unity (i.e., it converges to the true value). 

 

Fig. 31. Accuracy range for multiple cases for randomly generated systems. 

The plot in Fig. 32 shows the worst case error that might be encountered. This is 

determined as the average of the maximum accuracy minus the minimum. It can be seen that the 

max error is about 0.05 %. The trend of increased accuracy with increased number of samples is 

observed in the plot of Fig. 32. 
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Fig. 32. Accuracy vs. number of samples for randomly generated systems. 

In practice it is important to consider the situation where synchrophasor measurements 

are not available at every bus. The method for estimating the admittance matrix of a system with 

incomplete measurements can also be used to estimate a subset of the admittance matrix with 

missing bus values. For buses where a PMU is not available for ith synchrophasor measurement 

corresponds to a Ybus matrix estimate that is missing the corresponding ith column and ith row as 

illustrated Fig. 33. The Ybus estimation is otherwise accurate for the other matrix elements even 

though an incomplete set of PMU measurements is used. The actual Matlab M-files used to 

obtain the presented results is provided in the appendix. 
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Fig. 33. Effect of a missing measurement. 

b. Validation using the 68-bus benchmark system 

The proposed Ybus estimation method was next evaluated based on a benchmark 

transmission system. The intent is to validate the proposed Ybus estimation method for a realistic 

transmission network. The 68-bus IEEE stability model used in this evaluation is shown in Fig. 

21. The method was used to estimate the Ybus from simulated Ibus and Vbus. Then various analysis 

was done on the result. A Similar set of plots to those discussed in the previous section was 

developed for the 68-bus benchmark model. 

Fig. 34 shows the worst case error of the method for each case for a normally distributed 

random bus injection current. Each case corresponds to a different number of samples used in 

estimating the Ybus. Results indicate that a sufficiently accurate estimate was produced when 

enough samples were used. At 1000 samples, the estimated Ybus error was within 5% of the 

actual Ybus. 1000 samples corresponds to using 1000 synchrophasor frames. If frames are 

reported at a rate of 30 frames per second, then using 1000 samples corresponds to an acquisition 

duration of 33.33 seconds of recorded synchrophasor data. 
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Fig. 34. Max error vs. number of samples for the IEEE 68-bus benchmark system. 

Each case was repeated 100 times. The accuracy of the estimate was calculated each 

time. If the accuracy was plotted for each repeat for all cases, that yields a range of Y values for 

each X value. That is a range of accuracy for each case. Fig. 35 shows a plot of the accuracy 

range for each case. The y-axis shows the accuracy, while the x-axis shows the number of sample 

used. 
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Fig. 35. Accuracy range for multiple cases for the IEEE 68-bus benchmark system. 

The plot in Fig. 36 Also shows the accuracy range versus the number of samples. More 

cases are plotted, that is Fig. 36 has higher resolution. And the scale was zoomed in around one 

to demonstrate how accurate the method is. An accuracy of one corresponds to a Ybus estimate 

that is exactly the same as the actual Ybus in accordance with equation (29). 
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Fig. 36. Accuracy vs. number of samples for the IEEE 68-bus benchmark system. 

It is worth noting that an entry in ith row and the kth column of Ybus matrix represents an 

actual physical connection between the ith bus and kth bus. An empty entry means that there is 

no direct physical connection. Therefore, extracting the Ybus inherently extracts the bus 

interconnection in the system. The actual Matlab files used to obtain the results presented 

validating the method using the IEEE 68-bus system are provided in the appendix. It is also 

noticed from Fig. 35 and Fig. 36 that the envelope of the accuracy gets narrower with using more 

samples. Meaning that the longer the duration of recorded synchrophasors used, the more 

accurate the estimated is. 

The power spectral density describes the how the power of the signal is distributed over 

different frequencies as in (43). 

(43)    ( ( ))         [| ̂ ( )| |] 
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White noise has a constant power spectral density. For a stationary random process, the 

power spectral density and the autocorrelation function are a Fourier transform pair. The constant 

power spectral density of white noise translates to no autocorrelation and high variation in white 

noise. The power spectral density of white noise is demonstrated in Fig. 37. 

     

Fig. 37. Power spectral density of white noise. 

Results obtained by assuming a white noise for current synchrophasors demonstrate the 

validity of the Ybus estimation method, but are unrealistic in terms of the assessment of number of 

samples needed. The power spectral density of actual current synchrophasors was studied. Fig. 

38 and Fig. 39 demonstrate power spectral density of actual current synchrophasor data. 
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Fig. 38. Centered power spectral density of actual synchrophasors. 

 

Fig. 39. Power spectral density of actual synchrophasors. 
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Actual current synchrophasor’s power spectral density are centered on dc. That is, actual 

current synchrophasors contain less variation than white noise in the same duration of time. This 

leads to the need of more synchrophasor samples to obtain an accurate Ybus estimate. More 

samples translate to a longer duration of recorded synchrophasor measurements.  

Filtered white noise was used to obtain a more realistic measure of needed duration of 

synchrophasor measurements to accurately estimate Ybus. A non-causal Gaussian filter was 

applied to match the power spectral density of actual synchrophasors as in Fig. 40. 

 

Fig. 40. White noise filtration. 

An advantage of using a Gaussian filter is that its response is of the same form in the 

frequency domain and the time domain. Another advantage is that it is completely described by 

the mean and the variance. The response of the filter in the time domain is described in (44) and 

(45).  

(44)  [ ]  ∑  [ ] [ ]  ⁄   ⁄ 

(45)  [ ]  √           

The response of the filter in the frequency domain follows (46). 

(46)  (   )         

The output of the filter, Y(n) is given in Fig. 41 and Fig. 42. 
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Fig. 41. Centered power spectral density of filter output. 

 

Fig. 42. Power spectral density of filter output. 
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Y(t) was then used as the input to the Ybus estimation technique. It was used to estimate 

the IEEE 68-bus benchmark system as in Fig. 43 Below.  

 

Fig. 43. Ybus estimation process using filtered white noise. 

Multiple cases were simulated using the Ybus estimation method to assess the needed 

duration of recorded synchrophasor measurements. The IEEE 68-bus benchmark system was 

used for this purpose. The accuracy of the estimated Ybus was assessed by comparing it to the 

known IEEE 68-bus benchmark Ybus. Each case corresponds to an estimation of the IEEE 68-bus 

benchmark system using a certain number of synchrophasor samples. For each case, the number 

of samples was changed to compute the dependence of the accuracy of this method on the 

number of samples used. Each case was repeated one hundred times to statistically compute the 

expected accuracy of using this method. The error index used here is described in (42). The 

closer the error index is to zero, the more accurate the estimated Ybus is. A detailed flow chart is 

presented in Fig. 29 to show the process that was followed. 
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Fig. 44 through Fig. 49 demonstrate the accuracy of the Ybus estimation technique using 

realistic synchrophasor simulation. Fig. 44 demonstrates the dependence of error on the number 

of samples used for up to 5000 samples. Fig. 45 demonstrate the dependence of accuracy on the 

number of samples used for up to 5000 samples as well. It can be observed that the estimate is 

not accurate for this range of sample duration. Even though the estimate is not accurate with up 

to 5000 samples an improvement in accuracy can be observed with increasing number of 

samples. 5000 samples correspond to about 2.8 minutes of synchrophasor data collection.  

 

Fig. 44. Max error vs. number of samples for the IEEE 68-bus benchmark system using Gaussian 
filtered white noise. 
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Fig. 45. Accuracy vs. number of samples for the IEEE 68-bus benchmark system using Gaussian 
filtered white noise. 

Fig. 46 demonstrates the accuracy range of estimating the IEEE 68-bus system using 

Gaussian filtered white noised with a sample range of 100k to 100.1k. Fig. 47 demonstrates the 

accuracy range of the estimation technique for a sample range of 100k to 100.1k. 100k samples 

correspond to about an hour of synchrophasor data collection. 
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Fig. 46. Accuracy vs. number of samples for the IEEE 68-bus benchmark system using Gaussian 
filtered white noise. 

 

Fig. 47. Max error vs. number of samples for the IEEE 68-bus benchmark system using Gaussian 
filtered white noise. 
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Fig. 48 demonstrates the maximum error of the estimation technique when estimating the 

IEEE 68-bus system using Gaussian filtered white noise using up to 250k samples. Fig. 49 

demonstrates the accuracy range vs the number of samples used for up to 250k samples used. 

The use of 250k samples correspond to 139 minutes of synchrophasor data collection. A 

significant improvement can be noticed in the maximum error and the accuracy range between 

100k samples and 250k samples.  

 

Fig. 48. Max error vs. number of samples for the IEEE 68-bus benchmark system using Gaussian 
filtered white noise. 
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Fig. 49. Accuracy vs. number of samples for the IEEE 68-bus benchmark system using Gaussian 

filtered white noise. 

Even though the change in the maximum error and the accuracy plateaus as the number 

of samples is increased, there is still considerable improvement. Each one of the simulation 

results presented in Fig. 44 through Fig. 49 took more than 9 hours to simulate. For that reason, 

the repletion was not done for subsequent simulations. Then the estimate was obtained using one 

million samples. The use of one million samples resulted in an estimate with an accuracy of 1.44. 

The use of one million samples correspond to about nine and a half hours of synchrophasor data 

collection. Finally the estimate was obtained using 2.5 million samples. An estimate with an 

accuracy of 1.18 was obtained when 2.5 million samples were used. The use of 2.5 million 

samples correspond to synchrophasor data collection of about one dat. A synchrophasor data 

collection of one day corresponds to a complete cycle of daily load variation. 
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c. Implementation requirements 

After the validation of the Ybus estimation approach using randomly generated systems 

and the IEEE 68-bus benchmark system, it was applied it to the benchmark system. Lines 8, 2, 4, 

and 16 were identified to estimate a partial Ybus. In order to perform Ybus estimation, the current 

injection matrix Ibus and the voltage matrix Vbus were needed. To be able to determine current 

injection at each bus (substation), electrical interconnection information are needed similar to 

those presented in Fig. 22. Substation electrical interconnection information were not available 

for the benchmark system. 

Terminal IDs measuring currents contributing to the current injection were identified as 

in Table 12 below based on the naming convention of the terminal IDs. Corresponding 

synchrophasor column vectors were processed in Matlab to produce complex phasors from 

magnitude and angle measurements. Then, current injection matrices were created by adding 

respective terminal ID currents. Resulting Vbus and Ibus were used to estimate the partial Ybus 

using Ybus estimation method. The code used in this estimation is provided in the Appendix. 

Table 12. Terminal IDs corresponding to current injections. 

Bus Terminal IDs 

1 46-53 

2 0, 1, 211, 212, 216, 217, 227, & 228 

3 112, 114, 115, 137, 138, 155, 246, 247, & 248 

4 146-148 

5 78-87 & 189 

6 16-19 
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The Ybus estimation result was not correct. After further investigation, some terminal IDs 

were not providing synchrophasor measurements. That is, there were PMU terminal IDs in place, 

but no measurements were provided. Without a complete set of synchrophasor measurements 

within a substation, current injections were not correct. Leading to an invalid Ybus estimation. 

And in some cases there were no PMU terminal ID in place to begin with. 

It is important here to distinguish between the effect of a missing current injection value 

and a missing branch current value (synchrophasor measurement). A missing current injection 

value leads to a missing ith column and ith row from the estimate as discussed previously and 

demonstrated in Fig. 33. A missing synchrophasor measurement within a substation invalidates 

the current injection value for that substation (bus in reduced system). So the effect of this is an 

“all or none” situation for each substation. 

Another source of error identified is the ambiguity in direction of placement of the 

current transformers. Other than the electrical interconnection information of the substation, 

directional information of the current transformers in the substation is important to calculate the 

current injection appropriately. 

To summarize, the following are needed to adequately implement the Ybus estimation 

technique on actual systems: 

o Electrical interconnection information for the substations of interest.  

o Complete synchrophasor measurements for the substations of interest.  

o Directional placement information for current transformers. 
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VIII. Conclusions & Future Work 

A model development and validation process was structured and developed. The process 

was used to develop a proposed wind energy transmission benchmark model. Representative 

PMU synchrophasor measurements were provided by the GRAPES center and were analyzed for 

deriving power system models. Power angles were extracted from those synchrophasor 

measurements and used for validating the proposed benchmark model.  Results show that power 

flows are within NERC recommendations, suggesting that the benchmark model is accurate. 

Therefore, the model development and validation process is also sound. The model development 

and validation process can be used with various criteria for various systems to develop reduced 

models for various simulation needs. 

PMU synchrophasors were used for validation purposes. The resolution of available 

PMU synchrophasors is 33 milliseconds. The duration of events used is on the order of minutes.   

The benchmark model was derived based on guidance from the GRAPES center. Operational 

models were updated based on SCADA data that is updated every 10 or 15 minutes. Exact 

timing of the operational model conditions was not available. An averaging approach was used 

for comparison. Averaging was used to obtain PMU values of power angles, real power and 

reactive power. There are sources of error in the validation process. On source of error is the 

high variability in wind generation along with the low resolution of operational models. Another 

source of error is the averaging approach used in the validation. If more specific timing 

information is available for operational models, then a smaller averaging window can be used 

and aligned more precisely to the operation model conditions. Using a smaller averaging window 

results in reduced errors. 
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A new transmission system model/parameter estimation method was developed. This 

method not only extracts network parameters, but also the electrical interconnection between the 

buses. No prior knowledge of the transmission system is needed to apply this proposed 

estimation method. It was demonstrated that this method estimates the admittance matrix based 

on synchrophasor measurements with reasonable accuracy if a sufficient number of samples is 

used. This method preforms well even if PMU measurements are not available at all buses 

throughout in the system. 
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X. Appendix 

A. Representative Matlab m-file script 

Below is a sample Matlab m-file script provided as an example of estimating an 

impedance matrix from normally distributed random current injection and bus voltage 

measurements. 

% Estimation of a randomly generated Z-bus matrix 

% from normally distributed random bus injections 

clear 

M=300;      % Select number of buses 

missing=45; % Number of buses without PMU measurements 

P=random('unid',M,1,missing); % random missing %bus index array  

Y1=random('Normal',0,1,M,M); 

Y2=j*random('Normal',0,1,M,M); 

Y12=Y1+Y2; 

Y=Y12+conj(Y12'); % Create random Y-bus matrix 

Z=inv(Y); % Compute impedance matrix 

N=1e5;  % Number of PMU sample measurements 

% Creat random array of bus current injections. 
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% Polar form: Random magnitudes and angles  

% Per-unit values 

Ibase=3.0;  % Nominal current in the network 

Imag=random('Normal',Ibase,2.5,M,N);   

Iphase=random('Normal',-0.5,0.125,M,N);  

I=zeros(M,N); 

for n=1:N 

    for m=1:M 

    I(m,n)=Imag(m,n)*exp(j*Iphase(m,n)); 

    end 

end 

% Create placeholder for node voltages.  

V=zeros(M,N); 

% Compute node voltages from current injections 

for k=1:N; 

V(:,k)=Z*I(:,k); 

end 

Imean=mean(I'); % Compute mean of column data 
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Imean=Imean';   

Vmean=mean(V'); 

Vmean=Vmean'; 

% Use mean of PMU for missing PMU measurements   

 for m=1:missing 

    I(P(m),:)=Imean(P(m)); 

 end 

 for m=1:missing 

    V(P(m),:)=Vmean(P(m)); 

 end 

Istd=std(I'); 

Istd=Istd'; 

Ivar=zeros(M,N); 

% Subtract the mean current value and normalize  

for k=1:N; 

    Ivar(:,k)=(I(:,k)-Imean)./(Istd.^2);   

end 

Vmean=mean(V'); 
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Vmean=Vmean'; 

Vstd=std(V'); 

Vstd=Vstd'; 

for k=1:N; 

    Vvar(:,k)=V(:,k)-Vmean; 

end 

Zvar=zeros(M,M); 

for n=1:N; 

     Zvar=Zvar+Vvar(:,n)*Ivar(:,n)'; 

end 

Zhat=(Zvar)/N; 

% Modify Z for missing rows & columns 

% For error analysis set 'actual' Z  

% row and column elements to zero for 

% missing PMU buses. 

  for n=1:missing 

    for m=1:M 

      Z(P(n),m)=0; 
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      Zhat(P(n),m)=0; 

    end 

  end 

  for n=1:missing 

    for m=1:M 

      Z(m,P(n))=0; 

      Zhat(m,P(n))=0; 

    end 

   end  

Zmag=norm(Z); 

Zhatmag=norm(Zhat-Z); 

delta=Zhatmag/Zmag 

B. Randomly generated Ybus systems M-files 

The two codes bellow produced Fig. 30 through Fig. 32 

a. Ybus estimation error calculation 

This code below corresponds to the flow chart in Fig. 29. 

clear 

clc 

close all 
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x=2.5; % this is the variance for the current magnitude 

f=0;   % this is a counter 

h=0;   % another counter initialization 

max_m=400;     % maximum number of samples 

max_i=20;       % number of times each number of samples is bieng repeated.  

z3=zeros(1,max_m);    

zznorep=zeros(max_m,max_i); 

yynorep=zeros(max_m,max_i); 

%%  

for m=1:max_m; 

        y=m; 

        for i=1:max_i; 

        Z = estimationerror(x, y);      %Ybus estimation as a function 

                                        %it takes current magnitude Variance 

                                        %and number of samples as inputs.  

                                        %it returns the "accuracy" as 

                                        %output 

             f=f+1;      %counter 

  

           zznorep (m,i)=Z;     %records input and output 

           yynorep (m,i)=y; 

        

        end 
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            clc 

disp('Running...  ');fprintf('\b');fprintf('%.2f',f/(max_m*max_i)*100);disp('%');   %display 

progressend 

     

end 

%% pre recorded data 

load ('prerec_1000_50.mat') 

maxmprerec=length(zzprerec);  

for g=1:maxmprerec 

        

       zvarprerec(g)=max(zzprerec(g,:))-min(zzprerec(g,:));   

    

   end 

   figure (12) 

    

   plot(yyprerec(:,1),smooth(smooth(smooth((zvarprerec))))) 

    

   ylim([-0.2 2]) 

   xlim([-100 1000]) 

    

   hline=refline([0,0]); 

   set(hline,'LineStyle',':'); 

  hline= line([0,0],[-0.2,10]); 
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   set(hline,'LineStyle',':'); 

  

   figure (11) 

   plot(yyprerec(:,1),zvarprerec) 

   title('Max-min'); 

    

   figure (10) 

   for b=1:maxmprerec 

   if b==1  

       hold 

   end 

   plot(yyprerec(b,:),zzprerec(b,:)) 

   title('parallel vertical lines "range of accuracy"'); 

   end 

     

figure (9) 

hold 

for ww=1:10:maxmprerec 

plot (yyprerec(ww,:),zzprerec(ww,:)) 

end 

  

%figure (8) 

%plot (yyprerec(maxmprerec/2,:),zzprerec(maxmprerec/2,:)) 
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figure (7) 

w=9; 

plot(yyprerec(:,w),zzprerec(:,w)) 

%% this section plots the variance in the "accuracy" for each specific #of samples 

     

   for g=1:max_m 

        

       z3(g)=max(zznorep(g,:))-min(zznorep(g,:));   

    

   end 

   figure (6) 

    

   plot(yynorep(:,1),smooth(smooth(smooth(z3)))) 

    

   ylim([-0.2 2]) 

   xlim([-0.1*max_m max_m]) 

    

   hline=refline([0,0]); 

   set(hline,'LineStyle',':'); 

  hline= line([0,0],[-0.2,10]); 

   set(hline,'LineStyle',':'); 
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   figure (5) 

   plot(yynorep(:,1),z3) 

   title('Max-min'); 

   %% this section plots the maximum "accuracy" for each #of samples 

    

   figure (4) 

   for b=1:max_m 

   if b==1  

       hold 

   end 

   plot(yynorep(b,:),zznorep(b,:)) 

   title('parallel vertical lines "range of accuracy"'); 

   end 

     

%scatter(yy,zz) 

%plot(yy,zz) 

%%  

  

figure (3) 

hold 

for ww=1:10:max_m 

plot (yynorep(ww,:),zznorep(ww,:)) 
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end 

  

figure (2) 

plot (yynorep(max_m/2,:),zznorep(max_m/2,:)) 

  

figure (1) 

w=9; 

plot(yynorep(:,w),zznorep(:,w)) 

b. Ybus error estimation. 

The code below corresponds to Fig. 28. 

% Estimate Y-bus from measurements of V and I  

% Assume gaussian noise distribution in current injection 

% Use Admittance matrix formulation as in Glover-Sarma Page 326-327 

% (Chap 6 Power Flow in terms of bus injection current) 

function [error]=estimationerror(Var, Itterations) 

  

% Creat large scale complex-valued symmetric matrix 

M=2;      % Number of buses 

P=1*M;    % Number of buses with PMU measurements 

  

Y1=random('Normal',10,10,M,M); 

Y2=j*random('Normal',5,1,M,M); 

Y12=Y1+Y2; 
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Y=Y12+conj(Y12'); 

Z=inv(Y); 

N=Itterations;  % Number of data samples 

  

%%%%%%%%%% 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

%%%%%%%%%%    Same before this line 

%%%%%%%%%% 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

% Creat random array of bus current injections. Each column is a set of 

% three current sources [i1 i2 i3]' at a particular time.  

% Columns denote time sequence of currents. 

% Current injections are random - changed each time program is run 

% Z=eye(M);Y=eye(M); 

  

Imag=random('Normal',3.671,Var,M,N);   

Iphase=random('Normal',-0.5,0.125,M,N);  

I=zeros(M,N); 

for n=1:N 

    for m=1:M 

    I(m,n)=Imag(m,n)*exp(j*Iphase(m,n)); 

    end 

    end 
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% Creat placeholder for node voltages. Same format as bus injection 

% currents I. 

V=zeros(M,N); 

% Compute node voltages from current injections 

  

for k=1:N; 

V(:,k)=Z*I(:,k); 

end 

  

%%%%%%%%%% 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

%%%%%%%%%%    Same after this line 

%%%%%%%%%% 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

  

Imean=mean(I'); % The "mean" command compute mean as column data 

Imean=Imean'; % note complex transpose is reversed.  

Istd=std(I'); 

Istd=Istd'; 

Ivar=zeros(M,N); 

  

% Subtract the mean current value and normalize variance 
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for k=1:N; 

    Ivar(:,k)=I(:,k)-Imean; 

     Ivar(:,k)=(I(:,k)-Imean)./(Istd.^2);  % This correct results with no normalization to Vvar 

end 

Vmean=mean(V'); 

Vmean=Vmean'; 

Vstd=std(V'); 

Vstd=Vstd'; 

% Subtract mean voltage and normalize variance 

for k=1:N; 

    Vvar(:,k)=V(:,k)-Vmean; 

end 

Zvar=zeros(M,M); 

  

% Using Therrien book (statistical signal processing)  

% Compute using estimated correlation matrix from data Page 41 applied 

% to the covariance matrix  

for k=1:N; 

     Zvar=Zvar+Vvar(:,k)*Ivar(:,k)';  % equivalent to I*V but yields conjugate 

   % Zvar=Zvar+Ivar(:,k)*Vvar(:,k)';  % This gives the conjugate of Zbus 

end 

  

% Compute impedance data Z-matrix 
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% Zmean=Vmean*Imean'; 

%%% Corrected scaling 

Zhat=(Zvar)/N; 

%%%%% Corrected conjugate 

Yhat=inv(Zhat);        % Note conjugate transpose in matrix inverse needed  

                       % if use the alternate Zvar=Zvar+Ivar(:,k)*Vvar(:,k)'; 

                       % Could also Yhat=inv(Zhat) then Yhat=Yhat' 

% Compare known (admittance) Y-matrix to estimated Y-matrix 

error=norm(Zhat)/norm(Z); 

  

% Zhat=(norm(Z)/norm(Zhat))*Zhat 

  

% abs(Y); 

% abs(Yhat); 

% Yerr=norm(Y-Yhat)/norm(Y)   % Compute percent error in estimated Y-matrix 

                            % typically 1% for 500,000 samples if sufficient  

                            % variance in current source injections. If variance  

                            % is low then will have large errors. If zero 

                            % variance, e.g. I=random('Normal',10,0,3,N); then 

                            % system may not be able to solve.  

                             

C. IEEE 68-bus benchmark system M-files 

The two codes below produced Fig. 34 through Fig. 36. 
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a. Ybus estimation error calculation 

clear 

clc 

close all 

x=2.5; % this is the variance for the current magnitude 

f=0;   % this is a counter 

h=0;   % another counter initialization 

max_m=1000;     % maximum number of samples 

max_i=20;       % number of times each number of samples is bieng repeated.  

z3=zeros(1,max_m);    

zznorep=zeros(max_m,max_i); 

yynorep=zeros(max_m,max_i); 

%%  

for m=1:max_m; 

        y=m; 

        for i=1:max_i; 

        Z = estimationerror(x, y);      %Ybus estimation as a function 

                                        %it takes current magnitude Variance 

                                        %and number of samples as inputs.  

                                        %it returns the "accuracy" as 

                                        %output 

             f=f+1;      %counter 

  

           zznorep (m,i)=Z;     %records input and output 
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           yynorep (m,i)=y; 

        

        end 

            clc 

disp('Running...  ');fprintf('\b');fprintf('%.2f',f/(max_m*max_i)*100);disp('%');   %display 

progressend 

     

end 

  

%% this section plots the variance in the "accuracy" for each specific #of samples 

     

   for g=1:max_m 

        

       z3(g)=max(zznorep(g,:))-min(zznorep(g,:));   

    

   end 

   figure (6) 

    

   plot(yynorep(:,1),smooth(smooth(smooth(z3)))) 

   ylim([-0.2 2]) 

   xlim([-0.1*max_m max_m]) 

   hline=refline([0,0]); 

   set(hline,'LineStyle',':'); 
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  hline= line([0,0],[-0.2,10]); 

   set(hline,'LineStyle',':'); 

   figure (5) 

   plot(yynorep(:,1),z3) 

   title('Max-min'); 

   %% this section plots the maximum "accuracy" for each #of samples 

   figure (4) 

   for b=1:max_m 

   if b==1  

       hold 

   end 

   plot(yynorep(b,:),zznorep(b,:)) 

   title('parallel vertical lines "range of accuracy"'); 

   end 

     

%scatter(yy,zz) 

%plot(yy,zz) 

%%  

  

figure (3) 

hold 

for ww=1:10:max_m 

plot (yynorep(ww,:),zznorep(ww,:)) 
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end 

  

figure (2) 

plot (yynorep(max_m/2,:),zznorep(max_m/2,:)) 

  

figure (1) 

w=9; 

plot(yynorep(:,w),zznorep(:,w)) 

b. Ybus error estimation. 

% Estimate Y-bus from measurements of V and I  

% Assume gaussian noise distribution in current injection 

% Use Admittance matrix formulation as in Glover-Sarma Page 326-327 

% (Chap 6 Power Flow in terms of bus injection current) 

function [error]=estimationerror(Var, Itterations) 

load('Ybus.mat') 

M=length(Y1); 

P=1*M; 

Y=full(Y1); 

%{ 

% Creat large scale complex-valued symmetric matrix 

M=2;      % Number of buses 

P=1*M;    % Number of buses with PMU measurements 
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Y1=random('Normal',10,10,M,M); 

Y2=j*random('Normal',5,1,M,M); 

Y12=Y1+Y2; 

Y=Y12+conj(Y12'); 

  

%} 

Z=inv(Y); 

N=Itterations;  % Number of data samples 

%% 

%%%%%%%%%% 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

%%%%%%%%%%    Same before this line 

%%%%%%%%%% 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

% Creat random array of bus current injections. Each column is a set of 

% three current sources [i1 i2 i3]' at a particular time.  

% Columns denote time sequence of currents. 

% Current injections are random - changed each time program is run 

% Z=eye(M);Y=eye(M); 

  

Imag=random('Normal',3.671,Var,M,N);   

Iphase=random('Normal',-0.5,0.125,M,N);  

I=zeros(M,N); 
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for n=1:N 

    for m=1:M 

    I(m,n)=Imag(m,n)*exp(j*Iphase(m,n)); 

    end 

    end 

  

% Creat placeholder for node voltages. Same format as bus injection 

% currents I. 

V=zeros(M,N); 

% Compute node voltages from current injections 

  

for k=1:N; 

V(:,k)=Z*I(:,k); 

end 

  

%%%%%%%%%% 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

%%%%%%%%%%    Same after this line 

%%%%%%%%%% 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

  

Imean=mean(I'); % The "mean" command compute mean as column data 

Imean=Imean'; % note complex transpose is reversed.  
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Istd=std(I'); 

Istd=Istd'; 

Ivar=zeros(M,N); 

  

% Subtract the mean current value and normalize variance 

for k=1:N; 

    Ivar(:,k)=I(:,k)-Imean; 

     Ivar(:,k)=(I(:,k)-Imean)./(Istd.^2);  % This correct results with no normalization to Vvar 

end 

Vmean=mean(V'); 

Vmean=Vmean'; 

Vstd=std(V'); 

Vstd=Vstd'; 

% Subtract mean voltage and normalize variance 

for k=1:N; 

    Vvar(:,k)=V(:,k)-Vmean; 

end 

Zvar=zeros(M,M); 

  

% Using Therrien book (statistical signal processing)  

% Compute using estimated correlation matrix from data Page 41 applied 

% to the covariance matrix  

for k=1:N; 
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     Zvar=Zvar+Vvar(:,k)*Ivar(:,k)';  % equivalent to I*V but yields conjugate 

   % Zvar=Zvar+Ivar(:,k)*Vvar(:,k)';  % This gives the conjugate of Zbus 

end 

% Compute impedance data Z-matrix 

% Zmean=Vmean*Imean'; 

%%% Corrected scaling 

Zhat=(Zvar)/N; 

%%%%% Corrected conjugate 

Yhat=inv(Zhat);        % Note conjugate transpose in matrix inverse needed  

                       % if use the alternate Zvar=Zvar+Ivar(:,k)*Vvar(:,k)'; 

                       % Could also Yhat=inv(Zhat) then Yhat=Yhat' 

% Compare known (admittance) Y-matrix to estimated Y-matrix 

error=norm(Zhat)/norm(Z); 

% Zhat=(norm(Z)/norm(Zhat))*Zhat 

% abs(Y); 

% abs(Yhat); 

% Yerr=norm(Y-Yhat)/norm(Y)   % Compute percent error in estimated Y-matrix 

                            % typically 1% for 500,000 samples if sufficient  

                            % variance in current source injections. If variance  

                            % is low then will have large errors. If zero 

                            % variance, e.g. I=random('Normal',10,0,3,N); then 

                            % system may not be able to solve.  
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D. Benchmark system Ybus estimation 

clear 

clc 

load BusVoltage; 

load BusCurrent; 

I=BusCurrent; 

V=BusVoltage; 

[M,N]=size(BusCurrent);         % Number of PMU sample measurements 

                                % Select number of buses 

 Imean=mean(I'); % Compute mean of column data 

Imean=Imean';   

Vmean=mean(V'); 

Vmean=Vmean'; 

 Istd=std(I'); 

Istd=Istd'; 

Ivar=zeros(M,N); 

% Subtract the mean current value and normalize  

for k=1:N; 

    Ivar(:,k)=(I(:,k)-Imean)./(Istd.^2);   

end 

Vmean=mean(V'); 

Vmean=Vmean'; 

Vstd=std(V'); 
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Vstd=Vstd'; 

for k=1:N; 

    Vvar(:,k)=V(:,k)-Vmean; 

end 

Zvar=zeros(M,M); 

for n=1:N; 

     Zvar=Zvar+Vvar(:,n)*Ivar(:,n)'; 

end 

Zhat=(Zvar)/N 
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